Abstract

Ultrafast optical spectroscopy methods, such as transient absorption spectroscopy and 2D spectroscopy, are widely used across many disciplines. However, these techniques are typically restricted to optically thick samples, such as solids and liquid solutions. Using a frequency comb laser and optical cavities, we present a technique for performing ultrafast optical spectroscopy with high sensitivity, enabling work in dilute gas-phase molecular beams. Resonantly enhancing the probe pulses, we demonstrate transient absorption measurements with a detection limit of ΔOD=2×1010 (1×109/Hz). Resonantly enhancing the pump pulses allows us to produce a high excitation fraction at a high repetition rate, so that signals can be recorded from samples with optical densities as low as OD108, or column densities <1010  molecules/cm2. To our knowledge, this represents a 5000-fold improvement of the state of the art.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Finesse and sensitivity gain in cavity-enhanced absorption spectroscopy of biomolecules in solution

Timothy McGarvey, André Conjusteau, and Hideo Mabuchi
Opt. Express 14(22) 10441-10451 (2006)

Cavity-enhanced absorption spectroscopy with a ps-pulsed UV laser for sensitive, high-speed measurements in a shock tube

Shengkai Wang, Kai Sun, David F. Davidson, Jay B. Jeffries, and Ronald K. Hanson
Opt. Express 24(1) 308-318 (2016)

References

  • View by:
  • |
  • |
  • |

  1. D. E. Spence, P. N. Kean, and W. Sibbett, “60-fsec pulse generation from a self-mode-locked Ti:sapphire laser,” Opt. Lett. 16, 42–44 (1991).
    [Crossref]
  2. C. Schriever, S. Lochbrunner, E. Riedle, and D. J. Nesbitt, “Ultrasensitive ultraviolet-visible 20  fs absorption spectroscopy of low vapor pressure molecules in the gas phase,” Rev. Sci. Instrum. 79, 013107 (2008).
    [Crossref]
  3. D. Boschetto, L. Malard, C. H. Lui, K. F. Mak, Z. Li, H. Yan, and T. F. Heinz, “Real-time observation of interlayer vibrations in bilayer and few-layer graphene,” Nano Lett. 13, 4620–4623 (2013).
    [Crossref]
  4. K. Röttger, S. Wang, F. Renth, J. Bahrenburg, and F. Temps, “A femtosecond pump-probe spectrometer for dynamics in transmissive polymer films,” Appl. Phys. B 118, 185–193 (2015).
    [Crossref]
  5. D. N. Basov, R. D. Averitt, D. van der Marel, M. Dressel, and K. Haule, “Electrodynamics of correlated electron materials,” Rev. Mod. Phys. 83, 471–541 (2011).
    [Crossref]
  6. J. Orenstein, “Ultrafast spectroscopy of quantum materials,” Phys. Today 65(9), 44–50 (2012).
    [Crossref]
  7. N. Heine and K. R. Asmis, “Cryogenic ion trap vibrational spectroscopy of hydrogen-bonded clusters relevant to atmospheric chemistry,” Int. Rev. Phys. Chem. 34, 1–34 (2015).
    [Crossref]
  8. D. J. Nesbitt, “High-resolution infrared spectroscopy of weakly bound molecular complexes,” Chem. Rev. 88, 843–870 (1988).
    [Crossref]
  9. G. G. Brown, B. C. Dian, K. O. Douglass, S. M. Geyer, S. T. Shipman, and B. H. Pate, “A broadband Fourier transform microwave spectrometer based on chirped pulse excitation,” Rev. Sci. Instrum. 79, 053103 (2008).
    [Crossref]
  10. J. B. Paul, C. P. Collier, R. J. Saykally, J. J. Scherer, and A. O’Keefe, “Direct measurement of water cluster concentrations by infrared cavity ringdown laser absorption spectroscopy,” J. Phys. Chem. A 101, 5211–5214 (1997).
    [Crossref]
  11. A. Stolow, A. E. Bragg, and D. M. Neumark, “Femtosecond time-resolved photoelectron spectroscopy,” Chem. Rev. 104, 1719–1758 (2004).
    [Crossref]
  12. K. Kosma, S. A. Trushin, W. Fuss, and W. E. Schmid, “Ultrafast dynamics and coherent oscillations in ethylene and ethylene-d4 excited at 162 nm,” J. Phys. Chem. A 112, 7514–7529 (2008).
    [Crossref]
  13. C. T. Middleton, K. de La Harpe, C. Su, Y. K. Law, C. E. Crespo-Hernández, and B. Kohler, “DNA excited-state dynamics: from single bases to the double helix,” Annu. Rev. Phys. Chem. 60, 217–239 (2009).
    [Crossref]
  14. H. Saigusa, “Excited-state dynamics of isolated nucleic acid bases and their clusters,” J. Photochem. Photobiol. C 7, 197–210 (2006).
    [Crossref]
  15. P. Hamm and M. Zanni, Concepts and Methods of 2D Infrared Spectroscopy (Cambridge University, 2011).
  16. G. Gagliardi and H.-P. Loock, eds., Cavity Enhanced Spectroscopy and Sensing (Springer, 2013).
  17. J. Hall, J. Ye, S. Diddams, L.-S. Ma, S. Cundiff, and D. Jones, “Ultrasensitive spectroscopy, the ultrastable lasers, the ultrafast lasers, and the seriously nonlinear fiber: a new alliance for physics and metrology,” IEEE J. Quantum Electron. 37, 1482–1492 (2001).
    [Crossref]
  18. F. Adler, M. J. Thorpe, K. C. Cossel, and J. Ye, “Cavity-enhanced direct frequency comb spectroscopy: technology and applications,” Annu. Rev. Anal. Chem. 3, 175–205 (2010).
    [Crossref]
  19. C. Gohle, B. Stein, A. Schliesser, T. Udem, and T. W. Hänsch, “Frequency comb Vernier spectroscopy for broadband, high-resolution, high-sensitivity absorption and dispersion spectra,” Phys. Rev. Lett. 99, 263902 (2007).
    [Crossref]
  20. T. Gherman and D. Romanini, “Mode-locked cavity-enhanced absorption spectroscopy,” Opt. Express 10, 1033–1042 (2002).
    [Crossref]
  21. A. Foltynowicz, P. Masłowski, A. J. Fleisher, B. J. Bjork, and J. Ye, “Cavity-enhanced optical frequency comb spectroscopy in the mid-infrared application to trace detection of hydrogen peroxide,” Appl. Phys. B 110, 163–175 (2013).
    [Crossref]
  22. B. Bernhardt, A. Ozawa, P. Jacquet, M. Jacquey, Y. Kobayashi, T. Udem, R. Holzwarth, G. Guelachvili, T. W. Hansch, and N. Picque, “Cavity-enhanced dual-comb spectroscopy,” Nat. Photonics 4, 55–57 (2010).
    [Crossref]
  23. M. J. Thorpe, D. Balslev-Clausen, M. S. Kirchner, and J. Ye, “Cavity-enhanced optical frequency comb spectroscopy: application to human breath analysis,” Opt. Express 16, 2387–2397 (2008).
    [Crossref]
  24. A. J. Fleisher, B. J. Bjork, T. Q. Bui, K. C. Cossel, M. Okumura, and J. Ye, “Mid-infrared time-resolved frequency comb spectroscopy of transient free radicals,” J. Phys. Chem. Lett. 5, 2241–2246 (2014).
    [Crossref]
  25. C. Benko, L. Hua, T. K. Allison, F. M. C. Labaye, and J. Ye, “Cavity-enhanced field-free molecular alignment at a high repetition rate,” Phys. Rev. Lett. 114, 153001 (2015).
    [Crossref]
  26. D. Carlson, T.-H. Wu, and R. Jones, “Dual-comb femtosecond enhancement cavity for precision measurements of plasma dynamics and spectroscopy in the XUV,” in Conference on Lasers and Electro-Optics (CLEO) (IEEE, 2015).
  27. M. K. Liu, R. D. Averitt, T. Durakiewicz, P. H. Tobash, E. D. Bauer, S. A. Trugman, A. J. Taylor, and D. A. Yarotski, “Evidence of a hidden-order pseudogap state in URu2Si2 using ultrafast optical spectroscopy,” Phys. Rev. B 84, 161101 (2011).
    [Crossref]
  28. S.-H. Shim and M. T. Zanni, “How to turn your pump-probe instrument into a multidimensional spectrometer: 2D IR and VIS spectroscopies via pulse shaping,” Phys. Chem. Chem. Phys. 11, 748–761 (2009).
    [Crossref]
  29. R. Berera, R. Grondelle, and J. T. Kennis, “Ultrafast transient absorption spectroscopy: principles and application to photosynthetic systems,” Photosynth. Res. 101, 105–118 (2009).
    [Crossref]
  30. A. Zewail, M. Dantus, R. Bowman, and A. Mokhtari, “Femtochemistry: recent advances and extension to high pressures,” J. Photochem. Photobiol. A 62, 301–319 (1992).
    [Crossref]
  31. L. Nugent-Glandorf, T. A. Johnson, Y. Kobayashi, and S. A. Diddams, “Impact of dispersion on amplitude and frequency noise in a Yb-fiber laser comb,” Opt. Lett. 36, 1578–1580 (2011).
    [Crossref]
  32. T. R. Schibli, I. Hartl, D. C. Yost, M. J. Martin, A. Marcinkevicius, M. E. Fermann, and J. Ye, “Optical frequency comb with submillihertz linewidth and more than 10  W average power,” Nat. Photonics 2, 355–359 (2008).
    [Crossref]
  33. A. Foltynowicz, T. Ban, P. Masłowski, F. Adler, and J. Ye, “Quantum-noise-limited optical frequency comb spectroscopy,” Phys. Rev. Lett. 107, 233002 (2011).
    [Crossref]
  34. R. J. Jones and J. Ye, “Femtosecond pulse amplification by coherent addition in a passive optical cavity,” Opt. Lett. 27, 1848–1850 (2002).
    [Crossref]
  35. W. Nagourney, Quantum Electronics for Atomic Physics (Oxford University, 2010).
  36. T. C. Briles, D. C. Yost, A. Cingöz, J. Ye, and T. R. Schibli, “Simple piezoelectric-actuated mirror with 180  kHz servo bandwidth,” Opt. Express 18, 9739–9746 (2010).
    [Crossref]
  37. J. A. Coxon, “The calculation of potential energy curves of diatomic molecules: application to halogen molecules,” J. Quant. Spectrosc. Radiat. Transfer 11, 443–462 (1971).
    [Crossref]
  38. R. F. Barrow and K. K. Lee, “B Π0u+3−X Σg+1 system of I2127: rotational analysis and long range potential in the B Π0u+3 state,” J. Chem. Soc. Faraday 69, 684–700 (1973).
    [Crossref]
  39. R. S. Mulliken, “Iodine revisited,” J. Chem. Phys. 55, 288–309 (1971).
    [Crossref]
  40. J. I. Steinfeld, R. N. Zare, L. Jones, M. Lesk, and W. Klemperer, “Spectroscopic constants and vibrational assignment for the B Π0u+3 state of iodine,” J. Chem. Phys. 42, 25–33 (1965).
    [Crossref]
  41. P. M. Felker, J. S. Baskin, and A. H. Zewail, “Rephasing of collisionless molecular rotational coherence in large molecules,” J. Phys. Chem. 90, 724–728 (1986).
    [Crossref]
  42. A. Weiner, Ultrafast Optics (Wiley, 2009).
  43. I. Pupeza, S. Holzberger, T. Eidam, H. Carstens, D. Esser, J. Weitenberg, P. Ruszbuldt, J. Rauschenberger, J. Limpert, T. Udem, A. Tunnermann, T. W. Hansch, A. Apolonski, F. Krausz, and E. Fill, “Compact high-repetition-rate source of coherent 100  eV radiation,” Nat. Photonics 7, 608–612 (2013).
    [Crossref]
  44. A. Khodabakhsh, C. A. Alrahman, and A. Foltynowicz, “Noise-immune cavity-enhanced optical frequency comb spectroscopy,” Opt. Lett. 39, 5034–5037 (2014).
    [Crossref]
  45. S. Holzberger, N. Lilienfein, M. Trubetskov, H. Carstens, F. Lücking, V. Pervak, F. Krausz, and I. Pupeza, “Enhancement cavities for zero-offset-frequency pulse trains,” Opt. Lett. 40, 2165–2168 (2015).
    [Crossref]
  46. C. Gohle, T. Udem, M. Herrmann, J. Rauschenberger, R. Holzwarth, H. A. Schuessler, F. Krausz, and T. W. Hänsch, “A frequency comb in the extreme ultraviolet,” Nature 436, 234–237 (2005).
    [Crossref]
  47. A. Schliesser, N. Picque, and T. W. Hansch, “Mid-infrared frequency combs,” Nat. Photonics 6, 440–449 (2012).
    [Crossref]
  48. A. Saiz-Lopez, R. W. Saunders, D. M. Joseph, S. H. Ashworth, and J. M. C. Plane, “Absolute absorption cross-section and photolysis rate of I2,” Atmos. Chem. Phys. 4, 1443–1450 (2004).
    [Crossref]
  49. U. Buck and F. Huisken, “Infrared spectroscopy of size-selected water and methanol clusters,” Chem. Rev. 100, 3863–3890 (2000).
    [Crossref]
  50. L. C. Ch’ng, A. K. Samanta, Y. Wang, J. M. Bowman, and H. Reisler, “Experimental and theoretical investigations of the dissociation energy (D0) and dynamics of the water trimer, (H2O)3,” J. Phys. Chem. A 117, 7207–7216 (2013).
    [Crossref]
  51. F. N. Keutsch and R. J. Saykally, “Water clusters: untangling the mysteries of the liquid, one molecule at a time,” Proc. Natl. Acad. Sci. USA 98, 10533–10540 (2001).
  52. T. Majima, G. Santambrogio, C. Bartels, A. Terasaki, T. Kondow, J. Meinen, and T. Leisner, “Spatial distribution of ions in a linear octopole radio-frequency ion trap in the space-charge limit,” Phys. Rev. A 85, 053414 (2012).
    [Crossref]
  53. G.-Z. Li, S. Guan, and A. G. Marshall, “Comparison of equilibrium ion density distribution and trapping force in Penning, Paul, and combined ion traps,” J. Am. Soc. Mass Spectrosc. 9, 473–481 (1998).
    [Crossref]

