Abstract

Integrated optics has brought unprecedented levels of stability and performance to quantum photonic circuits. However, integrated devices are not merely micron-scale equivalents of their bulk-optics counterparts. By exploiting the inherently dispersive characteristics of the integrated setting, such devices can play a remarkably more versatile role in quantum circuit architectures. We show this by examining the implications of linear dispersion in an ordinary directional coupler. Dispersion unlocks several novel capabilities for this device, including in situ control over photon spectral and polarization entanglement, tunable photon time ordering, and entanglement-sensitive two-photon coincidence generation. Also revealed is an ability to maintain perfect two-photon anti-coalescence while tuning the interference visibility, which has no equivalent in bulk optics. The outcome of this work adds to a suite of state engineering and characterization tools that benefit from the advantages of integration. It also paves the way for reevaluating the possibilities offered by dispersion in other on-chip devices.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Phase-controlled integrated photonic quantum circuits

Brian J. Smith, Dmytro Kundys, Nicholas Thomas-Peter, P. G. R. Smith, and I. A. Walmsley
Opt. Express 17(16) 13516-13525 (2009)

Observation of quantum interference between a single-photon state and a thermal state generated in optical fibers

Xiaoying Li, Lei Yang, Liang Cui, Zhe Yu Ou, and Daoyin Yu
Opt. Express 16(17) 12505-12510 (2008)

Two-photon quantum state engineering in nonlinear photonic nanowires

Dongpeng Kang, Arthur Pang, Yuxiang Zhao, and Amr S. Helmy
J. Opt. Soc. Am. B 31(7) 1581-1589 (2014)

References

  • View by:
  • |
  • |
  • |

  1. H.-K. Lo, M. Curty, and B. Qi, “Measurement-device-independent quantum key distribution,” Phys. Rev. Lett. 108, 130503 (2012).
    [Crossref]
  2. X. song Ma, B. Dakic, W. Naylor, A. Zeilinger, and P. Walther, “Quantum simulation of the wavefunction to probe frustrated heisenberg spin systems,” Nature Phys. 7, 399–405 (2011).
    [Crossref]
  3. G. B. Lemos, V. Borish, G. D. Cole, S. Ramelow, R. Lapkiewicz, and A. Zeilinger, “Quantum imaging with undetected photons,” Nature 512, 409–412 (2014).
    [Crossref]
  4. F. Schlawin, K. E. Dorfman, B. P. Fingerhut, and S. Mukamel, “Suppression of population transport and control of exciton distributions by entangled photons,” Nat. Commun. 4, 1782 (2013).
    [Crossref]
  5. I. J. Luxmoore, R. Toro, O. D. Pozo-Zamudio, N. A. Wasley, E. A. Chekhovich, A. M. Sanchez, R. Beanland, A. M. Fox, M. S. Skolnick, H. Y. Liu, and A. I. Tartakovskii, “III-V quantum light source and cavity-qed on silicon,” Sci. Rep. 3, 1239 (2013).
    [Crossref]
  6. M. Davanço, J. R. Ong, A. B. Shehata, A. Tosi, I. Agha, S. Assefa, F. Xia, W. M. J. Green, S. Mookherjea, and K. Srinivasan, “Telecommunications-band heralded single photons from a silicon nanophotonic chip,” Appl. Phys. Lett. 100, 261104 (2012).
    [Crossref]
  7. N. Matsuda, H. L. Jeannic, H. Fukuda, T. Tsuchizawa, W. J. Munro, K. Shimizu, K. Yamada, Y. Tokura, and H. Takesue, “A monolithically integrated polarization entangled photon pair source on a silicon chip,” Sci. Rep. 2, 817 (2012).
  8. R. T. Horn, P. Kolenderski, D. Kang, P. Abolghasem, C. Scarcella, A. D. Frera, A. Tosi, L. G. Helt, S. V. Zhukovsky, J. E. Sipe, G. Weihs, A. S. Helmy, and T. Jennewein, “Inherent polarization entanglement generated from a monolithic semiconductor chip,” Sci. Rep. 3, 2314 (2013).
    [Crossref]
  9. J. C. F. Matthews, A. Politi, A. Stefanov, and J. L. O’Brien, “Manipulation of multiphoton entanglement in waveguide quantum circuits,” Nat. Photonics 3, 346–350 (2009).
    [Crossref]
  10. P. J. Shadbolt, M. R. Verde, A. Peruzzo, A. Politi, A. Laing, M. Lobino, J. C. F. Matthews, M. G. Thompson, and J. L. O’Brien, “Generating, manipulating and measuring entanglement and mixture with a reconfigurable photonic circuit,” Nat. Photonics 6, 45–49 (2012).
    [Crossref]
  11. J. Wang, A. Santamato, P. Jiang, D. Bonneau, E. Engin, J. W. Silverstone, M. Lermer, J. Beetz, M. Kamp, S. Höfling, M. G. Tanner, C. M. Natarajan, R. H. Hadfield, S. N. Dorenbos, V. Zwiller, J. L. O’Brien, and M. G. Thompson, “Gallium arsenide (GaAs) quantum photonic waveguide circuits,” Opt. Commun. 327, 49–55 (2014).
    [Crossref]
  12. J. W. Silverstone, D. Bonneau, K. Ohira, N. Suzuki, H. Yoshida, N. Iizuka, M. Ezaki, C. M. Natarajan, M. G. Tanner, R. H. Hadfield, V. Zwiller, G. D. Marshall, J. G. Rarity, J. L. O’Brien, and M. G. Thompson, “On-chip quantum interference between silicon photon-pair sources,” Nat. Photonics 8, 104–108 (2014).
    [Crossref]
  13. W. H. P. Pernice, C. Schuck, O. Minaeva, M. Li, G. Goltsman, A. Sergienko, and H. Tang, “High-speed and high-efficiency travelling wave single-photon detectors embedded in nanophotonic circuits,” Nat. Commun. 3, 1325 (2012).
    [Crossref]
  14. G. Reithmaier, S. Lichtmannecker, T. Reichert, P. Hasch, K. Müller, M. Bichler, R. Gross, and J. J. Finley, “On-chip time resolved detection of quantum dot emission using integrated superconducting single photon detectors,” Sci. Rep. 3, 1901 (2013).
    [Crossref]
  15. R. Horodecki, P. Horodecki, M. Horodecki, and K. Horodecki, “Quantum entanglement,” Rev. Mod. Phys. 81, 865–942 (2009).
    [Crossref]
  16. P. Abolghasem, M. Hendrych, X. Shi, J. P. Torres, and A. S. Helmy, “Bandwidth control of paired photons generated in monolithic Bragg reflection waveguides,” Opt. Lett. 34, 2000 (2009).
    [Crossref]
  17. A. Eckstein, A. Christ, P. J. Mosley, and C. Silberhorn, “Highly efficient single-pass source of pulsed single-mode twin beams of light,” Phys. Rev. Lett. 106, 013603 (2011).
    [Crossref]
  18. D. Kang, A. Pang, Y. Zhao, and A. S. Helmy, “Two-photon quantum state engineering in nonlinear photonic nanowires,” J. Opt. Soc. Am. B 31, 1581–1589 (2014).
    [Crossref]
  19. A. Yariv, “Coupled-mode theory for guided-wave optics,” IEEE J. Quantum Electron. 9, 919–933 (1973).
    [Crossref]
  20. H. F. Taylor and A. Yariv, “Guided wave optics,” Proc. IEEE 62, 1044–1060 (1974).
    [Crossref]
  21. S. Parker, S. Bose, and M. B. Plenio, “Entanglement quantification and purification in continuous-variable systems,” Phys. Rev. A 61, 032305 (2000).
    [Crossref]
  22. T. S. Humble and W. P. Grice, “Effects of spectral entanglement in polarization-entanglement swapping and type-I fusion gates,” Phys. Rev. A 77, 022312 (2008).
    [Crossref]
  23. Z. Yang, M. Liscidini, and J. E. Sipe, “Spontaneous parametric down-conversion in waveguides: A backward Heisenberg picture approach,” Phys. Rev. A 77, 033808 (2008).
    [Crossref]
  24. T. H. Wood, “Multiple quantum well (MQW) waveguide modulators,” J. Lightwave Technol. 6, 743–757 (1988).
    [Crossref]
  25. A. Stöhr, O. Humbach, S. Zumkley, G. Wingen, G. David, D. Jäger, B. Bollig, E. C. Larkins, and J. D. Ralston, “InGaAs/GaAs multiple-quantum-well modulators and switches,” Opt. Quantum Electron. 25, S865–S883 (1993).
  26. M. J. F. Digonnet and H. J. Shaw, “Analysis of a tunable single mode optical fiber coupler,” IEEE J. Quantum Electron. 18, 746–754 (1982).
    [Crossref]
  27. S. Hill and W. K. Wootters, “Entanglement of a pair of quantum bits,” Phys. Rev. Lett. 78, 5022–5025 (1997).
    [Crossref]
  28. W. K. Wootters, “Entanglement of formation of an arbitrary state of two qubits,” Phys. Rev. Lett. 80, 2245–2248 (1998).
    [Crossref]
  29. B. G. Christensen, K. T. McCusker, J. B. Altepeter, B. Calkins, T. Gerrits, A. E. Lita, A. Miller, L. K. Shalm, Y. Zhang, S. Nam, N. Brunner, C. C. Lim, N. Gisin, and P. G. Kwiat, “Detection-loophole-free test of quantum nonlocality, and applications,” Phys. Rev. Lett. 111, 130406 (2013).
    [Crossref]
  30. F. Schlawin and S. Mukamel, “Two-photon spectroscopy of excitons with entangled photons,” J. Chem. Phys. 139, 244110 (2013).
    [Crossref]
  31. A. Muthukrishnan, G. S. Agarwal, and M. O. Scully, “Inducing disallowed two-atom transitions with temporally entangled photons,” Phys. Rev. Lett. 93, 093002 (2004).
    [Crossref]
  32. F. Schlawin and S. Mukamel, “Matter correlations induced by coupling to quantum light,” Phys. Rev. A 89, 013830 (2014).
    [Crossref]
  33. C. K. Hong, Z. Y. Ou, and L. Mandel, “Measurement of subpicosecond time intervals between two photons by interference,” Phys. Rev. Lett. 59, 2044–2046 (1987).
    [Crossref]
  34. T. B. Pittman, D. V. Strekalov, A. Migdall, M. H. Rubin, A. V. Sergienko, and Y. H. Shih, “Can two-photon interference be considered the interference of two photons?” Phys. Rev. Lett. 77, 1917–1920 (1996).
    [Crossref]
  35. D. V. Strekalov, T. B. Pittman, and Y. H. Shih, “What we can learn about single photons in a two-photon interference experiment,” Phys. Rev. A 57, 567–570 (1998).
    [Crossref]
  36. J. Chen, K. F. Lee, and P. Kumar, “Deterministic quantum splitter based on time-reversed Hong-Ou-Mandel interference,” Phys. Rev. A 76, 031804 (2007).
    [Crossref]
  37. H. Jin, F. Liu, P. Xu, J. Xia, M. Zhong, Y. Yuan, J. Zhou, Y. Gong, W. Wang, and S. Zhu, “On-chip generation and manipulation of entangled photons based on reconfigurable lithium-niobate waveguide circuits,” Phys. Rev. Lett. 113, 103601 (2014).
    [Crossref]
  38. M. Avenhaus, A. Eckstein, P. J. Mosley, and C. Silberhorn, “Fiber-assisted single-photon spectrograph,” Opt. Lett. 34, 2873–2875 (2009).
    [Crossref]
  39. R. Kumar, J. R. Ong, M. Savanier, and S. Mookherjea, “Controlling the spectrum of photons generated on a silicon nanophotonic chip,” Nat. Commun. 5, 5489 (2014).
    [Crossref]
  40. R.-B. Jin, R. Shimizu, K. Wakui, H. Benichi, and M. Sasaki, “Widely tunable single photon source with high purity at telecom wavelength,” Opt. Express 21, 10659–10666 (2013).
    [Crossref]
  41. X. Shi, A. Valencia, M. Hendrych, and J. P. Torres, “Generation of indistinguishable and pure heralded single photons with tunable bandwidth,” Opt. Lett. 33, 875–877 (2008).
    [Crossref]
  42. A. Laing, A. Peruzzo, A. Politi, M. R. Verde, M. Halder, T. C. Ralph, M. G. Thompson, and J. L. O’Brien, “High-fidelity operation of quantum photonic circuits,” Appl. Phys. Lett. 97, 211109 (2010).
    [Crossref]
  43. A. Takagi, K. Jinguji, and M. Kawachi, “Wavelength characteristics of (2x2) optical channel-type directional couplers with symmetric or nonsymmetric coupling structures,” J. Lightwave Technol. 10, 735–746 (1992).
    [Crossref]
  44. G. S. Agarwal and S. D. Gupta, “Filtering of two-photon quantum correlations by optical cavities: Cancellation of dispersive effects,” Phys. Rev. A 49, 3954–3957 (1994).
    [Crossref]
  45. Y. Bromberg, Y. Lahini, and Y. Silberberg, “Quantum and classical correlations in waveguide lattices,” Phys. Rev. Lett. 105, 263604 (2010).
    [Crossref]
  46. N. Spagnolo, C. Vitelli, L. Aparo, P. Matalon, F. Sciarrino, A. Crespi, R. Ramponi, and R. Osellame, “Three-photon bosonic coalescence in an integrated tritter,” Nat. Commun. 4, 1606 (2013).
    [Crossref]
  47. J. Chen, X. Li, and P. Kumar, “Two-photon-state generation via four-wave mixing in optical fibers,” Phys. Rev. A 72, 033801 (2005).
    [Crossref]

