Abstract

Periodic plasmonic nanostructures have been found promising in controlling photoluminescence directivity and efficiency for a wide variety of applications. Because of the inhomogeneous spatial distribution of the photonic resonances of periodic plasmonic nanostructures, their influence on emission is strongly dependent on the position of emitters relative to the nanostructures. Therefore, mapping the local dependence of directivity, efficiency, and emission rate enhancements is key to understanding and optimizing the devices. We introduce a method of mapping the local enhancement of spontaneous emission rates of emitters coupled to periodic nanostructures based on stochastic superresolution imaging. As an example, we show superresolved measurements of the local density of states (LDOS) at 605 nm induced by a hexagonal lattice of aluminum nanoantennas with a spatial resolution of 40 nm, defined by the size of the colloidal nanosources we use as randomly dispersed probes. We demonstrate that our method is superior to near-field mapping of emission rates. Comparison with electrodynamic simulations indicates that the variation of the decay rate of the emitters in the investigated sample is hardly influenced by the lattice modes and mainly governed by single-particle LDOS variations and nearest-neighbor interactions.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Light scattering, field localization and local density of states in co-axial plasmonic nanowires

Nate Lawrence and Luca Dal Negro
Opt. Express 18(15) 16120-16132 (2010)

Two-dimensional local density of states in two-dimensional photonic crystals

Ara A. Asatryan, Sebastien Fabre, Kurt Busch, Ross C. McPhedran, Lindsay C. Botten, C. Martijn de Sterke, and Nicolae-Alexandru P. Nicorovici.
Opt. Express 8(3) 191-196 (2001)

Localized surface plasmon resonance in the IR regime

Neha Sardana, Vadim Talalaev, Frank Heyroth, Georg Schmidt, Christian Bohley, Alexander Sprafke, and Joerg Schilling
Opt. Express 24(1) 254-261 (2016)

References

  • View by:
  • |
  • |
  • |

  1. P. Anger, P. Bharadwaj, and L. Novotny, “Enhancement and quenching of single-molecule fluorescence,” Phys. Rev. Lett. 96, 113002 (2006).
    [Crossref]
  2. S. Kühn, U. Håkanson, L. Rogobete, and V. Sandoghdar, “Enhancement of single-molecule fluorescence using a gold nanoparticle as an optical nanoantenna,” Phys. Rev. Lett. 97, 017402 (2006).
    [Crossref]
  3. S. Schietinger, M. Barth, T. Aichele, and O. Benson, “Plasmon-enhanced single photon emission from a nanoassembled metal-diamond hybrid structure at room temperature,” Nano Lett. 9, 1694–1698 (2009).
    [Crossref]
  4. T. H. Taminiau, F. D. Stefani, F. B. Degerink, and N. F. Van Hulst, “Optical antennas direct single-molecule emission,” Nat. Photonics 2, 234–237 (2008).
    [Crossref]
  5. R. J. Moerland, T. H. Taminiau, L. Novotny, N. F. van Hulst, and L. Kuipers, “Reversible polarization control of single photon emission,” Nano Lett. 8, 606–610 (2008).
    [Crossref]
  6. R. H. Ritchie, “Plasma losses by fast electrons in thin films,” Phys. Rev. 106, 874–881 (1957).
    [Crossref]
  7. L. Novotny and B. Hecht, Principles of Nano-Optics (Cambridge University, 2012).
  8. P. Mühlschlegel, H.-J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science 308, 1607–1609 (2005).
    [Crossref]
  9. K. H. Cho, J. Y. Kim, D.-G. Choi, K.-J. Lee, J.-H. Choi, and K. C. Choi, “Surface plasmon-waveguide hybrid polymer light-emitting devices using hexagonal Ag dots,” Opt. Lett. 37, 761–763 (2012).
    [Crossref]
  10. G. Lozano, D. J. Louwers, S. R. Rodríguez, S. Murai, O. T. Jansen, M. A. Verschuuren, and J. Gómez Rivas, “Plasmonics for solid-state lighting: enhanced excitation and directional emission of highly efficient light sources,” Light Sci. Appl. 2, e66 (2013).
    [Crossref]
  11. G. Lozano, G. Grzela, M. A. Verschuuren, M. Ramezani, and J. Gómez Rivas, “Tailor-made directional emission in nanoimprinted plasmonic-based light-emitting devices,” Nanoscale 6, 9223–9229 (2014).
    [Crossref]
  12. J. Stehr, J. Crewett, F. Schindler, R. Sperling, G. von Plessen, U. Lemmer, J. Lupton, T. Klar, J. Feldmann, A. Holleitner, M. Forster, and U. Scherf, “A low threshold polymer laser based on metallic nanoparticle gratings,” Adv. Mater. 15, 1726–1729 (2003).
    [Crossref]
  13. W. Zhou, M. Dridi, J. Y. Suh, C. H. Kim, D. T. Co, M. R. Wasielewski, G. C. Schatz, and T. W. Odom, “Lasing action in strongly coupled plasmonic nanocavity arrays,” Nat. Nanotechnol. 8, 506–511 (2013).
    [Crossref]
  14. A. H. Schokker and A. F. Koenderink, “Lasing at the band edges of plasmonic lattices,” Phys. Rev. B 90, 155452 (2014).
    [Crossref]
  15. X. Meng, J. Liu, A. V. Kildishev, and V. M. Shalaev, “Highly directional spaser array for the red wavelength region,” Laser Photon. Rev. 8, 896–903 (2014).
    [Crossref]
  16. S. Mokkapati, F. J. Beck, A. Polman, and K. R. Catchpole, “Designing periodic arrays of metal nanoparticles for light-trapping applications in solar cells,” Appl. Phys. Lett. 95, 053115 (2009).
    [Crossref]
  17. R. Chriki, A. Yanai, J. Shappir, and U. Levy, “Enhanced efficiency of thin film solar cells using a shifted dual grating plasmonic structure,” Opt. Express 21, A382–A391 (2013).
    [Crossref]
  18. R. A. Pala, J. White, E. Barnard, J. Liu, and M. L. Brongersma, “Design of plasmonic thin-film solar cells with broadband absorption enhancements,” Adv. Mater. 21, 3504–3509 (2009).
    [Crossref]
  19. V. E. Ferry, L. A. Sweatlock, D. Pacifici, and H. A. Atwater, “Plasmonic nanostructure design for efficient light coupling into solar cells,” Nano Lett. 8, 4391–4397 (2008).
    [Crossref]
  20. F. Le, D. W. Brandl, Y. A. Urzhumov, H. Wang, J. Kundu, N. J. Halas, J. Aizpurua, and P. Nordlander, “Metallic nanoparticle arrays: A common substrate for both surface-enhanced Raman scattering and surface-enhanced infrared absorption,” ACS Nano 2, 707–718 (2008).
    [Crossref]
  21. P. Kühler, M. Weber, and T. Lohmüller, “Plasmonic nanoantenna arrays for surface-enhanced Raman spectroscopy of lipid molecules embedded in a bilayer membrane,” ACS Appl. Mater. Interfaces 6, 8947–8952 (2014).
    [Crossref]
  22. L. Billot, M. L. de la Chapelle, A.-S. Grimault, A. Vial, D. Barchiesi, J.-L. Bijeon, P.-M. Adam, and P. Royer, “Surface enhanced Raman scattering on gold nanowire arrays: evidence of strong multipolar surface plasmon resonance enhancement,” Chem. Phys. Lett. 422, 303–307 (2006).
    [Crossref]
  23. N. Félidj, J. Aubard, G. Lévi, J. R. Krenn, M. Salerno, G. Schider, B. Lamprecht, A. Leitner, and F. R. Aussenegg, “Controlling the optical response of regular arrays of gold particles for surface-enhanced Raman scattering,” Phys. Rev. B 65, 075419 (2002).
    [Crossref]
  24. V. G. Kravets, F. Schedin, A. V. Kabashin, and A. N. Grigorenko, “Sensitivity of collective plasmon modes of gold nanoresonators to local environment,” Opt. Lett. 35, 956–958 (2010).
    [Crossref]
  25. P. Offermans, M. C. Schaafsma, S. R. K. Rodríguez, Y. Zhang, M. Crego-Calama, S. H. Brongersma, and J. Gómez Rivas, “Universal scaling of the figure of merit of plasmonic sensors,” ACS Nano 5, 5151–5157 (2011).
    [Crossref]
  26. W. P. Ambrose, P. M. Goodwin, R. A. Keller, and J. C. Martin, “Alterations of single molecule fluorescence lifetimes in near-field optical microscopy,” Science 265, 364–367 (1994).
    [Crossref]
  27. M. Frimmer, Y. Chen, and A. F. Koenderink, “Scanning emitter lifetime imaging microscopy for spontaneous emission control,” Phys. Rev. Lett. 107, 123602 (2011).
    [Crossref]
  28. J. P. Hoogenboom, G. Sanchez-Mosteiro, G. Colas des Francs, D. Heinis, G. Legay, A. Dereux, and N. F. van Hulst, “The single molecule probe: nanoscale vectorial mapping of photonic mode density in a metal nanocavity,” Nano Lett. 9, 1189–1195 (2009).
    [Crossref]
  29. V. Krachmalnicoff, E. Castanié, Y. De Wilde, and R. Carminati, “Fluctuations of the local density of states probe localized surface plasmons on disordered metal films,” Phys. Rev. Lett. 105, 183901 (2010).
    [Crossref]
  30. M. A. Lieb, J. M. Zavislan, and L. Novotny, “Single-molecule orientations determined by direct emission pattern imaging,” J. Opt. Soc. Am. B 21, 1210–1215 (2004).
    [Crossref]
  31. D. W. Pohl, W. Denk, and M. Lanz, “Optical stethoscopy: image recording with resolution λ/20,” Appl. Phys. Lett. 44, 651 (1984).
  32. J. Michaelis, C. Hettich, J. Mlynek, and V. Sandoghdar, “Optical microscopy using a single-molecule light source,” Nature 405, 325–328 (2000).
    [Crossref]
  33. L. Aigouy, Y. D. Wilde, and M. Mortier, “Local optical imaging of nanoholes using a single fluorescent rare-earth-doped glass particle as a probe,” Appl. Phys. Lett. 83, 147–149 (2003).
    [Crossref]
  34. S. Kühn, C. Hettich, C. Schmitt, J.-P. Poizat, and V. Sandoghdar, “Diamond colour centres as a nanoscopic light source for scanning near-field optical microscopy,” J. Microsc. 202, 2–6 (2001).
    [Crossref]
  35. Y. Sonnefraud, N. Chevalier, J.-F. Motte, S. Huant, P. Reiss, J. Bleuse, F. Chandezon, M. T. Burnett, W. Ding, and S. A. Maier, “Near-field optical imaging with a CdSe single nanocrystal-based active tip,” Opt. Express 14, 10596–10602 (2006).
    [Crossref]
  36. H. Gersen, M. F. García-Parajó, L. Novotny, J. A. Veerman, L. Kuipers, and N. F. van Hulst, “Influencing the angular emission of a single molecule,” Phys. Rev. Lett. 85, 5312–5315 (2000).
    [Crossref]
  37. A. Cuche, O. Mollet, A. Drezet, and S. Huant, “Deterministic quantum plasmonics,” Nano Lett. 10, 4566–4570 (2010).
    [Crossref]
  38. V. Krachmalnicoff, D. Cao, A. Cazé, E. Castanié, R. Pierrat, N. Bardou, S. Collin, R. Carminati, and Y. D. Wilde, “Towards a full characterization of a plasmonic nanostructure with a fluorescent near-field probe,” Opt. Express 21, 11536–11545 (2013).
    [Crossref]
  39. R. Beams, D. Smith, T. W. Johnson, S.-H. Oh, L. Novotny, and A. N. Vamivakas, “Nanoscale fluorescence lifetime imaging of an optical antenna with a single diamond NV center,” Nano Lett. 13, 3807–3811 (2013).
    [Crossref]
  40. A. G. Curto, G. Volpe, T. H. Taminiau, M. P. Kreuzer, R. Quidant, and N. F. van Hulst, “Unidirectional emission of a quantum dot coupled to a nanoantenna,” Science 329, 930–933 (2010).
    [Crossref]
  41. D. M. Koller, U. Hohenester, A. Hohenau, H. Ditlbacher, F. Reil, N. Galler, F. R. Aussenegg, A. Leitner, A. Trügler, and J. R. Krenn, “Superresolution moiré mapping of particle plasmon modes,” Phys. Rev. Lett. 104, 143901 (2010).
    [Crossref]
  42. A. Huck, S. Kumar, A. Shakoor, and U. L. Andersen, “Controlled coupling of a single nitrogen-vacancy center to a silver nanowire,” Phys. Rev. Lett. 106, 096801 (2011).
    [Crossref]
  43. T. van der Sar, E. C. Heeres, G. M. Dmochowski, G. de Lange, L. Robledo, T. H. Oosterkamp, and R. Hanson, “Nanopositioning of a diamond nanocrystal containing a single nitrogen-vacancy defect center,” Appl. Phys. Lett. 94, 173104 (2009).
    [Crossref]
  44. S. Kumar, A. Huck, and U. L. Andersen, “Efficient coupling of a single diamond color center to propagating plasmonic gap modes,” Nano Lett. 13, 1221–1225 (2013).
    [Crossref]
  45. E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313, 1642–1645 (2006).
    [Crossref]
  46. S. T. Hess, T. P. Girirajan, and M. D. Mason, “Ultra-high resolution imaging by fluorescence photoactivation localization microscopy,” Biophys. J. 91, 4258–4272 (2006).
    [Crossref]
  47. M. J. Rust, M. Bates, and X. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM),” Nat. Methods 3, 793–796 (2006).
    [Crossref]
  48. H. Lin, S. P. Centeno, L. Su, B. Kenens, S. Rocha, M. Sliwa, J. Hofkens, and H. Uji-i, “Mapping of surface-enhanced fluorescence on metal nanoparticles using super-resolution photoactivation localization microscopy,” Chem. Phys. Chem. 13, 973–981 (2012).
  49. H. Cang, A. Labno, C. Lu, X. Yin, M. Liu, C. Gladden, Y. Liu, and X. Zhang, “Probing the electromagnetic field of a 15-nanometre hotspot by single molecule imaging,” Nature 469, 385–388 (2011).
    [Crossref]
  50. L. Wei, C. Liu, B. Chen, P. Zhou, H. Li, L. Xiao, and E. S. Yeung, “Probing single-molecule fluorescence spectral modulation within individual hotspots with subdiffraction-limit image resolution,” Anal. Chem. 85, 3789–3793 (2013).
    [Crossref]
  51. C. Ropp, Z. Cummins, S. Nah, J. T. Fourkas, B. Shapiro, and E. Waks, “Nanoscale probing of image-dipole interactions in a metallic nanostructure,” Nat. Commun. 6, 6558 (2015).
    [Crossref]
  52. Y. V. Miklyaev, S. A. Asselborn, K. A. Zaytsev, and M. Y. Darscht, “Superresolution microscopy in far-field by near-field optical random mapping nanoscopy,” Appl. Phys. Lett. 105, 113103 (2014).
    [Crossref]
  53. E. Wertz, B. P. Isaacoff, J. D. Flynn, and J. S. Biteen, “Single-molecule super-resolution microscopy reveals how light couples to a plasmonic nanoantenna on the nanometer scale,” Nano Lett. 15, 2662–2670 (2015).
    [Crossref]
  54. R. E. Thompson, D. R. Larson, and W. W. Webb, “Precise nanometer localization analysis for individual fluorescent probes,” Biophys. J. 82, 2775–2783 (2002).
    [Crossref]
  55. M. A. Verschuuren, “Substrate conformal imprint lithography for nanophotonics,” Ph.D. thesis (Utrecht University, 2010).
  56. S. R. K. Rodriguez, F. B. Arango, T. P. Steinbusch, M. A. Verschuuren, A. F. Koenderink, and J. Gómez Rivas, “Breaking the symmetry of forward-backward light emission with localized and collective magnetoelectric resonances in arrays of pyramid-shaped aluminum nanoparticles,” Phys. Rev. Lett. 113, 247401 (2014).
    [Crossref]
  57. K. L. Blythe, E. J. Titus, and K. A. Willets, “Comparing the accuracy of reconstructed image size in super-resolution imaging of fluorophore-labeled gold nanorods using different fit models,” J. Phys. Chem. C 119, 19333–19343 (2015).
    [Crossref]
  58. H. F. Talbot, “LXXVI. Facts relating to optical science. No. IV,” Philos. Mag. Ser. 3 9, 401–407 (1836).
  59. K. Joulain, R. Carminati, J.-P. Mulet, and J.-J. Greffet, “Definition and measurement of the local density of electromagnetic states close to an interface,” Phys. Rev. B 68, 245405 (2003).
    [Crossref]
  60. P. Bharadwaj, B. Deutsch, and L. Novotny, “Optical antennas,” Adv. Opt. Photon. 1, 438–483 (2009).
    [Crossref]
  61. A. Kwadrin and A. F. Koenderink, “Gray-tone lithography implementation of Drexhage’s method for calibrating radiative and nonradiative decay constants of fluorophores,” J. Phys. Chem. C 116, 16666–16673 (2012).
    [Crossref]
  62. J. A. Veerman, A. M. Otter, L. Kuipers, and N. F. van Hulst, “High definition aperture probes for near-field optical microscopy fabricated by focused ion beam milling,” Appl. Phys. Lett. 72, 3115 (1998).
  63. “FDTD solutions,” Lumerical, https://www.lumerical.com/tcad-products/fdtd/ .
  64. W. L. Vos, A. F. Koenderink, and I. S. Nikolaev, “Orientation-dependent spontaneous emission rates of a two-level quantum emitter in any nanophotonic environment,” Phys. Rev. A 80, 053802 (2009).
    [Crossref]
  65. I. S. Nikolaev, W. L. Vos, and A. F. Koenderink, “Accurate calculation of the local density of optical states in inverse-opal photonic crystals,” J. Opt. Soc. Am. B 26, 987–997 (2009).
    [Crossref]
  66. F. A. Inam, T. Gaebel, C. Bradac, L. Stewart, M. J. Withford, J. R. Rabeau, and M. J. Steel, “Modification of spontaneous emission from nanodiamond colour centres on a structured surface,” New J. Phys. 13, 073012 (2011).
    [Crossref]
  67. A. Mohtashami and A. F. Koenderink, “Suitability of nanodiamond nitrogen-vacancy centers for spontaneous emission control experiments,” New J. Phys. 15, 043017 (2013).
    [Crossref]
  68. H. Mertens, A. F. Koenderink, and A. Polman, “Plasmon-enhanced luminescence near noble-metal nanospheres: comparison of exact theory and an improved Gersten and Nitzan model,” Phys. Rev. B 76, 115123 (2007).
    [Crossref]
  69. B. Huang, W. Wang, M. Bates, and X. Zhuang, “Three-dimensional super-resolution imaging by stochastic optical reconstruction microscopy,” Science 319, 810–813 (2008).
    [Crossref]
  70. C. I. Osorio, A. Mohtashami, and A. F. Koenderink, “K-space polarimetry of bullseye plasmon antennas,” Sci. Rep. 5, 9966 (2015).
    [Crossref]