2015 (4)

K. Röttger, S. Wang, F. Renth, J. Bahrenburg, and F. Temps, “A femtosecond pump-probe spectrometer for dynamics in transmissive polymer films,” Appl. Phys. B 118, 185–193 (2015).
[Crossref]

N. Heine and K. R. Asmis, “Cryogenic ion trap vibrational spectroscopy of hydrogen-bonded clusters relevant to atmospheric chemistry,” Int. Rev. Phys. Chem. 34, 1–34 (2015).
[Crossref]

C. Benko, L. Hua, T. K. Allison, F. M. C. Labaye, and J. Ye, “Cavity-enhanced field-free molecular alignment at a high repetition rate,” Phys. Rev. Lett. 114, 153001 (2015).
[Crossref]

S. Holzberger, N. Lilienfein, M. Trubetskov, H. Carstens, F. Lücking, V. Pervak, F. Krausz, and I. Pupeza, “Enhancement cavities for zero-offset-frequency pulse trains,” Opt. Lett. 40, 2165–2168 (2015).
[Crossref]

2014 (2)

A. Khodabakhsh, C. A. Alrahman, and A. Foltynowicz, “Noise-immune cavity-enhanced optical frequency comb spectroscopy,” Opt. Lett. 39, 5034–5037 (2014).
[Crossref]

A. J. Fleisher, B. J. Bjork, T. Q. Bui, K. C. Cossel, M. Okumura, and J. Ye, “Mid-infrared time-resolved frequency comb spectroscopy of transient free radicals,” J. Phys. Chem. Lett. 5, 2241–2246 (2014).
[Crossref]

2013 (4)

A. Foltynowicz, P. Masłowski, A. J. Fleisher, B. J. Bjork, and J. Ye, “Cavity-enhanced optical frequency comb spectroscopy in the mid-infrared application to trace detection of hydrogen peroxide,” Appl. Phys. B 110, 163–175 (2013).
[Crossref]

D. Boschetto, L. Malard, C. H. Lui, K. F. Mak, Z. Li, H. Yan, and T. F. Heinz, “Real-time observation of interlayer vibrations in bilayer and few-layer graphene,” Nano Lett. 13, 4620–4623 (2013).
[Crossref]

I. Pupeza, S. Holzberger, T. Eidam, H. Carstens, D. Esser, J. Weitenberg, P. Ruszbuldt, J. Rauschenberger, J. Limpert, T. Udem, A. Tunnermann, T. W. Hansch, A. Apolonski, F. Krausz, and E. Fill, “Compact high-repetition-rate source of coherent 100  eV radiation,” Nat. Photonics 7, 608–612 (2013).
[Crossref]

L. C. Ch’ng, A. K. Samanta, Y. Wang, J. M. Bowman, and H. Reisler, “Experimental and theoretical investigations of the dissociation energy (D0) and dynamics of the water trimer, (H2O)3,” J. Phys. Chem. A 117, 7207–7216 (2013).
[Crossref]

2012 (3)

A. Schliesser, N. Picque, and T. W. Hansch, “Mid-infrared frequency combs,” Nat. Photonics 6, 440–449 (2012).
[Crossref]

T. Majima, G. Santambrogio, C. Bartels, A. Terasaki, T. Kondow, J. Meinen, and T. Leisner, “Spatial distribution of ions in a linear octopole radio-frequency ion trap in the space-charge limit,” Phys. Rev. A 85, 053414 (2012).
[Crossref]

J. Orenstein, “Ultrafast spectroscopy of quantum materials,” Phys. Today 65(9), 44–50 (2012).
[Crossref]

2011 (4)

D. N. Basov, R. D. Averitt, D. van der Marel, M. Dressel, and K. Haule, “Electrodynamics of correlated electron materials,” Rev. Mod. Phys. 83, 471–541 (2011).
[Crossref]

L. Nugent-Glandorf, T. A. Johnson, Y. Kobayashi, and S. A. Diddams, “Impact of dispersion on amplitude and frequency noise in a Yb-fiber laser comb,” Opt. Lett. 36, 1578–1580 (2011).
[Crossref]

M. K. Liu, R. D. Averitt, T. Durakiewicz, P. H. Tobash, E. D. Bauer, S. A. Trugman, A. J. Taylor, and D. A. Yarotski, “Evidence of a hidden-order pseudogap state in URu2Si2 using ultrafast optical spectroscopy,” Phys. Rev. B 84, 161101 (2011).
[Crossref]

A. Foltynowicz, T. Ban, P. Masłowski, F. Adler, and J. Ye, “Quantum-noise-limited optical frequency comb spectroscopy,” Phys. Rev. Lett. 107, 233002 (2011).
[Crossref]

2010 (3)

T. C. Briles, D. C. Yost, A. Cingöz, J. Ye, and T. R. Schibli, “Simple piezoelectric-actuated mirror with 180  kHz servo bandwidth,” Opt. Express 18, 9739–9746 (2010).
[Crossref]

B. Bernhardt, A. Ozawa, P. Jacquet, M. Jacquey, Y. Kobayashi, T. Udem, R. Holzwarth, G. Guelachvili, T. W. Hansch, and N. Picque, “Cavity-enhanced dual-comb spectroscopy,” Nat. Photonics 4, 55–57 (2010).
[Crossref]

F. Adler, M. J. Thorpe, K. C. Cossel, and J. Ye, “Cavity-enhanced direct frequency comb spectroscopy: technology and applications,” Annu. Rev. Anal. Chem. 3, 175–205 (2010).
[Crossref]

2009 (3)

C. T. Middleton, K. de La Harpe, C. Su, Y. K. Law, C. E. Crespo-Hernández, and B. Kohler, “DNA excited-state dynamics: from single bases to the double helix,” Annu. Rev. Phys. Chem. 60, 217–239 (2009).
[Crossref]

S.-H. Shim and M. T. Zanni, “How to turn your pump-probe instrument into a multidimensional spectrometer: 2D IR and VIS spectroscopies via pulse shaping,” Phys. Chem. Chem. Phys. 11, 748–761 (2009).
[Crossref]

R. Berera, R. Grondelle, and J. T. Kennis, “Ultrafast transient absorption spectroscopy: principles and application to photosynthetic systems,” Photosynth. Res. 101, 105–118 (2009).
[Crossref]

2008 (5)

M. J. Thorpe, D. Balslev-Clausen, M. S. Kirchner, and J. Ye, “Cavity-enhanced optical frequency comb spectroscopy: application to human breath analysis,” Opt. Express 16, 2387–2397 (2008).
[Crossref]

T. R. Schibli, I. Hartl, D. C. Yost, M. J. Martin, A. Marcinkevicius, M. E. Fermann, and J. Ye, “Optical frequency comb with submillihertz linewidth and more than 10  W average power,” Nat. Photonics 2, 355–359 (2008).
[Crossref]

G. G. Brown, B. C. Dian, K. O. Douglass, S. M. Geyer, S. T. Shipman, and B. H. Pate, “A broadband Fourier transform microwave spectrometer based on chirped pulse excitation,” Rev. Sci. Instrum. 79, 053103 (2008).
[Crossref]

K. Kosma, S. A. Trushin, W. Fuss, and W. E. Schmid, “Ultrafast dynamics and coherent oscillations in ethylene and ethylene-d4 excited at 162 nm,” J. Phys. Chem. A 112, 7514–7529 (2008).
[Crossref]

C. Schriever, S. Lochbrunner, E. Riedle, and D. J. Nesbitt, “Ultrasensitive ultraviolet-visible 20  fs absorption spectroscopy of low vapor pressure molecules in the gas phase,” Rev. Sci. Instrum. 79, 013107 (2008).
[Crossref]

2007 (1)

C. Gohle, B. Stein, A. Schliesser, T. Udem, and T. W. Hänsch, “Frequency comb Vernier spectroscopy for broadband, high-resolution, high-sensitivity absorption and dispersion spectra,” Phys. Rev. Lett. 99, 263902 (2007).
[Crossref]

2006 (1)

H. Saigusa, “Excited-state dynamics of isolated nucleic acid bases and their clusters,” J. Photochem. Photobiol. C 7, 197–210 (2006).
[Crossref]

2005 (1)

C. Gohle, T. Udem, M. Herrmann, J. Rauschenberger, R. Holzwarth, H. A. Schuessler, F. Krausz, and T. W. Hänsch, “A frequency comb in the extreme ultraviolet,” Nature 436, 234–237 (2005).
[Crossref]

2004 (2)

A. Saiz-Lopez, R. W. Saunders, D. M. Joseph, S. H. Ashworth, and J. M. C. Plane, “Absolute absorption cross-section and photolysis rate of I2,” Atmos. Chem. Phys. 4, 1443–1450 (2004).
[Crossref]

A. Stolow, A. E. Bragg, and D. M. Neumark, “Femtosecond time-resolved photoelectron spectroscopy,” Chem. Rev. 104, 1719–1758 (2004).
[Crossref]

2002 (2)

2001 (2)

J. Hall, J. Ye, S. Diddams, L.-S. Ma, S. Cundiff, and D. Jones, “Ultrasensitive spectroscopy, the ultrastable lasers, the ultrafast lasers, and the seriously nonlinear fiber: a new alliance for physics and metrology,” IEEE J. Quantum Electron. 37, 1482–1492 (2001).
[Crossref]

F. N. Keutsch and R. J. Saykally, “Water clusters: untangling the mysteries of the liquid, one molecule at a time,” Proc. Natl. Acad. Sci. USA 98, 10533–10540 (2001).

2000 (1)

U. Buck and F. Huisken, “Infrared spectroscopy of size-selected water and methanol clusters,” Chem. Rev. 100, 3863–3890 (2000).
[Crossref]

1998 (1)

G.-Z. Li, S. Guan, and A. G. Marshall, “Comparison of equilibrium ion density distribution and trapping force in Penning, Paul, and combined ion traps,” J. Am. Soc. Mass Spectrosc. 9, 473–481 (1998).
[Crossref]

1997 (1)

J. B. Paul, C. P. Collier, R. J. Saykally, J. J. Scherer, and A. O’Keefe, “Direct measurement of water cluster concentrations by infrared cavity ringdown laser absorption spectroscopy,” J. Phys. Chem. A 101, 5211–5214 (1997).
[Crossref]

1992 (1)

A. Zewail, M. Dantus, R. Bowman, and A. Mokhtari, “Femtochemistry: recent advances and extension to high pressures,” J. Photochem. Photobiol. A 62, 301–319 (1992).
[Crossref]

1991 (1)

1988 (1)

D. J. Nesbitt, “High-resolution infrared spectroscopy of weakly bound molecular complexes,” Chem. Rev. 88, 843–870 (1988).
[Crossref]

1986 (1)

P. M. Felker, J. S. Baskin, and A. H. Zewail, “Rephasing of collisionless molecular rotational coherence in large molecules,” J. Phys. Chem. 90, 724–728 (1986).
[Crossref]

1973 (1)

R. F. Barrow and K. K. Lee, “B Π0u+3−X Σg+1 system of I2127: rotational analysis and long range potential in the B Π0u+3 state,” J. Chem. Soc. Faraday 69, 684–700 (1973).
[Crossref]

1971 (2)

R. S. Mulliken, “Iodine revisited,” J. Chem. Phys. 55, 288–309 (1971).
[Crossref]

J. A. Coxon, “The calculation of potential energy curves of diatomic molecules: application to halogen molecules,” J. Quant. Spectrosc. Radiat. Transfer 11, 443–462 (1971).
[Crossref]

1965 (1)

J. I. Steinfeld, R. N. Zare, L. Jones, M. Lesk, and W. Klemperer, “Spectroscopic constants and vibrational assignment for the B Π0u+3 state of iodine,” J. Chem. Phys. 42, 25–33 (1965).
[Crossref]

Adler, F.