2014 (7)

G. B. Lemos, V. Borish, G. D. Cole, S. Ramelow, R. Lapkiewicz, and A. Zeilinger, “Quantum imaging with undetected photons,” Nature 512, 409–412 (2014).
[Crossref]

J. Wang, A. Santamato, P. Jiang, D. Bonneau, E. Engin, J. W. Silverstone, M. Lermer, J. Beetz, M. Kamp, S. Höfling, M. G. Tanner, C. M. Natarajan, R. H. Hadfield, S. N. Dorenbos, V. Zwiller, J. L. O’Brien, and M. G. Thompson, “Gallium arsenide (GaAs) quantum photonic waveguide circuits,” Opt. Commun. 327, 49–55 (2014).
[Crossref]

J. W. Silverstone, D. Bonneau, K. Ohira, N. Suzuki, H. Yoshida, N. Iizuka, M. Ezaki, C. M. Natarajan, M. G. Tanner, R. H. Hadfield, V. Zwiller, G. D. Marshall, J. G. Rarity, J. L. O’Brien, and M. G. Thompson, “On-chip quantum interference between silicon photon-pair sources,” Nat. Photonics 8, 104–108 (2014).
[Crossref]

D. Kang, A. Pang, Y. Zhao, and A. S. Helmy, “Two-photon quantum state engineering in nonlinear photonic nanowires,” J. Opt. Soc. Am. B 31, 1581–1589 (2014).
[Crossref]

F. Schlawin and S. Mukamel, “Matter correlations induced by coupling to quantum light,” Phys. Rev. A 89, 013830 (2014).
[Crossref]

H. Jin, F. Liu, P. Xu, J. Xia, M. Zhong, Y. Yuan, J. Zhou, Y. Gong, W. Wang, and S. Zhu, “On-chip generation and manipulation of entangled photons based on reconfigurable lithium-niobate waveguide circuits,” Phys. Rev. Lett. 113, 103601 (2014).
[Crossref]

R. Kumar, J. R. Ong, M. Savanier, and S. Mookherjea, “Controlling the spectrum of photons generated on a silicon nanophotonic chip,” Nat. Commun. 5, 5489 (2014).
[Crossref]

2013 (8)

R.-B. Jin, R. Shimizu, K. Wakui, H. Benichi, and M. Sasaki, “Widely tunable single photon source with high purity at telecom wavelength,” Opt. Express 21, 10659–10666 (2013).
[Crossref]

N. Spagnolo, C. Vitelli, L. Aparo, P. Matalon, F. Sciarrino, A. Crespi, R. Ramponi, and R. Osellame, “Three-photon bosonic coalescence in an integrated tritter,” Nat. Commun. 4, 1606 (2013).
[Crossref]

B. G. Christensen, K. T. McCusker, J. B. Altepeter, B. Calkins, T. Gerrits, A. E. Lita, A. Miller, L. K. Shalm, Y. Zhang, S. Nam, N. Brunner, C. C. Lim, N. Gisin, and P. G. Kwiat, “Detection-loophole-free test of quantum nonlocality, and applications,” Phys. Rev. Lett. 111, 130406 (2013).
[Crossref]

F. Schlawin and S. Mukamel, “Two-photon spectroscopy of excitons with entangled photons,” J. Chem. Phys. 139, 244110 (2013).
[Crossref]

G. Reithmaier, S. Lichtmannecker, T. Reichert, P. Hasch, K. Müller, M. Bichler, R. Gross, and J. J. Finley, “On-chip time resolved detection of quantum dot emission using integrated superconducting single photon detectors,” Sci. Rep. 3, 1901 (2013).
[Crossref]

F. Schlawin, K. E. Dorfman, B. P. Fingerhut, and S. Mukamel, “Suppression of population transport and control of exciton distributions by entangled photons,” Nat. Commun. 4, 1782 (2013).
[Crossref]

I. J. Luxmoore, R. Toro, O. D. Pozo-Zamudio, N. A. Wasley, E. A. Chekhovich, A. M. Sanchez, R. Beanland, A. M. Fox, M. S. Skolnick, H. Y. Liu, and A. I. Tartakovskii, “III-V quantum light source and cavity-qed on silicon,” Sci. Rep. 3, 1239 (2013).
[Crossref]

R. T. Horn, P. Kolenderski, D. Kang, P. Abolghasem, C. Scarcella, A. D. Frera, A. Tosi, L. G. Helt, S. V. Zhukovsky, J. E. Sipe, G. Weihs, A. S. Helmy, and T. Jennewein, “Inherent polarization entanglement generated from a monolithic semiconductor chip,” Sci. Rep. 3, 2314 (2013).
[Crossref]

2012 (5)

H.-K. Lo, M. Curty, and B. Qi, “Measurement-device-independent quantum key distribution,” Phys. Rev. Lett. 108, 130503 (2012).
[Crossref]

M. Davanço, J. R. Ong, A. B. Shehata, A. Tosi, I. Agha, S. Assefa, F. Xia, W. M. J. Green, S. Mookherjea, and K. Srinivasan, “Telecommunications-band heralded single photons from a silicon nanophotonic chip,” Appl. Phys. Lett. 100, 261104 (2012).
[Crossref]

N. Matsuda, H. L. Jeannic, H. Fukuda, T. Tsuchizawa, W. J. Munro, K. Shimizu, K. Yamada, Y. Tokura, and H. Takesue, “A monolithically integrated polarization entangled photon pair source on a silicon chip,” Sci. Rep. 2, 817 (2012).

W. H. P. Pernice, C. Schuck, O. Minaeva, M. Li, G. Goltsman, A. Sergienko, and H. Tang, “High-speed and high-efficiency travelling wave single-photon detectors embedded in nanophotonic circuits,” Nat. Commun. 3, 1325 (2012).
[Crossref]

P. J. Shadbolt, M. R. Verde, A. Peruzzo, A. Politi, A. Laing, M. Lobino, J. C. F. Matthews, M. G. Thompson, and J. L. O’Brien, “Generating, manipulating and measuring entanglement and mixture with a reconfigurable photonic circuit,” Nat. Photonics 6, 45–49 (2012).
[Crossref]

2011 (2)

A. Eckstein, A. Christ, P. J. Mosley, and C. Silberhorn, “Highly efficient single-pass source of pulsed single-mode twin beams of light,” Phys. Rev. Lett. 106, 013603 (2011).
[Crossref]

X. song Ma, B. Dakic, W. Naylor, A. Zeilinger, and P. Walther, “Quantum simulation of the wavefunction to probe frustrated heisenberg spin systems,” Nature Phys. 7, 399–405 (2011).
[Crossref]

2010 (2)

A. Laing, A. Peruzzo, A. Politi, M. R. Verde, M. Halder, T. C. Ralph, M. G. Thompson, and J. L. O’Brien, “High-fidelity operation of quantum photonic circuits,” Appl. Phys. Lett. 97, 211109 (2010).
[Crossref]

Y. Bromberg, Y. Lahini, and Y. Silberberg, “Quantum and classical correlations in waveguide lattices,” Phys. Rev. Lett. 105, 263604 (2010).
[Crossref]

2009 (4)

J. C. F. Matthews, A. Politi, A. Stefanov, and J. L. O’Brien, “Manipulation of multiphoton entanglement in waveguide quantum circuits,” Nat. Photonics 3, 346–350 (2009).
[Crossref]

R. Horodecki, P. Horodecki, M. Horodecki, and K. Horodecki, “Quantum entanglement,” Rev. Mod. Phys. 81, 865–942 (2009).
[Crossref]

P. Abolghasem, M. Hendrych, X. Shi, J. P. Torres, and A. S. Helmy, “Bandwidth control of paired photons generated in monolithic Bragg reflection waveguides,” Opt. Lett. 34, 2000 (2009).
[Crossref]

M. Avenhaus, A. Eckstein, P. J. Mosley, and C. Silberhorn, “Fiber-assisted single-photon spectrograph,” Opt. Lett. 34, 2873–2875 (2009).
[Crossref]

2008 (3)

T. S. Humble and W. P. Grice, “Effects of spectral entanglement in polarization-entanglement swapping and type-I fusion gates,” Phys. Rev. A 77, 022312 (2008).
[Crossref]

Z. Yang, M. Liscidini, and J. E. Sipe, “Spontaneous parametric down-conversion in waveguides: A backward Heisenberg picture approach,” Phys. Rev. A 77, 033808 (2008).
[Crossref]

X. Shi, A. Valencia, M. Hendrych, and J. P. Torres, “Generation of indistinguishable and pure heralded single photons with tunable bandwidth,” Opt. Lett. 33, 875–877 (2008).
[Crossref]

2007 (1)

J. Chen, K. F. Lee, and P. Kumar, “Deterministic quantum splitter based on time-reversed Hong-Ou-Mandel interference,” Phys. Rev. A 76, 031804 (2007).
[Crossref]

2005 (1)

J. Chen, X. Li, and P. Kumar, “Two-photon-state generation via four-wave mixing in optical fibers,” Phys. Rev. A 72, 033801 (2005).
[Crossref]

2004 (1)

A. Muthukrishnan, G. S. Agarwal, and M. O. Scully, “Inducing disallowed two-atom transitions with temporally entangled photons,” Phys. Rev. Lett. 93, 093002 (2004).
[Crossref]

2000 (1)

S. Parker, S. Bose, and M. B. Plenio, “Entanglement quantification and purification in continuous-variable systems,” Phys. Rev. A 61, 032305 (2000).
[Crossref]

1998 (2)

W. K. Wootters, “Entanglement of formation of an arbitrary state of two qubits,” Phys. Rev. Lett. 80, 2245–2248 (1998).
[Crossref]

D. V. Strekalov, T. B. Pittman, and Y. H. Shih, “What we can learn about single photons in a two-photon interference experiment,” Phys. Rev. A 57, 567–570 (1998).
[Crossref]

1997 (1)

S. Hill and W. K. Wootters, “Entanglement of a pair of quantum bits,” Phys. Rev. Lett. 78, 5022–5025 (1997).
[Crossref]

1996 (1)

T. B. Pittman, D. V. Strekalov, A. Migdall, M. H. Rubin, A. V. Sergienko, and Y. H. Shih, “Can two-photon interference be considered the interference of two photons?” Phys. Rev. Lett. 77, 1917–1920 (1996).
[Crossref]

1994 (1)

G. S. Agarwal and S. D. Gupta, “Filtering of two-photon quantum correlations by optical cavities: Cancellation of dispersive effects,” Phys. Rev. A 49, 3954–3957 (1994).
[Crossref]

1993 (1)

A. Stöhr, O. Humbach, S. Zumkley, G. Wingen, G. David, D. Jäger, B. Bollig, E. C. Larkins, and J. D. Ralston, “InGaAs/GaAs multiple-quantum-well modulators and switches,” Opt. Quantum Electron. 25, S865–S883 (1993).