2015 (4)

C. Ropp, Z. Cummins, S. Nah, J. T. Fourkas, B. Shapiro, and E. Waks, “Nanoscale probing of image-dipole interactions in a metallic nanostructure,” Nat. Commun. 6, 6558 (2015).
[Crossref]

E. Wertz, B. P. Isaacoff, J. D. Flynn, and J. S. Biteen, “Single-molecule super-resolution microscopy reveals how light couples to a plasmonic nanoantenna on the nanometer scale,” Nano Lett. 15, 2662–2670 (2015).
[Crossref]

K. L. Blythe, E. J. Titus, and K. A. Willets, “Comparing the accuracy of reconstructed image size in super-resolution imaging of fluorophore-labeled gold nanorods using different fit models,” J. Phys. Chem. C 119, 19333–19343 (2015).
[Crossref]

C. I. Osorio, A. Mohtashami, and A. F. Koenderink, “K-space polarimetry of bullseye plasmon antennas,” Sci. Rep. 5, 9966 (2015).
[Crossref]

2014 (6)

P. Kühler, M. Weber, and T. Lohmüller, “Plasmonic nanoantenna arrays for surface-enhanced Raman spectroscopy of lipid molecules embedded in a bilayer membrane,” ACS Appl. Mater. Interfaces 6, 8947–8952 (2014).
[Crossref]

S. R. K. Rodriguez, F. B. Arango, T. P. Steinbusch, M. A. Verschuuren, A. F. Koenderink, and J. Gómez Rivas, “Breaking the symmetry of forward-backward light emission with localized and collective magnetoelectric resonances in arrays of pyramid-shaped aluminum nanoparticles,” Phys. Rev. Lett. 113, 247401 (2014).
[Crossref]

Y. V. Miklyaev, S. A. Asselborn, K. A. Zaytsev, and M. Y. Darscht, “Superresolution microscopy in far-field by near-field optical random mapping nanoscopy,” Appl. Phys. Lett. 105, 113103 (2014).
[Crossref]

G. Lozano, G. Grzela, M. A. Verschuuren, M. Ramezani, and J. Gómez Rivas, “Tailor-made directional emission in nanoimprinted plasmonic-based light-emitting devices,” Nanoscale 6, 9223–9229 (2014).
[Crossref]

A. H. Schokker and A. F. Koenderink, “Lasing at the band edges of plasmonic lattices,” Phys. Rev. B 90, 155452 (2014).
[Crossref]

X. Meng, J. Liu, A. V. Kildishev, and V. M. Shalaev, “Highly directional spaser array for the red wavelength region,” Laser Photon. Rev. 8, 896–903 (2014).
[Crossref]

2013 (8)

R. Beams, D. Smith, T. W. Johnson, S.-H. Oh, L. Novotny, and A. N. Vamivakas, “Nanoscale fluorescence lifetime imaging of an optical antenna with a single diamond NV center,” Nano Lett. 13, 3807–3811 (2013).
[Crossref]

G. Lozano, D. J. Louwers, S. R. Rodríguez, S. Murai, O. T. Jansen, M. A. Verschuuren, and J. Gómez Rivas, “Plasmonics for solid-state lighting: enhanced excitation and directional emission of highly efficient light sources,” Light Sci. Appl. 2, e66 (2013).
[Crossref]

S. Kumar, A. Huck, and U. L. Andersen, “Efficient coupling of a single diamond color center to propagating plasmonic gap modes,” Nano Lett. 13, 1221–1225 (2013).
[Crossref]

W. Zhou, M. Dridi, J. Y. Suh, C. H. Kim, D. T. Co, M. R. Wasielewski, G. C. Schatz, and T. W. Odom, “Lasing action in strongly coupled plasmonic nanocavity arrays,” Nat. Nanotechnol. 8, 506–511 (2013).
[Crossref]

L. Wei, C. Liu, B. Chen, P. Zhou, H. Li, L. Xiao, and E. S. Yeung, “Probing single-molecule fluorescence spectral modulation within individual hotspots with subdiffraction-limit image resolution,” Anal. Chem. 85, 3789–3793 (2013).
[Crossref]

A. Mohtashami and A. F. Koenderink, “Suitability of nanodiamond nitrogen-vacancy centers for spontaneous emission control experiments,” New J. Phys. 15, 043017 (2013).
[Crossref]

R. Chriki, A. Yanai, J. Shappir, and U. Levy, “Enhanced efficiency of thin film solar cells using a shifted dual grating plasmonic structure,” Opt. Express 21, A382–A391 (2013).
[Crossref]

V. Krachmalnicoff, D. Cao, A. Cazé, E. Castanié, R. Pierrat, N. Bardou, S. Collin, R. Carminati, and Y. D. Wilde, “Towards a full characterization of a plasmonic nanostructure with a fluorescent near-field probe,” Opt. Express 21, 11536–11545 (2013).
[Crossref]

2012 (3)

K. H. Cho, J. Y. Kim, D.-G. Choi, K.-J. Lee, J.-H. Choi, and K. C. Choi, “Surface plasmon-waveguide hybrid polymer light-emitting devices using hexagonal Ag dots,” Opt. Lett. 37, 761–763 (2012).
[Crossref]

A. Kwadrin and A. F. Koenderink, “Gray-tone lithography implementation of Drexhage’s method for calibrating radiative and nonradiative decay constants of fluorophores,” J. Phys. Chem. C 116, 16666–16673 (2012).
[Crossref]

H. Lin, S. P. Centeno, L. Su, B. Kenens, S. Rocha, M. Sliwa, J. Hofkens, and H. Uji-i, “Mapping of surface-enhanced fluorescence on metal nanoparticles using super-resolution photoactivation localization microscopy,” Chem. Phys. Chem. 13, 973–981 (2012).

2011 (5)

H. Cang, A. Labno, C. Lu, X. Yin, M. Liu, C. Gladden, Y. Liu, and X. Zhang, “Probing the electromagnetic field of a 15-nanometre hotspot by single molecule imaging,” Nature 469, 385–388 (2011).
[Crossref]

A. Huck, S. Kumar, A. Shakoor, and U. L. Andersen, “Controlled coupling of a single nitrogen-vacancy center to a silver nanowire,” Phys. Rev. Lett. 106, 096801 (2011).
[Crossref]

P. Offermans, M. C. Schaafsma, S. R. K. Rodríguez, Y. Zhang, M. Crego-Calama, S. H. Brongersma, and J. Gómez Rivas, “Universal scaling of the figure of merit of plasmonic sensors,” ACS Nano 5, 5151–5157 (2011).
[Crossref]

M. Frimmer, Y. Chen, and A. F. Koenderink, “Scanning emitter lifetime imaging microscopy for spontaneous emission control,” Phys. Rev. Lett. 107, 123602 (2011).
[Crossref]

F. A. Inam, T. Gaebel, C. Bradac, L. Stewart, M. J. Withford, J. R. Rabeau, and M. J. Steel, “Modification of spontaneous emission from nanodiamond colour centres on a structured surface,” New J. Phys. 13, 073012 (2011).
[Crossref]

2010 (5)

A. Cuche, O. Mollet, A. Drezet, and S. Huant, “Deterministic quantum plasmonics,” Nano Lett. 10, 4566–4570 (2010).
[Crossref]

V. G. Kravets, F. Schedin, A. V. Kabashin, and A. N. Grigorenko, “Sensitivity of collective plasmon modes of gold nanoresonators to local environment,” Opt. Lett. 35, 956–958 (2010).
[Crossref]

V. Krachmalnicoff, E. Castanié, Y. De Wilde, and R. Carminati, “Fluctuations of the local density of states probe localized surface plasmons on disordered metal films,” Phys. Rev. Lett. 105, 183901 (2010).
[Crossref]

A. G. Curto, G. Volpe, T. H. Taminiau, M. P. Kreuzer, R. Quidant, and N. F. van Hulst, “Unidirectional emission of a quantum dot coupled to a nanoantenna,” Science 329, 930–933 (2010).
[Crossref]

D. M. Koller, U. Hohenester, A. Hohenau, H. Ditlbacher, F. Reil, N. Galler, F. R. Aussenegg, A. Leitner, A. Trügler, and J. R. Krenn, “Superresolution moiré mapping of particle plasmon modes,” Phys. Rev. Lett. 104, 143901 (2010).
[Crossref]

2009 (8)

T. van der Sar, E. C. Heeres, G. M. Dmochowski, G. de Lange, L. Robledo, T. H. Oosterkamp, and R. Hanson, “Nanopositioning of a diamond nanocrystal containing a single nitrogen-vacancy defect center,” Appl. Phys. Lett. 94, 173104 (2009).
[Crossref]

S. Mokkapati, F. J. Beck, A. Polman, and K. R. Catchpole, “Designing periodic arrays of metal nanoparticles for light-trapping applications in solar cells,” Appl. Phys. Lett. 95, 053115 (2009).
[Crossref]

S. Schietinger, M. Barth, T. Aichele, and O. Benson, “Plasmon-enhanced single photon emission from a nanoassembled metal-diamond hybrid structure at room temperature,” Nano Lett. 9, 1694–1698 (2009).
[Crossref]

W. L. Vos, A. F. Koenderink, and I. S. Nikolaev, “Orientation-dependent spontaneous emission rates of a two-level quantum emitter in any nanophotonic environment,” Phys. Rev. A 80, 053802 (2009).
[Crossref]

J. P. Hoogenboom, G. Sanchez-Mosteiro, G. Colas des Francs, D. Heinis, G. Legay, A. Dereux, and N. F. van Hulst, “The single molecule probe: nanoscale vectorial mapping of photonic mode density in a metal nanocavity,” Nano Lett. 9, 1189–1195 (2009).
[Crossref]

R. A. Pala, J. White, E. Barnard, J. Liu, and M. L. Brongersma, “Design of plasmonic thin-film solar cells with broadband absorption enhancements,” Adv. Mater. 21, 3504–3509 (2009).
[Crossref]

I. S. Nikolaev, W. L. Vos, and A. F. Koenderink, “Accurate calculation of the local density of optical states in inverse-opal photonic crystals,” J. Opt. Soc. Am. B 26, 987–997 (2009).
[Crossref]

P. Bharadwaj, B. Deutsch, and L. Novotny, “Optical antennas,” Adv. Opt. Photon. 1, 438–483 (2009).
[Crossref]

2008 (5)

B. Huang, W. Wang, M. Bates, and X. Zhuang, “Three-dimensional super-resolution imaging by stochastic optical reconstruction microscopy,” Science 319, 810–813 (2008).
[Crossref]

V. E. Ferry, L. A. Sweatlock, D. Pacifici, and H. A. Atwater, “Plasmonic nanostructure design for efficient light coupling into solar cells,” Nano Lett. 8, 4391–4397 (2008).
[Crossref]

F. Le, D. W. Brandl, Y. A. Urzhumov, H. Wang, J. Kundu, N. J. Halas, J. Aizpurua, and P. Nordlander, “Metallic nanoparticle arrays: A common substrate for both surface-enhanced Raman scattering and surface-enhanced infrared absorption,” ACS Nano 2, 707–718 (2008).
[Crossref]

T. H. Taminiau, F. D. Stefani, F. B. Degerink, and N. F. Van Hulst, “Optical antennas direct single-molecule emission,” Nat. Photonics 2, 234–237 (2008).
[Crossref]

R. J. Moerland, T. H. Taminiau, L. Novotny, N. F. van Hulst, and L. Kuipers, “Reversible polarization control of single photon emission,” Nano Lett. 8, 606–610 (2008).
[Crossref]

2007 (1)

H. Mertens, A. F. Koenderink, and A. Polman, “Plasmon-enhanced luminescence near noble-metal nanospheres: comparison of exact theory and an improved Gersten and Nitzan model,” Phys. Rev. B 76, 115123 (2007).
[Crossref]

2006 (7)

Y. Sonnefraud, N. Chevalier, J.-F. Motte, S. Huant, P. Reiss, J. Bleuse, F. Chandezon, M. T. Burnett, W. Ding, and S. A. Maier, “Near-field optical imaging with a CdSe single nanocrystal-based active tip,” Opt. Express 14, 10596–10602 (2006).
[Crossref]

L. Billot, M. L. de la Chapelle, A.-S. Grimault, A. Vial, D. Barchiesi, J.-L. Bijeon, P.-M. Adam, and P. Royer, “Surface enhanced Raman scattering on gold nanowire arrays: evidence of strong multipolar surface plasmon resonance enhancement,” Chem. Phys. Lett. 422, 303–307 (2006).
[Crossref]

P. Anger, P. Bharadwaj, and L. Novotny, “Enhancement and quenching of single-molecule fluorescence,” Phys. Rev. Lett. 96, 113002 (2006).
[Crossref]

S. Kühn, U. Håkanson, L. Rogobete, and V. Sandoghdar, “Enhancement of single-molecule fluorescence using a gold nanoparticle as an optical nanoantenna,” Phys. Rev. Lett. 97, 017402 (2006).
[Crossref]

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313, 1642–1645 (2006).
[Crossref]

S. T. Hess, T. P. Girirajan, and M. D. Mason, “Ultra-high resolution imaging by fluorescence photoactivation localization microscopy,” Biophys. J. 91, 4258–4272 (2006).
[Crossref]

M. J. Rust, M. Bates, and X. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM),” Nat. Methods 3, 793–796 (2006).
[Crossref]

2005 (1)

P. Mühlschlegel, H.-J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science 308, 1607–1609 (2005).
[Crossref]

2004 (1)

2003 (3)

L. Aigouy, Y. D. Wilde, and M. Mortier, “Local optical imaging of nanoholes using a single fluorescent rare-earth-doped glass particle as a probe,” Appl. Phys. Lett. 83, 147–149 (2003).
[Crossref]

J. Stehr, J. Crewett, F. Schindler, R. Sperling, G. von Plessen, U. Lemmer, J. Lupton, T. Klar, J. Feldmann, A. Holleitner, M. Forster, and U. Scherf, “A low threshold polymer laser based on metallic nanoparticle gratings,” Adv. Mater. 15, 1726–1729 (2003).
[Crossref]

K. Joulain, R. Carminati, J.-P. Mulet, and J.-J. Greffet, “Definition and measurement of the local density of electromagnetic states close to an interface,” Phys. Rev. B 68, 245405 (2003).
[Crossref]

2002 (2)

R. E. Thompson, D. R. Larson, and W. W. Webb, “Precise nanometer localization analysis for individual fluorescent probes,” Biophys. J. 82, 2775–2783 (2002).
[Crossref]

N. Félidj, J. Aubard, G. Lévi, J. R. Krenn, M. Salerno, G. Schider, B. Lamprecht, A. Leitner, and F. R. Aussenegg, “Controlling the optical response of regular arrays of gold particles for surface-enhanced Raman scattering,” Phys. Rev. B 65, 075419 (2002).
[Crossref]

2001 (1)

S. Kühn, C. Hettich, C. Schmitt, J.-P. Poizat, and V. Sandoghdar, “Diamond colour centres as a nanoscopic light source for scanning near-field optical microscopy,” J. Microsc. 202, 2–6 (2001).
[Crossref]

2000 (2)

J. Michaelis, C. Hettich, J. Mlynek, and V. Sandoghdar, “Optical microscopy using a single-molecule light source,” Nature 405, 325–328 (2000).
[Crossref]

H. Gersen, M. F. García-Parajó, L. Novotny, J. A. Veerman, L. Kuipers, and N. F. van Hulst, “Influencing the angular emission of a single molecule,” Phys. Rev. Lett. 85, 5312–5315 (2000).
[Crossref]

1998 (1)

J. A. Veerman, A. M. Otter, L. Kuipers, and N. F. van Hulst, “High definition aperture probes for near-field optical microscopy fabricated by focused ion beam milling,” Appl. Phys. Lett. 72, 3115 (1998).