A. Foltynowicz, T. Ban, P. Masłowski, F. Adler, and J. Ye, “Quantum-noise-limited optical frequency comb spectroscopy,” Phys. Rev. Lett. 107, 233002 (2011).
[Crossref]

F. Adler, M. J. Thorpe, K. C. Cossel, and J. Ye, “Cavity-enhanced direct frequency comb spectroscopy: technology and applications,” Annu. Rev. Anal. Chem. 3, 175–205 (2010).
[Crossref]

Allison, T. K.

C. Benko, L. Hua, T. K. Allison, F. M. C. Labaye, and J. Ye, “Cavity-enhanced field-free molecular alignment at a high repetition rate,” Phys. Rev. Lett. 114, 153001 (2015).
[Crossref]

Alrahman, C. A.

Apolonski, A.

I. Pupeza, S. Holzberger, T. Eidam, H. Carstens, D. Esser, J. Weitenberg, P. Ruszbuldt, J. Rauschenberger, J. Limpert, T. Udem, A. Tunnermann, T. W. Hansch, A. Apolonski, F. Krausz, and E. Fill, “Compact high-repetition-rate source of coherent 100  eV radiation,” Nat. Photonics 7, 608–612 (2013).
[Crossref]

Ashworth, S. H.

A. Saiz-Lopez, R. W. Saunders, D. M. Joseph, S. H. Ashworth, and J. M. C. Plane, “Absolute absorption cross-section and photolysis rate of I2,” Atmos. Chem. Phys. 4, 1443–1450 (2004).
[Crossref]

Asmis, K. R.

N. Heine and K. R. Asmis, “Cryogenic ion trap vibrational spectroscopy of hydrogen-bonded clusters relevant to atmospheric chemistry,” Int. Rev. Phys. Chem. 34, 1–34 (2015).
[Crossref]

Averitt, R. D.

D. N. Basov, R. D. Averitt, D. van der Marel, M. Dressel, and K. Haule, “Electrodynamics of correlated electron materials,” Rev. Mod. Phys. 83, 471–541 (2011).
[Crossref]

M. K. Liu, R. D. Averitt, T. Durakiewicz, P. H. Tobash, E. D. Bauer, S. A. Trugman, A. J. Taylor, and D. A. Yarotski, “Evidence of a hidden-order pseudogap state in URu2Si2 using ultrafast optical spectroscopy,” Phys. Rev. B 84, 161101 (2011).
[Crossref]

Bahrenburg, J.

K. Röttger, S. Wang, F. Renth, J. Bahrenburg, and F. Temps, “A femtosecond pump-probe spectrometer for dynamics in transmissive polymer films,” Appl. Phys. B 118, 185–193 (2015).
[Crossref]

Balslev-Clausen, D.

Ban, T.

A. Foltynowicz, T. Ban, P. Masłowski, F. Adler, and J. Ye, “Quantum-noise-limited optical frequency comb spectroscopy,” Phys. Rev. Lett. 107, 233002 (2011).
[Crossref]

Barrow, R. F.

R. F. Barrow and K. K. Lee, “B Π0u+3−X Σg+1 system of I2127: rotational analysis and long range potential in the B Π0u+3 state,” J. Chem. Soc. Faraday 69, 684–700 (1973).
[Crossref]

Bartels, C.

T. Majima, G. Santambrogio, C. Bartels, A. Terasaki, T. Kondow, J. Meinen, and T. Leisner, “Spatial distribution of ions in a linear octopole radio-frequency ion trap in the space-charge limit,” Phys. Rev. A 85, 053414 (2012).
[Crossref]

Baskin, J. S.

P. M. Felker, J. S. Baskin, and A. H. Zewail, “Rephasing of collisionless molecular rotational coherence in large molecules,” J. Phys. Chem. 90, 724–728 (1986).
[Crossref]

Basov, D. N.

D. N. Basov, R. D. Averitt, D. van der Marel, M. Dressel, and K. Haule, “Electrodynamics of correlated electron materials,” Rev. Mod. Phys. 83, 471–541 (2011).
[Crossref]

Bauer, E. D.

M. K. Liu, R. D. Averitt, T. Durakiewicz, P. H. Tobash, E. D. Bauer, S. A. Trugman, A. J. Taylor, and D. A. Yarotski, “Evidence of a hidden-order pseudogap state in URu2Si2 using ultrafast optical spectroscopy,” Phys. Rev. B 84, 161101 (2011).
[Crossref]

Benko, C.

C. Benko, L. Hua, T. K. Allison, F. M. C. Labaye, and J. Ye, “Cavity-enhanced field-free molecular alignment at a high repetition rate,” Phys. Rev. Lett. 114, 153001 (2015).
[Crossref]

Berera, R.

R. Berera, R. Grondelle, and J. T. Kennis, “Ultrafast transient absorption spectroscopy: principles and application to photosynthetic systems,” Photosynth. Res. 101, 105–118 (2009).
[Crossref]

Bernhardt, B.

B. Bernhardt, A. Ozawa, P. Jacquet, M. Jacquey, Y. Kobayashi, T. Udem, R. Holzwarth, G. Guelachvili, T. W. Hansch, and N. Picque, “Cavity-enhanced dual-comb spectroscopy,” Nat. Photonics 4, 55–57 (2010).
[Crossref]

Bjork, B. J.

A. J. Fleisher, B. J. Bjork, T. Q. Bui, K. C. Cossel, M. Okumura, and J. Ye, “Mid-infrared time-resolved frequency comb spectroscopy of transient free radicals,” J. Phys. Chem. Lett. 5, 2241–2246 (2014).
[Crossref]

A. Foltynowicz, P. Masłowski, A. J. Fleisher, B. J. Bjork, and J. Ye, “Cavity-enhanced optical frequency comb spectroscopy in the mid-infrared application to trace detection of hydrogen peroxide,” Appl. Phys. B 110, 163–175 (2013).
[Crossref]

Boschetto, D.

D. Boschetto, L. Malard, C. H. Lui, K. F. Mak, Z. Li, H. Yan, and T. F. Heinz, “Real-time observation of interlayer vibrations in bilayer and few-layer graphene,” Nano Lett. 13, 4620–4623 (2013).
[Crossref]

Bowman, J. M.

L. C. Ch’ng, A. K. Samanta, Y. Wang, J. M. Bowman, and H. Reisler, “Experimental and theoretical investigations of the dissociation energy (D0) and dynamics of the water trimer, (H2O)3,” J. Phys. Chem. A 117, 7207–7216 (2013).
[Crossref]

Bowman, R.

A. Zewail, M. Dantus, R. Bowman, and A. Mokhtari, “Femtochemistry: recent advances and extension to high pressures,” J. Photochem. Photobiol. A 62, 301–319 (1992).
[Crossref]

Bragg, A. E.

A. Stolow, A. E. Bragg, and D. M. Neumark, “Femtosecond time-resolved photoelectron spectroscopy,” Chem. Rev. 104, 1719–1758 (2004).
[Crossref]

Briles, T. C.

Brown, G. G.

G. G. Brown, B. C. Dian, K. O. Douglass, S. M. Geyer, S. T. Shipman, and B. H. Pate, “A broadband Fourier transform microwave spectrometer based on chirped pulse excitation,” Rev. Sci. Instrum. 79, 053103 (2008).
[Crossref]

Buck, U.

U. Buck and F. Huisken, “Infrared spectroscopy of size-selected water and methanol clusters,” Chem. Rev. 100, 3863–3890 (2000).
[Crossref]

Bui, T. Q.

A. J. Fleisher, B. J. Bjork, T. Q. Bui, K. C. Cossel, M. Okumura, and J. Ye, “Mid-infrared time-resolved frequency comb spectroscopy of transient free radicals,” J. Phys. Chem. Lett. 5, 2241–2246 (2014).
[Crossref]

Carlson, D.

D. Carlson, T.-H. Wu, and R. Jones, “Dual-comb femtosecond enhancement cavity for precision measurements of plasma dynamics and spectroscopy in the XUV,” in Conference on Lasers and Electro-Optics (CLEO) (IEEE, 2015).

Carstens, H.

S. Holzberger, N. Lilienfein, M. Trubetskov, H. Carstens, F. Lücking, V. Pervak, F. Krausz, and I. Pupeza, “Enhancement cavities for zero-offset-frequency pulse trains,” Opt. Lett. 40, 2165–2168 (2015).
[Crossref]

I. Pupeza, S. Holzberger, T. Eidam, H. Carstens, D. Esser, J. Weitenberg, P. Ruszbuldt, J. Rauschenberger, J. Limpert, T. Udem, A. Tunnermann, T. W. Hansch, A. Apolonski, F. Krausz, and E. Fill, “Compact high-repetition-rate source of coherent 100  eV radiation,” Nat. Photonics 7, 608–612 (2013).
[Crossref]

Ch’ng, L. C.

L. C. Ch’ng, A. K. Samanta, Y. Wang, J. M. Bowman, and H. Reisler, “Experimental and theoretical investigations of the dissociation energy (D0) and dynamics of the water trimer, (H2O)3,” J. Phys. Chem. A 117, 7207–7216 (2013).
[Crossref]

Cingöz, A.

Collier, C. P.

J. B. Paul, C. P. Collier, R. J. Saykally, J. J. Scherer, and A. O’Keefe, “Direct measurement of water cluster concentrations by infrared cavity ringdown laser absorption spectroscopy,” J. Phys. Chem. A 101, 5211–5214 (1997).
[Crossref]

Cossel, K. C.

A. J. Fleisher, B. J. Bjork, T. Q. Bui, K. C. Cossel, M. Okumura, and J. Ye, “Mid-infrared time-resolved frequency comb spectroscopy of transient free radicals,” J. Phys. Chem. Lett. 5, 2241–2246 (2014).
[Crossref]

F. Adler, M. J. Thorpe, K. C. Cossel, and J. Ye, “Cavity-enhanced direct frequency comb spectroscopy: technology and applications,” Annu. Rev. Anal. Chem. 3, 175–205 (2010).
[Crossref]

Coxon, J. A.

J. A. Coxon, “The calculation of potential energy curves of diatomic molecules: application to halogen molecules,” J. Quant. Spectrosc. Radiat. Transfer 11, 443–462 (1971).
[Crossref]

Crespo-Hernández, C. E.

C. T. Middleton, K. de La Harpe, C. Su, Y. K. Law, C. E. Crespo-Hernández, and B. Kohler, “DNA excited-state dynamics: from single bases to the double helix,” Annu. Rev. Phys. Chem. 60, 217–239 (2009).
[Crossref]

Cundiff, S.

J. Hall, J. Ye, S. Diddams, L.-S. Ma, S. Cundiff, and D. Jones, “Ultrasensitive spectroscopy, the ultrastable lasers, the ultrafast lasers, and the seriously nonlinear fiber: a new alliance for physics and metrology,” IEEE J. Quantum Electron. 37, 1482–1492 (2001).
[Crossref]

Dantus, M.

A. Zewail, M. Dantus, R. Bowman, and A. Mokhtari, “Femtochemistry: recent advances and extension to high pressures,” J. Photochem. Photobiol. A 62, 301–319 (1992).
[Crossref]

de La Harpe, K.

C. T. Middleton, K. de La Harpe, C. Su, Y. K. Law, C. E. Crespo-Hernández, and B. Kohler, “DNA excited-state dynamics: from single bases to the double helix,” Annu. Rev. Phys. Chem. 60, 217–239 (2009).
[Crossref]

Dian, B. C.