1992 (1)

A. Takagi, K. Jinguji, and M. Kawachi, “Wavelength characteristics of (2x2) optical channel-type directional couplers with symmetric or nonsymmetric coupling structures,” J. Lightwave Technol. 10, 735–746 (1992).
[Crossref]

1988 (1)

T. H. Wood, “Multiple quantum well (MQW) waveguide modulators,” J. Lightwave Technol. 6, 743–757 (1988).
[Crossref]

1987 (1)

C. K. Hong, Z. Y. Ou, and L. Mandel, “Measurement of subpicosecond time intervals between two photons by interference,” Phys. Rev. Lett. 59, 2044–2046 (1987).
[Crossref]

1982 (1)

M. J. F. Digonnet and H. J. Shaw, “Analysis of a tunable single mode optical fiber coupler,” IEEE J. Quantum Electron. 18, 746–754 (1982).
[Crossref]

1974 (1)

H. F. Taylor and A. Yariv, “Guided wave optics,” Proc. IEEE 62, 1044–1060 (1974).
[Crossref]

1973 (1)

A. Yariv, “Coupled-mode theory for guided-wave optics,” IEEE J. Quantum Electron. 9, 919–933 (1973).
[Crossref]

Abolghasem, P.

R. T. Horn, P. Kolenderski, D. Kang, P. Abolghasem, C. Scarcella, A. D. Frera, A. Tosi, L. G. Helt, S. V. Zhukovsky, J. E. Sipe, G. Weihs, A. S. Helmy, and T. Jennewein, “Inherent polarization entanglement generated from a monolithic semiconductor chip,” Sci. Rep. 3, 2314 (2013).
[Crossref]

P. Abolghasem, M. Hendrych, X. Shi, J. P. Torres, and A. S. Helmy, “Bandwidth control of paired photons generated in monolithic Bragg reflection waveguides,” Opt. Lett. 34, 2000 (2009).
[Crossref]

Agarwal, G. S.

A. Muthukrishnan, G. S. Agarwal, and M. O. Scully, “Inducing disallowed two-atom transitions with temporally entangled photons,” Phys. Rev. Lett. 93, 093002 (2004).
[Crossref]

G. S. Agarwal and S. D. Gupta, “Filtering of two-photon quantum correlations by optical cavities: Cancellation of dispersive effects,” Phys. Rev. A 49, 3954–3957 (1994).
[Crossref]

Agha, I.

M. Davanço, J. R. Ong, A. B. Shehata, A. Tosi, I. Agha, S. Assefa, F. Xia, W. M. J. Green, S. Mookherjea, and K. Srinivasan, “Telecommunications-band heralded single photons from a silicon nanophotonic chip,” Appl. Phys. Lett. 100, 261104 (2012).
[Crossref]

Altepeter, J. B.

B. G. Christensen, K. T. McCusker, J. B. Altepeter, B. Calkins, T. Gerrits, A. E. Lita, A. Miller, L. K. Shalm, Y. Zhang, S. Nam, N. Brunner, C. C. Lim, N. Gisin, and P. G. Kwiat, “Detection-loophole-free test of quantum nonlocality, and applications,” Phys. Rev. Lett. 111, 130406 (2013).
[Crossref]

Aparo, L.

N. Spagnolo, C. Vitelli, L. Aparo, P. Matalon, F. Sciarrino, A. Crespi, R. Ramponi, and R. Osellame, “Three-photon bosonic coalescence in an integrated tritter,” Nat. Commun. 4, 1606 (2013).
[Crossref]

Assefa, S.

M. Davanço, J. R. Ong, A. B. Shehata, A. Tosi, I. Agha, S. Assefa, F. Xia, W. M. J. Green, S. Mookherjea, and K. Srinivasan, “Telecommunications-band heralded single photons from a silicon nanophotonic chip,” Appl. Phys. Lett. 100, 261104 (2012).
[Crossref]

Avenhaus, M.

Beanland, R.

I. J. Luxmoore, R. Toro, O. D. Pozo-Zamudio, N. A. Wasley, E. A. Chekhovich, A. M. Sanchez, R. Beanland, A. M. Fox, M. S. Skolnick, H. Y. Liu, and A. I. Tartakovskii, “III-V quantum light source and cavity-qed on silicon,” Sci. Rep. 3, 1239 (2013).
[Crossref]

Beetz, J.

J. Wang, A. Santamato, P. Jiang, D. Bonneau, E. Engin, J. W. Silverstone, M. Lermer, J. Beetz, M. Kamp, S. Höfling, M. G. Tanner, C. M. Natarajan, R. H. Hadfield, S. N. Dorenbos, V. Zwiller, J. L. O’Brien, and M. G. Thompson, “Gallium arsenide (GaAs) quantum photonic waveguide circuits,” Opt. Commun. 327, 49–55 (2014).
[Crossref]

Benichi, H.

Bichler, M.

G. Reithmaier, S. Lichtmannecker, T. Reichert, P. Hasch, K. Müller, M. Bichler, R. Gross, and J. J. Finley, “On-chip time resolved detection of quantum dot emission using integrated superconducting single photon detectors,” Sci. Rep. 3, 1901 (2013).
[Crossref]

Bollig, B.

A. Stöhr, O. Humbach, S. Zumkley, G. Wingen, G. David, D. Jäger, B. Bollig, E. C. Larkins, and J. D. Ralston, “InGaAs/GaAs multiple-quantum-well modulators and switches,” Opt. Quantum Electron. 25, S865–S883 (1993).

Bonneau, D.

J. Wang, A. Santamato, P. Jiang, D. Bonneau, E. Engin, J. W. Silverstone, M. Lermer, J. Beetz, M. Kamp, S. Höfling, M. G. Tanner, C. M. Natarajan, R. H. Hadfield, S. N. Dorenbos, V. Zwiller, J. L. O’Brien, and M. G. Thompson, “Gallium arsenide (GaAs) quantum photonic waveguide circuits,” Opt. Commun. 327, 49–55 (2014).
[Crossref]

J. W. Silverstone, D. Bonneau, K. Ohira, N. Suzuki, H. Yoshida, N. Iizuka, M. Ezaki, C. M. Natarajan, M. G. Tanner, R. H. Hadfield, V. Zwiller, G. D. Marshall, J. G. Rarity, J. L. O’Brien, and M. G. Thompson, “On-chip quantum interference between silicon photon-pair sources,” Nat. Photonics 8, 104–108 (2014).
[Crossref]

Borish, V.

G. B. Lemos, V. Borish, G. D. Cole, S. Ramelow, R. Lapkiewicz, and A. Zeilinger, “Quantum imaging with undetected photons,” Nature 512, 409–412 (2014).
[Crossref]

Bose, S.

S. Parker, S. Bose, and M. B. Plenio, “Entanglement quantification and purification in continuous-variable systems,” Phys. Rev. A 61, 032305 (2000).
[Crossref]

Bromberg, Y.

Y. Bromberg, Y. Lahini, and Y. Silberberg, “Quantum and classical correlations in waveguide lattices,” Phys. Rev. Lett. 105, 263604 (2010).
[Crossref]

Brunner, N.

B. G. Christensen, K. T. McCusker, J. B. Altepeter, B. Calkins, T. Gerrits, A. E. Lita, A. Miller, L. K. Shalm, Y. Zhang, S. Nam, N. Brunner, C. C. Lim, N. Gisin, and P. G. Kwiat, “Detection-loophole-free test of quantum nonlocality, and applications,” Phys. Rev. Lett. 111, 130406 (2013).
[Crossref]

Calkins, B.

B. G. Christensen, K. T. McCusker, J. B. Altepeter, B. Calkins, T. Gerrits, A. E. Lita, A. Miller, L. K. Shalm, Y. Zhang, S. Nam, N. Brunner, C. C. Lim, N. Gisin, and P. G. Kwiat, “Detection-loophole-free test of quantum nonlocality, and applications,” Phys. Rev. Lett. 111, 130406 (2013).
[Crossref]

Chekhovich, E. A.

I. J. Luxmoore, R. Toro, O. D. Pozo-Zamudio, N. A. Wasley, E. A. Chekhovich, A. M. Sanchez, R. Beanland, A. M. Fox, M. S. Skolnick, H. Y. Liu, and A. I. Tartakovskii, “III-V quantum light source and cavity-qed on silicon,” Sci. Rep. 3, 1239 (2013).
[Crossref]

Chen, J.

J. Chen, K. F. Lee, and P. Kumar, “Deterministic quantum splitter based on time-reversed Hong-Ou-Mandel interference,” Phys. Rev. A 76, 031804 (2007).
[Crossref]

J. Chen, X. Li, and P. Kumar, “Two-photon-state generation via four-wave mixing in optical fibers,” Phys. Rev. A 72, 033801 (2005).
[Crossref]

Christ, A.

A. Eckstein, A. Christ, P. J. Mosley, and C. Silberhorn, “Highly efficient single-pass source of pulsed single-mode twin beams of light,” Phys. Rev. Lett. 106, 013603 (2011).
[Crossref]

Christensen, B. G.

B. G. Christensen, K. T. McCusker, J. B. Altepeter, B. Calkins, T. Gerrits, A. E. Lita, A. Miller, L. K. Shalm, Y. Zhang, S. Nam, N. Brunner, C. C. Lim, N. Gisin, and P. G. Kwiat, “Detection-loophole-free test of quantum nonlocality, and applications,” Phys. Rev. Lett. 111, 130406 (2013).
[Crossref]

Cole, G. D.

G. B. Lemos, V. Borish, G. D. Cole, S. Ramelow, R. Lapkiewicz, and A. Zeilinger, “Quantum imaging with undetected photons,” Nature 512, 409–412 (2014).
[Crossref]

Crespi, A.

N. Spagnolo, C. Vitelli, L. Aparo, P. Matalon, F. Sciarrino, A. Crespi, R. Ramponi, and R. Osellame, “Three-photon bosonic coalescence in an integrated tritter,” Nat. Commun. 4, 1606 (2013).
[Crossref]

Curty, M.

H.-K. Lo, M. Curty, and B. Qi, “Measurement-device-independent quantum key distribution,” Phys. Rev. Lett. 108, 130503 (2012).
[Crossref]

Dakic, B.

X. song Ma, B. Dakic, W. Naylor, A. Zeilinger, and P. Walther, “Quantum simulation of the wavefunction to probe frustrated heisenberg spin systems,” Nature Phys. 7, 399–405 (2011).
[Crossref]

Davanço, M.

M. Davanço, J. R. Ong, A. B. Shehata, A. Tosi, I. Agha, S. Assefa, F. Xia, W. M. J. Green, S. Mookherjea, and K. Srinivasan, “Telecommunications-band heralded single photons from a silicon nanophotonic chip,” Appl. Phys. Lett. 100, 261104 (2012).
[Crossref]

David, G.

A. Stöhr, O. Humbach, S. Zumkley, G. Wingen, G. David, D. Jäger, B. Bollig, E. C. Larkins, and J. D. Ralston, “InGaAs/GaAs multiple-quantum-well modulators and switches,” Opt. Quantum Electron. 25, S865–S883 (1993).