1994 (1)

W. P. Ambrose, P. M. Goodwin, R. A. Keller, and J. C. Martin, “Alterations of single molecule fluorescence lifetimes in near-field optical microscopy,” Science 265, 364–367 (1994).
[Crossref]

1984 (1)

D. W. Pohl, W. Denk, and M. Lanz, “Optical stethoscopy: image recording with resolution λ/20,” Appl. Phys. Lett. 44, 651 (1984).

1957 (1)

R. H. Ritchie, “Plasma losses by fast electrons in thin films,” Phys. Rev. 106, 874–881 (1957).
[Crossref]

1836 (1)

H. F. Talbot, “LXXVI. Facts relating to optical science. No. IV,” Philos. Mag. Ser. 3 9, 401–407 (1836).

Adam, P.-M.

L. Billot, M. L. de la Chapelle, A.-S. Grimault, A. Vial, D. Barchiesi, J.-L. Bijeon, P.-M. Adam, and P. Royer, “Surface enhanced Raman scattering on gold nanowire arrays: evidence of strong multipolar surface plasmon resonance enhancement,” Chem. Phys. Lett. 422, 303–307 (2006).
[Crossref]

Aichele, T.

S. Schietinger, M. Barth, T. Aichele, and O. Benson, “Plasmon-enhanced single photon emission from a nanoassembled metal-diamond hybrid structure at room temperature,” Nano Lett. 9, 1694–1698 (2009).
[Crossref]

Aigouy, L.

L. Aigouy, Y. D. Wilde, and M. Mortier, “Local optical imaging of nanoholes using a single fluorescent rare-earth-doped glass particle as a probe,” Appl. Phys. Lett. 83, 147–149 (2003).
[Crossref]

Aizpurua, J.

F. Le, D. W. Brandl, Y. A. Urzhumov, H. Wang, J. Kundu, N. J. Halas, J. Aizpurua, and P. Nordlander, “Metallic nanoparticle arrays: A common substrate for both surface-enhanced Raman scattering and surface-enhanced infrared absorption,” ACS Nano 2, 707–718 (2008).
[Crossref]

Ambrose, W. P.

W. P. Ambrose, P. M. Goodwin, R. A. Keller, and J. C. Martin, “Alterations of single molecule fluorescence lifetimes in near-field optical microscopy,” Science 265, 364–367 (1994).
[Crossref]

Andersen, U. L.

S. Kumar, A. Huck, and U. L. Andersen, “Efficient coupling of a single diamond color center to propagating plasmonic gap modes,” Nano Lett. 13, 1221–1225 (2013).
[Crossref]

A. Huck, S. Kumar, A. Shakoor, and U. L. Andersen, “Controlled coupling of a single nitrogen-vacancy center to a silver nanowire,” Phys. Rev. Lett. 106, 096801 (2011).
[Crossref]

Anger, P.

P. Anger, P. Bharadwaj, and L. Novotny, “Enhancement and quenching of single-molecule fluorescence,” Phys. Rev. Lett. 96, 113002 (2006).
[Crossref]

Arango, F. B.

S. R. K. Rodriguez, F. B. Arango, T. P. Steinbusch, M. A. Verschuuren, A. F. Koenderink, and J. Gómez Rivas, “Breaking the symmetry of forward-backward light emission with localized and collective magnetoelectric resonances in arrays of pyramid-shaped aluminum nanoparticles,” Phys. Rev. Lett. 113, 247401 (2014).
[Crossref]

Asselborn, S. A.

Y. V. Miklyaev, S. A. Asselborn, K. A. Zaytsev, and M. Y. Darscht, “Superresolution microscopy in far-field by near-field optical random mapping nanoscopy,” Appl. Phys. Lett. 105, 113103 (2014).
[Crossref]

Atwater, H. A.

V. E. Ferry, L. A. Sweatlock, D. Pacifici, and H. A. Atwater, “Plasmonic nanostructure design for efficient light coupling into solar cells,” Nano Lett. 8, 4391–4397 (2008).
[Crossref]

Aubard, J.

N. Félidj, J. Aubard, G. Lévi, J. R. Krenn, M. Salerno, G. Schider, B. Lamprecht, A. Leitner, and F. R. Aussenegg, “Controlling the optical response of regular arrays of gold particles for surface-enhanced Raman scattering,” Phys. Rev. B 65, 075419 (2002).
[Crossref]

Aussenegg, F. R.

D. M. Koller, U. Hohenester, A. Hohenau, H. Ditlbacher, F. Reil, N. Galler, F. R. Aussenegg, A. Leitner, A. Trügler, and J. R. Krenn, “Superresolution moiré mapping of particle plasmon modes,” Phys. Rev. Lett. 104, 143901 (2010).
[Crossref]

N. Félidj, J. Aubard, G. Lévi, J. R. Krenn, M. Salerno, G. Schider, B. Lamprecht, A. Leitner, and F. R. Aussenegg, “Controlling the optical response of regular arrays of gold particles for surface-enhanced Raman scattering,” Phys. Rev. B 65, 075419 (2002).
[Crossref]

Barchiesi, D.

L. Billot, M. L. de la Chapelle, A.-S. Grimault, A. Vial, D. Barchiesi, J.-L. Bijeon, P.-M. Adam, and P. Royer, “Surface enhanced Raman scattering on gold nanowire arrays: evidence of strong multipolar surface plasmon resonance enhancement,” Chem. Phys. Lett. 422, 303–307 (2006).
[Crossref]

Bardou, N.

Barnard, E.

R. A. Pala, J. White, E. Barnard, J. Liu, and M. L. Brongersma, “Design of plasmonic thin-film solar cells with broadband absorption enhancements,” Adv. Mater. 21, 3504–3509 (2009).
[Crossref]

Barth, M.

S. Schietinger, M. Barth, T. Aichele, and O. Benson, “Plasmon-enhanced single photon emission from a nanoassembled metal-diamond hybrid structure at room temperature,” Nano Lett. 9, 1694–1698 (2009).
[Crossref]

Bates, M.

B. Huang, W. Wang, M. Bates, and X. Zhuang, “Three-dimensional super-resolution imaging by stochastic optical reconstruction microscopy,” Science 319, 810–813 (2008).
[Crossref]

M. J. Rust, M. Bates, and X. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM),” Nat. Methods 3, 793–796 (2006).
[Crossref]

Beams, R.

R. Beams, D. Smith, T. W. Johnson, S.-H. Oh, L. Novotny, and A. N. Vamivakas, “Nanoscale fluorescence lifetime imaging of an optical antenna with a single diamond NV center,” Nano Lett. 13, 3807–3811 (2013).
[Crossref]

Beck, F. J.

S. Mokkapati, F. J. Beck, A. Polman, and K. R. Catchpole, “Designing periodic arrays of metal nanoparticles for light-trapping applications in solar cells,” Appl. Phys. Lett. 95, 053115 (2009).
[Crossref]

Benson, O.

S. Schietinger, M. Barth, T. Aichele, and O. Benson, “Plasmon-enhanced single photon emission from a nanoassembled metal-diamond hybrid structure at room temperature,” Nano Lett. 9, 1694–1698 (2009).
[Crossref]

Betzig, E.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313, 1642–1645 (2006).
[Crossref]

Bharadwaj, P.

P. Bharadwaj, B. Deutsch, and L. Novotny, “Optical antennas,” Adv. Opt. Photon. 1, 438–483 (2009).
[Crossref]

P. Anger, P. Bharadwaj, and L. Novotny, “Enhancement and quenching of single-molecule fluorescence,” Phys. Rev. Lett. 96, 113002 (2006).
[Crossref]

Bijeon, J.-L.

L. Billot, M. L. de la Chapelle, A.-S. Grimault, A. Vial, D. Barchiesi, J.-L. Bijeon, P.-M. Adam, and P. Royer, “Surface enhanced Raman scattering on gold nanowire arrays: evidence of strong multipolar surface plasmon resonance enhancement,” Chem. Phys. Lett. 422, 303–307 (2006).
[Crossref]

Billot, L.

L. Billot, M. L. de la Chapelle, A.-S. Grimault, A. Vial, D. Barchiesi, J.-L. Bijeon, P.-M. Adam, and P. Royer, “Surface enhanced Raman scattering on gold nanowire arrays: evidence of strong multipolar surface plasmon resonance enhancement,” Chem. Phys. Lett. 422, 303–307 (2006).
[Crossref]

Biteen, J. S.

E. Wertz, B. P. Isaacoff, J. D. Flynn, and J. S. Biteen, “Single-molecule super-resolution microscopy reveals how light couples to a plasmonic nanoantenna on the nanometer scale,” Nano Lett. 15, 2662–2670 (2015).
[Crossref]

Bleuse, J.

Blythe, K. L.

K. L. Blythe, E. J. Titus, and K. A. Willets, “Comparing the accuracy of reconstructed image size in super-resolution imaging of fluorophore-labeled gold nanorods using different fit models,” J. Phys. Chem. C 119, 19333–19343 (2015).
[Crossref]

Bonifacino, J. S.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313, 1642–1645 (2006).
[Crossref]

Bradac, C.

F. A. Inam, T. Gaebel, C. Bradac, L. Stewart, M. J. Withford, J. R. Rabeau, and M. J. Steel, “Modification of spontaneous emission from nanodiamond colour centres on a structured surface,” New J. Phys. 13, 073012 (2011).
[Crossref]

Brandl, D. W.

F. Le, D. W. Brandl, Y. A. Urzhumov, H. Wang, J. Kundu, N. J. Halas, J. Aizpurua, and P. Nordlander, “Metallic nanoparticle arrays: A common substrate for both surface-enhanced Raman scattering and surface-enhanced infrared absorption,” ACS Nano 2, 707–718 (2008).
[Crossref]

Brongersma, M. L.

R. A. Pala, J. White, E. Barnard, J. Liu, and M. L. Brongersma, “Design of plasmonic thin-film solar cells with broadband absorption enhancements,” Adv. Mater. 21, 3504–3509 (2009).
[Crossref]

Brongersma, S. H.

P. Offermans, M. C. Schaafsma, S. R. K. Rodríguez, Y. Zhang, M. Crego-Calama, S. H. Brongersma, and J. Gómez Rivas, “Universal scaling of the figure of merit of plasmonic sensors,” ACS Nano 5, 5151–5157 (2011).
[Crossref]

Burnett, M. T.

Cang, H.

H. Cang, A. Labno, C. Lu, X. Yin, M. Liu, C. Gladden, Y. Liu, and X. Zhang, “Probing the electromagnetic field of a 15-nanometre hotspot by single molecule imaging,” Nature 469, 385–388 (2011).
[Crossref]

Cao, D.

Carminati, R.

V. Krachmalnicoff, D. Cao, A. Cazé, E. Castanié, R. Pierrat, N. Bardou, S. Collin, R. Carminati, and Y. D. Wilde, “Towards a full characterization of a plasmonic nanostructure with a fluorescent near-field probe,” Opt. Express 21, 11536–11545 (2013).
[Crossref]

V. Krachmalnicoff, E. Castanié, Y. De Wilde, and R. Carminati, “Fluctuations of the local density of states probe localized surface plasmons on disordered metal films,” Phys. Rev. Lett. 105, 183901 (2010).
[Crossref]

K. Joulain, R. Carminati, J.-P. Mulet, and J.-J. Greffet, “Definition and measurement of the local density of electromagnetic states close to an interface,” Phys. Rev. B 68, 245405 (2003).
[Crossref]

Castanié, E.

V. Krachmalnicoff, D. Cao, A. Cazé, E. Castanié, R. Pierrat, N. Bardou, S. Collin, R. Carminati, and Y. D. Wilde, “Towards a full characterization of a plasmonic nanostructure with a fluorescent near-field probe,” Opt. Express 21, 11536–11545 (2013).
[Crossref]

V. Krachmalnicoff, E. Castanié, Y. De Wilde, and R. Carminati, “Fluctuations of the local density of states probe localized surface plasmons on disordered metal films,” Phys. Rev. Lett. 105, 183901 (2010).
[Crossref]

Catchpole, K. R.

S. Mokkapati, F. J. Beck, A. Polman, and K. R. Catchpole, “Designing periodic arrays of metal nanoparticles for light-trapping applications in solar cells,” Appl. Phys. Lett. 95, 053115 (2009).
[Crossref]

Cazé, A.

Centeno, S. P.

H. Lin, S. P. Centeno, L. Su, B. Kenens, S. Rocha, M. Sliwa, J. Hofkens, and H. Uji-i, “Mapping of surface-enhanced fluorescence on metal nanoparticles using super-resolution photoactivation localization microscopy,” Chem. Phys. Chem. 13, 973–981 (2012).

Chandezon, F.

Chen, B.

L. Wei, C. Liu, B. Chen, P. Zhou, H. Li, L. Xiao, and E. S. Yeung, “Probing single-molecule fluorescence spectral modulation within individual hotspots with subdiffraction-limit image resolution,” Anal. Chem. 85, 3789–3793 (2013).
[Crossref]

Chen, Y.

M. Frimmer, Y. Chen, and A. F. Koenderink, “Scanning emitter lifetime imaging microscopy for spontaneous emission control,” Phys. Rev. Lett. 107, 123602 (2011).
[Crossref]

Chevalier, N.

Cho, K. H.

Choi, D.-G.

Choi, J.-H.

Choi, K. C.

Chriki, R.

Co, D. T.

W. Zhou, M. Dridi, J. Y. Suh, C. H. Kim, D. T. Co, M. R. Wasielewski, G. C. Schatz, and T. W. Odom, “Lasing action in strongly coupled plasmonic nanocavity arrays,” Nat. Nanotechnol. 8, 506–511 (2013).
[Crossref]

Colas des Francs, G.

J. P. Hoogenboom, G. Sanchez-Mosteiro, G. Colas des Francs, D. Heinis, G. Legay, A. Dereux, and N. F. van Hulst, “The single molecule probe: nanoscale vectorial mapping of photonic mode density in a metal nanocavity,” Nano Lett. 9, 1189–1195 (2009).
[Crossref]

Collin, S.

Crego-Calama, M.

P. Offermans, M. C. Schaafsma, S. R. K. Rodríguez, Y. Zhang, M. Crego-Calama, S. H. Brongersma, and J. Gómez Rivas, “Universal scaling of the figure of merit of plasmonic sensors,” ACS Nano 5, 5151–5157 (2011).
[Crossref]

Crewett, J.

J. Stehr, J. Crewett, F. Schindler, R. Sperling, G. von Plessen, U. Lemmer, J. Lupton, T. Klar, J. Feldmann, A. Holleitner, M. Forster, and U. Scherf, “A low threshold polymer laser based on metallic nanoparticle gratings,” Adv. Mater. 15, 1726–1729 (2003).
[Crossref]

Cuche, A.

A. Cuche, O. Mollet, A. Drezet, and S. Huant, “Deterministic quantum plasmonics,” Nano Lett. 10, 4566–4570 (2010).
[Crossref]

Cummins, Z.

C. Ropp, Z. Cummins, S. Nah, J. T. Fourkas, B. Shapiro, and E. Waks, “Nanoscale probing of image-dipole interactions in a metallic nanostructure,” Nat. Commun. 6, 6558 (2015).
[Crossref]

Curto, A. G.

A. G. Curto, G. Volpe, T. H. Taminiau, M. P. Kreuzer, R. Quidant, and N. F. van Hulst, “Unidirectional emission of a quantum dot coupled to a nanoantenna,” Science 329, 930–933 (2010).
[Crossref]

Darscht, M. Y.

Y. V. Miklyaev, S. A. Asselborn, K. A. Zaytsev, and M. Y. Darscht, “Superresolution microscopy in far-field by near-field optical random mapping nanoscopy,” Appl. Phys. Lett. 105, 113103 (2014).
[Crossref]

Davidson, M. W.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313, 1642–1645 (2006).
[Crossref]

de la Chapelle, M. L.

L. Billot, M. L. de la Chapelle, A.-S. Grimault, A. Vial, D. Barchiesi, J.-L. Bijeon, P.-M. Adam, and P. Royer, “Surface enhanced Raman scattering on gold nanowire arrays: evidence of strong multipolar surface plasmon resonance enhancement,” Chem. Phys. Lett. 422, 303–307 (2006).
[Crossref]

de Lange, G.

T. van der Sar, E. C. Heeres, G. M. Dmochowski, G. de Lange, L. Robledo, T. H. Oosterkamp, and R. Hanson, “Nanopositioning of a diamond nanocrystal containing a single nitrogen-vacancy defect center,” Appl. Phys. Lett. 94, 173104 (2009).
[Crossref]

De Wilde, Y.

V. Krachmalnicoff, E. Castanié, Y. De Wilde, and R. Carminati, “Fluctuations of the local density of states probe localized surface plasmons on disordered metal films,” Phys. Rev. Lett. 105, 183901 (2010).
[Crossref]

Degerink, F. B.