G. G. Brown, B. C. Dian, K. O. Douglass, S. M. Geyer, S. T. Shipman, and B. H. Pate, “A broadband Fourier transform microwave spectrometer based on chirped pulse excitation,” Rev. Sci. Instrum. 79, 053103 (2008).
[Crossref]

Diddams, S.

J. Hall, J. Ye, S. Diddams, L.-S. Ma, S. Cundiff, and D. Jones, “Ultrasensitive spectroscopy, the ultrastable lasers, the ultrafast lasers, and the seriously nonlinear fiber: a new alliance for physics and metrology,” IEEE J. Quantum Electron. 37, 1482–1492 (2001).
[Crossref]

Diddams, S. A.

Douglass, K. O.

G. G. Brown, B. C. Dian, K. O. Douglass, S. M. Geyer, S. T. Shipman, and B. H. Pate, “A broadband Fourier transform microwave spectrometer based on chirped pulse excitation,” Rev. Sci. Instrum. 79, 053103 (2008).
[Crossref]

Dressel, M.

D. N. Basov, R. D. Averitt, D. van der Marel, M. Dressel, and K. Haule, “Electrodynamics of correlated electron materials,” Rev. Mod. Phys. 83, 471–541 (2011).
[Crossref]

Durakiewicz, T.

M. K. Liu, R. D. Averitt, T. Durakiewicz, P. H. Tobash, E. D. Bauer, S. A. Trugman, A. J. Taylor, and D. A. Yarotski, “Evidence of a hidden-order pseudogap state in URu2Si2 using ultrafast optical spectroscopy,” Phys. Rev. B 84, 161101 (2011).
[Crossref]

Eidam, T.

I. Pupeza, S. Holzberger, T. Eidam, H. Carstens, D. Esser, J. Weitenberg, P. Ruszbuldt, J. Rauschenberger, J. Limpert, T. Udem, A. Tunnermann, T. W. Hansch, A. Apolonski, F. Krausz, and E. Fill, “Compact high-repetition-rate source of coherent 100  eV radiation,” Nat. Photonics 7, 608–612 (2013).
[Crossref]

Esser, D.

I. Pupeza, S. Holzberger, T. Eidam, H. Carstens, D. Esser, J. Weitenberg, P. Ruszbuldt, J. Rauschenberger, J. Limpert, T. Udem, A. Tunnermann, T. W. Hansch, A. Apolonski, F. Krausz, and E. Fill, “Compact high-repetition-rate source of coherent 100  eV radiation,” Nat. Photonics 7, 608–612 (2013).
[Crossref]

Felker, P. M.

P. M. Felker, J. S. Baskin, and A. H. Zewail, “Rephasing of collisionless molecular rotational coherence in large molecules,” J. Phys. Chem. 90, 724–728 (1986).
[Crossref]

Fermann, M. E.

T. R. Schibli, I. Hartl, D. C. Yost, M. J. Martin, A. Marcinkevicius, M. E. Fermann, and J. Ye, “Optical frequency comb with submillihertz linewidth and more than 10  W average power,” Nat. Photonics 2, 355–359 (2008).
[Crossref]

Fill, E.

I. Pupeza, S. Holzberger, T. Eidam, H. Carstens, D. Esser, J. Weitenberg, P. Ruszbuldt, J. Rauschenberger, J. Limpert, T. Udem, A. Tunnermann, T. W. Hansch, A. Apolonski, F. Krausz, and E. Fill, “Compact high-repetition-rate source of coherent 100  eV radiation,” Nat. Photonics 7, 608–612 (2013).
[Crossref]

Fleisher, A. J.

A. J. Fleisher, B. J. Bjork, T. Q. Bui, K. C. Cossel, M. Okumura, and J. Ye, “Mid-infrared time-resolved frequency comb spectroscopy of transient free radicals,” J. Phys. Chem. Lett. 5, 2241–2246 (2014).
[Crossref]

A. Foltynowicz, P. Masłowski, A. J. Fleisher, B. J. Bjork, and J. Ye, “Cavity-enhanced optical frequency comb spectroscopy in the mid-infrared application to trace detection of hydrogen peroxide,” Appl. Phys. B 110, 163–175 (2013).
[Crossref]

Foltynowicz, A.

A. Khodabakhsh, C. A. Alrahman, and A. Foltynowicz, “Noise-immune cavity-enhanced optical frequency comb spectroscopy,” Opt. Lett. 39, 5034–5037 (2014).
[Crossref]

A. Foltynowicz, P. Masłowski, A. J. Fleisher, B. J. Bjork, and J. Ye, “Cavity-enhanced optical frequency comb spectroscopy in the mid-infrared application to trace detection of hydrogen peroxide,” Appl. Phys. B 110, 163–175 (2013).
[Crossref]

A. Foltynowicz, T. Ban, P. Masłowski, F. Adler, and J. Ye, “Quantum-noise-limited optical frequency comb spectroscopy,” Phys. Rev. Lett. 107, 233002 (2011).
[Crossref]

Fuss, W.

K. Kosma, S. A. Trushin, W. Fuss, and W. E. Schmid, “Ultrafast dynamics and coherent oscillations in ethylene and ethylene-d4 excited at 162 nm,” J. Phys. Chem. A 112, 7514–7529 (2008).
[Crossref]

Geyer, S. M.

G. G. Brown, B. C. Dian, K. O. Douglass, S. M. Geyer, S. T. Shipman, and B. H. Pate, “A broadband Fourier transform microwave spectrometer based on chirped pulse excitation,” Rev. Sci. Instrum. 79, 053103 (2008).
[Crossref]

Gherman, T.

Gohle, C.

C. Gohle, B. Stein, A. Schliesser, T. Udem, and T. W. Hänsch, “Frequency comb Vernier spectroscopy for broadband, high-resolution, high-sensitivity absorption and dispersion spectra,” Phys. Rev. Lett. 99, 263902 (2007).
[Crossref]

C. Gohle, T. Udem, M. Herrmann, J. Rauschenberger, R. Holzwarth, H. A. Schuessler, F. Krausz, and T. W. Hänsch, “A frequency comb in the extreme ultraviolet,” Nature 436, 234–237 (2005).
[Crossref]

Grondelle, R.

R. Berera, R. Grondelle, and J. T. Kennis, “Ultrafast transient absorption spectroscopy: principles and application to photosynthetic systems,” Photosynth. Res. 101, 105–118 (2009).
[Crossref]

Guan, S.

G.-Z. Li, S. Guan, and A. G. Marshall, “Comparison of equilibrium ion density distribution and trapping force in Penning, Paul, and combined ion traps,” J. Am. Soc. Mass Spectrosc. 9, 473–481 (1998).
[Crossref]

Guelachvili, G.

B. Bernhardt, A. Ozawa, P. Jacquet, M. Jacquey, Y. Kobayashi, T. Udem, R. Holzwarth, G. Guelachvili, T. W. Hansch, and N. Picque, “Cavity-enhanced dual-comb spectroscopy,” Nat. Photonics 4, 55–57 (2010).
[Crossref]

Hall, J.

J. Hall, J. Ye, S. Diddams, L.-S. Ma, S. Cundiff, and D. Jones, “Ultrasensitive spectroscopy, the ultrastable lasers, the ultrafast lasers, and the seriously nonlinear fiber: a new alliance for physics and metrology,” IEEE J. Quantum Electron. 37, 1482–1492 (2001).
[Crossref]

Hamm, P.

P. Hamm and M. Zanni, Concepts and Methods of 2D Infrared Spectroscopy (Cambridge University, 2011).

Hansch, T. W.

I. Pupeza, S. Holzberger, T. Eidam, H. Carstens, D. Esser, J. Weitenberg, P. Ruszbuldt, J. Rauschenberger, J. Limpert, T. Udem, A. Tunnermann, T. W. Hansch, A. Apolonski, F. Krausz, and E. Fill, “Compact high-repetition-rate source of coherent 100  eV radiation,” Nat. Photonics 7, 608–612 (2013).
[Crossref]

A. Schliesser, N. Picque, and T. W. Hansch, “Mid-infrared frequency combs,” Nat. Photonics 6, 440–449 (2012).
[Crossref]

B. Bernhardt, A. Ozawa, P. Jacquet, M. Jacquey, Y. Kobayashi, T. Udem, R. Holzwarth, G. Guelachvili, T. W. Hansch, and N. Picque, “Cavity-enhanced dual-comb spectroscopy,” Nat. Photonics 4, 55–57 (2010).
[Crossref]

Hänsch, T. W.

C. Gohle, B. Stein, A. Schliesser, T. Udem, and T. W. Hänsch, “Frequency comb Vernier spectroscopy for broadband, high-resolution, high-sensitivity absorption and dispersion spectra,” Phys. Rev. Lett. 99, 263902 (2007).
[Crossref]

C. Gohle, T. Udem, M. Herrmann, J. Rauschenberger, R. Holzwarth, H. A. Schuessler, F. Krausz, and T. W. Hänsch, “A frequency comb in the extreme ultraviolet,” Nature 436, 234–237 (2005).
[Crossref]

Hartl, I.

T. R. Schibli, I. Hartl, D. C. Yost, M. J. Martin, A. Marcinkevicius, M. E. Fermann, and J. Ye, “Optical frequency comb with submillihertz linewidth and more than 10  W average power,” Nat. Photonics 2, 355–359 (2008).
[Crossref]

Haule, K.

D. N. Basov, R. D. Averitt, D. van der Marel, M. Dressel, and K. Haule, “Electrodynamics of correlated electron materials,” Rev. Mod. Phys. 83, 471–541 (2011).
[Crossref]

Heine, N.

N. Heine and K. R. Asmis, “Cryogenic ion trap vibrational spectroscopy of hydrogen-bonded clusters relevant to atmospheric chemistry,” Int. Rev. Phys. Chem. 34, 1–34 (2015).
[Crossref]

Heinz, T. F.

D. Boschetto, L. Malard, C. H. Lui, K. F. Mak, Z. Li, H. Yan, and T. F. Heinz, “Real-time observation of interlayer vibrations in bilayer and few-layer graphene,” Nano Lett. 13, 4620–4623 (2013).
[Crossref]

Herrmann, M.

C. Gohle, T. Udem, M. Herrmann, J. Rauschenberger, R. Holzwarth, H. A. Schuessler, F. Krausz, and T. W. Hänsch, “A frequency comb in the extreme ultraviolet,” Nature 436, 234–237 (2005).
[Crossref]

Holzberger, S.

S. Holzberger, N. Lilienfein, M. Trubetskov, H. Carstens, F. Lücking, V. Pervak, F. Krausz, and I. Pupeza, “Enhancement cavities for zero-offset-frequency pulse trains,” Opt. Lett. 40, 2165–2168 (2015).
[Crossref]

I. Pupeza, S. Holzberger, T. Eidam, H. Carstens, D. Esser, J. Weitenberg, P. Ruszbuldt, J. Rauschenberger, J. Limpert, T. Udem, A. Tunnermann, T. W. Hansch, A. Apolonski, F. Krausz, and E. Fill, “Compact high-repetition-rate source of coherent 100  eV radiation,” Nat. Photonics 7, 608–612 (2013).
[Crossref]

Holzwarth, R.

B. Bernhardt, A. Ozawa, P. Jacquet, M. Jacquey, Y. Kobayashi, T. Udem, R. Holzwarth, G. Guelachvili, T. W. Hansch, and N. Picque, “Cavity-enhanced dual-comb spectroscopy,” Nat. Photonics 4, 55–57 (2010).
[Crossref]

C. Gohle, T. Udem, M. Herrmann, J. Rauschenberger, R. Holzwarth, H. A. Schuessler, F. Krausz, and T. W. Hänsch, “A frequency comb in the extreme ultraviolet,” Nature 436, 234–237 (2005).
[Crossref]

Hua, L.

C. Benko, L. Hua, T. K. Allison, F. M. C. Labaye, and J. Ye, “Cavity-enhanced field-free molecular alignment at a high repetition rate,” Phys. Rev. Lett. 114, 153001 (2015).
[Crossref]

Huisken, F.

U. Buck and F. Huisken, “Infrared spectroscopy of size-selected water and methanol clusters,” Chem. Rev. 100, 3863–3890 (2000).
[Crossref]

Jacquet, P.

B. Bernhardt, A. Ozawa, P. Jacquet, M. Jacquey, Y. Kobayashi, T. Udem, R. Holzwarth, G. Guelachvili, T. W. Hansch, and N. Picque, “Cavity-enhanced dual-comb spectroscopy,” Nat. Photonics 4, 55–57 (2010).
[Crossref]

Jacquey, M.