Digonnet, M. J. F.

M. J. F. Digonnet and H. J. Shaw, “Analysis of a tunable single mode optical fiber coupler,” IEEE J. Quantum Electron. 18, 746–754 (1982).
[Crossref]

Dorenbos, S. N.

J. Wang, A. Santamato, P. Jiang, D. Bonneau, E. Engin, J. W. Silverstone, M. Lermer, J. Beetz, M. Kamp, S. Höfling, M. G. Tanner, C. M. Natarajan, R. H. Hadfield, S. N. Dorenbos, V. Zwiller, J. L. O’Brien, and M. G. Thompson, “Gallium arsenide (GaAs) quantum photonic waveguide circuits,” Opt. Commun. 327, 49–55 (2014).
[Crossref]

Dorfman, K. E.

F. Schlawin, K. E. Dorfman, B. P. Fingerhut, and S. Mukamel, “Suppression of population transport and control of exciton distributions by entangled photons,” Nat. Commun. 4, 1782 (2013).
[Crossref]

Eckstein, A.

A. Eckstein, A. Christ, P. J. Mosley, and C. Silberhorn, “Highly efficient single-pass source of pulsed single-mode twin beams of light,” Phys. Rev. Lett. 106, 013603 (2011).
[Crossref]

M. Avenhaus, A. Eckstein, P. J. Mosley, and C. Silberhorn, “Fiber-assisted single-photon spectrograph,” Opt. Lett. 34, 2873–2875 (2009).
[Crossref]

Engin, E.

J. Wang, A. Santamato, P. Jiang, D. Bonneau, E. Engin, J. W. Silverstone, M. Lermer, J. Beetz, M. Kamp, S. Höfling, M. G. Tanner, C. M. Natarajan, R. H. Hadfield, S. N. Dorenbos, V. Zwiller, J. L. O’Brien, and M. G. Thompson, “Gallium arsenide (GaAs) quantum photonic waveguide circuits,” Opt. Commun. 327, 49–55 (2014).
[Crossref]

Ezaki, M.

J. W. Silverstone, D. Bonneau, K. Ohira, N. Suzuki, H. Yoshida, N. Iizuka, M. Ezaki, C. M. Natarajan, M. G. Tanner, R. H. Hadfield, V. Zwiller, G. D. Marshall, J. G. Rarity, J. L. O’Brien, and M. G. Thompson, “On-chip quantum interference between silicon photon-pair sources,” Nat. Photonics 8, 104–108 (2014).
[Crossref]

Fingerhut, B. P.

F. Schlawin, K. E. Dorfman, B. P. Fingerhut, and S. Mukamel, “Suppression of population transport and control of exciton distributions by entangled photons,” Nat. Commun. 4, 1782 (2013).
[Crossref]

Finley, J. J.

G. Reithmaier, S. Lichtmannecker, T. Reichert, P. Hasch, K. Müller, M. Bichler, R. Gross, and J. J. Finley, “On-chip time resolved detection of quantum dot emission using integrated superconducting single photon detectors,” Sci. Rep. 3, 1901 (2013).
[Crossref]

Fox, A. M.

I. J. Luxmoore, R. Toro, O. D. Pozo-Zamudio, N. A. Wasley, E. A. Chekhovich, A. M. Sanchez, R. Beanland, A. M. Fox, M. S. Skolnick, H. Y. Liu, and A. I. Tartakovskii, “III-V quantum light source and cavity-qed on silicon,” Sci. Rep. 3, 1239 (2013).
[Crossref]

Frera, A. D.

R. T. Horn, P. Kolenderski, D. Kang, P. Abolghasem, C. Scarcella, A. D. Frera, A. Tosi, L. G. Helt, S. V. Zhukovsky, J. E. Sipe, G. Weihs, A. S. Helmy, and T. Jennewein, “Inherent polarization entanglement generated from a monolithic semiconductor chip,” Sci. Rep. 3, 2314 (2013).
[Crossref]

Fukuda, H.

N. Matsuda, H. L. Jeannic, H. Fukuda, T. Tsuchizawa, W. J. Munro, K. Shimizu, K. Yamada, Y. Tokura, and H. Takesue, “A monolithically integrated polarization entangled photon pair source on a silicon chip,” Sci. Rep. 2, 817 (2012).

Gerrits, T.

B. G. Christensen, K. T. McCusker, J. B. Altepeter, B. Calkins, T. Gerrits, A. E. Lita, A. Miller, L. K. Shalm, Y. Zhang, S. Nam, N. Brunner, C. C. Lim, N. Gisin, and P. G. Kwiat, “Detection-loophole-free test of quantum nonlocality, and applications,” Phys. Rev. Lett. 111, 130406 (2013).
[Crossref]

Gisin, N.

B. G. Christensen, K. T. McCusker, J. B. Altepeter, B. Calkins, T. Gerrits, A. E. Lita, A. Miller, L. K. Shalm, Y. Zhang, S. Nam, N. Brunner, C. C. Lim, N. Gisin, and P. G. Kwiat, “Detection-loophole-free test of quantum nonlocality, and applications,” Phys. Rev. Lett. 111, 130406 (2013).
[Crossref]

Goltsman, G.

W. H. P. Pernice, C. Schuck, O. Minaeva, M. Li, G. Goltsman, A. Sergienko, and H. Tang, “High-speed and high-efficiency travelling wave single-photon detectors embedded in nanophotonic circuits,” Nat. Commun. 3, 1325 (2012).
[Crossref]

Gong, Y.

H. Jin, F. Liu, P. Xu, J. Xia, M. Zhong, Y. Yuan, J. Zhou, Y. Gong, W. Wang, and S. Zhu, “On-chip generation and manipulation of entangled photons based on reconfigurable lithium-niobate waveguide circuits,” Phys. Rev. Lett. 113, 103601 (2014).
[Crossref]

Green, W. M. J.

M. Davanço, J. R. Ong, A. B. Shehata, A. Tosi, I. Agha, S. Assefa, F. Xia, W. M. J. Green, S. Mookherjea, and K. Srinivasan, “Telecommunications-band heralded single photons from a silicon nanophotonic chip,” Appl. Phys. Lett. 100, 261104 (2012).
[Crossref]

Grice, W. P.

T. S. Humble and W. P. Grice, “Effects of spectral entanglement in polarization-entanglement swapping and type-I fusion gates,” Phys. Rev. A 77, 022312 (2008).
[Crossref]

Gross, R.

G. Reithmaier, S. Lichtmannecker, T. Reichert, P. Hasch, K. Müller, M. Bichler, R. Gross, and J. J. Finley, “On-chip time resolved detection of quantum dot emission using integrated superconducting single photon detectors,” Sci. Rep. 3, 1901 (2013).
[Crossref]

Gupta, S. D.

G. S. Agarwal and S. D. Gupta, “Filtering of two-photon quantum correlations by optical cavities: Cancellation of dispersive effects,” Phys. Rev. A 49, 3954–3957 (1994).
[Crossref]

Hadfield, R. H.

J. W. Silverstone, D. Bonneau, K. Ohira, N. Suzuki, H. Yoshida, N. Iizuka, M. Ezaki, C. M. Natarajan, M. G. Tanner, R. H. Hadfield, V. Zwiller, G. D. Marshall, J. G. Rarity, J. L. O’Brien, and M. G. Thompson, “On-chip quantum interference between silicon photon-pair sources,” Nat. Photonics 8, 104–108 (2014).
[Crossref]

J. Wang, A. Santamato, P. Jiang, D. Bonneau, E. Engin, J. W. Silverstone, M. Lermer, J. Beetz, M. Kamp, S. Höfling, M. G. Tanner, C. M. Natarajan, R. H. Hadfield, S. N. Dorenbos, V. Zwiller, J. L. O’Brien, and M. G. Thompson, “Gallium arsenide (GaAs) quantum photonic waveguide circuits,” Opt. Commun. 327, 49–55 (2014).
[Crossref]

Halder, M.

A. Laing, A. Peruzzo, A. Politi, M. R. Verde, M. Halder, T. C. Ralph, M. G. Thompson, and J. L. O’Brien, “High-fidelity operation of quantum photonic circuits,” Appl. Phys. Lett. 97, 211109 (2010).
[Crossref]

Hasch, P.

G. Reithmaier, S. Lichtmannecker, T. Reichert, P. Hasch, K. Müller, M. Bichler, R. Gross, and J. J. Finley, “On-chip time resolved detection of quantum dot emission using integrated superconducting single photon detectors,” Sci. Rep. 3, 1901 (2013).
[Crossref]

Helmy, A. S.

D. Kang, A. Pang, Y. Zhao, and A. S. Helmy, “Two-photon quantum state engineering in nonlinear photonic nanowires,” J. Opt. Soc. Am. B 31, 1581–1589 (2014).
[Crossref]

R. T. Horn, P. Kolenderski, D. Kang, P. Abolghasem, C. Scarcella, A. D. Frera, A. Tosi, L. G. Helt, S. V. Zhukovsky, J. E. Sipe, G. Weihs, A. S. Helmy, and T. Jennewein, “Inherent polarization entanglement generated from a monolithic semiconductor chip,” Sci. Rep. 3, 2314 (2013).
[Crossref]

P. Abolghasem, M. Hendrych, X. Shi, J. P. Torres, and A. S. Helmy, “Bandwidth control of paired photons generated in monolithic Bragg reflection waveguides,” Opt. Lett. 34, 2000 (2009).
[Crossref]

Helt, L. G.

R. T. Horn, P. Kolenderski, D. Kang, P. Abolghasem, C. Scarcella, A. D. Frera, A. Tosi, L. G. Helt, S. V. Zhukovsky, J. E. Sipe, G. Weihs, A. S. Helmy, and T. Jennewein, “Inherent polarization entanglement generated from a monolithic semiconductor chip,” Sci. Rep. 3, 2314 (2013).
[Crossref]

Hendrych, M.

Hill, S.

S. Hill and W. K. Wootters, “Entanglement of a pair of quantum bits,” Phys. Rev. Lett. 78, 5022–5025 (1997).
[Crossref]

Höfling, S.

J. Wang, A. Santamato, P. Jiang, D. Bonneau, E. Engin, J. W. Silverstone, M. Lermer, J. Beetz, M. Kamp, S. Höfling, M. G. Tanner, C. M. Natarajan, R. H. Hadfield, S. N. Dorenbos, V. Zwiller, J. L. O’Brien, and M. G. Thompson, “Gallium arsenide (GaAs) quantum photonic waveguide circuits,” Opt. Commun. 327, 49–55 (2014).
[Crossref]

Hong, C. K.

C. K. Hong, Z. Y. Ou, and L. Mandel, “Measurement of subpicosecond time intervals between two photons by interference,” Phys. Rev. Lett. 59, 2044–2046 (1987).
[Crossref]

Horn, R. T.

R. T. Horn, P. Kolenderski, D. Kang, P. Abolghasem, C. Scarcella, A. D. Frera, A. Tosi, L. G. Helt, S. V. Zhukovsky, J. E. Sipe, G. Weihs, A. S. Helmy, and T. Jennewein, “Inherent polarization entanglement generated from a monolithic semiconductor chip,” Sci. Rep. 3, 2314 (2013).
[Crossref]

Horodecki, K.

R. Horodecki, P. Horodecki, M. Horodecki, and K. Horodecki, “Quantum entanglement,” Rev. Mod. Phys. 81, 865–942 (2009).
[Crossref]

Horodecki, M.

R. Horodecki, P. Horodecki, M. Horodecki, and K. Horodecki, “Quantum entanglement,” Rev. Mod. Phys. 81, 865–942 (2009).
[Crossref]

Horodecki, P.

R. Horodecki, P. Horodecki, M. Horodecki, and K. Horodecki, “Quantum entanglement,” Rev. Mod. Phys. 81, 865–942 (2009).
[Crossref]

Horodecki, R.