T. H. Taminiau, F. D. Stefani, F. B. Degerink, and N. F. Van Hulst, “Optical antennas direct single-molecule emission,” Nat. Photonics 2, 234–237 (2008).
[Crossref]

Denk, W.

D. W. Pohl, W. Denk, and M. Lanz, “Optical stethoscopy: image recording with resolution λ/20,” Appl. Phys. Lett. 44, 651 (1984).

Dereux, A.

J. P. Hoogenboom, G. Sanchez-Mosteiro, G. Colas des Francs, D. Heinis, G. Legay, A. Dereux, and N. F. van Hulst, “The single molecule probe: nanoscale vectorial mapping of photonic mode density in a metal nanocavity,” Nano Lett. 9, 1189–1195 (2009).
[Crossref]

Deutsch, B.

Ding, W.

Ditlbacher, H.

D. M. Koller, U. Hohenester, A. Hohenau, H. Ditlbacher, F. Reil, N. Galler, F. R. Aussenegg, A. Leitner, A. Trügler, and J. R. Krenn, “Superresolution moiré mapping of particle plasmon modes,” Phys. Rev. Lett. 104, 143901 (2010).
[Crossref]

Dmochowski, G. M.

T. van der Sar, E. C. Heeres, G. M. Dmochowski, G. de Lange, L. Robledo, T. H. Oosterkamp, and R. Hanson, “Nanopositioning of a diamond nanocrystal containing a single nitrogen-vacancy defect center,” Appl. Phys. Lett. 94, 173104 (2009).
[Crossref]

Drezet, A.

A. Cuche, O. Mollet, A. Drezet, and S. Huant, “Deterministic quantum plasmonics,” Nano Lett. 10, 4566–4570 (2010).
[Crossref]

Dridi, M.

W. Zhou, M. Dridi, J. Y. Suh, C. H. Kim, D. T. Co, M. R. Wasielewski, G. C. Schatz, and T. W. Odom, “Lasing action in strongly coupled plasmonic nanocavity arrays,” Nat. Nanotechnol. 8, 506–511 (2013).
[Crossref]

Eisler, H.-J.

P. Mühlschlegel, H.-J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science 308, 1607–1609 (2005).
[Crossref]

Feldmann, J.

J. Stehr, J. Crewett, F. Schindler, R. Sperling, G. von Plessen, U. Lemmer, J. Lupton, T. Klar, J. Feldmann, A. Holleitner, M. Forster, and U. Scherf, “A low threshold polymer laser based on metallic nanoparticle gratings,” Adv. Mater. 15, 1726–1729 (2003).
[Crossref]

Félidj, N.

N. Félidj, J. Aubard, G. Lévi, J. R. Krenn, M. Salerno, G. Schider, B. Lamprecht, A. Leitner, and F. R. Aussenegg, “Controlling the optical response of regular arrays of gold particles for surface-enhanced Raman scattering,” Phys. Rev. B 65, 075419 (2002).
[Crossref]

Ferry, V. E.

V. E. Ferry, L. A. Sweatlock, D. Pacifici, and H. A. Atwater, “Plasmonic nanostructure design for efficient light coupling into solar cells,” Nano Lett. 8, 4391–4397 (2008).
[Crossref]

Flynn, J. D.

E. Wertz, B. P. Isaacoff, J. D. Flynn, and J. S. Biteen, “Single-molecule super-resolution microscopy reveals how light couples to a plasmonic nanoantenna on the nanometer scale,” Nano Lett. 15, 2662–2670 (2015).
[Crossref]

Forster, M.

J. Stehr, J. Crewett, F. Schindler, R. Sperling, G. von Plessen, U. Lemmer, J. Lupton, T. Klar, J. Feldmann, A. Holleitner, M. Forster, and U. Scherf, “A low threshold polymer laser based on metallic nanoparticle gratings,” Adv. Mater. 15, 1726–1729 (2003).
[Crossref]

Fourkas, J. T.

C. Ropp, Z. Cummins, S. Nah, J. T. Fourkas, B. Shapiro, and E. Waks, “Nanoscale probing of image-dipole interactions in a metallic nanostructure,” Nat. Commun. 6, 6558 (2015).
[Crossref]

Frimmer, M.

M. Frimmer, Y. Chen, and A. F. Koenderink, “Scanning emitter lifetime imaging microscopy for spontaneous emission control,” Phys. Rev. Lett. 107, 123602 (2011).
[Crossref]

Gaebel, T.

F. A. Inam, T. Gaebel, C. Bradac, L. Stewart, M. J. Withford, J. R. Rabeau, and M. J. Steel, “Modification of spontaneous emission from nanodiamond colour centres on a structured surface,” New J. Phys. 13, 073012 (2011).
[Crossref]

Galler, N.

D. M. Koller, U. Hohenester, A. Hohenau, H. Ditlbacher, F. Reil, N. Galler, F. R. Aussenegg, A. Leitner, A. Trügler, and J. R. Krenn, “Superresolution moiré mapping of particle plasmon modes,” Phys. Rev. Lett. 104, 143901 (2010).
[Crossref]

García-Parajó, M. F.

H. Gersen, M. F. García-Parajó, L. Novotny, J. A. Veerman, L. Kuipers, and N. F. van Hulst, “Influencing the angular emission of a single molecule,” Phys. Rev. Lett. 85, 5312–5315 (2000).
[Crossref]

Gersen, H.

H. Gersen, M. F. García-Parajó, L. Novotny, J. A. Veerman, L. Kuipers, and N. F. van Hulst, “Influencing the angular emission of a single molecule,” Phys. Rev. Lett. 85, 5312–5315 (2000).
[Crossref]

Girirajan, T. P.

S. T. Hess, T. P. Girirajan, and M. D. Mason, “Ultra-high resolution imaging by fluorescence photoactivation localization microscopy,” Biophys. J. 91, 4258–4272 (2006).
[Crossref]

Gladden, C.

H. Cang, A. Labno, C. Lu, X. Yin, M. Liu, C. Gladden, Y. Liu, and X. Zhang, “Probing the electromagnetic field of a 15-nanometre hotspot by single molecule imaging,” Nature 469, 385–388 (2011).
[Crossref]

Gómez Rivas, J.

G. Lozano, G. Grzela, M. A. Verschuuren, M. Ramezani, and J. Gómez Rivas, “Tailor-made directional emission in nanoimprinted plasmonic-based light-emitting devices,” Nanoscale 6, 9223–9229 (2014).
[Crossref]

S. R. K. Rodriguez, F. B. Arango, T. P. Steinbusch, M. A. Verschuuren, A. F. Koenderink, and J. Gómez Rivas, “Breaking the symmetry of forward-backward light emission with localized and collective magnetoelectric resonances in arrays of pyramid-shaped aluminum nanoparticles,” Phys. Rev. Lett. 113, 247401 (2014).
[Crossref]

G. Lozano, D. J. Louwers, S. R. Rodríguez, S. Murai, O. T. Jansen, M. A. Verschuuren, and J. Gómez Rivas, “Plasmonics for solid-state lighting: enhanced excitation and directional emission of highly efficient light sources,” Light Sci. Appl. 2, e66 (2013).
[Crossref]

P. Offermans, M. C. Schaafsma, S. R. K. Rodríguez, Y. Zhang, M. Crego-Calama, S. H. Brongersma, and J. Gómez Rivas, “Universal scaling of the figure of merit of plasmonic sensors,” ACS Nano 5, 5151–5157 (2011).
[Crossref]

Goodwin, P. M.

W. P. Ambrose, P. M. Goodwin, R. A. Keller, and J. C. Martin, “Alterations of single molecule fluorescence lifetimes in near-field optical microscopy,” Science 265, 364–367 (1994).
[Crossref]

Greffet, J.-J.

K. Joulain, R. Carminati, J.-P. Mulet, and J.-J. Greffet, “Definition and measurement of the local density of electromagnetic states close to an interface,” Phys. Rev. B 68, 245405 (2003).
[Crossref]

Grigorenko, A. N.

Grimault, A.-S.

L. Billot, M. L. de la Chapelle, A.-S. Grimault, A. Vial, D. Barchiesi, J.-L. Bijeon, P.-M. Adam, and P. Royer, “Surface enhanced Raman scattering on gold nanowire arrays: evidence of strong multipolar surface plasmon resonance enhancement,” Chem. Phys. Lett. 422, 303–307 (2006).
[Crossref]

Grzela, G.

G. Lozano, G. Grzela, M. A. Verschuuren, M. Ramezani, and J. Gómez Rivas, “Tailor-made directional emission in nanoimprinted plasmonic-based light-emitting devices,” Nanoscale 6, 9223–9229 (2014).
[Crossref]

Håkanson, U.

S. Kühn, U. Håkanson, L. Rogobete, and V. Sandoghdar, “Enhancement of single-molecule fluorescence using a gold nanoparticle as an optical nanoantenna,” Phys. Rev. Lett. 97, 017402 (2006).
[Crossref]

Halas, N. J.

F. Le, D. W. Brandl, Y. A. Urzhumov, H. Wang, J. Kundu, N. J. Halas, J. Aizpurua, and P. Nordlander, “Metallic nanoparticle arrays: A common substrate for both surface-enhanced Raman scattering and surface-enhanced infrared absorption,” ACS Nano 2, 707–718 (2008).
[Crossref]

Hanson, R.

T. van der Sar, E. C. Heeres, G. M. Dmochowski, G. de Lange, L. Robledo, T. H. Oosterkamp, and R. Hanson, “Nanopositioning of a diamond nanocrystal containing a single nitrogen-vacancy defect center,” Appl. Phys. Lett. 94, 173104 (2009).
[Crossref]

Hecht, B.

P. Mühlschlegel, H.-J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science 308, 1607–1609 (2005).
[Crossref]

L. Novotny and B. Hecht, Principles of Nano-Optics (Cambridge University, 2012).

Heeres, E. C.

T. van der Sar, E. C. Heeres, G. M. Dmochowski, G. de Lange, L. Robledo, T. H. Oosterkamp, and R. Hanson, “Nanopositioning of a diamond nanocrystal containing a single nitrogen-vacancy defect center,” Appl. Phys. Lett. 94, 173104 (2009).
[Crossref]

Heinis, D.

J. P. Hoogenboom, G. Sanchez-Mosteiro, G. Colas des Francs, D. Heinis, G. Legay, A. Dereux, and N. F. van Hulst, “The single molecule probe: nanoscale vectorial mapping of photonic mode density in a metal nanocavity,” Nano Lett. 9, 1189–1195 (2009).
[Crossref]

Hess, H. F.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313, 1642–1645 (2006).
[Crossref]

Hess, S. T.

S. T. Hess, T. P. Girirajan, and M. D. Mason, “Ultra-high resolution imaging by fluorescence photoactivation localization microscopy,” Biophys. J. 91, 4258–4272 (2006).
[Crossref]

Hettich, C.

S. Kühn, C. Hettich, C. Schmitt, J.-P. Poizat, and V. Sandoghdar, “Diamond colour centres as a nanoscopic light source for scanning near-field optical microscopy,” J. Microsc. 202, 2–6 (2001).
[Crossref]

J. Michaelis, C. Hettich, J. Mlynek, and V. Sandoghdar, “Optical microscopy using a single-molecule light source,” Nature 405, 325–328 (2000).
[Crossref]

Hofkens, J.

H. Lin, S. P. Centeno, L. Su, B. Kenens, S. Rocha, M. Sliwa, J. Hofkens, and H. Uji-i, “Mapping of surface-enhanced fluorescence on metal nanoparticles using super-resolution photoactivation localization microscopy,” Chem. Phys. Chem. 13, 973–981 (2012).

Hohenau, A.

D. M. Koller, U. Hohenester, A. Hohenau, H. Ditlbacher, F. Reil, N. Galler, F. R. Aussenegg, A. Leitner, A. Trügler, and J. R. Krenn, “Superresolution moiré mapping of particle plasmon modes,” Phys. Rev. Lett. 104, 143901 (2010).
[Crossref]

Hohenester, U.

D. M. Koller, U. Hohenester, A. Hohenau, H. Ditlbacher, F. Reil, N. Galler, F. R. Aussenegg, A. Leitner, A. Trügler, and J. R. Krenn, “Superresolution moiré mapping of particle plasmon modes,” Phys. Rev. Lett. 104, 143901 (2010).
[Crossref]

Holleitner, A.

J. Stehr, J. Crewett, F. Schindler, R. Sperling, G. von Plessen, U. Lemmer, J. Lupton, T. Klar, J. Feldmann, A. Holleitner, M. Forster, and U. Scherf, “A low threshold polymer laser based on metallic nanoparticle gratings,” Adv. Mater. 15, 1726–1729 (2003).
[Crossref]

Hoogenboom, J. P.

J. P. Hoogenboom, G. Sanchez-Mosteiro, G. Colas des Francs, D. Heinis, G. Legay, A. Dereux, and N. F. van Hulst, “The single molecule probe: nanoscale vectorial mapping of photonic mode density in a metal nanocavity,” Nano Lett. 9, 1189–1195 (2009).
[Crossref]

Huang, B.

B. Huang, W. Wang, M. Bates, and X. Zhuang, “Three-dimensional super-resolution imaging by stochastic optical reconstruction microscopy,” Science 319, 810–813 (2008).
[Crossref]

Huant, S.

Huck, A.

S. Kumar, A. Huck, and U. L. Andersen, “Efficient coupling of a single diamond color center to propagating plasmonic gap modes,” Nano Lett. 13, 1221–1225 (2013).
[Crossref]

A. Huck, S. Kumar, A. Shakoor, and U. L. Andersen, “Controlled coupling of a single nitrogen-vacancy center to a silver nanowire,” Phys. Rev. Lett. 106, 096801 (2011).
[Crossref]

Inam, F. A.

F. A. Inam, T. Gaebel, C. Bradac, L. Stewart, M. J. Withford, J. R. Rabeau, and M. J. Steel, “Modification of spontaneous emission from nanodiamond colour centres on a structured surface,” New J. Phys. 13, 073012 (2011).
[Crossref]

Isaacoff, B. P.

E. Wertz, B. P. Isaacoff, J. D. Flynn, and J. S. Biteen, “Single-molecule super-resolution microscopy reveals how light couples to a plasmonic nanoantenna on the nanometer scale,” Nano Lett. 15, 2662–2670 (2015).
[Crossref]

Jansen, O. T.

G. Lozano, D. J. Louwers, S. R. Rodríguez, S. Murai, O. T. Jansen, M. A. Verschuuren, and J. Gómez Rivas, “Plasmonics for solid-state lighting: enhanced excitation and directional emission of highly efficient light sources,” Light Sci. Appl. 2, e66 (2013).
[Crossref]

Johnson, T. W.

R. Beams, D. Smith, T. W. Johnson, S.-H. Oh, L. Novotny, and A. N. Vamivakas, “Nanoscale fluorescence lifetime imaging of an optical antenna with a single diamond NV center,” Nano Lett. 13, 3807–3811 (2013).
[Crossref]

Joulain, K.

K. Joulain, R. Carminati, J.-P. Mulet, and J.-J. Greffet, “Definition and measurement of the local density of electromagnetic states close to an interface,” Phys. Rev. B 68, 245405 (2003).
[Crossref]

Kabashin, A. V.

Keller, R. A.

W. P. Ambrose, P. M. Goodwin, R. A. Keller, and J. C. Martin, “Alterations of single molecule fluorescence lifetimes in near-field optical microscopy,” Science 265, 364–367 (1994).
[Crossref]

Kenens, B.

H. Lin, S. P. Centeno, L. Su, B. Kenens, S. Rocha, M. Sliwa, J. Hofkens, and H. Uji-i, “Mapping of surface-enhanced fluorescence on metal nanoparticles using super-resolution photoactivation localization microscopy,” Chem. Phys. Chem. 13, 973–981 (2012).

Kildishev, A. V.

X. Meng, J. Liu, A. V. Kildishev, and V. M. Shalaev, “Highly directional spaser array for the red wavelength region,” Laser Photon. Rev. 8, 896–903 (2014).
[Crossref]

Kim, C. H.

W. Zhou, M. Dridi, J. Y. Suh, C. H. Kim, D. T. Co, M. R. Wasielewski, G. C. Schatz, and T. W. Odom, “Lasing action in strongly coupled plasmonic nanocavity arrays,” Nat. Nanotechnol. 8, 506–511 (2013).
[Crossref]

Kim, J. Y.

Klar, T.

J. Stehr, J. Crewett, F. Schindler, R. Sperling, G. von Plessen, U. Lemmer, J. Lupton, T. Klar, J. Feldmann, A. Holleitner, M. Forster, and U. Scherf, “A low threshold polymer laser based on metallic nanoparticle gratings,” Adv. Mater. 15, 1726–1729 (2003).
[Crossref]

Koenderink, A. F.