B. Bernhardt, A. Ozawa, P. Jacquet, M. Jacquey, Y. Kobayashi, T. Udem, R. Holzwarth, G. Guelachvili, T. W. Hansch, and N. Picque, “Cavity-enhanced dual-comb spectroscopy,” Nat. Photonics 4, 55–57 (2010).
[Crossref]

Johnson, T. A.

Jones, D.

J. Hall, J. Ye, S. Diddams, L.-S. Ma, S. Cundiff, and D. Jones, “Ultrasensitive spectroscopy, the ultrastable lasers, the ultrafast lasers, and the seriously nonlinear fiber: a new alliance for physics and metrology,” IEEE J. Quantum Electron. 37, 1482–1492 (2001).
[Crossref]

Jones, L.

J. I. Steinfeld, R. N. Zare, L. Jones, M. Lesk, and W. Klemperer, “Spectroscopic constants and vibrational assignment for the B Π0u+3 state of iodine,” J. Chem. Phys. 42, 25–33 (1965).
[Crossref]

Jones, R.

D. Carlson, T.-H. Wu, and R. Jones, “Dual-comb femtosecond enhancement cavity for precision measurements of plasma dynamics and spectroscopy in the XUV,” in Conference on Lasers and Electro-Optics (CLEO) (IEEE, 2015).

Jones, R. J.

Joseph, D. M.

A. Saiz-Lopez, R. W. Saunders, D. M. Joseph, S. H. Ashworth, and J. M. C. Plane, “Absolute absorption cross-section and photolysis rate of I2,” Atmos. Chem. Phys. 4, 1443–1450 (2004).
[Crossref]

Kean, P. N.

Kennis, J. T.

R. Berera, R. Grondelle, and J. T. Kennis, “Ultrafast transient absorption spectroscopy: principles and application to photosynthetic systems,” Photosynth. Res. 101, 105–118 (2009).
[Crossref]

Keutsch, F. N.

F. N. Keutsch and R. J. Saykally, “Water clusters: untangling the mysteries of the liquid, one molecule at a time,” Proc. Natl. Acad. Sci. USA 98, 10533–10540 (2001).

Khodabakhsh, A.

Kirchner, M. S.

Klemperer, W.

J. I. Steinfeld, R. N. Zare, L. Jones, M. Lesk, and W. Klemperer, “Spectroscopic constants and vibrational assignment for the B Π0u+3 state of iodine,” J. Chem. Phys. 42, 25–33 (1965).
[Crossref]

Kobayashi, Y.

L. Nugent-Glandorf, T. A. Johnson, Y. Kobayashi, and S. A. Diddams, “Impact of dispersion on amplitude and frequency noise in a Yb-fiber laser comb,” Opt. Lett. 36, 1578–1580 (2011).
[Crossref]

B. Bernhardt, A. Ozawa, P. Jacquet, M. Jacquey, Y. Kobayashi, T. Udem, R. Holzwarth, G. Guelachvili, T. W. Hansch, and N. Picque, “Cavity-enhanced dual-comb spectroscopy,” Nat. Photonics 4, 55–57 (2010).
[Crossref]

Kohler, B.

C. T. Middleton, K. de La Harpe, C. Su, Y. K. Law, C. E. Crespo-Hernández, and B. Kohler, “DNA excited-state dynamics: from single bases to the double helix,” Annu. Rev. Phys. Chem. 60, 217–239 (2009).
[Crossref]

Kondow, T.

T. Majima, G. Santambrogio, C. Bartels, A. Terasaki, T. Kondow, J. Meinen, and T. Leisner, “Spatial distribution of ions in a linear octopole radio-frequency ion trap in the space-charge limit,” Phys. Rev. A 85, 053414 (2012).
[Crossref]

Kosma, K.

K. Kosma, S. A. Trushin, W. Fuss, and W. E. Schmid, “Ultrafast dynamics and coherent oscillations in ethylene and ethylene-d4 excited at 162 nm,” J. Phys. Chem. A 112, 7514–7529 (2008).
[Crossref]

Krausz, F.

S. Holzberger, N. Lilienfein, M. Trubetskov, H. Carstens, F. Lücking, V. Pervak, F. Krausz, and I. Pupeza, “Enhancement cavities for zero-offset-frequency pulse trains,” Opt. Lett. 40, 2165–2168 (2015).
[Crossref]

I. Pupeza, S. Holzberger, T. Eidam, H. Carstens, D. Esser, J. Weitenberg, P. Ruszbuldt, J. Rauschenberger, J. Limpert, T. Udem, A. Tunnermann, T. W. Hansch, A. Apolonski, F. Krausz, and E. Fill, “Compact high-repetition-rate source of coherent 100  eV radiation,” Nat. Photonics 7, 608–612 (2013).
[Crossref]

C. Gohle, T. Udem, M. Herrmann, J. Rauschenberger, R. Holzwarth, H. A. Schuessler, F. Krausz, and T. W. Hänsch, “A frequency comb in the extreme ultraviolet,” Nature 436, 234–237 (2005).
[Crossref]

Labaye, F. M. C.

C. Benko, L. Hua, T. K. Allison, F. M. C. Labaye, and J. Ye, “Cavity-enhanced field-free molecular alignment at a high repetition rate,” Phys. Rev. Lett. 114, 153001 (2015).
[Crossref]

Law, Y. K.

C. T. Middleton, K. de La Harpe, C. Su, Y. K. Law, C. E. Crespo-Hernández, and B. Kohler, “DNA excited-state dynamics: from single bases to the double helix,” Annu. Rev. Phys. Chem. 60, 217–239 (2009).
[Crossref]

Lee, K. K.

R. F. Barrow and K. K. Lee, “B Π0u+3−X Σg+1 system of I2127: rotational analysis and long range potential in the B Π0u+3 state,” J. Chem. Soc. Faraday 69, 684–700 (1973).
[Crossref]

Leisner, T.

T. Majima, G. Santambrogio, C. Bartels, A. Terasaki, T. Kondow, J. Meinen, and T. Leisner, “Spatial distribution of ions in a linear octopole radio-frequency ion trap in the space-charge limit,” Phys. Rev. A 85, 053414 (2012).
[Crossref]

Lesk, M.

J. I. Steinfeld, R. N. Zare, L. Jones, M. Lesk, and W. Klemperer, “Spectroscopic constants and vibrational assignment for the B Π0u+3 state of iodine,” J. Chem. Phys. 42, 25–33 (1965).
[Crossref]

Li, G.-Z.

G.-Z. Li, S. Guan, and A. G. Marshall, “Comparison of equilibrium ion density distribution and trapping force in Penning, Paul, and combined ion traps,” J. Am. Soc. Mass Spectrosc. 9, 473–481 (1998).
[Crossref]

Li, Z.

D. Boschetto, L. Malard, C. H. Lui, K. F. Mak, Z. Li, H. Yan, and T. F. Heinz, “Real-time observation of interlayer vibrations in bilayer and few-layer graphene,” Nano Lett. 13, 4620–4623 (2013).
[Crossref]

Lilienfein, N.

Limpert, J.

I. Pupeza, S. Holzberger, T. Eidam, H. Carstens, D. Esser, J. Weitenberg, P. Ruszbuldt, J. Rauschenberger, J. Limpert, T. Udem, A. Tunnermann, T. W. Hansch, A. Apolonski, F. Krausz, and E. Fill, “Compact high-repetition-rate source of coherent 100  eV radiation,” Nat. Photonics 7, 608–612 (2013).
[Crossref]

Liu, M. K.

M. K. Liu, R. D. Averitt, T. Durakiewicz, P. H. Tobash, E. D. Bauer, S. A. Trugman, A. J. Taylor, and D. A. Yarotski, “Evidence of a hidden-order pseudogap state in URu2Si2 using ultrafast optical spectroscopy,” Phys. Rev. B 84, 161101 (2011).
[Crossref]

Lochbrunner, S.

C. Schriever, S. Lochbrunner, E. Riedle, and D. J. Nesbitt, “Ultrasensitive ultraviolet-visible 20  fs absorption spectroscopy of low vapor pressure molecules in the gas phase,” Rev. Sci. Instrum. 79, 013107 (2008).
[Crossref]

Lücking, F.

Lui, C. H.

D. Boschetto, L. Malard, C. H. Lui, K. F. Mak, Z. Li, H. Yan, and T. F. Heinz, “Real-time observation of interlayer vibrations in bilayer and few-layer graphene,” Nano Lett. 13, 4620–4623 (2013).
[Crossref]

Ma, L.-S.

J. Hall, J. Ye, S. Diddams, L.-S. Ma, S. Cundiff, and D. Jones, “Ultrasensitive spectroscopy, the ultrastable lasers, the ultrafast lasers, and the seriously nonlinear fiber: a new alliance for physics and metrology,” IEEE J. Quantum Electron. 37, 1482–1492 (2001).
[Crossref]

Majima, T.

T. Majima, G. Santambrogio, C. Bartels, A. Terasaki, T. Kondow, J. Meinen, and T. Leisner, “Spatial distribution of ions in a linear octopole radio-frequency ion trap in the space-charge limit,” Phys. Rev. A 85, 053414 (2012).
[Crossref]

Mak, K. F.

D. Boschetto, L. Malard, C. H. Lui, K. F. Mak, Z. Li, H. Yan, and T. F. Heinz, “Real-time observation of interlayer vibrations in bilayer and few-layer graphene,” Nano Lett. 13, 4620–4623 (2013).
[Crossref]

Malard, L.

D. Boschetto, L. Malard, C. H. Lui, K. F. Mak, Z. Li, H. Yan, and T. F. Heinz, “Real-time observation of interlayer vibrations in bilayer and few-layer graphene,” Nano Lett. 13, 4620–4623 (2013).
[Crossref]

Marcinkevicius, A.

T. R. Schibli, I. Hartl, D. C. Yost, M. J. Martin, A. Marcinkevicius, M. E. Fermann, and J. Ye, “Optical frequency comb with submillihertz linewidth and more than 10  W average power,” Nat. Photonics 2, 355–359 (2008).
[Crossref]

Marshall, A. G.

G.-Z. Li, S. Guan, and A. G. Marshall, “Comparison of equilibrium ion density distribution and trapping force in Penning, Paul, and combined ion traps,” J. Am. Soc. Mass Spectrosc. 9, 473–481 (1998).
[Crossref]

Martin, M. J.

T. R. Schibli, I. Hartl, D. C. Yost, M. J. Martin, A. Marcinkevicius, M. E. Fermann, and J. Ye, “Optical frequency comb with submillihertz linewidth and more than 10  W average power,” Nat. Photonics 2, 355–359 (2008).
[Crossref]

Maslowski, P.

A. Foltynowicz, P. Masłowski, A. J. Fleisher, B. J. Bjork, and J. Ye, “Cavity-enhanced optical frequency comb spectroscopy in the mid-infrared application to trace detection of hydrogen peroxide,” Appl. Phys. B 110, 163–175 (2013).
[Crossref]

A. Foltynowicz, T. Ban, P. Masłowski, F. Adler, and J. Ye, “Quantum-noise-limited optical frequency comb spectroscopy,” Phys. Rev. Lett. 107, 233002 (2011).
[Crossref]

Meinen, J.

T. Majima, G. Santambrogio, C. Bartels, A. Terasaki, T. Kondow, J. Meinen, and T. Leisner, “Spatial distribution of ions in a linear octopole radio-frequency ion trap in the space-charge limit,” Phys. Rev. A 85, 053414 (2012).
[Crossref]

Middleton, C. T.

C. T. Middleton, K. de La Harpe, C. Su, Y. K. Law, C. E. Crespo-Hernández, and B. Kohler, “DNA excited-state dynamics: from single bases to the double helix,” Annu. Rev. Phys. Chem. 60, 217–239 (2009).
[Crossref]

Mokhtari, A.

A. Zewail, M. Dantus, R. Bowman, and A. Mokhtari, “Femtochemistry: recent advances and extension to high pressures,” J. Photochem. Photobiol. A 62, 301–319 (1992).
[Crossref]

Mulliken, R. S.

R. S. Mulliken, “Iodine revisited,” J. Chem. Phys. 55, 288–309 (1971).
[Crossref]

Nagourney, W.

W. Nagourney, Quantum Electronics for Atomic Physics (Oxford University, 2010).

Nesbitt, D. J.