R. Horodecki, P. Horodecki, M. Horodecki, and K. Horodecki, “Quantum entanglement,” Rev. Mod. Phys. 81, 865–942 (2009).
[Crossref]

Humbach, O.

A. Stöhr, O. Humbach, S. Zumkley, G. Wingen, G. David, D. Jäger, B. Bollig, E. C. Larkins, and J. D. Ralston, “InGaAs/GaAs multiple-quantum-well modulators and switches,” Opt. Quantum Electron. 25, S865–S883 (1993).

Humble, T. S.

T. S. Humble and W. P. Grice, “Effects of spectral entanglement in polarization-entanglement swapping and type-I fusion gates,” Phys. Rev. A 77, 022312 (2008).
[Crossref]

Iizuka, N.

J. W. Silverstone, D. Bonneau, K. Ohira, N. Suzuki, H. Yoshida, N. Iizuka, M. Ezaki, C. M. Natarajan, M. G. Tanner, R. H. Hadfield, V. Zwiller, G. D. Marshall, J. G. Rarity, J. L. O’Brien, and M. G. Thompson, “On-chip quantum interference between silicon photon-pair sources,” Nat. Photonics 8, 104–108 (2014).
[Crossref]

Jäger, D.

A. Stöhr, O. Humbach, S. Zumkley, G. Wingen, G. David, D. Jäger, B. Bollig, E. C. Larkins, and J. D. Ralston, “InGaAs/GaAs multiple-quantum-well modulators and switches,” Opt. Quantum Electron. 25, S865–S883 (1993).

Jeannic, H. L.

N. Matsuda, H. L. Jeannic, H. Fukuda, T. Tsuchizawa, W. J. Munro, K. Shimizu, K. Yamada, Y. Tokura, and H. Takesue, “A monolithically integrated polarization entangled photon pair source on a silicon chip,” Sci. Rep. 2, 817 (2012).

Jennewein, T.

R. T. Horn, P. Kolenderski, D. Kang, P. Abolghasem, C. Scarcella, A. D. Frera, A. Tosi, L. G. Helt, S. V. Zhukovsky, J. E. Sipe, G. Weihs, A. S. Helmy, and T. Jennewein, “Inherent polarization entanglement generated from a monolithic semiconductor chip,” Sci. Rep. 3, 2314 (2013).
[Crossref]

Jiang, P.

J. Wang, A. Santamato, P. Jiang, D. Bonneau, E. Engin, J. W. Silverstone, M. Lermer, J. Beetz, M. Kamp, S. Höfling, M. G. Tanner, C. M. Natarajan, R. H. Hadfield, S. N. Dorenbos, V. Zwiller, J. L. O’Brien, and M. G. Thompson, “Gallium arsenide (GaAs) quantum photonic waveguide circuits,” Opt. Commun. 327, 49–55 (2014).
[Crossref]

Jin, H.

H. Jin, F. Liu, P. Xu, J. Xia, M. Zhong, Y. Yuan, J. Zhou, Y. Gong, W. Wang, and S. Zhu, “On-chip generation and manipulation of entangled photons based on reconfigurable lithium-niobate waveguide circuits,” Phys. Rev. Lett. 113, 103601 (2014).
[Crossref]

Jin, R.-B.

Jinguji, K.

A. Takagi, K. Jinguji, and M. Kawachi, “Wavelength characteristics of (2x2) optical channel-type directional couplers with symmetric or nonsymmetric coupling structures,” J. Lightwave Technol. 10, 735–746 (1992).
[Crossref]

Kamp, M.

J. Wang, A. Santamato, P. Jiang, D. Bonneau, E. Engin, J. W. Silverstone, M. Lermer, J. Beetz, M. Kamp, S. Höfling, M. G. Tanner, C. M. Natarajan, R. H. Hadfield, S. N. Dorenbos, V. Zwiller, J. L. O’Brien, and M. G. Thompson, “Gallium arsenide (GaAs) quantum photonic waveguide circuits,” Opt. Commun. 327, 49–55 (2014).
[Crossref]

Kang, D.

D. Kang, A. Pang, Y. Zhao, and A. S. Helmy, “Two-photon quantum state engineering in nonlinear photonic nanowires,” J. Opt. Soc. Am. B 31, 1581–1589 (2014).
[Crossref]

R. T. Horn, P. Kolenderski, D. Kang, P. Abolghasem, C. Scarcella, A. D. Frera, A. Tosi, L. G. Helt, S. V. Zhukovsky, J. E. Sipe, G. Weihs, A. S. Helmy, and T. Jennewein, “Inherent polarization entanglement generated from a monolithic semiconductor chip,” Sci. Rep. 3, 2314 (2013).
[Crossref]

Kawachi, M.

A. Takagi, K. Jinguji, and M. Kawachi, “Wavelength characteristics of (2x2) optical channel-type directional couplers with symmetric or nonsymmetric coupling structures,” J. Lightwave Technol. 10, 735–746 (1992).
[Crossref]

Kolenderski, P.

R. T. Horn, P. Kolenderski, D. Kang, P. Abolghasem, C. Scarcella, A. D. Frera, A. Tosi, L. G. Helt, S. V. Zhukovsky, J. E. Sipe, G. Weihs, A. S. Helmy, and T. Jennewein, “Inherent polarization entanglement generated from a monolithic semiconductor chip,” Sci. Rep. 3, 2314 (2013).
[Crossref]

Kumar, P.

J. Chen, K. F. Lee, and P. Kumar, “Deterministic quantum splitter based on time-reversed Hong-Ou-Mandel interference,” Phys. Rev. A 76, 031804 (2007).
[Crossref]

J. Chen, X. Li, and P. Kumar, “Two-photon-state generation via four-wave mixing in optical fibers,” Phys. Rev. A 72, 033801 (2005).
[Crossref]

Kumar, R.

R. Kumar, J. R. Ong, M. Savanier, and S. Mookherjea, “Controlling the spectrum of photons generated on a silicon nanophotonic chip,” Nat. Commun. 5, 5489 (2014).
[Crossref]

Kwiat, P. G.

B. G. Christensen, K. T. McCusker, J. B. Altepeter, B. Calkins, T. Gerrits, A. E. Lita, A. Miller, L. K. Shalm, Y. Zhang, S. Nam, N. Brunner, C. C. Lim, N. Gisin, and P. G. Kwiat, “Detection-loophole-free test of quantum nonlocality, and applications,” Phys. Rev. Lett. 111, 130406 (2013).
[Crossref]

Lahini, Y.

Y. Bromberg, Y. Lahini, and Y. Silberberg, “Quantum and classical correlations in waveguide lattices,” Phys. Rev. Lett. 105, 263604 (2010).
[Crossref]

Laing, A.

P. J. Shadbolt, M. R. Verde, A. Peruzzo, A. Politi, A. Laing, M. Lobino, J. C. F. Matthews, M. G. Thompson, and J. L. O’Brien, “Generating, manipulating and measuring entanglement and mixture with a reconfigurable photonic circuit,” Nat. Photonics 6, 45–49 (2012).
[Crossref]

A. Laing, A. Peruzzo, A. Politi, M. R. Verde, M. Halder, T. C. Ralph, M. G. Thompson, and J. L. O’Brien, “High-fidelity operation of quantum photonic circuits,” Appl. Phys. Lett. 97, 211109 (2010).
[Crossref]

Lapkiewicz, R.

G. B. Lemos, V. Borish, G. D. Cole, S. Ramelow, R. Lapkiewicz, and A. Zeilinger, “Quantum imaging with undetected photons,” Nature 512, 409–412 (2014).
[Crossref]

Larkins, E. C.

A. Stöhr, O. Humbach, S. Zumkley, G. Wingen, G. David, D. Jäger, B. Bollig, E. C. Larkins, and J. D. Ralston, “InGaAs/GaAs multiple-quantum-well modulators and switches,” Opt. Quantum Electron. 25, S865–S883 (1993).

Lee, K. F.

J. Chen, K. F. Lee, and P. Kumar, “Deterministic quantum splitter based on time-reversed Hong-Ou-Mandel interference,” Phys. Rev. A 76, 031804 (2007).
[Crossref]

Lemos, G. B.

G. B. Lemos, V. Borish, G. D. Cole, S. Ramelow, R. Lapkiewicz, and A. Zeilinger, “Quantum imaging with undetected photons,” Nature 512, 409–412 (2014).
[Crossref]

Lermer, M.

J. Wang, A. Santamato, P. Jiang, D. Bonneau, E. Engin, J. W. Silverstone, M. Lermer, J. Beetz, M. Kamp, S. Höfling, M. G. Tanner, C. M. Natarajan, R. H. Hadfield, S. N. Dorenbos, V. Zwiller, J. L. O’Brien, and M. G. Thompson, “Gallium arsenide (GaAs) quantum photonic waveguide circuits,” Opt. Commun. 327, 49–55 (2014).
[Crossref]

Li, M.

W. H. P. Pernice, C. Schuck, O. Minaeva, M. Li, G. Goltsman, A. Sergienko, and H. Tang, “High-speed and high-efficiency travelling wave single-photon detectors embedded in nanophotonic circuits,” Nat. Commun. 3, 1325 (2012).
[Crossref]

Li, X.

J. Chen, X. Li, and P. Kumar, “Two-photon-state generation via four-wave mixing in optical fibers,” Phys. Rev. A 72, 033801 (2005).
[Crossref]

Lichtmannecker, S.

G. Reithmaier, S. Lichtmannecker, T. Reichert, P. Hasch, K. Müller, M. Bichler, R. Gross, and J. J. Finley, “On-chip time resolved detection of quantum dot emission using integrated superconducting single photon detectors,” Sci. Rep. 3, 1901 (2013).
[Crossref]

Lim, C. C.

B. G. Christensen, K. T. McCusker, J. B. Altepeter, B. Calkins, T. Gerrits, A. E. Lita, A. Miller, L. K. Shalm, Y. Zhang, S. Nam, N. Brunner, C. C. Lim, N. Gisin, and P. G. Kwiat, “Detection-loophole-free test of quantum nonlocality, and applications,” Phys. Rev. Lett. 111, 130406 (2013).
[Crossref]

Liscidini, M.

Z. Yang, M. Liscidini, and J. E. Sipe, “Spontaneous parametric down-conversion in waveguides: A backward Heisenberg picture approach,” Phys. Rev. A 77, 033808 (2008).
[Crossref]

Lita, A. E.

B. G. Christensen, K. T. McCusker, J. B. Altepeter, B. Calkins, T. Gerrits, A. E. Lita, A. Miller, L. K. Shalm, Y. Zhang, S. Nam, N. Brunner, C. C. Lim, N. Gisin, and P. G. Kwiat, “Detection-loophole-free test of quantum nonlocality, and applications,” Phys. Rev. Lett. 111, 130406 (2013).
[Crossref]

Liu, F.

H. Jin, F. Liu, P. Xu, J. Xia, M. Zhong, Y. Yuan, J. Zhou, Y. Gong, W. Wang, and S. Zhu, “On-chip generation and manipulation of entangled photons based on reconfigurable lithium-niobate waveguide circuits,” Phys. Rev. Lett. 113, 103601 (2014).
[Crossref]

Liu, H. Y.

I. J. Luxmoore, R. Toro, O. D. Pozo-Zamudio, N. A. Wasley, E. A. Chekhovich, A. M. Sanchez, R. Beanland, A. M. Fox, M. S. Skolnick, H. Y. Liu, and A. I. Tartakovskii, “III-V quantum light source and cavity-qed on silicon,” Sci. Rep. 3, 1239 (2013).
[Crossref]

Lo, H.-K.

H.-K. Lo, M. Curty, and B. Qi, “Measurement-device-independent quantum key distribution,” Phys. Rev. Lett. 108, 130503 (2012).
[Crossref]

Lobino, M.