C. I. Osorio, A. Mohtashami, and A. F. Koenderink, “K-space polarimetry of bullseye plasmon antennas,” Sci. Rep. 5, 9966 (2015).
[Crossref]

S. R. K. Rodriguez, F. B. Arango, T. P. Steinbusch, M. A. Verschuuren, A. F. Koenderink, and J. Gómez Rivas, “Breaking the symmetry of forward-backward light emission with localized and collective magnetoelectric resonances in arrays of pyramid-shaped aluminum nanoparticles,” Phys. Rev. Lett. 113, 247401 (2014).
[Crossref]

A. H. Schokker and A. F. Koenderink, “Lasing at the band edges of plasmonic lattices,” Phys. Rev. B 90, 155452 (2014).
[Crossref]

A. Mohtashami and A. F. Koenderink, “Suitability of nanodiamond nitrogen-vacancy centers for spontaneous emission control experiments,” New J. Phys. 15, 043017 (2013).
[Crossref]

A. Kwadrin and A. F. Koenderink, “Gray-tone lithography implementation of Drexhage’s method for calibrating radiative and nonradiative decay constants of fluorophores,” J. Phys. Chem. C 116, 16666–16673 (2012).
[Crossref]

M. Frimmer, Y. Chen, and A. F. Koenderink, “Scanning emitter lifetime imaging microscopy for spontaneous emission control,” Phys. Rev. Lett. 107, 123602 (2011).
[Crossref]

I. S. Nikolaev, W. L. Vos, and A. F. Koenderink, “Accurate calculation of the local density of optical states in inverse-opal photonic crystals,” J. Opt. Soc. Am. B 26, 987–997 (2009).
[Crossref]

W. L. Vos, A. F. Koenderink, and I. S. Nikolaev, “Orientation-dependent spontaneous emission rates of a two-level quantum emitter in any nanophotonic environment,” Phys. Rev. A 80, 053802 (2009).
[Crossref]

H. Mertens, A. F. Koenderink, and A. Polman, “Plasmon-enhanced luminescence near noble-metal nanospheres: comparison of exact theory and an improved Gersten and Nitzan model,” Phys. Rev. B 76, 115123 (2007).
[Crossref]

Koller, D. M.

D. M. Koller, U. Hohenester, A. Hohenau, H. Ditlbacher, F. Reil, N. Galler, F. R. Aussenegg, A. Leitner, A. Trügler, and J. R. Krenn, “Superresolution moiré mapping of particle plasmon modes,” Phys. Rev. Lett. 104, 143901 (2010).
[Crossref]

Krachmalnicoff, V.

V. Krachmalnicoff, D. Cao, A. Cazé, E. Castanié, R. Pierrat, N. Bardou, S. Collin, R. Carminati, and Y. D. Wilde, “Towards a full characterization of a plasmonic nanostructure with a fluorescent near-field probe,” Opt. Express 21, 11536–11545 (2013).
[Crossref]

V. Krachmalnicoff, E. Castanié, Y. De Wilde, and R. Carminati, “Fluctuations of the local density of states probe localized surface plasmons on disordered metal films,” Phys. Rev. Lett. 105, 183901 (2010).
[Crossref]

Kravets, V. G.

Krenn, J. R.

D. M. Koller, U. Hohenester, A. Hohenau, H. Ditlbacher, F. Reil, N. Galler, F. R. Aussenegg, A. Leitner, A. Trügler, and J. R. Krenn, “Superresolution moiré mapping of particle plasmon modes,” Phys. Rev. Lett. 104, 143901 (2010).
[Crossref]

N. Félidj, J. Aubard, G. Lévi, J. R. Krenn, M. Salerno, G. Schider, B. Lamprecht, A. Leitner, and F. R. Aussenegg, “Controlling the optical response of regular arrays of gold particles for surface-enhanced Raman scattering,” Phys. Rev. B 65, 075419 (2002).
[Crossref]

Kreuzer, M. P.

A. G. Curto, G. Volpe, T. H. Taminiau, M. P. Kreuzer, R. Quidant, and N. F. van Hulst, “Unidirectional emission of a quantum dot coupled to a nanoantenna,” Science 329, 930–933 (2010).
[Crossref]

Kühler, P.

P. Kühler, M. Weber, and T. Lohmüller, “Plasmonic nanoantenna arrays for surface-enhanced Raman spectroscopy of lipid molecules embedded in a bilayer membrane,” ACS Appl. Mater. Interfaces 6, 8947–8952 (2014).
[Crossref]

Kühn, S.

S. Kühn, U. Håkanson, L. Rogobete, and V. Sandoghdar, “Enhancement of single-molecule fluorescence using a gold nanoparticle as an optical nanoantenna,” Phys. Rev. Lett. 97, 017402 (2006).
[Crossref]

S. Kühn, C. Hettich, C. Schmitt, J.-P. Poizat, and V. Sandoghdar, “Diamond colour centres as a nanoscopic light source for scanning near-field optical microscopy,” J. Microsc. 202, 2–6 (2001).
[Crossref]

Kuipers, L.

R. J. Moerland, T. H. Taminiau, L. Novotny, N. F. van Hulst, and L. Kuipers, “Reversible polarization control of single photon emission,” Nano Lett. 8, 606–610 (2008).
[Crossref]

H. Gersen, M. F. García-Parajó, L. Novotny, J. A. Veerman, L. Kuipers, and N. F. van Hulst, “Influencing the angular emission of a single molecule,” Phys. Rev. Lett. 85, 5312–5315 (2000).
[Crossref]

J. A. Veerman, A. M. Otter, L. Kuipers, and N. F. van Hulst, “High definition aperture probes for near-field optical microscopy fabricated by focused ion beam milling,” Appl. Phys. Lett. 72, 3115 (1998).

Kumar, S.

S. Kumar, A. Huck, and U. L. Andersen, “Efficient coupling of a single diamond color center to propagating plasmonic gap modes,” Nano Lett. 13, 1221–1225 (2013).
[Crossref]

A. Huck, S. Kumar, A. Shakoor, and U. L. Andersen, “Controlled coupling of a single nitrogen-vacancy center to a silver nanowire,” Phys. Rev. Lett. 106, 096801 (2011).
[Crossref]

Kundu, J.

F. Le, D. W. Brandl, Y. A. Urzhumov, H. Wang, J. Kundu, N. J. Halas, J. Aizpurua, and P. Nordlander, “Metallic nanoparticle arrays: A common substrate for both surface-enhanced Raman scattering and surface-enhanced infrared absorption,” ACS Nano 2, 707–718 (2008).
[Crossref]

Kwadrin, A.

A. Kwadrin and A. F. Koenderink, “Gray-tone lithography implementation of Drexhage’s method for calibrating radiative and nonradiative decay constants of fluorophores,” J. Phys. Chem. C 116, 16666–16673 (2012).
[Crossref]

Labno, A.

H. Cang, A. Labno, C. Lu, X. Yin, M. Liu, C. Gladden, Y. Liu, and X. Zhang, “Probing the electromagnetic field of a 15-nanometre hotspot by single molecule imaging,” Nature 469, 385–388 (2011).
[Crossref]

Lamprecht, B.

N. Félidj, J. Aubard, G. Lévi, J. R. Krenn, M. Salerno, G. Schider, B. Lamprecht, A. Leitner, and F. R. Aussenegg, “Controlling the optical response of regular arrays of gold particles for surface-enhanced Raman scattering,” Phys. Rev. B 65, 075419 (2002).
[Crossref]

Lanz, M.

D. W. Pohl, W. Denk, and M. Lanz, “Optical stethoscopy: image recording with resolution λ/20,” Appl. Phys. Lett. 44, 651 (1984).

Larson, D. R.

R. E. Thompson, D. R. Larson, and W. W. Webb, “Precise nanometer localization analysis for individual fluorescent probes,” Biophys. J. 82, 2775–2783 (2002).
[Crossref]

Le, F.

F. Le, D. W. Brandl, Y. A. Urzhumov, H. Wang, J. Kundu, N. J. Halas, J. Aizpurua, and P. Nordlander, “Metallic nanoparticle arrays: A common substrate for both surface-enhanced Raman scattering and surface-enhanced infrared absorption,” ACS Nano 2, 707–718 (2008).
[Crossref]

Lee, K.-J.

Legay, G.

J. P. Hoogenboom, G. Sanchez-Mosteiro, G. Colas des Francs, D. Heinis, G. Legay, A. Dereux, and N. F. van Hulst, “The single molecule probe: nanoscale vectorial mapping of photonic mode density in a metal nanocavity,” Nano Lett. 9, 1189–1195 (2009).
[Crossref]

Leitner, A.

D. M. Koller, U. Hohenester, A. Hohenau, H. Ditlbacher, F. Reil, N. Galler, F. R. Aussenegg, A. Leitner, A. Trügler, and J. R. Krenn, “Superresolution moiré mapping of particle plasmon modes,” Phys. Rev. Lett. 104, 143901 (2010).
[Crossref]

N. Félidj, J. Aubard, G. Lévi, J. R. Krenn, M. Salerno, G. Schider, B. Lamprecht, A. Leitner, and F. R. Aussenegg, “Controlling the optical response of regular arrays of gold particles for surface-enhanced Raman scattering,” Phys. Rev. B 65, 075419 (2002).
[Crossref]

Lemmer, U.

J. Stehr, J. Crewett, F. Schindler, R. Sperling, G. von Plessen, U. Lemmer, J. Lupton, T. Klar, J. Feldmann, A. Holleitner, M. Forster, and U. Scherf, “A low threshold polymer laser based on metallic nanoparticle gratings,” Adv. Mater. 15, 1726–1729 (2003).
[Crossref]

Lévi, G.

N. Félidj, J. Aubard, G. Lévi, J. R. Krenn, M. Salerno, G. Schider, B. Lamprecht, A. Leitner, and F. R. Aussenegg, “Controlling the optical response of regular arrays of gold particles for surface-enhanced Raman scattering,” Phys. Rev. B 65, 075419 (2002).
[Crossref]

Levy, U.

Li, H.

L. Wei, C. Liu, B. Chen, P. Zhou, H. Li, L. Xiao, and E. S. Yeung, “Probing single-molecule fluorescence spectral modulation within individual hotspots with subdiffraction-limit image resolution,” Anal. Chem. 85, 3789–3793 (2013).
[Crossref]

Lieb, M. A.

Lin, H.

H. Lin, S. P. Centeno, L. Su, B. Kenens, S. Rocha, M. Sliwa, J. Hofkens, and H. Uji-i, “Mapping of surface-enhanced fluorescence on metal nanoparticles using super-resolution photoactivation localization microscopy,” Chem. Phys. Chem. 13, 973–981 (2012).

Lindwasser, O. W.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313, 1642–1645 (2006).
[Crossref]

Lippincott-Schwartz, J.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313, 1642–1645 (2006).
[Crossref]

Liu, C.

L. Wei, C. Liu, B. Chen, P. Zhou, H. Li, L. Xiao, and E. S. Yeung, “Probing single-molecule fluorescence spectral modulation within individual hotspots with subdiffraction-limit image resolution,” Anal. Chem. 85, 3789–3793 (2013).
[Crossref]

Liu, J.

X. Meng, J. Liu, A. V. Kildishev, and V. M. Shalaev, “Highly directional spaser array for the red wavelength region,” Laser Photon. Rev. 8, 896–903 (2014).
[Crossref]

R. A. Pala, J. White, E. Barnard, J. Liu, and M. L. Brongersma, “Design of plasmonic thin-film solar cells with broadband absorption enhancements,” Adv. Mater. 21, 3504–3509 (2009).
[Crossref]

Liu, M.

H. Cang, A. Labno, C. Lu, X. Yin, M. Liu, C. Gladden, Y. Liu, and X. Zhang, “Probing the electromagnetic field of a 15-nanometre hotspot by single molecule imaging,” Nature 469, 385–388 (2011).
[Crossref]

Liu, Y.

H. Cang, A. Labno, C. Lu, X. Yin, M. Liu, C. Gladden, Y. Liu, and X. Zhang, “Probing the electromagnetic field of a 15-nanometre hotspot by single molecule imaging,” Nature 469, 385–388 (2011).
[Crossref]

Lohmüller, T.

P. Kühler, M. Weber, and T. Lohmüller, “Plasmonic nanoantenna arrays for surface-enhanced Raman spectroscopy of lipid molecules embedded in a bilayer membrane,” ACS Appl. Mater. Interfaces 6, 8947–8952 (2014).
[Crossref]

Louwers, D. J.

G. Lozano, D. J. Louwers, S. R. Rodríguez, S. Murai, O. T. Jansen, M. A. Verschuuren, and J. Gómez Rivas, “Plasmonics for solid-state lighting: enhanced excitation and directional emission of highly efficient light sources,” Light Sci. Appl. 2, e66 (2013).
[Crossref]

Lozano, G.

G. Lozano, G. Grzela, M. A. Verschuuren, M. Ramezani, and J. Gómez Rivas, “Tailor-made directional emission in nanoimprinted plasmonic-based light-emitting devices,” Nanoscale 6, 9223–9229 (2014).
[Crossref]

G. Lozano, D. J. Louwers, S. R. Rodríguez, S. Murai, O. T. Jansen, M. A. Verschuuren, and J. Gómez Rivas, “Plasmonics for solid-state lighting: enhanced excitation and directional emission of highly efficient light sources,” Light Sci. Appl. 2, e66 (2013).
[Crossref]

Lu, C.

H. Cang, A. Labno, C. Lu, X. Yin, M. Liu, C. Gladden, Y. Liu, and X. Zhang, “Probing the electromagnetic field of a 15-nanometre hotspot by single molecule imaging,” Nature 469, 385–388 (2011).
[Crossref]

Lupton, J.

J. Stehr, J. Crewett, F. Schindler, R. Sperling, G. von Plessen, U. Lemmer, J. Lupton, T. Klar, J. Feldmann, A. Holleitner, M. Forster, and U. Scherf, “A low threshold polymer laser based on metallic nanoparticle gratings,” Adv. Mater. 15, 1726–1729 (2003).
[Crossref]

Maier, S. A.

Martin, J. C.

W. P. Ambrose, P. M. Goodwin, R. A. Keller, and J. C. Martin, “Alterations of single molecule fluorescence lifetimes in near-field optical microscopy,” Science 265, 364–367 (1994).
[Crossref]

Martin, O. J. F.

P. Mühlschlegel, H.-J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science 308, 1607–1609 (2005).
[Crossref]

Mason, M. D.

S. T. Hess, T. P. Girirajan, and M. D. Mason, “Ultra-high resolution imaging by fluorescence photoactivation localization microscopy,” Biophys. J. 91, 4258–4272 (2006).
[Crossref]

Meng, X.

X. Meng, J. Liu, A. V. Kildishev, and V. M. Shalaev, “Highly directional spaser array for the red wavelength region,” Laser Photon. Rev. 8, 896–903 (2014).
[Crossref]

Mertens, H.

H. Mertens, A. F. Koenderink, and A. Polman, “Plasmon-enhanced luminescence near noble-metal nanospheres: comparison of exact theory and an improved Gersten and Nitzan model,” Phys. Rev. B 76, 115123 (2007).
[Crossref]

Michaelis, J.

J. Michaelis, C. Hettich, J. Mlynek, and V. Sandoghdar, “Optical microscopy using a single-molecule light source,” Nature 405, 325–328 (2000).
[Crossref]

Miklyaev, Y. V.

Y. V. Miklyaev, S. A. Asselborn, K. A. Zaytsev, and M. Y. Darscht, “Superresolution microscopy in far-field by near-field optical random mapping nanoscopy,” Appl. Phys. Lett. 105, 113103 (2014).
[Crossref]

Mlynek, J.

J. Michaelis, C. Hettich, J. Mlynek, and V. Sandoghdar, “Optical microscopy using a single-molecule light source,” Nature 405, 325–328 (2000).
[Crossref]

Moerland, R. J.

R. J. Moerland, T. H. Taminiau, L. Novotny, N. F. van Hulst, and L. Kuipers, “Reversible polarization control of single photon emission,” Nano Lett. 8, 606–610 (2008).
[Crossref]

Mohtashami, A.

C. I. Osorio, A. Mohtashami, and A. F. Koenderink, “K-space polarimetry of bullseye plasmon antennas,” Sci. Rep. 5, 9966 (2015).
[Crossref]

A. Mohtashami and A. F. Koenderink, “Suitability of nanodiamond nitrogen-vacancy centers for spontaneous emission control experiments,” New J. Phys. 15, 043017 (2013).
[Crossref]

Mokkapati, S.

S. Mokkapati, F. J. Beck, A. Polman, and K. R. Catchpole, “Designing periodic arrays of metal nanoparticles for light-trapping applications in solar cells,” Appl. Phys. Lett. 95, 053115 (2009).
[Crossref]

Mollet, O.

A. Cuche, O. Mollet, A. Drezet, and S. Huant, “Deterministic quantum plasmonics,” Nano Lett. 10, 4566–4570 (2010).
[Crossref]

Mortier, M.

L. Aigouy, Y. D. Wilde, and M. Mortier, “Local optical imaging of nanoholes using a single fluorescent rare-earth-doped glass particle as a probe,” Appl. Phys. Lett. 83, 147–149 (2003).
[Crossref]

Motte, J.-F.

Mühlschlegel, P.

P. Mühlschlegel, H.-J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science 308, 1607–1609 (2005).
[Crossref]

Mulet, J.-P.

K. Joulain, R. Carminati, J.-P. Mulet, and J.-J. Greffet, “Definition and measurement of the local density of electromagnetic states close to an interface,” Phys. Rev. B 68, 245405 (2003).
[Crossref]

Murai, S.