C. Schriever, S. Lochbrunner, E. Riedle, and D. J. Nesbitt, “Ultrasensitive ultraviolet-visible 20  fs absorption spectroscopy of low vapor pressure molecules in the gas phase,” Rev. Sci. Instrum. 79, 013107 (2008).
[Crossref]

D. J. Nesbitt, “High-resolution infrared spectroscopy of weakly bound molecular complexes,” Chem. Rev. 88, 843–870 (1988).
[Crossref]

Neumark, D. M.

A. Stolow, A. E. Bragg, and D. M. Neumark, “Femtosecond time-resolved photoelectron spectroscopy,” Chem. Rev. 104, 1719–1758 (2004).
[Crossref]

Nugent-Glandorf, L.

O’Keefe, A.

J. B. Paul, C. P. Collier, R. J. Saykally, J. J. Scherer, and A. O’Keefe, “Direct measurement of water cluster concentrations by infrared cavity ringdown laser absorption spectroscopy,” J. Phys. Chem. A 101, 5211–5214 (1997).
[Crossref]

Okumura, M.

A. J. Fleisher, B. J. Bjork, T. Q. Bui, K. C. Cossel, M. Okumura, and J. Ye, “Mid-infrared time-resolved frequency comb spectroscopy of transient free radicals,” J. Phys. Chem. Lett. 5, 2241–2246 (2014).
[Crossref]

Orenstein, J.

J. Orenstein, “Ultrafast spectroscopy of quantum materials,” Phys. Today 65(9), 44–50 (2012).
[Crossref]

Ozawa, A.

B. Bernhardt, A. Ozawa, P. Jacquet, M. Jacquey, Y. Kobayashi, T. Udem, R. Holzwarth, G. Guelachvili, T. W. Hansch, and N. Picque, “Cavity-enhanced dual-comb spectroscopy,” Nat. Photonics 4, 55–57 (2010).
[Crossref]

Pate, B. H.

G. G. Brown, B. C. Dian, K. O. Douglass, S. M. Geyer, S. T. Shipman, and B. H. Pate, “A broadband Fourier transform microwave spectrometer based on chirped pulse excitation,” Rev. Sci. Instrum. 79, 053103 (2008).
[Crossref]

Paul, J. B.

J. B. Paul, C. P. Collier, R. J. Saykally, J. J. Scherer, and A. O’Keefe, “Direct measurement of water cluster concentrations by infrared cavity ringdown laser absorption spectroscopy,” J. Phys. Chem. A 101, 5211–5214 (1997).
[Crossref]

Pervak, V.

Picque, N.

A. Schliesser, N. Picque, and T. W. Hansch, “Mid-infrared frequency combs,” Nat. Photonics 6, 440–449 (2012).
[Crossref]

B. Bernhardt, A. Ozawa, P. Jacquet, M. Jacquey, Y. Kobayashi, T. Udem, R. Holzwarth, G. Guelachvili, T. W. Hansch, and N. Picque, “Cavity-enhanced dual-comb spectroscopy,” Nat. Photonics 4, 55–57 (2010).
[Crossref]

Plane, J. M. C.

A. Saiz-Lopez, R. W. Saunders, D. M. Joseph, S. H. Ashworth, and J. M. C. Plane, “Absolute absorption cross-section and photolysis rate of I2,” Atmos. Chem. Phys. 4, 1443–1450 (2004).
[Crossref]

Pupeza, I.

S. Holzberger, N. Lilienfein, M. Trubetskov, H. Carstens, F. Lücking, V. Pervak, F. Krausz, and I. Pupeza, “Enhancement cavities for zero-offset-frequency pulse trains,” Opt. Lett. 40, 2165–2168 (2015).
[Crossref]

I. Pupeza, S. Holzberger, T. Eidam, H. Carstens, D. Esser, J. Weitenberg, P. Ruszbuldt, J. Rauschenberger, J. Limpert, T. Udem, A. Tunnermann, T. W. Hansch, A. Apolonski, F. Krausz, and E. Fill, “Compact high-repetition-rate source of coherent 100  eV radiation,” Nat. Photonics 7, 608–612 (2013).
[Crossref]

Rauschenberger, J.

I. Pupeza, S. Holzberger, T. Eidam, H. Carstens, D. Esser, J. Weitenberg, P. Ruszbuldt, J. Rauschenberger, J. Limpert, T. Udem, A. Tunnermann, T. W. Hansch, A. Apolonski, F. Krausz, and E. Fill, “Compact high-repetition-rate source of coherent 100  eV radiation,” Nat. Photonics 7, 608–612 (2013).
[Crossref]

C. Gohle, T. Udem, M. Herrmann, J. Rauschenberger, R. Holzwarth, H. A. Schuessler, F. Krausz, and T. W. Hänsch, “A frequency comb in the extreme ultraviolet,” Nature 436, 234–237 (2005).
[Crossref]

Reisler, H.

L. C. Ch’ng, A. K. Samanta, Y. Wang, J. M. Bowman, and H. Reisler, “Experimental and theoretical investigations of the dissociation energy (D0) and dynamics of the water trimer, (H2O)3,” J. Phys. Chem. A 117, 7207–7216 (2013).
[Crossref]

Renth, F.

K. Röttger, S. Wang, F. Renth, J. Bahrenburg, and F. Temps, “A femtosecond pump-probe spectrometer for dynamics in transmissive polymer films,” Appl. Phys. B 118, 185–193 (2015).
[Crossref]

Riedle, E.

C. Schriever, S. Lochbrunner, E. Riedle, and D. J. Nesbitt, “Ultrasensitive ultraviolet-visible 20  fs absorption spectroscopy of low vapor pressure molecules in the gas phase,” Rev. Sci. Instrum. 79, 013107 (2008).
[Crossref]

Romanini, D.

Röttger, K.

K. Röttger, S. Wang, F. Renth, J. Bahrenburg, and F. Temps, “A femtosecond pump-probe spectrometer for dynamics in transmissive polymer films,” Appl. Phys. B 118, 185–193 (2015).
[Crossref]

Ruszbuldt, P.

I. Pupeza, S. Holzberger, T. Eidam, H. Carstens, D. Esser, J. Weitenberg, P. Ruszbuldt, J. Rauschenberger, J. Limpert, T. Udem, A. Tunnermann, T. W. Hansch, A. Apolonski, F. Krausz, and E. Fill, “Compact high-repetition-rate source of coherent 100  eV radiation,” Nat. Photonics 7, 608–612 (2013).
[Crossref]

Saigusa, H.

H. Saigusa, “Excited-state dynamics of isolated nucleic acid bases and their clusters,” J. Photochem. Photobiol. C 7, 197–210 (2006).
[Crossref]

Saiz-Lopez, A.

A. Saiz-Lopez, R. W. Saunders, D. M. Joseph, S. H. Ashworth, and J. M. C. Plane, “Absolute absorption cross-section and photolysis rate of I2,” Atmos. Chem. Phys. 4, 1443–1450 (2004).
[Crossref]

Samanta, A. K.

L. C. Ch’ng, A. K. Samanta, Y. Wang, J. M. Bowman, and H. Reisler, “Experimental and theoretical investigations of the dissociation energy (D0) and dynamics of the water trimer, (H2O)3,” J. Phys. Chem. A 117, 7207–7216 (2013).
[Crossref]

Santambrogio, G.

T. Majima, G. Santambrogio, C. Bartels, A. Terasaki, T. Kondow, J. Meinen, and T. Leisner, “Spatial distribution of ions in a linear octopole radio-frequency ion trap in the space-charge limit,” Phys. Rev. A 85, 053414 (2012).
[Crossref]

Saunders, R. W.

A. Saiz-Lopez, R. W. Saunders, D. M. Joseph, S. H. Ashworth, and J. M. C. Plane, “Absolute absorption cross-section and photolysis rate of I2,” Atmos. Chem. Phys. 4, 1443–1450 (2004).
[Crossref]

Saykally, R. J.

F. N. Keutsch and R. J. Saykally, “Water clusters: untangling the mysteries of the liquid, one molecule at a time,” Proc. Natl. Acad. Sci. USA 98, 10533–10540 (2001).

J. B. Paul, C. P. Collier, R. J. Saykally, J. J. Scherer, and A. O’Keefe, “Direct measurement of water cluster concentrations by infrared cavity ringdown laser absorption spectroscopy,” J. Phys. Chem. A 101, 5211–5214 (1997).
[Crossref]

Scherer, J. J.

J. B. Paul, C. P. Collier, R. J. Saykally, J. J. Scherer, and A. O’Keefe, “Direct measurement of water cluster concentrations by infrared cavity ringdown laser absorption spectroscopy,” J. Phys. Chem. A 101, 5211–5214 (1997).
[Crossref]

Schibli, T. R.

T. C. Briles, D. C. Yost, A. Cingöz, J. Ye, and T. R. Schibli, “Simple piezoelectric-actuated mirror with 180  kHz servo bandwidth,” Opt. Express 18, 9739–9746 (2010).
[Crossref]

T. R. Schibli, I. Hartl, D. C. Yost, M. J. Martin, A. Marcinkevicius, M. E. Fermann, and J. Ye, “Optical frequency comb with submillihertz linewidth and more than 10  W average power,” Nat. Photonics 2, 355–359 (2008).
[Crossref]

Schliesser, A.

A. Schliesser, N. Picque, and T. W. Hansch, “Mid-infrared frequency combs,” Nat. Photonics 6, 440–449 (2012).
[Crossref]

C. Gohle, B. Stein, A. Schliesser, T. Udem, and T. W. Hänsch, “Frequency comb Vernier spectroscopy for broadband, high-resolution, high-sensitivity absorption and dispersion spectra,” Phys. Rev. Lett. 99, 263902 (2007).
[Crossref]

Schmid, W. E.

K. Kosma, S. A. Trushin, W. Fuss, and W. E. Schmid, “Ultrafast dynamics and coherent oscillations in ethylene and ethylene-d4 excited at 162 nm,” J. Phys. Chem. A 112, 7514–7529 (2008).
[Crossref]

Schriever, C.

C. Schriever, S. Lochbrunner, E. Riedle, and D. J. Nesbitt, “Ultrasensitive ultraviolet-visible 20  fs absorption spectroscopy of low vapor pressure molecules in the gas phase,” Rev. Sci. Instrum. 79, 013107 (2008).
[Crossref]

Schuessler, H. A.

C. Gohle, T. Udem, M. Herrmann, J. Rauschenberger, R. Holzwarth, H. A. Schuessler, F. Krausz, and T. W. Hänsch, “A frequency comb in the extreme ultraviolet,” Nature 436, 234–237 (2005).
[Crossref]

Shim, S.-H.

S.-H. Shim and M. T. Zanni, “How to turn your pump-probe instrument into a multidimensional spectrometer: 2D IR and VIS spectroscopies via pulse shaping,” Phys. Chem. Chem. Phys. 11, 748–761 (2009).
[Crossref]

Shipman, S. T.

G. G. Brown, B. C. Dian, K. O. Douglass, S. M. Geyer, S. T. Shipman, and B. H. Pate, “A broadband Fourier transform microwave spectrometer based on chirped pulse excitation,” Rev. Sci. Instrum. 79, 053103 (2008).
[Crossref]

Sibbett, W.

Spence, D. E.

Stein, B.

C. Gohle, B. Stein, A. Schliesser, T. Udem, and T. W. Hänsch, “Frequency comb Vernier spectroscopy for broadband, high-resolution, high-sensitivity absorption and dispersion spectra,” Phys. Rev. Lett. 99, 263902 (2007).
[Crossref]

Steinfeld, J. I.

J. I. Steinfeld, R. N. Zare, L. Jones, M. Lesk, and W. Klemperer, “Spectroscopic constants and vibrational assignment for the B Π0u+3 state of iodine,” J. Chem. Phys. 42, 25–33 (1965).
[Crossref]

Stolow, A.

A. Stolow, A. E. Bragg, and D. M. Neumark, “Femtosecond time-resolved photoelectron spectroscopy,” Chem. Rev. 104, 1719–1758 (2004).
[Crossref]

Su, C.

C. T. Middleton, K. de La Harpe, C. Su, Y. K. Law, C. E. Crespo-Hernández, and B. Kohler, “DNA excited-state dynamics: from single bases to the double helix,” Annu. Rev. Phys. Chem. 60, 217–239 (2009).
[Crossref]

Taylor, A. J.

M. K. Liu, R. D. Averitt, T. Durakiewicz, P. H. Tobash, E. D. Bauer, S. A. Trugman, A. J. Taylor, and D. A. Yarotski, “Evidence of a hidden-order pseudogap state in URu2Si2 using ultrafast optical spectroscopy,” Phys. Rev. B 84, 161101 (2011).
[Crossref]

Temps, F.