P. J. Shadbolt, M. R. Verde, A. Peruzzo, A. Politi, A. Laing, M. Lobino, J. C. F. Matthews, M. G. Thompson, and J. L. O’Brien, “Generating, manipulating and measuring entanglement and mixture with a reconfigurable photonic circuit,” Nat. Photonics 6, 45–49 (2012).
[Crossref]

Luxmoore, I. J.

I. J. Luxmoore, R. Toro, O. D. Pozo-Zamudio, N. A. Wasley, E. A. Chekhovich, A. M. Sanchez, R. Beanland, A. M. Fox, M. S. Skolnick, H. Y. Liu, and A. I. Tartakovskii, “III-V quantum light source and cavity-qed on silicon,” Sci. Rep. 3, 1239 (2013).
[Crossref]

Mandel, L.

C. K. Hong, Z. Y. Ou, and L. Mandel, “Measurement of subpicosecond time intervals between two photons by interference,” Phys. Rev. Lett. 59, 2044–2046 (1987).
[Crossref]

Marshall, G. D.

J. W. Silverstone, D. Bonneau, K. Ohira, N. Suzuki, H. Yoshida, N. Iizuka, M. Ezaki, C. M. Natarajan, M. G. Tanner, R. H. Hadfield, V. Zwiller, G. D. Marshall, J. G. Rarity, J. L. O’Brien, and M. G. Thompson, “On-chip quantum interference between silicon photon-pair sources,” Nat. Photonics 8, 104–108 (2014).
[Crossref]

Matalon, P.

N. Spagnolo, C. Vitelli, L. Aparo, P. Matalon, F. Sciarrino, A. Crespi, R. Ramponi, and R. Osellame, “Three-photon bosonic coalescence in an integrated tritter,” Nat. Commun. 4, 1606 (2013).
[Crossref]

Matsuda, N.

N. Matsuda, H. L. Jeannic, H. Fukuda, T. Tsuchizawa, W. J. Munro, K. Shimizu, K. Yamada, Y. Tokura, and H. Takesue, “A monolithically integrated polarization entangled photon pair source on a silicon chip,” Sci. Rep. 2, 817 (2012).

Matthews, J. C. F.

P. J. Shadbolt, M. R. Verde, A. Peruzzo, A. Politi, A. Laing, M. Lobino, J. C. F. Matthews, M. G. Thompson, and J. L. O’Brien, “Generating, manipulating and measuring entanglement and mixture with a reconfigurable photonic circuit,” Nat. Photonics 6, 45–49 (2012).
[Crossref]

J. C. F. Matthews, A. Politi, A. Stefanov, and J. L. O’Brien, “Manipulation of multiphoton entanglement in waveguide quantum circuits,” Nat. Photonics 3, 346–350 (2009).
[Crossref]

McCusker, K. T.

B. G. Christensen, K. T. McCusker, J. B. Altepeter, B. Calkins, T. Gerrits, A. E. Lita, A. Miller, L. K. Shalm, Y. Zhang, S. Nam, N. Brunner, C. C. Lim, N. Gisin, and P. G. Kwiat, “Detection-loophole-free test of quantum nonlocality, and applications,” Phys. Rev. Lett. 111, 130406 (2013).
[Crossref]

Migdall, A.

T. B. Pittman, D. V. Strekalov, A. Migdall, M. H. Rubin, A. V. Sergienko, and Y. H. Shih, “Can two-photon interference be considered the interference of two photons?” Phys. Rev. Lett. 77, 1917–1920 (1996).
[Crossref]

Miller, A.

B. G. Christensen, K. T. McCusker, J. B. Altepeter, B. Calkins, T. Gerrits, A. E. Lita, A. Miller, L. K. Shalm, Y. Zhang, S. Nam, N. Brunner, C. C. Lim, N. Gisin, and P. G. Kwiat, “Detection-loophole-free test of quantum nonlocality, and applications,” Phys. Rev. Lett. 111, 130406 (2013).
[Crossref]

Minaeva, O.

W. H. P. Pernice, C. Schuck, O. Minaeva, M. Li, G. Goltsman, A. Sergienko, and H. Tang, “High-speed and high-efficiency travelling wave single-photon detectors embedded in nanophotonic circuits,” Nat. Commun. 3, 1325 (2012).
[Crossref]

Mookherjea, S.

R. Kumar, J. R. Ong, M. Savanier, and S. Mookherjea, “Controlling the spectrum of photons generated on a silicon nanophotonic chip,” Nat. Commun. 5, 5489 (2014).
[Crossref]

M. Davanço, J. R. Ong, A. B. Shehata, A. Tosi, I. Agha, S. Assefa, F. Xia, W. M. J. Green, S. Mookherjea, and K. Srinivasan, “Telecommunications-band heralded single photons from a silicon nanophotonic chip,” Appl. Phys. Lett. 100, 261104 (2012).
[Crossref]

Mosley, P. J.

A. Eckstein, A. Christ, P. J. Mosley, and C. Silberhorn, “Highly efficient single-pass source of pulsed single-mode twin beams of light,” Phys. Rev. Lett. 106, 013603 (2011).
[Crossref]

M. Avenhaus, A. Eckstein, P. J. Mosley, and C. Silberhorn, “Fiber-assisted single-photon spectrograph,” Opt. Lett. 34, 2873–2875 (2009).
[Crossref]

Mukamel, S.

F. Schlawin and S. Mukamel, “Matter correlations induced by coupling to quantum light,” Phys. Rev. A 89, 013830 (2014).
[Crossref]

F. Schlawin and S. Mukamel, “Two-photon spectroscopy of excitons with entangled photons,” J. Chem. Phys. 139, 244110 (2013).
[Crossref]

F. Schlawin, K. E. Dorfman, B. P. Fingerhut, and S. Mukamel, “Suppression of population transport and control of exciton distributions by entangled photons,” Nat. Commun. 4, 1782 (2013).
[Crossref]

Müller, K.

G. Reithmaier, S. Lichtmannecker, T. Reichert, P. Hasch, K. Müller, M. Bichler, R. Gross, and J. J. Finley, “On-chip time resolved detection of quantum dot emission using integrated superconducting single photon detectors,” Sci. Rep. 3, 1901 (2013).
[Crossref]

Munro, W. J.

N. Matsuda, H. L. Jeannic, H. Fukuda, T. Tsuchizawa, W. J. Munro, K. Shimizu, K. Yamada, Y. Tokura, and H. Takesue, “A monolithically integrated polarization entangled photon pair source on a silicon chip,” Sci. Rep. 2, 817 (2012).

Muthukrishnan, A.

A. Muthukrishnan, G. S. Agarwal, and M. O. Scully, “Inducing disallowed two-atom transitions with temporally entangled photons,” Phys. Rev. Lett. 93, 093002 (2004).
[Crossref]

Nam, S.

B. G. Christensen, K. T. McCusker, J. B. Altepeter, B. Calkins, T. Gerrits, A. E. Lita, A. Miller, L. K. Shalm, Y. Zhang, S. Nam, N. Brunner, C. C. Lim, N. Gisin, and P. G. Kwiat, “Detection-loophole-free test of quantum nonlocality, and applications,” Phys. Rev. Lett. 111, 130406 (2013).
[Crossref]

Natarajan, C. M.

J. W. Silverstone, D. Bonneau, K. Ohira, N. Suzuki, H. Yoshida, N. Iizuka, M. Ezaki, C. M. Natarajan, M. G. Tanner, R. H. Hadfield, V. Zwiller, G. D. Marshall, J. G. Rarity, J. L. O’Brien, and M. G. Thompson, “On-chip quantum interference between silicon photon-pair sources,” Nat. Photonics 8, 104–108 (2014).
[Crossref]

J. Wang, A. Santamato, P. Jiang, D. Bonneau, E. Engin, J. W. Silverstone, M. Lermer, J. Beetz, M. Kamp, S. Höfling, M. G. Tanner, C. M. Natarajan, R. H. Hadfield, S. N. Dorenbos, V. Zwiller, J. L. O’Brien, and M. G. Thompson, “Gallium arsenide (GaAs) quantum photonic waveguide circuits,” Opt. Commun. 327, 49–55 (2014).
[Crossref]

Naylor, W.

X. song Ma, B. Dakic, W. Naylor, A. Zeilinger, and P. Walther, “Quantum simulation of the wavefunction to probe frustrated heisenberg spin systems,” Nature Phys. 7, 399–405 (2011).
[Crossref]

O’Brien, J. L.

J. Wang, A. Santamato, P. Jiang, D. Bonneau, E. Engin, J. W. Silverstone, M. Lermer, J. Beetz, M. Kamp, S. Höfling, M. G. Tanner, C. M. Natarajan, R. H. Hadfield, S. N. Dorenbos, V. Zwiller, J. L. O’Brien, and M. G. Thompson, “Gallium arsenide (GaAs) quantum photonic waveguide circuits,” Opt. Commun. 327, 49–55 (2014).
[Crossref]

J. W. Silverstone, D. Bonneau, K. Ohira, N. Suzuki, H. Yoshida, N. Iizuka, M. Ezaki, C. M. Natarajan, M. G. Tanner, R. H. Hadfield, V. Zwiller, G. D. Marshall, J. G. Rarity, J. L. O’Brien, and M. G. Thompson, “On-chip quantum interference between silicon photon-pair sources,” Nat. Photonics 8, 104–108 (2014).
[Crossref]

P. J. Shadbolt, M. R. Verde, A. Peruzzo, A. Politi, A. Laing, M. Lobino, J. C. F. Matthews, M. G. Thompson, and J. L. O’Brien, “Generating, manipulating and measuring entanglement and mixture with a reconfigurable photonic circuit,” Nat. Photonics 6, 45–49 (2012).
[Crossref]

A. Laing, A. Peruzzo, A. Politi, M. R. Verde, M. Halder, T. C. Ralph, M. G. Thompson, and J. L. O’Brien, “High-fidelity operation of quantum photonic circuits,” Appl. Phys. Lett. 97, 211109 (2010).
[Crossref]

J. C. F. Matthews, A. Politi, A. Stefanov, and J. L. O’Brien, “Manipulation of multiphoton entanglement in waveguide quantum circuits,” Nat. Photonics 3, 346–350 (2009).
[Crossref]

Ohira, K.

J. W. Silverstone, D. Bonneau, K. Ohira, N. Suzuki, H. Yoshida, N. Iizuka, M. Ezaki, C. M. Natarajan, M. G. Tanner, R. H. Hadfield, V. Zwiller, G. D. Marshall, J. G. Rarity, J. L. O’Brien, and M. G. Thompson, “On-chip quantum interference between silicon photon-pair sources,” Nat. Photonics 8, 104–108 (2014).
[Crossref]

Ong, J. R.

R. Kumar, J. R. Ong, M. Savanier, and S. Mookherjea, “Controlling the spectrum of photons generated on a silicon nanophotonic chip,” Nat. Commun. 5, 5489 (2014).
[Crossref]

M. Davanço, J. R. Ong, A. B. Shehata, A. Tosi, I. Agha, S. Assefa, F. Xia, W. M. J. Green, S. Mookherjea, and K. Srinivasan, “Telecommunications-band heralded single photons from a silicon nanophotonic chip,” Appl. Phys. Lett. 100, 261104 (2012).
[Crossref]

Osellame, R.

N. Spagnolo, C. Vitelli, L. Aparo, P. Matalon, F. Sciarrino, A. Crespi, R. Ramponi, and R. Osellame, “Three-photon bosonic coalescence in an integrated tritter,” Nat. Commun. 4, 1606 (2013).
[Crossref]

Ou, Z. Y.

C. K. Hong, Z. Y. Ou, and L. Mandel, “Measurement of subpicosecond time intervals between two photons by interference,” Phys. Rev. Lett. 59, 2044–2046 (1987).
[Crossref]

Pang, A.

Parker, S.