G. Lozano, D. J. Louwers, S. R. Rodríguez, S. Murai, O. T. Jansen, M. A. Verschuuren, and J. Gómez Rivas, “Plasmonics for solid-state lighting: enhanced excitation and directional emission of highly efficient light sources,” Light Sci. Appl. 2, e66 (2013).
[Crossref]

Nah, S.

C. Ropp, Z. Cummins, S. Nah, J. T. Fourkas, B. Shapiro, and E. Waks, “Nanoscale probing of image-dipole interactions in a metallic nanostructure,” Nat. Commun. 6, 6558 (2015).
[Crossref]

Nikolaev, I. S.

W. L. Vos, A. F. Koenderink, and I. S. Nikolaev, “Orientation-dependent spontaneous emission rates of a two-level quantum emitter in any nanophotonic environment,” Phys. Rev. A 80, 053802 (2009).
[Crossref]

I. S. Nikolaev, W. L. Vos, and A. F. Koenderink, “Accurate calculation of the local density of optical states in inverse-opal photonic crystals,” J. Opt. Soc. Am. B 26, 987–997 (2009).
[Crossref]

Nordlander, P.

F. Le, D. W. Brandl, Y. A. Urzhumov, H. Wang, J. Kundu, N. J. Halas, J. Aizpurua, and P. Nordlander, “Metallic nanoparticle arrays: A common substrate for both surface-enhanced Raman scattering and surface-enhanced infrared absorption,” ACS Nano 2, 707–718 (2008).
[Crossref]

Novotny, L.

R. Beams, D. Smith, T. W. Johnson, S.-H. Oh, L. Novotny, and A. N. Vamivakas, “Nanoscale fluorescence lifetime imaging of an optical antenna with a single diamond NV center,” Nano Lett. 13, 3807–3811 (2013).
[Crossref]

P. Bharadwaj, B. Deutsch, and L. Novotny, “Optical antennas,” Adv. Opt. Photon. 1, 438–483 (2009).
[Crossref]

R. J. Moerland, T. H. Taminiau, L. Novotny, N. F. van Hulst, and L. Kuipers, “Reversible polarization control of single photon emission,” Nano Lett. 8, 606–610 (2008).
[Crossref]

P. Anger, P. Bharadwaj, and L. Novotny, “Enhancement and quenching of single-molecule fluorescence,” Phys. Rev. Lett. 96, 113002 (2006).
[Crossref]

M. A. Lieb, J. M. Zavislan, and L. Novotny, “Single-molecule orientations determined by direct emission pattern imaging,” J. Opt. Soc. Am. B 21, 1210–1215 (2004).
[Crossref]

H. Gersen, M. F. García-Parajó, L. Novotny, J. A. Veerman, L. Kuipers, and N. F. van Hulst, “Influencing the angular emission of a single molecule,” Phys. Rev. Lett. 85, 5312–5315 (2000).
[Crossref]

L. Novotny and B. Hecht, Principles of Nano-Optics (Cambridge University, 2012).

Odom, T. W.

W. Zhou, M. Dridi, J. Y. Suh, C. H. Kim, D. T. Co, M. R. Wasielewski, G. C. Schatz, and T. W. Odom, “Lasing action in strongly coupled plasmonic nanocavity arrays,” Nat. Nanotechnol. 8, 506–511 (2013).
[Crossref]

Offermans, P.

P. Offermans, M. C. Schaafsma, S. R. K. Rodríguez, Y. Zhang, M. Crego-Calama, S. H. Brongersma, and J. Gómez Rivas, “Universal scaling of the figure of merit of plasmonic sensors,” ACS Nano 5, 5151–5157 (2011).
[Crossref]

Oh, S.-H.

R. Beams, D. Smith, T. W. Johnson, S.-H. Oh, L. Novotny, and A. N. Vamivakas, “Nanoscale fluorescence lifetime imaging of an optical antenna with a single diamond NV center,” Nano Lett. 13, 3807–3811 (2013).
[Crossref]

Olenych, S.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313, 1642–1645 (2006).
[Crossref]

Oosterkamp, T. H.

T. van der Sar, E. C. Heeres, G. M. Dmochowski, G. de Lange, L. Robledo, T. H. Oosterkamp, and R. Hanson, “Nanopositioning of a diamond nanocrystal containing a single nitrogen-vacancy defect center,” Appl. Phys. Lett. 94, 173104 (2009).
[Crossref]

Osorio, C. I.

C. I. Osorio, A. Mohtashami, and A. F. Koenderink, “K-space polarimetry of bullseye plasmon antennas,” Sci. Rep. 5, 9966 (2015).
[Crossref]

Otter, A. M.

J. A. Veerman, A. M. Otter, L. Kuipers, and N. F. van Hulst, “High definition aperture probes for near-field optical microscopy fabricated by focused ion beam milling,” Appl. Phys. Lett. 72, 3115 (1998).

Pacifici, D.

V. E. Ferry, L. A. Sweatlock, D. Pacifici, and H. A. Atwater, “Plasmonic nanostructure design for efficient light coupling into solar cells,” Nano Lett. 8, 4391–4397 (2008).
[Crossref]

Pala, R. A.

R. A. Pala, J. White, E. Barnard, J. Liu, and M. L. Brongersma, “Design of plasmonic thin-film solar cells with broadband absorption enhancements,” Adv. Mater. 21, 3504–3509 (2009).
[Crossref]

Patterson, G. H.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313, 1642–1645 (2006).
[Crossref]

Pierrat, R.

Pohl, D. W.

P. Mühlschlegel, H.-J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science 308, 1607–1609 (2005).
[Crossref]

D. W. Pohl, W. Denk, and M. Lanz, “Optical stethoscopy: image recording with resolution λ/20,” Appl. Phys. Lett. 44, 651 (1984).

Poizat, J.-P.

S. Kühn, C. Hettich, C. Schmitt, J.-P. Poizat, and V. Sandoghdar, “Diamond colour centres as a nanoscopic light source for scanning near-field optical microscopy,” J. Microsc. 202, 2–6 (2001).
[Crossref]

Polman, A.

S. Mokkapati, F. J. Beck, A. Polman, and K. R. Catchpole, “Designing periodic arrays of metal nanoparticles for light-trapping applications in solar cells,” Appl. Phys. Lett. 95, 053115 (2009).
[Crossref]

H. Mertens, A. F. Koenderink, and A. Polman, “Plasmon-enhanced luminescence near noble-metal nanospheres: comparison of exact theory and an improved Gersten and Nitzan model,” Phys. Rev. B 76, 115123 (2007).
[Crossref]

Quidant, R.

A. G. Curto, G. Volpe, T. H. Taminiau, M. P. Kreuzer, R. Quidant, and N. F. van Hulst, “Unidirectional emission of a quantum dot coupled to a nanoantenna,” Science 329, 930–933 (2010).
[Crossref]

Rabeau, J. R.

F. A. Inam, T. Gaebel, C. Bradac, L. Stewart, M. J. Withford, J. R. Rabeau, and M. J. Steel, “Modification of spontaneous emission from nanodiamond colour centres on a structured surface,” New J. Phys. 13, 073012 (2011).
[Crossref]

Ramezani, M.

G. Lozano, G. Grzela, M. A. Verschuuren, M. Ramezani, and J. Gómez Rivas, “Tailor-made directional emission in nanoimprinted plasmonic-based light-emitting devices,” Nanoscale 6, 9223–9229 (2014).
[Crossref]

Reil, F.

D. M. Koller, U. Hohenester, A. Hohenau, H. Ditlbacher, F. Reil, N. Galler, F. R. Aussenegg, A. Leitner, A. Trügler, and J. R. Krenn, “Superresolution moiré mapping of particle plasmon modes,” Phys. Rev. Lett. 104, 143901 (2010).
[Crossref]

Reiss, P.

Ritchie, R. H.

R. H. Ritchie, “Plasma losses by fast electrons in thin films,” Phys. Rev. 106, 874–881 (1957).
[Crossref]

Robledo, L.

T. van der Sar, E. C. Heeres, G. M. Dmochowski, G. de Lange, L. Robledo, T. H. Oosterkamp, and R. Hanson, “Nanopositioning of a diamond nanocrystal containing a single nitrogen-vacancy defect center,” Appl. Phys. Lett. 94, 173104 (2009).
[Crossref]

Rocha, S.

H. Lin, S. P. Centeno, L. Su, B. Kenens, S. Rocha, M. Sliwa, J. Hofkens, and H. Uji-i, “Mapping of surface-enhanced fluorescence on metal nanoparticles using super-resolution photoactivation localization microscopy,” Chem. Phys. Chem. 13, 973–981 (2012).

Rodriguez, S. R. K.

S. R. K. Rodriguez, F. B. Arango, T. P. Steinbusch, M. A. Verschuuren, A. F. Koenderink, and J. Gómez Rivas, “Breaking the symmetry of forward-backward light emission with localized and collective magnetoelectric resonances in arrays of pyramid-shaped aluminum nanoparticles,” Phys. Rev. Lett. 113, 247401 (2014).
[Crossref]

Rodríguez, S. R.

G. Lozano, D. J. Louwers, S. R. Rodríguez, S. Murai, O. T. Jansen, M. A. Verschuuren, and J. Gómez Rivas, “Plasmonics for solid-state lighting: enhanced excitation and directional emission of highly efficient light sources,” Light Sci. Appl. 2, e66 (2013).
[Crossref]

Rodríguez, S. R. K.

P. Offermans, M. C. Schaafsma, S. R. K. Rodríguez, Y. Zhang, M. Crego-Calama, S. H. Brongersma, and J. Gómez Rivas, “Universal scaling of the figure of merit of plasmonic sensors,” ACS Nano 5, 5151–5157 (2011).
[Crossref]

Rogobete, L.

S. Kühn, U. Håkanson, L. Rogobete, and V. Sandoghdar, “Enhancement of single-molecule fluorescence using a gold nanoparticle as an optical nanoantenna,” Phys. Rev. Lett. 97, 017402 (2006).
[Crossref]

Ropp, C.

C. Ropp, Z. Cummins, S. Nah, J. T. Fourkas, B. Shapiro, and E. Waks, “Nanoscale probing of image-dipole interactions in a metallic nanostructure,” Nat. Commun. 6, 6558 (2015).
[Crossref]

Royer, P.

L. Billot, M. L. de la Chapelle, A.-S. Grimault, A. Vial, D. Barchiesi, J.-L. Bijeon, P.-M. Adam, and P. Royer, “Surface enhanced Raman scattering on gold nanowire arrays: evidence of strong multipolar surface plasmon resonance enhancement,” Chem. Phys. Lett. 422, 303–307 (2006).
[Crossref]

Rust, M. J.

M. J. Rust, M. Bates, and X. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM),” Nat. Methods 3, 793–796 (2006).
[Crossref]

Salerno, M.

N. Félidj, J. Aubard, G. Lévi, J. R. Krenn, M. Salerno, G. Schider, B. Lamprecht, A. Leitner, and F. R. Aussenegg, “Controlling the optical response of regular arrays of gold particles for surface-enhanced Raman scattering,” Phys. Rev. B 65, 075419 (2002).
[Crossref]

Sanchez-Mosteiro, G.

J. P. Hoogenboom, G. Sanchez-Mosteiro, G. Colas des Francs, D. Heinis, G. Legay, A. Dereux, and N. F. van Hulst, “The single molecule probe: nanoscale vectorial mapping of photonic mode density in a metal nanocavity,” Nano Lett. 9, 1189–1195 (2009).
[Crossref]

Sandoghdar, V.

S. Kühn, U. Håkanson, L. Rogobete, and V. Sandoghdar, “Enhancement of single-molecule fluorescence using a gold nanoparticle as an optical nanoantenna,” Phys. Rev. Lett. 97, 017402 (2006).
[Crossref]

S. Kühn, C. Hettich, C. Schmitt, J.-P. Poizat, and V. Sandoghdar, “Diamond colour centres as a nanoscopic light source for scanning near-field optical microscopy,” J. Microsc. 202, 2–6 (2001).
[Crossref]

J. Michaelis, C. Hettich, J. Mlynek, and V. Sandoghdar, “Optical microscopy using a single-molecule light source,” Nature 405, 325–328 (2000).
[Crossref]

Schaafsma, M. C.

P. Offermans, M. C. Schaafsma, S. R. K. Rodríguez, Y. Zhang, M. Crego-Calama, S. H. Brongersma, and J. Gómez Rivas, “Universal scaling of the figure of merit of plasmonic sensors,” ACS Nano 5, 5151–5157 (2011).
[Crossref]

Schatz, G. C.

W. Zhou, M. Dridi, J. Y. Suh, C. H. Kim, D. T. Co, M. R. Wasielewski, G. C. Schatz, and T. W. Odom, “Lasing action in strongly coupled plasmonic nanocavity arrays,” Nat. Nanotechnol. 8, 506–511 (2013).
[Crossref]

Schedin, F.

Scherf, U.

J. Stehr, J. Crewett, F. Schindler, R. Sperling, G. von Plessen, U. Lemmer, J. Lupton, T. Klar, J. Feldmann, A. Holleitner, M. Forster, and U. Scherf, “A low threshold polymer laser based on metallic nanoparticle gratings,” Adv. Mater. 15, 1726–1729 (2003).
[Crossref]

Schider, G.

N. Félidj, J. Aubard, G. Lévi, J. R. Krenn, M. Salerno, G. Schider, B. Lamprecht, A. Leitner, and F. R. Aussenegg, “Controlling the optical response of regular arrays of gold particles for surface-enhanced Raman scattering,” Phys. Rev. B 65, 075419 (2002).
[Crossref]

Schietinger, S.

S. Schietinger, M. Barth, T. Aichele, and O. Benson, “Plasmon-enhanced single photon emission from a nanoassembled metal-diamond hybrid structure at room temperature,” Nano Lett. 9, 1694–1698 (2009).
[Crossref]

Schindler, F.

J. Stehr, J. Crewett, F. Schindler, R. Sperling, G. von Plessen, U. Lemmer, J. Lupton, T. Klar, J. Feldmann, A. Holleitner, M. Forster, and U. Scherf, “A low threshold polymer laser based on metallic nanoparticle gratings,” Adv. Mater. 15, 1726–1729 (2003).
[Crossref]

Schmitt, C.

S. Kühn, C. Hettich, C. Schmitt, J.-P. Poizat, and V. Sandoghdar, “Diamond colour centres as a nanoscopic light source for scanning near-field optical microscopy,” J. Microsc. 202, 2–6 (2001).
[Crossref]

Schokker, A. H.

A. H. Schokker and A. F. Koenderink, “Lasing at the band edges of plasmonic lattices,” Phys. Rev. B 90, 155452 (2014).
[Crossref]

Shakoor, A.

A. Huck, S. Kumar, A. Shakoor, and U. L. Andersen, “Controlled coupling of a single nitrogen-vacancy center to a silver nanowire,” Phys. Rev. Lett. 106, 096801 (2011).
[Crossref]

Shalaev, V. M.

X. Meng, J. Liu, A. V. Kildishev, and V. M. Shalaev, “Highly directional spaser array for the red wavelength region,” Laser Photon. Rev. 8, 896–903 (2014).
[Crossref]

Shapiro, B.

C. Ropp, Z. Cummins, S. Nah, J. T. Fourkas, B. Shapiro, and E. Waks, “Nanoscale probing of image-dipole interactions in a metallic nanostructure,” Nat. Commun. 6, 6558 (2015).
[Crossref]

Shappir, J.

Sliwa, M.

H. Lin, S. P. Centeno, L. Su, B. Kenens, S. Rocha, M. Sliwa, J. Hofkens, and H. Uji-i, “Mapping of surface-enhanced fluorescence on metal nanoparticles using super-resolution photoactivation localization microscopy,” Chem. Phys. Chem. 13, 973–981 (2012).

Smith, D.

R. Beams, D. Smith, T. W. Johnson, S.-H. Oh, L. Novotny, and A. N. Vamivakas, “Nanoscale fluorescence lifetime imaging of an optical antenna with a single diamond NV center,” Nano Lett. 13, 3807–3811 (2013).
[Crossref]

Sonnefraud, Y.

Sougrat, R.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313, 1642–1645 (2006).
[Crossref]

Sperling, R.

J. Stehr, J. Crewett, F. Schindler, R. Sperling, G. von Plessen, U. Lemmer, J. Lupton, T. Klar, J. Feldmann, A. Holleitner, M. Forster, and U. Scherf, “A low threshold polymer laser based on metallic nanoparticle gratings,” Adv. Mater. 15, 1726–1729 (2003).
[Crossref]

Steel, M. J.

F. A. Inam, T. Gaebel, C. Bradac, L. Stewart, M. J. Withford, J. R. Rabeau, and M. J. Steel, “Modification of spontaneous emission from nanodiamond colour centres on a structured surface,” New J. Phys. 13, 073012 (2011).
[Crossref]

Stefani, F. D.

T. H. Taminiau, F. D. Stefani, F. B. Degerink, and N. F. Van Hulst, “Optical antennas direct single-molecule emission,” Nat. Photonics 2, 234–237 (2008).
[Crossref]

Stehr, J.

J. Stehr, J. Crewett, F. Schindler, R. Sperling, G. von Plessen, U. Lemmer, J. Lupton, T. Klar, J. Feldmann, A. Holleitner, M. Forster, and U. Scherf, “A low threshold polymer laser based on metallic nanoparticle gratings,” Adv. Mater. 15, 1726–1729 (2003).
[Crossref]

Steinbusch, T. P.