K. Röttger, S. Wang, F. Renth, J. Bahrenburg, and F. Temps, “A femtosecond pump-probe spectrometer for dynamics in transmissive polymer films,” Appl. Phys. B 118, 185–193 (2015).
[Crossref]

Terasaki, A.

T. Majima, G. Santambrogio, C. Bartels, A. Terasaki, T. Kondow, J. Meinen, and T. Leisner, “Spatial distribution of ions in a linear octopole radio-frequency ion trap in the space-charge limit,” Phys. Rev. A 85, 053414 (2012).
[Crossref]

Thorpe, M. J.

F. Adler, M. J. Thorpe, K. C. Cossel, and J. Ye, “Cavity-enhanced direct frequency comb spectroscopy: technology and applications,” Annu. Rev. Anal. Chem. 3, 175–205 (2010).
[Crossref]

M. J. Thorpe, D. Balslev-Clausen, M. S. Kirchner, and J. Ye, “Cavity-enhanced optical frequency comb spectroscopy: application to human breath analysis,” Opt. Express 16, 2387–2397 (2008).
[Crossref]

Tobash, P. H.

M. K. Liu, R. D. Averitt, T. Durakiewicz, P. H. Tobash, E. D. Bauer, S. A. Trugman, A. J. Taylor, and D. A. Yarotski, “Evidence of a hidden-order pseudogap state in URu2Si2 using ultrafast optical spectroscopy,” Phys. Rev. B 84, 161101 (2011).
[Crossref]

Trubetskov, M.

Trugman, S. A.

M. K. Liu, R. D. Averitt, T. Durakiewicz, P. H. Tobash, E. D. Bauer, S. A. Trugman, A. J. Taylor, and D. A. Yarotski, “Evidence of a hidden-order pseudogap state in URu2Si2 using ultrafast optical spectroscopy,” Phys. Rev. B 84, 161101 (2011).
[Crossref]

Trushin, S. A.

K. Kosma, S. A. Trushin, W. Fuss, and W. E. Schmid, “Ultrafast dynamics and coherent oscillations in ethylene and ethylene-d4 excited at 162 nm,” J. Phys. Chem. A 112, 7514–7529 (2008).
[Crossref]

Tunnermann, A.

I. Pupeza, S. Holzberger, T. Eidam, H. Carstens, D. Esser, J. Weitenberg, P. Ruszbuldt, J. Rauschenberger, J. Limpert, T. Udem, A. Tunnermann, T. W. Hansch, A. Apolonski, F. Krausz, and E. Fill, “Compact high-repetition-rate source of coherent 100  eV radiation,” Nat. Photonics 7, 608–612 (2013).
[Crossref]

Udem, T.

I. Pupeza, S. Holzberger, T. Eidam, H. Carstens, D. Esser, J. Weitenberg, P. Ruszbuldt, J. Rauschenberger, J. Limpert, T. Udem, A. Tunnermann, T. W. Hansch, A. Apolonski, F. Krausz, and E. Fill, “Compact high-repetition-rate source of coherent 100  eV radiation,” Nat. Photonics 7, 608–612 (2013).
[Crossref]

B. Bernhardt, A. Ozawa, P. Jacquet, M. Jacquey, Y. Kobayashi, T. Udem, R. Holzwarth, G. Guelachvili, T. W. Hansch, and N. Picque, “Cavity-enhanced dual-comb spectroscopy,” Nat. Photonics 4, 55–57 (2010).
[Crossref]

C. Gohle, B. Stein, A. Schliesser, T. Udem, and T. W. Hänsch, “Frequency comb Vernier spectroscopy for broadband, high-resolution, high-sensitivity absorption and dispersion spectra,” Phys. Rev. Lett. 99, 263902 (2007).
[Crossref]

C. Gohle, T. Udem, M. Herrmann, J. Rauschenberger, R. Holzwarth, H. A. Schuessler, F. Krausz, and T. W. Hänsch, “A frequency comb in the extreme ultraviolet,” Nature 436, 234–237 (2005).
[Crossref]

van der Marel, D.

D. N. Basov, R. D. Averitt, D. van der Marel, M. Dressel, and K. Haule, “Electrodynamics of correlated electron materials,” Rev. Mod. Phys. 83, 471–541 (2011).
[Crossref]

Wang, S.

K. Röttger, S. Wang, F. Renth, J. Bahrenburg, and F. Temps, “A femtosecond pump-probe spectrometer for dynamics in transmissive polymer films,” Appl. Phys. B 118, 185–193 (2015).
[Crossref]

Wang, Y.

L. C. Ch’ng, A. K. Samanta, Y. Wang, J. M. Bowman, and H. Reisler, “Experimental and theoretical investigations of the dissociation energy (D0) and dynamics of the water trimer, (H2O)3,” J. Phys. Chem. A 117, 7207–7216 (2013).
[Crossref]

Weiner, A.

A. Weiner, Ultrafast Optics (Wiley, 2009).

Weitenberg, J.

I. Pupeza, S. Holzberger, T. Eidam, H. Carstens, D. Esser, J. Weitenberg, P. Ruszbuldt, J. Rauschenberger, J. Limpert, T. Udem, A. Tunnermann, T. W. Hansch, A. Apolonski, F. Krausz, and E. Fill, “Compact high-repetition-rate source of coherent 100  eV radiation,” Nat. Photonics 7, 608–612 (2013).
[Crossref]

Wu, T.-H.

D. Carlson, T.-H. Wu, and R. Jones, “Dual-comb femtosecond enhancement cavity for precision measurements of plasma dynamics and spectroscopy in the XUV,” in Conference on Lasers and Electro-Optics (CLEO) (IEEE, 2015).

Yan, H.

D. Boschetto, L. Malard, C. H. Lui, K. F. Mak, Z. Li, H. Yan, and T. F. Heinz, “Real-time observation of interlayer vibrations in bilayer and few-layer graphene,” Nano Lett. 13, 4620–4623 (2013).
[Crossref]

Yarotski, D. A.

M. K. Liu, R. D. Averitt, T. Durakiewicz, P. H. Tobash, E. D. Bauer, S. A. Trugman, A. J. Taylor, and D. A. Yarotski, “Evidence of a hidden-order pseudogap state in URu2Si2 using ultrafast optical spectroscopy,” Phys. Rev. B 84, 161101 (2011).
[Crossref]

Ye, J.

C. Benko, L. Hua, T. K. Allison, F. M. C. Labaye, and J. Ye, “Cavity-enhanced field-free molecular alignment at a high repetition rate,” Phys. Rev. Lett. 114, 153001 (2015).
[Crossref]

A. J. Fleisher, B. J. Bjork, T. Q. Bui, K. C. Cossel, M. Okumura, and J. Ye, “Mid-infrared time-resolved frequency comb spectroscopy of transient free radicals,” J. Phys. Chem. Lett. 5, 2241–2246 (2014).
[Crossref]

A. Foltynowicz, P. Masłowski, A. J. Fleisher, B. J. Bjork, and J. Ye, “Cavity-enhanced optical frequency comb spectroscopy in the mid-infrared application to trace detection of hydrogen peroxide,” Appl. Phys. B 110, 163–175 (2013).
[Crossref]

A. Foltynowicz, T. Ban, P. Masłowski, F. Adler, and J. Ye, “Quantum-noise-limited optical frequency comb spectroscopy,” Phys. Rev. Lett. 107, 233002 (2011).
[Crossref]

F. Adler, M. J. Thorpe, K. C. Cossel, and J. Ye, “Cavity-enhanced direct frequency comb spectroscopy: technology and applications,” Annu. Rev. Anal. Chem. 3, 175–205 (2010).
[Crossref]

T. C. Briles, D. C. Yost, A. Cingöz, J. Ye, and T. R. Schibli, “Simple piezoelectric-actuated mirror with 180  kHz servo bandwidth,” Opt. Express 18, 9739–9746 (2010).
[Crossref]

T. R. Schibli, I. Hartl, D. C. Yost, M. J. Martin, A. Marcinkevicius, M. E. Fermann, and J. Ye, “Optical frequency comb with submillihertz linewidth and more than 10  W average power,” Nat. Photonics 2, 355–359 (2008).
[Crossref]

M. J. Thorpe, D. Balslev-Clausen, M. S. Kirchner, and J. Ye, “Cavity-enhanced optical frequency comb spectroscopy: application to human breath analysis,” Opt. Express 16, 2387–2397 (2008).
[Crossref]

R. J. Jones and J. Ye, “Femtosecond pulse amplification by coherent addition in a passive optical cavity,” Opt. Lett. 27, 1848–1850 (2002).
[Crossref]

J. Hall, J. Ye, S. Diddams, L.-S. Ma, S. Cundiff, and D. Jones, “Ultrasensitive spectroscopy, the ultrastable lasers, the ultrafast lasers, and the seriously nonlinear fiber: a new alliance for physics and metrology,” IEEE J. Quantum Electron. 37, 1482–1492 (2001).
[Crossref]

Yost, D. C.

T. C. Briles, D. C. Yost, A. Cingöz, J. Ye, and T. R. Schibli, “Simple piezoelectric-actuated mirror with 180  kHz servo bandwidth,” Opt. Express 18, 9739–9746 (2010).
[Crossref]

T. R. Schibli, I. Hartl, D. C. Yost, M. J. Martin, A. Marcinkevicius, M. E. Fermann, and J. Ye, “Optical frequency comb with submillihertz linewidth and more than 10  W average power,” Nat. Photonics 2, 355–359 (2008).
[Crossref]

Zanni, M.

P. Hamm and M. Zanni, Concepts and Methods of 2D Infrared Spectroscopy (Cambridge University, 2011).

Zanni, M. T.

S.-H. Shim and M. T. Zanni, “How to turn your pump-probe instrument into a multidimensional spectrometer: 2D IR and VIS spectroscopies via pulse shaping,” Phys. Chem. Chem. Phys. 11, 748–761 (2009).
[Crossref]

Zare, R. N.

J. I. Steinfeld, R. N. Zare, L. Jones, M. Lesk, and W. Klemperer, “Spectroscopic constants and vibrational assignment for the B Π0u+3 state of iodine,” J. Chem. Phys. 42, 25–33 (1965).
[Crossref]

Zewail, A.

A. Zewail, M. Dantus, R. Bowman, and A. Mokhtari, “Femtochemistry: recent advances and extension to high pressures,” J. Photochem. Photobiol. A 62, 301–319 (1992).
[Crossref]

Zewail, A. H.

P. M. Felker, J. S. Baskin, and A. H. Zewail, “Rephasing of collisionless molecular rotational coherence in large molecules,” J. Phys. Chem. 90, 724–728 (1986).
[Crossref]

Annu. Rev. Anal. Chem. (1)

F. Adler, M. J. Thorpe, K. C. Cossel, and J. Ye, “Cavity-enhanced direct frequency comb spectroscopy: technology and applications,” Annu. Rev. Anal. Chem. 3, 175–205 (2010).
[Crossref]

Annu. Rev. Phys. Chem. (1)

C. T. Middleton, K. de La Harpe, C. Su, Y. K. Law, C. E. Crespo-Hernández, and B. Kohler, “DNA excited-state dynamics: from single bases to the double helix,” Annu. Rev. Phys. Chem. 60, 217–239 (2009).
[Crossref]

Appl. Phys. B (2)

K. Röttger, S. Wang, F. Renth, J. Bahrenburg, and F. Temps, “A femtosecond pump-probe spectrometer for dynamics in transmissive polymer films,” Appl. Phys. B 118, 185–193 (2015).
[Crossref]

A. Foltynowicz, P. Masłowski, A. J. Fleisher, B. J. Bjork, and J. Ye, “Cavity-enhanced optical frequency comb spectroscopy in the mid-infrared application to trace detection of hydrogen peroxide,” Appl. Phys. B 110, 163–175 (2013).
[Crossref]

Atmos. Chem. Phys. (1)

A. Saiz-Lopez, R. W. Saunders, D. M. Joseph, S. H. Ashworth, and J. M. C. Plane, “Absolute absorption cross-section and photolysis rate of I2,” Atmos. Chem. Phys. 4, 1443–1450 (2004).
[Crossref]

Chem. Rev. (3)

U. Buck and F. Huisken, “Infrared spectroscopy of size-selected water and methanol clusters,” Chem. Rev. 100, 3863–3890 (2000).
[Crossref]