S. Parker, S. Bose, and M. B. Plenio, “Entanglement quantification and purification in continuous-variable systems,” Phys. Rev. A 61, 032305 (2000).
[Crossref]

Pernice, W. H. P.

W. H. P. Pernice, C. Schuck, O. Minaeva, M. Li, G. Goltsman, A. Sergienko, and H. Tang, “High-speed and high-efficiency travelling wave single-photon detectors embedded in nanophotonic circuits,” Nat. Commun. 3, 1325 (2012).
[Crossref]

Peruzzo, A.

P. J. Shadbolt, M. R. Verde, A. Peruzzo, A. Politi, A. Laing, M. Lobino, J. C. F. Matthews, M. G. Thompson, and J. L. O’Brien, “Generating, manipulating and measuring entanglement and mixture with a reconfigurable photonic circuit,” Nat. Photonics 6, 45–49 (2012).
[Crossref]

A. Laing, A. Peruzzo, A. Politi, M. R. Verde, M. Halder, T. C. Ralph, M. G. Thompson, and J. L. O’Brien, “High-fidelity operation of quantum photonic circuits,” Appl. Phys. Lett. 97, 211109 (2010).
[Crossref]

Pittman, T. B.

D. V. Strekalov, T. B. Pittman, and Y. H. Shih, “What we can learn about single photons in a two-photon interference experiment,” Phys. Rev. A 57, 567–570 (1998).
[Crossref]

T. B. Pittman, D. V. Strekalov, A. Migdall, M. H. Rubin, A. V. Sergienko, and Y. H. Shih, “Can two-photon interference be considered the interference of two photons?” Phys. Rev. Lett. 77, 1917–1920 (1996).
[Crossref]

Plenio, M. B.

S. Parker, S. Bose, and M. B. Plenio, “Entanglement quantification and purification in continuous-variable systems,” Phys. Rev. A 61, 032305 (2000).
[Crossref]

Politi, A.

P. J. Shadbolt, M. R. Verde, A. Peruzzo, A. Politi, A. Laing, M. Lobino, J. C. F. Matthews, M. G. Thompson, and J. L. O’Brien, “Generating, manipulating and measuring entanglement and mixture with a reconfigurable photonic circuit,” Nat. Photonics 6, 45–49 (2012).
[Crossref]

A. Laing, A. Peruzzo, A. Politi, M. R. Verde, M. Halder, T. C. Ralph, M. G. Thompson, and J. L. O’Brien, “High-fidelity operation of quantum photonic circuits,” Appl. Phys. Lett. 97, 211109 (2010).
[Crossref]

J. C. F. Matthews, A. Politi, A. Stefanov, and J. L. O’Brien, “Manipulation of multiphoton entanglement in waveguide quantum circuits,” Nat. Photonics 3, 346–350 (2009).
[Crossref]

Pozo-Zamudio, O. D.

I. J. Luxmoore, R. Toro, O. D. Pozo-Zamudio, N. A. Wasley, E. A. Chekhovich, A. M. Sanchez, R. Beanland, A. M. Fox, M. S. Skolnick, H. Y. Liu, and A. I. Tartakovskii, “III-V quantum light source and cavity-qed on silicon,” Sci. Rep. 3, 1239 (2013).
[Crossref]

Qi, B.

H.-K. Lo, M. Curty, and B. Qi, “Measurement-device-independent quantum key distribution,” Phys. Rev. Lett. 108, 130503 (2012).
[Crossref]

Ralph, T. C.

A. Laing, A. Peruzzo, A. Politi, M. R. Verde, M. Halder, T. C. Ralph, M. G. Thompson, and J. L. O’Brien, “High-fidelity operation of quantum photonic circuits,” Appl. Phys. Lett. 97, 211109 (2010).
[Crossref]

Ralston, J. D.

A. Stöhr, O. Humbach, S. Zumkley, G. Wingen, G. David, D. Jäger, B. Bollig, E. C. Larkins, and J. D. Ralston, “InGaAs/GaAs multiple-quantum-well modulators and switches,” Opt. Quantum Electron. 25, S865–S883 (1993).

Ramelow, S.

G. B. Lemos, V. Borish, G. D. Cole, S. Ramelow, R. Lapkiewicz, and A. Zeilinger, “Quantum imaging with undetected photons,” Nature 512, 409–412 (2014).
[Crossref]

Ramponi, R.

N. Spagnolo, C. Vitelli, L. Aparo, P. Matalon, F. Sciarrino, A. Crespi, R. Ramponi, and R. Osellame, “Three-photon bosonic coalescence in an integrated tritter,” Nat. Commun. 4, 1606 (2013).
[Crossref]

Rarity, J. G.

J. W. Silverstone, D. Bonneau, K. Ohira, N. Suzuki, H. Yoshida, N. Iizuka, M. Ezaki, C. M. Natarajan, M. G. Tanner, R. H. Hadfield, V. Zwiller, G. D. Marshall, J. G. Rarity, J. L. O’Brien, and M. G. Thompson, “On-chip quantum interference between silicon photon-pair sources,” Nat. Photonics 8, 104–108 (2014).
[Crossref]

Reichert, T.

G. Reithmaier, S. Lichtmannecker, T. Reichert, P. Hasch, K. Müller, M. Bichler, R. Gross, and J. J. Finley, “On-chip time resolved detection of quantum dot emission using integrated superconducting single photon detectors,” Sci. Rep. 3, 1901 (2013).
[Crossref]

Reithmaier, G.

G. Reithmaier, S. Lichtmannecker, T. Reichert, P. Hasch, K. Müller, M. Bichler, R. Gross, and J. J. Finley, “On-chip time resolved detection of quantum dot emission using integrated superconducting single photon detectors,” Sci. Rep. 3, 1901 (2013).
[Crossref]

Rubin, M. H.

T. B. Pittman, D. V. Strekalov, A. Migdall, M. H. Rubin, A. V. Sergienko, and Y. H. Shih, “Can two-photon interference be considered the interference of two photons?” Phys. Rev. Lett. 77, 1917–1920 (1996).
[Crossref]

Sanchez, A. M.

I. J. Luxmoore, R. Toro, O. D. Pozo-Zamudio, N. A. Wasley, E. A. Chekhovich, A. M. Sanchez, R. Beanland, A. M. Fox, M. S. Skolnick, H. Y. Liu, and A. I. Tartakovskii, “III-V quantum light source and cavity-qed on silicon,” Sci. Rep. 3, 1239 (2013).
[Crossref]

Santamato, A.

J. Wang, A. Santamato, P. Jiang, D. Bonneau, E. Engin, J. W. Silverstone, M. Lermer, J. Beetz, M. Kamp, S. Höfling, M. G. Tanner, C. M. Natarajan, R. H. Hadfield, S. N. Dorenbos, V. Zwiller, J. L. O’Brien, and M. G. Thompson, “Gallium arsenide (GaAs) quantum photonic waveguide circuits,” Opt. Commun. 327, 49–55 (2014).
[Crossref]

Sasaki, M.

Savanier, M.

R. Kumar, J. R. Ong, M. Savanier, and S. Mookherjea, “Controlling the spectrum of photons generated on a silicon nanophotonic chip,” Nat. Commun. 5, 5489 (2014).
[Crossref]

Scarcella, C.

R. T. Horn, P. Kolenderski, D. Kang, P. Abolghasem, C. Scarcella, A. D. Frera, A. Tosi, L. G. Helt, S. V. Zhukovsky, J. E. Sipe, G. Weihs, A. S. Helmy, and T. Jennewein, “Inherent polarization entanglement generated from a monolithic semiconductor chip,” Sci. Rep. 3, 2314 (2013).
[Crossref]

Schlawin, F.

F. Schlawin and S. Mukamel, “Matter correlations induced by coupling to quantum light,” Phys. Rev. A 89, 013830 (2014).
[Crossref]

F. Schlawin and S. Mukamel, “Two-photon spectroscopy of excitons with entangled photons,” J. Chem. Phys. 139, 244110 (2013).
[Crossref]

F. Schlawin, K. E. Dorfman, B. P. Fingerhut, and S. Mukamel, “Suppression of population transport and control of exciton distributions by entangled photons,” Nat. Commun. 4, 1782 (2013).
[Crossref]

Schuck, C.

W. H. P. Pernice, C. Schuck, O. Minaeva, M. Li, G. Goltsman, A. Sergienko, and H. Tang, “High-speed and high-efficiency travelling wave single-photon detectors embedded in nanophotonic circuits,” Nat. Commun. 3, 1325 (2012).
[Crossref]

Sciarrino, F.

N. Spagnolo, C. Vitelli, L. Aparo, P. Matalon, F. Sciarrino, A. Crespi, R. Ramponi, and R. Osellame, “Three-photon bosonic coalescence in an integrated tritter,” Nat. Commun. 4, 1606 (2013).
[Crossref]

Scully, M. O.

A. Muthukrishnan, G. S. Agarwal, and M. O. Scully, “Inducing disallowed two-atom transitions with temporally entangled photons,” Phys. Rev. Lett. 93, 093002 (2004).
[Crossref]

Sergienko, A.

W. H. P. Pernice, C. Schuck, O. Minaeva, M. Li, G. Goltsman, A. Sergienko, and H. Tang, “High-speed and high-efficiency travelling wave single-photon detectors embedded in nanophotonic circuits,” Nat. Commun. 3, 1325 (2012).
[Crossref]

Sergienko, A. V.

T. B. Pittman, D. V. Strekalov, A. Migdall, M. H. Rubin, A. V. Sergienko, and Y. H. Shih, “Can two-photon interference be considered the interference of two photons?” Phys. Rev. Lett. 77, 1917–1920 (1996).
[Crossref]

Shadbolt, P. J.

P. J. Shadbolt, M. R. Verde, A. Peruzzo, A. Politi, A. Laing, M. Lobino, J. C. F. Matthews, M. G. Thompson, and J. L. O’Brien, “Generating, manipulating and measuring entanglement and mixture with a reconfigurable photonic circuit,” Nat. Photonics 6, 45–49 (2012).
[Crossref]

Shalm, L. K.

B. G. Christensen, K. T. McCusker, J. B. Altepeter, B. Calkins, T. Gerrits, A. E. Lita, A. Miller, L. K. Shalm, Y. Zhang, S. Nam, N. Brunner, C. C. Lim, N. Gisin, and P. G. Kwiat, “Detection-loophole-free test of quantum nonlocality, and applications,” Phys. Rev. Lett. 111, 130406 (2013).
[Crossref]

Shaw, H. J.

M. J. F. Digonnet and H. J. Shaw, “Analysis of a tunable single mode optical fiber coupler,” IEEE J. Quantum Electron. 18, 746–754 (1982).
[Crossref]

Shehata, A. B.

M. Davanço, J. R. Ong, A. B. Shehata, A. Tosi, I. Agha, S. Assefa, F. Xia, W. M. J. Green, S. Mookherjea, and K. Srinivasan, “Telecommunications-band heralded single photons from a silicon nanophotonic chip,” Appl. Phys. Lett. 100, 261104 (2012).
[Crossref]

Shi, X.

Shih, Y. H.

D. V. Strekalov, T. B. Pittman, and Y. H. Shih, “What we can learn about single photons in a two-photon interference experiment,” Phys. Rev. A 57, 567–570 (1998).
[Crossref]

T. B. Pittman, D. V. Strekalov, A. Migdall, M. H. Rubin, A. V. Sergienko, and Y. H. Shih, “Can two-photon interference be considered the interference of two photons?” Phys. Rev. Lett. 77, 1917–1920 (1996).
[Crossref]

Shimizu, K.

N. Matsuda, H. L. Jeannic, H. Fukuda, T. Tsuchizawa, W. J. Munro, K. Shimizu, K. Yamada, Y. Tokura, and H. Takesue, “A monolithically integrated polarization entangled photon pair source on a silicon chip,” Sci. Rep. 2, 817 (2012).