S. R. K. Rodriguez, F. B. Arango, T. P. Steinbusch, M. A. Verschuuren, A. F. Koenderink, and J. Gómez Rivas, “Breaking the symmetry of forward-backward light emission with localized and collective magnetoelectric resonances in arrays of pyramid-shaped aluminum nanoparticles,” Phys. Rev. Lett. 113, 247401 (2014).
[Crossref]

Stewart, L.

F. A. Inam, T. Gaebel, C. Bradac, L. Stewart, M. J. Withford, J. R. Rabeau, and M. J. Steel, “Modification of spontaneous emission from nanodiamond colour centres on a structured surface,” New J. Phys. 13, 073012 (2011).
[Crossref]

Su, L.

H. Lin, S. P. Centeno, L. Su, B. Kenens, S. Rocha, M. Sliwa, J. Hofkens, and H. Uji-i, “Mapping of surface-enhanced fluorescence on metal nanoparticles using super-resolution photoactivation localization microscopy,” Chem. Phys. Chem. 13, 973–981 (2012).

Suh, J. Y.

W. Zhou, M. Dridi, J. Y. Suh, C. H. Kim, D. T. Co, M. R. Wasielewski, G. C. Schatz, and T. W. Odom, “Lasing action in strongly coupled plasmonic nanocavity arrays,” Nat. Nanotechnol. 8, 506–511 (2013).
[Crossref]

Sweatlock, L. A.

V. E. Ferry, L. A. Sweatlock, D. Pacifici, and H. A. Atwater, “Plasmonic nanostructure design for efficient light coupling into solar cells,” Nano Lett. 8, 4391–4397 (2008).
[Crossref]

Talbot, H. F.

H. F. Talbot, “LXXVI. Facts relating to optical science. No. IV,” Philos. Mag. Ser. 3 9, 401–407 (1836).

Taminiau, T. H.

A. G. Curto, G. Volpe, T. H. Taminiau, M. P. Kreuzer, R. Quidant, and N. F. van Hulst, “Unidirectional emission of a quantum dot coupled to a nanoantenna,” Science 329, 930–933 (2010).
[Crossref]

T. H. Taminiau, F. D. Stefani, F. B. Degerink, and N. F. Van Hulst, “Optical antennas direct single-molecule emission,” Nat. Photonics 2, 234–237 (2008).
[Crossref]

R. J. Moerland, T. H. Taminiau, L. Novotny, N. F. van Hulst, and L. Kuipers, “Reversible polarization control of single photon emission,” Nano Lett. 8, 606–610 (2008).
[Crossref]

Thompson, R. E.

R. E. Thompson, D. R. Larson, and W. W. Webb, “Precise nanometer localization analysis for individual fluorescent probes,” Biophys. J. 82, 2775–2783 (2002).
[Crossref]

Titus, E. J.

K. L. Blythe, E. J. Titus, and K. A. Willets, “Comparing the accuracy of reconstructed image size in super-resolution imaging of fluorophore-labeled gold nanorods using different fit models,” J. Phys. Chem. C 119, 19333–19343 (2015).
[Crossref]

Trügler, A.

D. M. Koller, U. Hohenester, A. Hohenau, H. Ditlbacher, F. Reil, N. Galler, F. R. Aussenegg, A. Leitner, A. Trügler, and J. R. Krenn, “Superresolution moiré mapping of particle plasmon modes,” Phys. Rev. Lett. 104, 143901 (2010).
[Crossref]

Uji-i, H.

H. Lin, S. P. Centeno, L. Su, B. Kenens, S. Rocha, M. Sliwa, J. Hofkens, and H. Uji-i, “Mapping of surface-enhanced fluorescence on metal nanoparticles using super-resolution photoactivation localization microscopy,” Chem. Phys. Chem. 13, 973–981 (2012).

Urzhumov, Y. A.

F. Le, D. W. Brandl, Y. A. Urzhumov, H. Wang, J. Kundu, N. J. Halas, J. Aizpurua, and P. Nordlander, “Metallic nanoparticle arrays: A common substrate for both surface-enhanced Raman scattering and surface-enhanced infrared absorption,” ACS Nano 2, 707–718 (2008).
[Crossref]

Vamivakas, A. N.

R. Beams, D. Smith, T. W. Johnson, S.-H. Oh, L. Novotny, and A. N. Vamivakas, “Nanoscale fluorescence lifetime imaging of an optical antenna with a single diamond NV center,” Nano Lett. 13, 3807–3811 (2013).
[Crossref]

van der Sar, T.

T. van der Sar, E. C. Heeres, G. M. Dmochowski, G. de Lange, L. Robledo, T. H. Oosterkamp, and R. Hanson, “Nanopositioning of a diamond nanocrystal containing a single nitrogen-vacancy defect center,” Appl. Phys. Lett. 94, 173104 (2009).
[Crossref]

van Hulst, N. F.

A. G. Curto, G. Volpe, T. H. Taminiau, M. P. Kreuzer, R. Quidant, and N. F. van Hulst, “Unidirectional emission of a quantum dot coupled to a nanoantenna,” Science 329, 930–933 (2010).
[Crossref]

J. P. Hoogenboom, G. Sanchez-Mosteiro, G. Colas des Francs, D. Heinis, G. Legay, A. Dereux, and N. F. van Hulst, “The single molecule probe: nanoscale vectorial mapping of photonic mode density in a metal nanocavity,” Nano Lett. 9, 1189–1195 (2009).
[Crossref]

T. H. Taminiau, F. D. Stefani, F. B. Degerink, and N. F. Van Hulst, “Optical antennas direct single-molecule emission,” Nat. Photonics 2, 234–237 (2008).
[Crossref]

R. J. Moerland, T. H. Taminiau, L. Novotny, N. F. van Hulst, and L. Kuipers, “Reversible polarization control of single photon emission,” Nano Lett. 8, 606–610 (2008).
[Crossref]

H. Gersen, M. F. García-Parajó, L. Novotny, J. A. Veerman, L. Kuipers, and N. F. van Hulst, “Influencing the angular emission of a single molecule,” Phys. Rev. Lett. 85, 5312–5315 (2000).
[Crossref]

J. A. Veerman, A. M. Otter, L. Kuipers, and N. F. van Hulst, “High definition aperture probes for near-field optical microscopy fabricated by focused ion beam milling,” Appl. Phys. Lett. 72, 3115 (1998).

Veerman, J. A.

H. Gersen, M. F. García-Parajó, L. Novotny, J. A. Veerman, L. Kuipers, and N. F. van Hulst, “Influencing the angular emission of a single molecule,” Phys. Rev. Lett. 85, 5312–5315 (2000).
[Crossref]

J. A. Veerman, A. M. Otter, L. Kuipers, and N. F. van Hulst, “High definition aperture probes for near-field optical microscopy fabricated by focused ion beam milling,” Appl. Phys. Lett. 72, 3115 (1998).

Verschuuren, M. A.

G. Lozano, G. Grzela, M. A. Verschuuren, M. Ramezani, and J. Gómez Rivas, “Tailor-made directional emission in nanoimprinted plasmonic-based light-emitting devices,” Nanoscale 6, 9223–9229 (2014).
[Crossref]

S. R. K. Rodriguez, F. B. Arango, T. P. Steinbusch, M. A. Verschuuren, A. F. Koenderink, and J. Gómez Rivas, “Breaking the symmetry of forward-backward light emission with localized and collective magnetoelectric resonances in arrays of pyramid-shaped aluminum nanoparticles,” Phys. Rev. Lett. 113, 247401 (2014).
[Crossref]

G. Lozano, D. J. Louwers, S. R. Rodríguez, S. Murai, O. T. Jansen, M. A. Verschuuren, and J. Gómez Rivas, “Plasmonics for solid-state lighting: enhanced excitation and directional emission of highly efficient light sources,” Light Sci. Appl. 2, e66 (2013).
[Crossref]

M. A. Verschuuren, “Substrate conformal imprint lithography for nanophotonics,” Ph.D. thesis (Utrecht University, 2010).

Vial, A.

L. Billot, M. L. de la Chapelle, A.-S. Grimault, A. Vial, D. Barchiesi, J.-L. Bijeon, P.-M. Adam, and P. Royer, “Surface enhanced Raman scattering on gold nanowire arrays: evidence of strong multipolar surface plasmon resonance enhancement,” Chem. Phys. Lett. 422, 303–307 (2006).
[Crossref]

Volpe, G.

A. G. Curto, G. Volpe, T. H. Taminiau, M. P. Kreuzer, R. Quidant, and N. F. van Hulst, “Unidirectional emission of a quantum dot coupled to a nanoantenna,” Science 329, 930–933 (2010).
[Crossref]

von Plessen, G.

J. Stehr, J. Crewett, F. Schindler, R. Sperling, G. von Plessen, U. Lemmer, J. Lupton, T. Klar, J. Feldmann, A. Holleitner, M. Forster, and U. Scherf, “A low threshold polymer laser based on metallic nanoparticle gratings,” Adv. Mater. 15, 1726–1729 (2003).
[Crossref]

Vos, W. L.

I. S. Nikolaev, W. L. Vos, and A. F. Koenderink, “Accurate calculation of the local density of optical states in inverse-opal photonic crystals,” J. Opt. Soc. Am. B 26, 987–997 (2009).
[Crossref]

W. L. Vos, A. F. Koenderink, and I. S. Nikolaev, “Orientation-dependent spontaneous emission rates of a two-level quantum emitter in any nanophotonic environment,” Phys. Rev. A 80, 053802 (2009).
[Crossref]

Waks, E.

C. Ropp, Z. Cummins, S. Nah, J. T. Fourkas, B. Shapiro, and E. Waks, “Nanoscale probing of image-dipole interactions in a metallic nanostructure,” Nat. Commun. 6, 6558 (2015).
[Crossref]

Wang, H.

F. Le, D. W. Brandl, Y. A. Urzhumov, H. Wang, J. Kundu, N. J. Halas, J. Aizpurua, and P. Nordlander, “Metallic nanoparticle arrays: A common substrate for both surface-enhanced Raman scattering and surface-enhanced infrared absorption,” ACS Nano 2, 707–718 (2008).
[Crossref]

Wang, W.

B. Huang, W. Wang, M. Bates, and X. Zhuang, “Three-dimensional super-resolution imaging by stochastic optical reconstruction microscopy,” Science 319, 810–813 (2008).
[Crossref]

Wasielewski, M. R.

W. Zhou, M. Dridi, J. Y. Suh, C. H. Kim, D. T. Co, M. R. Wasielewski, G. C. Schatz, and T. W. Odom, “Lasing action in strongly coupled plasmonic nanocavity arrays,” Nat. Nanotechnol. 8, 506–511 (2013).
[Crossref]

Webb, W. W.

R. E. Thompson, D. R. Larson, and W. W. Webb, “Precise nanometer localization analysis for individual fluorescent probes,” Biophys. J. 82, 2775–2783 (2002).
[Crossref]

Weber, M.

P. Kühler, M. Weber, and T. Lohmüller, “Plasmonic nanoantenna arrays for surface-enhanced Raman spectroscopy of lipid molecules embedded in a bilayer membrane,” ACS Appl. Mater. Interfaces 6, 8947–8952 (2014).
[Crossref]

Wei, L.

L. Wei, C. Liu, B. Chen, P. Zhou, H. Li, L. Xiao, and E. S. Yeung, “Probing single-molecule fluorescence spectral modulation within individual hotspots with subdiffraction-limit image resolution,” Anal. Chem. 85, 3789–3793 (2013).
[Crossref]

Wertz, E.

E. Wertz, B. P. Isaacoff, J. D. Flynn, and J. S. Biteen, “Single-molecule super-resolution microscopy reveals how light couples to a plasmonic nanoantenna on the nanometer scale,” Nano Lett. 15, 2662–2670 (2015).
[Crossref]

White, J.

R. A. Pala, J. White, E. Barnard, J. Liu, and M. L. Brongersma, “Design of plasmonic thin-film solar cells with broadband absorption enhancements,” Adv. Mater. 21, 3504–3509 (2009).
[Crossref]

Wilde, Y. D.

V. Krachmalnicoff, D. Cao, A. Cazé, E. Castanié, R. Pierrat, N. Bardou, S. Collin, R. Carminati, and Y. D. Wilde, “Towards a full characterization of a plasmonic nanostructure with a fluorescent near-field probe,” Opt. Express 21, 11536–11545 (2013).
[Crossref]

L. Aigouy, Y. D. Wilde, and M. Mortier, “Local optical imaging of nanoholes using a single fluorescent rare-earth-doped glass particle as a probe,” Appl. Phys. Lett. 83, 147–149 (2003).
[Crossref]

Willets, K. A.

K. L. Blythe, E. J. Titus, and K. A. Willets, “Comparing the accuracy of reconstructed image size in super-resolution imaging of fluorophore-labeled gold nanorods using different fit models,” J. Phys. Chem. C 119, 19333–19343 (2015).
[Crossref]

Withford, M. J.

F. A. Inam, T. Gaebel, C. Bradac, L. Stewart, M. J. Withford, J. R. Rabeau, and M. J. Steel, “Modification of spontaneous emission from nanodiamond colour centres on a structured surface,” New J. Phys. 13, 073012 (2011).
[Crossref]

Xiao, L.

L. Wei, C. Liu, B. Chen, P. Zhou, H. Li, L. Xiao, and E. S. Yeung, “Probing single-molecule fluorescence spectral modulation within individual hotspots with subdiffraction-limit image resolution,” Anal. Chem. 85, 3789–3793 (2013).
[Crossref]

Yanai, A.

Yeung, E. S.

L. Wei, C. Liu, B. Chen, P. Zhou, H. Li, L. Xiao, and E. S. Yeung, “Probing single-molecule fluorescence spectral modulation within individual hotspots with subdiffraction-limit image resolution,” Anal. Chem. 85, 3789–3793 (2013).
[Crossref]

Yin, X.

H. Cang, A. Labno, C. Lu, X. Yin, M. Liu, C. Gladden, Y. Liu, and X. Zhang, “Probing the electromagnetic field of a 15-nanometre hotspot by single molecule imaging,” Nature 469, 385–388 (2011).
[Crossref]

Zavislan, J. M.

Zaytsev, K. A.

Y. V. Miklyaev, S. A. Asselborn, K. A. Zaytsev, and M. Y. Darscht, “Superresolution microscopy in far-field by near-field optical random mapping nanoscopy,” Appl. Phys. Lett. 105, 113103 (2014).
[Crossref]

Zhang, X.

H. Cang, A. Labno, C. Lu, X. Yin, M. Liu, C. Gladden, Y. Liu, and X. Zhang, “Probing the electromagnetic field of a 15-nanometre hotspot by single molecule imaging,” Nature 469, 385–388 (2011).
[Crossref]

Zhang, Y.

P. Offermans, M. C. Schaafsma, S. R. K. Rodríguez, Y. Zhang, M. Crego-Calama, S. H. Brongersma, and J. Gómez Rivas, “Universal scaling of the figure of merit of plasmonic sensors,” ACS Nano 5, 5151–5157 (2011).
[Crossref]

Zhou, P.

L. Wei, C. Liu, B. Chen, P. Zhou, H. Li, L. Xiao, and E. S. Yeung, “Probing single-molecule fluorescence spectral modulation within individual hotspots with subdiffraction-limit image resolution,” Anal. Chem. 85, 3789–3793 (2013).
[Crossref]

Zhou, W.

W. Zhou, M. Dridi, J. Y. Suh, C. H. Kim, D. T. Co, M. R. Wasielewski, G. C. Schatz, and T. W. Odom, “Lasing action in strongly coupled plasmonic nanocavity arrays,” Nat. Nanotechnol. 8, 506–511 (2013).
[Crossref]

Zhuang, X.