D. J. Nesbitt, “High-resolution infrared spectroscopy of weakly bound molecular complexes,” Chem. Rev. 88, 843–870 (1988).
[Crossref]

A. Stolow, A. E. Bragg, and D. M. Neumark, “Femtosecond time-resolved photoelectron spectroscopy,” Chem. Rev. 104, 1719–1758 (2004).
[Crossref]

IEEE J. Quantum Electron. (1)

J. Hall, J. Ye, S. Diddams, L.-S. Ma, S. Cundiff, and D. Jones, “Ultrasensitive spectroscopy, the ultrastable lasers, the ultrafast lasers, and the seriously nonlinear fiber: a new alliance for physics and metrology,” IEEE J. Quantum Electron. 37, 1482–1492 (2001).
[Crossref]

Int. Rev. Phys. Chem. (1)

N. Heine and K. R. Asmis, “Cryogenic ion trap vibrational spectroscopy of hydrogen-bonded clusters relevant to atmospheric chemistry,” Int. Rev. Phys. Chem. 34, 1–34 (2015).
[Crossref]

J. Am. Soc. Mass Spectrosc. (1)

G.-Z. Li, S. Guan, and A. G. Marshall, “Comparison of equilibrium ion density distribution and trapping force in Penning, Paul, and combined ion traps,” J. Am. Soc. Mass Spectrosc. 9, 473–481 (1998).
[Crossref]

J. Chem. Phys. (2)

R. S. Mulliken, “Iodine revisited,” J. Chem. Phys. 55, 288–309 (1971).
[Crossref]

J. I. Steinfeld, R. N. Zare, L. Jones, M. Lesk, and W. Klemperer, “Spectroscopic constants and vibrational assignment for the B Π0u+3 state of iodine,” J. Chem. Phys. 42, 25–33 (1965).
[Crossref]

J. Chem. Soc. Faraday (1)

R. F. Barrow and K. K. Lee, “B Π0u+3−X Σg+1 system of I2127: rotational analysis and long range potential in the B Π0u+3 state,” J. Chem. Soc. Faraday 69, 684–700 (1973).
[Crossref]

J. Photochem. Photobiol. A (1)

A. Zewail, M. Dantus, R. Bowman, and A. Mokhtari, “Femtochemistry: recent advances and extension to high pressures,” J. Photochem. Photobiol. A 62, 301–319 (1992).
[Crossref]

J. Photochem. Photobiol. C (1)

H. Saigusa, “Excited-state dynamics of isolated nucleic acid bases and their clusters,” J. Photochem. Photobiol. C 7, 197–210 (2006).
[Crossref]

J. Phys. Chem. (1)

P. M. Felker, J. S. Baskin, and A. H. Zewail, “Rephasing of collisionless molecular rotational coherence in large molecules,” J. Phys. Chem. 90, 724–728 (1986).
[Crossref]

J. Phys. Chem. A (3)

L. C. Ch’ng, A. K. Samanta, Y. Wang, J. M. Bowman, and H. Reisler, “Experimental and theoretical investigations of the dissociation energy (D0) and dynamics of the water trimer, (H2O)3,” J. Phys. Chem. A 117, 7207–7216 (2013).
[Crossref]

J. B. Paul, C. P. Collier, R. J. Saykally, J. J. Scherer, and A. O’Keefe, “Direct measurement of water cluster concentrations by infrared cavity ringdown laser absorption spectroscopy,” J. Phys. Chem. A 101, 5211–5214 (1997).
[Crossref]

K. Kosma, S. A. Trushin, W. Fuss, and W. E. Schmid, “Ultrafast dynamics and coherent oscillations in ethylene and ethylene-d4 excited at 162 nm,” J. Phys. Chem. A 112, 7514–7529 (2008).
[Crossref]

J. Phys. Chem. Lett. (1)

A. J. Fleisher, B. J. Bjork, T. Q. Bui, K. C. Cossel, M. Okumura, and J. Ye, “Mid-infrared time-resolved frequency comb spectroscopy of transient free radicals,” J. Phys. Chem. Lett. 5, 2241–2246 (2014).
[Crossref]

J. Quant. Spectrosc. Radiat. Transfer (1)

J. A. Coxon, “The calculation of potential energy curves of diatomic molecules: application to halogen molecules,” J. Quant. Spectrosc. Radiat. Transfer 11, 443–462 (1971).
[Crossref]

Nano Lett. (1)

D. Boschetto, L. Malard, C. H. Lui, K. F. Mak, Z. Li, H. Yan, and T. F. Heinz, “Real-time observation of interlayer vibrations in bilayer and few-layer graphene,” Nano Lett. 13, 4620–4623 (2013).
[Crossref]

Nat. Photonics (4)

B. Bernhardt, A. Ozawa, P. Jacquet, M. Jacquey, Y. Kobayashi, T. Udem, R. Holzwarth, G. Guelachvili, T. W. Hansch, and N. Picque, “Cavity-enhanced dual-comb spectroscopy,” Nat. Photonics 4, 55–57 (2010).
[Crossref]

T. R. Schibli, I. Hartl, D. C. Yost, M. J. Martin, A. Marcinkevicius, M. E. Fermann, and J. Ye, “Optical frequency comb with submillihertz linewidth and more than 10  W average power,” Nat. Photonics 2, 355–359 (2008).
[Crossref]

I. Pupeza, S. Holzberger, T. Eidam, H. Carstens, D. Esser, J. Weitenberg, P. Ruszbuldt, J. Rauschenberger, J. Limpert, T. Udem, A. Tunnermann, T. W. Hansch, A. Apolonski, F. Krausz, and E. Fill, “Compact high-repetition-rate source of coherent 100  eV radiation,” Nat. Photonics 7, 608–612 (2013).
[Crossref]

A. Schliesser, N. Picque, and T. W. Hansch, “Mid-infrared frequency combs,” Nat. Photonics 6, 440–449 (2012).
[Crossref]

Nature (1)

C. Gohle, T. Udem, M. Herrmann, J. Rauschenberger, R. Holzwarth, H. A. Schuessler, F. Krausz, and T. W. Hänsch, “A frequency comb in the extreme ultraviolet,” Nature 436, 234–237 (2005).
[Crossref]

Opt. Express (3)

Opt. Lett. (5)

Photosynth. Res. (1)

R. Berera, R. Grondelle, and J. T. Kennis, “Ultrafast transient absorption spectroscopy: principles and application to photosynthetic systems,” Photosynth. Res. 101, 105–118 (2009).
[Crossref]

Phys. Chem. Chem. Phys. (1)

S.-H. Shim and M. T. Zanni, “How to turn your pump-probe instrument into a multidimensional spectrometer: 2D IR and VIS spectroscopies via pulse shaping,” Phys. Chem. Chem. Phys. 11, 748–761 (2009).
[Crossref]

Phys. Rev. A (1)

T. Majima, G. Santambrogio, C. Bartels, A. Terasaki, T. Kondow, J. Meinen, and T. Leisner, “Spatial distribution of ions in a linear octopole radio-frequency ion trap in the space-charge limit,” Phys. Rev. A 85, 053414 (2012).
[Crossref]

Phys. Rev. B (1)

M. K. Liu, R. D. Averitt, T. Durakiewicz, P. H. Tobash, E. D. Bauer, S. A. Trugman, A. J. Taylor, and D. A. Yarotski, “Evidence of a hidden-order pseudogap state in URu2Si2 using ultrafast optical spectroscopy,” Phys. Rev. B 84, 161101 (2011).
[Crossref]

Phys. Rev. Lett. (3)

A. Foltynowicz, T. Ban, P. Masłowski, F. Adler, and J. Ye, “Quantum-noise-limited optical frequency comb spectroscopy,” Phys. Rev. Lett. 107, 233002 (2011).
[Crossref]

C. Gohle, B. Stein, A. Schliesser, T. Udem, and T. W. Hänsch, “Frequency comb Vernier spectroscopy for broadband, high-resolution, high-sensitivity absorption and dispersion spectra,” Phys. Rev. Lett. 99, 263902 (2007).
[Crossref]

C. Benko, L. Hua, T. K. Allison, F. M. C. Labaye, and J. Ye, “Cavity-enhanced field-free molecular alignment at a high repetition rate,” Phys. Rev. Lett. 114, 153001 (2015).
[Crossref]

Phys. Today (1)

J. Orenstein, “Ultrafast spectroscopy of quantum materials,” Phys. Today 65(9), 44–50 (2012).
[Crossref]

Proc. Natl. Acad. Sci. USA (1)

F. N. Keutsch and R. J. Saykally, “Water clusters: untangling the mysteries of the liquid, one molecule at a time,” Proc. Natl. Acad. Sci. USA 98, 10533–10540 (2001).

Rev. Mod. Phys. (1)

D. N. Basov, R. D. Averitt, D. van der Marel, M. Dressel, and K. Haule, “Electrodynamics of correlated electron materials,” Rev. Mod. Phys. 83, 471–541 (2011).
[Crossref]

Rev. Sci. Instrum. (2)

C. Schriever, S. Lochbrunner, E. Riedle, and D. J. Nesbitt, “Ultrasensitive ultraviolet-visible 20  fs absorption spectroscopy of low vapor pressure molecules in the gas phase,” Rev. Sci. Instrum. 79, 013107 (2008).
[Crossref]

G. G. Brown, B. C. Dian, K. O. Douglass, S. M. Geyer, S. T. Shipman, and B. H. Pate, “A broadband Fourier transform microwave spectrometer based on chirped pulse excitation,” Rev. Sci. Instrum. 79, 053103 (2008).
[Crossref]

Other (5)

P. Hamm and M. Zanni, Concepts and Methods of 2D Infrared Spectroscopy (Cambridge University, 2011).

G. Gagliardi and H.-P. Loock, eds., Cavity Enhanced Spectroscopy and Sensing (Springer, 2013).

D. Carlson, T.-H. Wu, and R. Jones, “Dual-comb femtosecond enhancement cavity for precision measurements of plasma dynamics and spectroscopy in the XUV,” in Conference on Lasers and Electro-Optics (CLEO) (IEEE, 2015).

W. Nagourney, Quantum Electronics for Atomic Physics (Oxford University, 2010).

A. Weiner, Ultrafast Optics (Wiley, 2009).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Schematic of the CE-TAS system. Ultrafast transient absorption experiments are performed in a molecular beam at the common focus of two optical resonators, one for the pump pulses and another for the probe pulses. Delayed counterpropagating reference pulses are used for common-mode noise subtraction. The beams are color coded for clarity, but are all the same wavelength in the current experiment. More details are given in the main text.

Fig. 2.
Fig. 2.

Noise subtraction. (a) Pulse sequence at the molecular sample. The probe and reference share common mode noise but sample different molecular signals. (b) Intracavity relative intensity noise (RIN) spectrum with and without subtraction of the reference pulse train. More than 40 dB of RIN can be suppressed. With the introduction of sample molecules, the signal at the pump modulation frequency of 3.2 kHz is observed.

Fig. 3.
Fig. 3.

Transient absorption data. (a) Measurements of a molecular wave packet in the B Π 0 u + 3 state of I 2 . Stimulated emission occurs when the molecule returns to the Franck–Condon region. Three vibrational states near v = 33 on the B state surface are predominantly excited, giving rise to the observed vibrational beating pattern. Rotational motion causes a rapid decay of the polarization anisotropy. The perpendicular polarization data were taken under different conditions for the pump cavity and have been multiplied by 3.2. (b) Potential energy curves [37,38] of I 2 with arrows illustrating the pump and probe processes. (c) If the partial pressure of I 2 in the vacuum chamber gets too high, an artifact of the CE-TAS scheme is visible before time zero due to distortion of the intracavity pulses. This artifact is effectively eliminated by reducing the gas flow. (d) The intracavity light spectrum is also visibly distorted when the artifact appears.

Fig. 4.
Fig. 4.

Noise performance of CE-TAS. (a) Transient absorption measurements taken with reduced gas flow and perpendicular polarizations. The red dots represent the average of 60 consecutive scans taken over a 1 h period. The black curves show every 10th scan from the data set. Inset: Zoom-in around 0.8 ps delay. Error bars represent the uncertainty in the mean. (b) The green squares show the average of the Allan deviations obtained independently for each delay point. Error bars here are the standard deviation (not the uncertainty in the mean) of this ensemble, to represent the spread in the data. The blue diamond is the average of the error bars of (a), along with their standard deviation. The gray line has a slope of 1 / 2 on the log–log plot, the expected slope for white noise performance.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

Δ OD = log 10 ( e ) π F probe ( Δ I I ) .

Metrics