B. Huang, W. Wang, M. Bates, and X. Zhuang, “Three-dimensional super-resolution imaging by stochastic optical reconstruction microscopy,” Science 319, 810–813 (2008).
[Crossref]

M. J. Rust, M. Bates, and X. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM),” Nat. Methods 3, 793–796 (2006).
[Crossref]

ACS Appl. Mater. Interfaces (1)

P. Kühler, M. Weber, and T. Lohmüller, “Plasmonic nanoantenna arrays for surface-enhanced Raman spectroscopy of lipid molecules embedded in a bilayer membrane,” ACS Appl. Mater. Interfaces 6, 8947–8952 (2014).
[Crossref]

ACS Nano (2)

F. Le, D. W. Brandl, Y. A. Urzhumov, H. Wang, J. Kundu, N. J. Halas, J. Aizpurua, and P. Nordlander, “Metallic nanoparticle arrays: A common substrate for both surface-enhanced Raman scattering and surface-enhanced infrared absorption,” ACS Nano 2, 707–718 (2008).
[Crossref]

P. Offermans, M. C. Schaafsma, S. R. K. Rodríguez, Y. Zhang, M. Crego-Calama, S. H. Brongersma, and J. Gómez Rivas, “Universal scaling of the figure of merit of plasmonic sensors,” ACS Nano 5, 5151–5157 (2011).
[Crossref]

Adv. Mater. (2)

J. Stehr, J. Crewett, F. Schindler, R. Sperling, G. von Plessen, U. Lemmer, J. Lupton, T. Klar, J. Feldmann, A. Holleitner, M. Forster, and U. Scherf, “A low threshold polymer laser based on metallic nanoparticle gratings,” Adv. Mater. 15, 1726–1729 (2003).
[Crossref]

R. A. Pala, J. White, E. Barnard, J. Liu, and M. L. Brongersma, “Design of plasmonic thin-film solar cells with broadband absorption enhancements,” Adv. Mater. 21, 3504–3509 (2009).
[Crossref]

Adv. Opt. Photon. (1)

Anal. Chem. (1)

L. Wei, C. Liu, B. Chen, P. Zhou, H. Li, L. Xiao, and E. S. Yeung, “Probing single-molecule fluorescence spectral modulation within individual hotspots with subdiffraction-limit image resolution,” Anal. Chem. 85, 3789–3793 (2013).
[Crossref]

Appl. Phys. Lett. (6)

T. van der Sar, E. C. Heeres, G. M. Dmochowski, G. de Lange, L. Robledo, T. H. Oosterkamp, and R. Hanson, “Nanopositioning of a diamond nanocrystal containing a single nitrogen-vacancy defect center,” Appl. Phys. Lett. 94, 173104 (2009).
[Crossref]

Y. V. Miklyaev, S. A. Asselborn, K. A. Zaytsev, and M. Y. Darscht, “Superresolution microscopy in far-field by near-field optical random mapping nanoscopy,” Appl. Phys. Lett. 105, 113103 (2014).
[Crossref]

S. Mokkapati, F. J. Beck, A. Polman, and K. R. Catchpole, “Designing periodic arrays of metal nanoparticles for light-trapping applications in solar cells,” Appl. Phys. Lett. 95, 053115 (2009).
[Crossref]

D. W. Pohl, W. Denk, and M. Lanz, “Optical stethoscopy: image recording with resolution λ/20,” Appl. Phys. Lett. 44, 651 (1984).

L. Aigouy, Y. D. Wilde, and M. Mortier, “Local optical imaging of nanoholes using a single fluorescent rare-earth-doped glass particle as a probe,” Appl. Phys. Lett. 83, 147–149 (2003).
[Crossref]

J. A. Veerman, A. M. Otter, L. Kuipers, and N. F. van Hulst, “High definition aperture probes for near-field optical microscopy fabricated by focused ion beam milling,” Appl. Phys. Lett. 72, 3115 (1998).

Biophys. J. (2)

R. E. Thompson, D. R. Larson, and W. W. Webb, “Precise nanometer localization analysis for individual fluorescent probes,” Biophys. J. 82, 2775–2783 (2002).
[Crossref]

S. T. Hess, T. P. Girirajan, and M. D. Mason, “Ultra-high resolution imaging by fluorescence photoactivation localization microscopy,” Biophys. J. 91, 4258–4272 (2006).
[Crossref]

Chem. Phys. Chem. (1)

H. Lin, S. P. Centeno, L. Su, B. Kenens, S. Rocha, M. Sliwa, J. Hofkens, and H. Uji-i, “Mapping of surface-enhanced fluorescence on metal nanoparticles using super-resolution photoactivation localization microscopy,” Chem. Phys. Chem. 13, 973–981 (2012).

Chem. Phys. Lett. (1)

L. Billot, M. L. de la Chapelle, A.-S. Grimault, A. Vial, D. Barchiesi, J.-L. Bijeon, P.-M. Adam, and P. Royer, “Surface enhanced Raman scattering on gold nanowire arrays: evidence of strong multipolar surface plasmon resonance enhancement,” Chem. Phys. Lett. 422, 303–307 (2006).
[Crossref]

J. Microsc. (1)

S. Kühn, C. Hettich, C. Schmitt, J.-P. Poizat, and V. Sandoghdar, “Diamond colour centres as a nanoscopic light source for scanning near-field optical microscopy,” J. Microsc. 202, 2–6 (2001).
[Crossref]

J. Opt. Soc. Am. B (2)

J. Phys. Chem. C (2)

A. Kwadrin and A. F. Koenderink, “Gray-tone lithography implementation of Drexhage’s method for calibrating radiative and nonradiative decay constants of fluorophores,” J. Phys. Chem. C 116, 16666–16673 (2012).
[Crossref]

K. L. Blythe, E. J. Titus, and K. A. Willets, “Comparing the accuracy of reconstructed image size in super-resolution imaging of fluorophore-labeled gold nanorods using different fit models,” J. Phys. Chem. C 119, 19333–19343 (2015).
[Crossref]

Laser Photon. Rev. (1)

X. Meng, J. Liu, A. V. Kildishev, and V. M. Shalaev, “Highly directional spaser array for the red wavelength region,” Laser Photon. Rev. 8, 896–903 (2014).
[Crossref]

Light Sci. Appl. (1)

G. Lozano, D. J. Louwers, S. R. Rodríguez, S. Murai, O. T. Jansen, M. A. Verschuuren, and J. Gómez Rivas, “Plasmonics for solid-state lighting: enhanced excitation and directional emission of highly efficient light sources,” Light Sci. Appl. 2, e66 (2013).
[Crossref]

Nano Lett. (8)

R. J. Moerland, T. H. Taminiau, L. Novotny, N. F. van Hulst, and L. Kuipers, “Reversible polarization control of single photon emission,” Nano Lett. 8, 606–610 (2008).
[Crossref]

S. Schietinger, M. Barth, T. Aichele, and O. Benson, “Plasmon-enhanced single photon emission from a nanoassembled metal-diamond hybrid structure at room temperature,” Nano Lett. 9, 1694–1698 (2009).
[Crossref]

R. Beams, D. Smith, T. W. Johnson, S.-H. Oh, L. Novotny, and A. N. Vamivakas, “Nanoscale fluorescence lifetime imaging of an optical antenna with a single diamond NV center,” Nano Lett. 13, 3807–3811 (2013).
[Crossref]

V. E. Ferry, L. A. Sweatlock, D. Pacifici, and H. A. Atwater, “Plasmonic nanostructure design for efficient light coupling into solar cells,” Nano Lett. 8, 4391–4397 (2008).
[Crossref]

E. Wertz, B. P. Isaacoff, J. D. Flynn, and J. S. Biteen, “Single-molecule super-resolution microscopy reveals how light couples to a plasmonic nanoantenna on the nanometer scale,” Nano Lett. 15, 2662–2670 (2015).
[Crossref]

S. Kumar, A. Huck, and U. L. Andersen, “Efficient coupling of a single diamond color center to propagating plasmonic gap modes,” Nano Lett. 13, 1221–1225 (2013).
[Crossref]

J. P. Hoogenboom, G. Sanchez-Mosteiro, G. Colas des Francs, D. Heinis, G. Legay, A. Dereux, and N. F. van Hulst, “The single molecule probe: nanoscale vectorial mapping of photonic mode density in a metal nanocavity,” Nano Lett. 9, 1189–1195 (2009).
[Crossref]

A. Cuche, O. Mollet, A. Drezet, and S. Huant, “Deterministic quantum plasmonics,” Nano Lett. 10, 4566–4570 (2010).
[Crossref]

Nanoscale (1)

G. Lozano, G. Grzela, M. A. Verschuuren, M. Ramezani, and J. Gómez Rivas, “Tailor-made directional emission in nanoimprinted plasmonic-based light-emitting devices,” Nanoscale 6, 9223–9229 (2014).
[Crossref]

Nat. Commun. (1)

C. Ropp, Z. Cummins, S. Nah, J. T. Fourkas, B. Shapiro, and E. Waks, “Nanoscale probing of image-dipole interactions in a metallic nanostructure,” Nat. Commun. 6, 6558 (2015).
[Crossref]

Nat. Methods (1)

M. J. Rust, M. Bates, and X. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM),” Nat. Methods 3, 793–796 (2006).
[Crossref]

Nat. Nanotechnol. (1)

W. Zhou, M. Dridi, J. Y. Suh, C. H. Kim, D. T. Co, M. R. Wasielewski, G. C. Schatz, and T. W. Odom, “Lasing action in strongly coupled plasmonic nanocavity arrays,” Nat. Nanotechnol. 8, 506–511 (2013).
[Crossref]

Nat. Photonics (1)

T. H. Taminiau, F. D. Stefani, F. B. Degerink, and N. F. Van Hulst, “Optical antennas direct single-molecule emission,” Nat. Photonics 2, 234–237 (2008).
[Crossref]

Nature (2)

H. Cang, A. Labno, C. Lu, X. Yin, M. Liu, C. Gladden, Y. Liu, and X. Zhang, “Probing the electromagnetic field of a 15-nanometre hotspot by single molecule imaging,” Nature 469, 385–388 (2011).
[Crossref]

J. Michaelis, C. Hettich, J. Mlynek, and V. Sandoghdar, “Optical microscopy using a single-molecule light source,” Nature 405, 325–328 (2000).
[Crossref]

New J. Phys. (2)

F. A. Inam, T. Gaebel, C. Bradac, L. Stewart, M. J. Withford, J. R. Rabeau, and M. J. Steel, “Modification of spontaneous emission from nanodiamond colour centres on a structured surface,” New J. Phys. 13, 073012 (2011).
[Crossref]

A. Mohtashami and A. F. Koenderink, “Suitability of nanodiamond nitrogen-vacancy centers for spontaneous emission control experiments,” New J. Phys. 15, 043017 (2013).
[Crossref]

Opt. Express (3)

Opt. Lett. (2)

Philos. Mag. Ser. 3 (1)

H. F. Talbot, “LXXVI. Facts relating to optical science. No. IV,” Philos. Mag. Ser. 3 9, 401–407 (1836).

Phys. Rev. (1)

R. H. Ritchie, “Plasma losses by fast electrons in thin films,” Phys. Rev. 106, 874–881 (1957).
[Crossref]

Phys. Rev. A (1)

W. L. Vos, A. F. Koenderink, and I. S. Nikolaev, “Orientation-dependent spontaneous emission rates of a two-level quantum emitter in any nanophotonic environment,” Phys. Rev. A 80, 053802 (2009).
[Crossref]

Phys. Rev. B (4)

N. Félidj, J. Aubard, G. Lévi, J. R. Krenn, M. Salerno, G. Schider, B. Lamprecht, A. Leitner, and F. R. Aussenegg, “Controlling the optical response of regular arrays of gold particles for surface-enhanced Raman scattering,” Phys. Rev. B 65, 075419 (2002).
[Crossref]

H. Mertens, A. F. Koenderink, and A. Polman, “Plasmon-enhanced luminescence near noble-metal nanospheres: comparison of exact theory and an improved Gersten and Nitzan model,” Phys. Rev. B 76, 115123 (2007).
[Crossref]

A. H. Schokker and A. F. Koenderink, “Lasing at the band edges of plasmonic lattices,” Phys. Rev. B 90, 155452 (2014).
[Crossref]

K. Joulain, R. Carminati, J.-P. Mulet, and J.-J. Greffet, “Definition and measurement of the local density of electromagnetic states close to an interface,” Phys. Rev. B 68, 245405 (2003).
[Crossref]

Phys. Rev. Lett. (8)

D. M. Koller, U. Hohenester, A. Hohenau, H. Ditlbacher, F. Reil, N. Galler, F. R. Aussenegg, A. Leitner, A. Trügler, and J. R. Krenn, “Superresolution moiré mapping of particle plasmon modes,” Phys. Rev. Lett. 104, 143901 (2010).
[Crossref]

A. Huck, S. Kumar, A. Shakoor, and U. L. Andersen, “Controlled coupling of a single nitrogen-vacancy center to a silver nanowire,” Phys. Rev. Lett. 106, 096801 (2011).
[Crossref]

P. Anger, P. Bharadwaj, and L. Novotny, “Enhancement and quenching of single-molecule fluorescence,” Phys. Rev. Lett. 96, 113002 (2006).
[Crossref]

S. Kühn, U. Håkanson, L. Rogobete, and V. Sandoghdar, “Enhancement of single-molecule fluorescence using a gold nanoparticle as an optical nanoantenna,” Phys. Rev. Lett. 97, 017402 (2006).
[Crossref]

H. Gersen, M. F. García-Parajó, L. Novotny, J. A. Veerman, L. Kuipers, and N. F. van Hulst, “Influencing the angular emission of a single molecule,” Phys. Rev. Lett. 85, 5312–5315 (2000).
[Crossref]

S. R. K. Rodriguez, F. B. Arango, T. P. Steinbusch, M. A. Verschuuren, A. F. Koenderink, and J. Gómez Rivas, “Breaking the symmetry of forward-backward light emission with localized and collective magnetoelectric resonances in arrays of pyramid-shaped aluminum nanoparticles,” Phys. Rev. Lett. 113, 247401 (2014).
[Crossref]

V. Krachmalnicoff, E. Castanié, Y. De Wilde, and R. Carminati, “Fluctuations of the local density of states probe localized surface plasmons on disordered metal films,” Phys. Rev. Lett. 105, 183901 (2010).
[Crossref]

M. Frimmer, Y. Chen, and A. F. Koenderink, “Scanning emitter lifetime imaging microscopy for spontaneous emission control,” Phys. Rev. Lett. 107, 123602 (2011).
[Crossref]

Sci. Rep. (1)

C. I. Osorio, A. Mohtashami, and A. F. Koenderink, “K-space polarimetry of bullseye plasmon antennas,” Sci. Rep. 5, 9966 (2015).
[Crossref]

Science (5)

B. Huang, W. Wang, M. Bates, and X. Zhuang, “Three-dimensional super-resolution imaging by stochastic optical reconstruction microscopy,” Science 319, 810–813 (2008).
[Crossref]

W. P. Ambrose, P. M. Goodwin, R. A. Keller, and J. C. Martin, “Alterations of single molecule fluorescence lifetimes in near-field optical microscopy,” Science 265, 364–367 (1994).
[Crossref]

A. G. Curto, G. Volpe, T. H. Taminiau, M. P. Kreuzer, R. Quidant, and N. F. van Hulst, “Unidirectional emission of a quantum dot coupled to a nanoantenna,” Science 329, 930–933 (2010).
[Crossref]

P. Mühlschlegel, H.-J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science 308, 1607–1609 (2005).
[Crossref]

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313, 1642–1645 (2006).
[Crossref]

Other (3)

M. A. Verschuuren, “Substrate conformal imprint lithography for nanophotonics,” Ph.D. thesis (Utrecht University, 2010).

L. Novotny and B. Hecht, Principles of Nano-Optics (Cambridge University, 2012).

“FDTD solutions,” Lumerical, https://www.lumerical.com/tcad-products/fdtd/ .

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

(a) Schematic of the superresolution method applied on a hexagonal array of nanoantennas. Nanoprobes randomly deposited on the sample are measured with their positions determined as the centroids of their fluorescence images. The measurement results are translated into one primitive cell of the sample to construct a map. (b) Histograms showing distribution of probes obtained from Monte Carlo experiments. ngrid is the average number of grid points that have nprobe nanoprobes falling into each of the averaging area (ΔA) with the total number of probes (Nprobe) indicated in the legend.

Fig. 2.
Fig. 2.

(a) SEM image of the nanoantenna array. (b) Schematic of the setup.

Fig. 3.
Fig. 3.

(a) Measured images of (left) fluorescence and (right) reflection from the same area of the sample. (b) Measured (top left) fluorescence image from the nanoprobe marked with a red circle in (a) and (bottom left) reflection image from vicinity nanoantennas compared to (right) their fits. (c) The scan image corresponding to (a). (d) Measured decay histogram of the nanoprobe marked by the red circles in (a) and (c) and the single exponential fit to it.

Fig. 4.
Fig. 4.

Measured fluorescence lifetime from 1044 nanoprobes as a function of probe position. Black lines indicate the boundary of the primitive cell and estimated edges of the nanoantenna.

Fig. 5.
Fig. 5.

Constructed map of (a) and (c) fluorescence lifetime and (b) and (d) LDOS. (a) and (b) Pitch=550  nm. (c) and (d) Pitch=450  nm.

Fig. 6.
Fig. 6.

Histograms plotting the number of grid cells ngrid (vertical axis) in the measured spatial map with exactly nprobe (horizontal axis) nanoprobes in their averaging areas. Plotted over the histograms from experiment (gray bars) are the results from Monte Carlo experiments (connected dots). (a) Pitch=550  nm. (b) Pitch=450  nm.

Fig. 7.
Fig. 7.

(a) Schematic of the NSOM head. Measured maps of (b) topography, (c) fluorescence intensity, (d) lifetime, and (e) LDOS enhancement calculated from the measured lifetime. (f) A fraction of (e) representing the LDOS enhancement in a quarter of a primitive cell of the array.

Fig. 8.
Fig. 8.

(a) Simulated map of LDOS enhancement of a hexagonal array with a pitch of 550 nm. Corresponding measurement result is shown in Fig. 5(b). (b) Comparison of simulated LDOS enhancements of an array and a dimer.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

P(M;Nprobe)=1i=0M1(iNprobe)(ΔAAmap)i(1ΔAAmap)Nprobei.
ηLDOS(r)=(1τ(r)γnon0)·1γr0=(1τ(r)(1QY0)1τ0)·τ0QY0,
ηLDOSp(p,r)=P(p,r)P0(p),

Metrics