Shimizu, R.

Silberberg, Y.

Y. Bromberg, Y. Lahini, and Y. Silberberg, “Quantum and classical correlations in waveguide lattices,” Phys. Rev. Lett. 105, 263604 (2010).
[Crossref]

Silberhorn, C.

A. Eckstein, A. Christ, P. J. Mosley, and C. Silberhorn, “Highly efficient single-pass source of pulsed single-mode twin beams of light,” Phys. Rev. Lett. 106, 013603 (2011).
[Crossref]

M. Avenhaus, A. Eckstein, P. J. Mosley, and C. Silberhorn, “Fiber-assisted single-photon spectrograph,” Opt. Lett. 34, 2873–2875 (2009).
[Crossref]

Silverstone, J. W.

J. Wang, A. Santamato, P. Jiang, D. Bonneau, E. Engin, J. W. Silverstone, M. Lermer, J. Beetz, M. Kamp, S. Höfling, M. G. Tanner, C. M. Natarajan, R. H. Hadfield, S. N. Dorenbos, V. Zwiller, J. L. O’Brien, and M. G. Thompson, “Gallium arsenide (GaAs) quantum photonic waveguide circuits,” Opt. Commun. 327, 49–55 (2014).
[Crossref]

J. W. Silverstone, D. Bonneau, K. Ohira, N. Suzuki, H. Yoshida, N. Iizuka, M. Ezaki, C. M. Natarajan, M. G. Tanner, R. H. Hadfield, V. Zwiller, G. D. Marshall, J. G. Rarity, J. L. O’Brien, and M. G. Thompson, “On-chip quantum interference between silicon photon-pair sources,” Nat. Photonics 8, 104–108 (2014).
[Crossref]

Sipe, J. E.

R. T. Horn, P. Kolenderski, D. Kang, P. Abolghasem, C. Scarcella, A. D. Frera, A. Tosi, L. G. Helt, S. V. Zhukovsky, J. E. Sipe, G. Weihs, A. S. Helmy, and T. Jennewein, “Inherent polarization entanglement generated from a monolithic semiconductor chip,” Sci. Rep. 3, 2314 (2013).
[Crossref]

Z. Yang, M. Liscidini, and J. E. Sipe, “Spontaneous parametric down-conversion in waveguides: A backward Heisenberg picture approach,” Phys. Rev. A 77, 033808 (2008).
[Crossref]

Skolnick, M. S.

I. J. Luxmoore, R. Toro, O. D. Pozo-Zamudio, N. A. Wasley, E. A. Chekhovich, A. M. Sanchez, R. Beanland, A. M. Fox, M. S. Skolnick, H. Y. Liu, and A. I. Tartakovskii, “III-V quantum light source and cavity-qed on silicon,” Sci. Rep. 3, 1239 (2013).
[Crossref]

song Ma, X.

X. song Ma, B. Dakic, W. Naylor, A. Zeilinger, and P. Walther, “Quantum simulation of the wavefunction to probe frustrated heisenberg spin systems,” Nature Phys. 7, 399–405 (2011).
[Crossref]

Spagnolo, N.

N. Spagnolo, C. Vitelli, L. Aparo, P. Matalon, F. Sciarrino, A. Crespi, R. Ramponi, and R. Osellame, “Three-photon bosonic coalescence in an integrated tritter,” Nat. Commun. 4, 1606 (2013).
[Crossref]

Srinivasan, K.

M. Davanço, J. R. Ong, A. B. Shehata, A. Tosi, I. Agha, S. Assefa, F. Xia, W. M. J. Green, S. Mookherjea, and K. Srinivasan, “Telecommunications-band heralded single photons from a silicon nanophotonic chip,” Appl. Phys. Lett. 100, 261104 (2012).
[Crossref]

Stefanov, A.

J. C. F. Matthews, A. Politi, A. Stefanov, and J. L. O’Brien, “Manipulation of multiphoton entanglement in waveguide quantum circuits,” Nat. Photonics 3, 346–350 (2009).
[Crossref]

Stöhr, A.

A. Stöhr, O. Humbach, S. Zumkley, G. Wingen, G. David, D. Jäger, B. Bollig, E. C. Larkins, and J. D. Ralston, “InGaAs/GaAs multiple-quantum-well modulators and switches,” Opt. Quantum Electron. 25, S865–S883 (1993).

Strekalov, D. V.

D. V. Strekalov, T. B. Pittman, and Y. H. Shih, “What we can learn about single photons in a two-photon interference experiment,” Phys. Rev. A 57, 567–570 (1998).
[Crossref]

T. B. Pittman, D. V. Strekalov, A. Migdall, M. H. Rubin, A. V. Sergienko, and Y. H. Shih, “Can two-photon interference be considered the interference of two photons?” Phys. Rev. Lett. 77, 1917–1920 (1996).
[Crossref]

Suzuki, N.

J. W. Silverstone, D. Bonneau, K. Ohira, N. Suzuki, H. Yoshida, N. Iizuka, M. Ezaki, C. M. Natarajan, M. G. Tanner, R. H. Hadfield, V. Zwiller, G. D. Marshall, J. G. Rarity, J. L. O’Brien, and M. G. Thompson, “On-chip quantum interference between silicon photon-pair sources,” Nat. Photonics 8, 104–108 (2014).
[Crossref]

Takagi, A.

A. Takagi, K. Jinguji, and M. Kawachi, “Wavelength characteristics of (2x2) optical channel-type directional couplers with symmetric or nonsymmetric coupling structures,” J. Lightwave Technol. 10, 735–746 (1992).
[Crossref]

Takesue, H.

N. Matsuda, H. L. Jeannic, H. Fukuda, T. Tsuchizawa, W. J. Munro, K. Shimizu, K. Yamada, Y. Tokura, and H. Takesue, “A monolithically integrated polarization entangled photon pair source on a silicon chip,” Sci. Rep. 2, 817 (2012).

Tang, H.

W. H. P. Pernice, C. Schuck, O. Minaeva, M. Li, G. Goltsman, A. Sergienko, and H. Tang, “High-speed and high-efficiency travelling wave single-photon detectors embedded in nanophotonic circuits,” Nat. Commun. 3, 1325 (2012).
[Crossref]

Tanner, M. G.

J. Wang, A. Santamato, P. Jiang, D. Bonneau, E. Engin, J. W. Silverstone, M. Lermer, J. Beetz, M. Kamp, S. Höfling, M. G. Tanner, C. M. Natarajan, R. H. Hadfield, S. N. Dorenbos, V. Zwiller, J. L. O’Brien, and M. G. Thompson, “Gallium arsenide (GaAs) quantum photonic waveguide circuits,” Opt. Commun. 327, 49–55 (2014).
[Crossref]

J. W. Silverstone, D. Bonneau, K. Ohira, N. Suzuki, H. Yoshida, N. Iizuka, M. Ezaki, C. M. Natarajan, M. G. Tanner, R. H. Hadfield, V. Zwiller, G. D. Marshall, J. G. Rarity, J. L. O’Brien, and M. G. Thompson, “On-chip quantum interference between silicon photon-pair sources,” Nat. Photonics 8, 104–108 (2014).
[Crossref]

Tartakovskii, A. I.

I. J. Luxmoore, R. Toro, O. D. Pozo-Zamudio, N. A. Wasley, E. A. Chekhovich, A. M. Sanchez, R. Beanland, A. M. Fox, M. S. Skolnick, H. Y. Liu, and A. I. Tartakovskii, “III-V quantum light source and cavity-qed on silicon,” Sci. Rep. 3, 1239 (2013).
[Crossref]

Taylor, H. F.

H. F. Taylor and A. Yariv, “Guided wave optics,” Proc. IEEE 62, 1044–1060 (1974).
[Crossref]

Thompson, M. G.

J. W. Silverstone, D. Bonneau, K. Ohira, N. Suzuki, H. Yoshida, N. Iizuka, M. Ezaki, C. M. Natarajan, M. G. Tanner, R. H. Hadfield, V. Zwiller, G. D. Marshall, J. G. Rarity, J. L. O’Brien, and M. G. Thompson, “On-chip quantum interference between silicon photon-pair sources,” Nat. Photonics 8, 104–108 (2014).
[Crossref]

J. Wang, A. Santamato, P. Jiang, D. Bonneau, E. Engin, J. W. Silverstone, M. Lermer, J. Beetz, M. Kamp, S. Höfling, M. G. Tanner, C. M. Natarajan, R. H. Hadfield, S. N. Dorenbos, V. Zwiller, J. L. O’Brien, and M. G. Thompson, “Gallium arsenide (GaAs) quantum photonic waveguide circuits,” Opt. Commun. 327, 49–55 (2014).
[Crossref]

P. J. Shadbolt, M. R. Verde, A. Peruzzo, A. Politi, A. Laing, M. Lobino, J. C. F. Matthews, M. G. Thompson, and J. L. O’Brien, “Generating, manipulating and measuring entanglement and mixture with a reconfigurable photonic circuit,” Nat. Photonics 6, 45–49 (2012).
[Crossref]

A. Laing, A. Peruzzo, A. Politi, M. R. Verde, M. Halder, T. C. Ralph, M. G. Thompson, and J. L. O’Brien, “High-fidelity operation of quantum photonic circuits,” Appl. Phys. Lett. 97, 211109 (2010).
[Crossref]

Tokura, Y.

N. Matsuda, H. L. Jeannic, H. Fukuda, T. Tsuchizawa, W. J. Munro, K. Shimizu, K. Yamada, Y. Tokura, and H. Takesue, “A monolithically integrated polarization entangled photon pair source on a silicon chip,” Sci. Rep. 2, 817 (2012).

Toro, R.

I. J. Luxmoore, R. Toro, O. D. Pozo-Zamudio, N. A. Wasley, E. A. Chekhovich, A. M. Sanchez, R. Beanland, A. M. Fox, M. S. Skolnick, H. Y. Liu, and A. I. Tartakovskii, “III-V quantum light source and cavity-qed on silicon,” Sci. Rep. 3, 1239 (2013).
[Crossref]

Torres, J. P.

Tosi, A.

R. T. Horn, P. Kolenderski, D. Kang, P. Abolghasem, C. Scarcella, A. D. Frera, A. Tosi, L. G. Helt, S. V. Zhukovsky, J. E. Sipe, G. Weihs, A. S. Helmy, and T. Jennewein, “Inherent polarization entanglement generated from a monolithic semiconductor chip,” Sci. Rep. 3, 2314 (2013).
[Crossref]

M. Davanço, J. R. Ong, A. B. Shehata, A. Tosi, I. Agha, S. Assefa, F. Xia, W. M. J. Green, S. Mookherjea, and K. Srinivasan, “Telecommunications-band heralded single photons from a silicon nanophotonic chip,” Appl. Phys. Lett. 100, 261104 (2012).
[Crossref]

Tsuchizawa, T.

N. Matsuda, H. L. Jeannic, H. Fukuda, T. Tsuchizawa, W. J. Munro, K. Shimizu, K. Yamada, Y. Tokura, and H. Takesue, “A monolithically integrated polarization entangled photon pair source on a silicon chip,” Sci. Rep. 2, 817 (2012).

Valencia, A.

Verde, M. R.

P. J. Shadbolt, M. R. Verde, A. Peruzzo, A. Politi, A. Laing, M. Lobino, J. C. F. Matthews, M. G. Thompson, and J. L. O’Brien, “Generating, manipulating and measuring entanglement and mixture with a reconfigurable photonic circuit,” Nat. Photonics 6, 45–49 (2012).
[Crossref]

A. Laing, A. Peruzzo, A. Politi, M. R. Verde, M. Halder, T. C. Ralph, M. G. Thompson, and J. L. O’Brien, “High-fidelity operation of quantum photonic circuits,” Appl. Phys. Lett. 97, 211109 (2010).
[Crossref]

Vitelli, C.

N. Spagnolo, C. Vitelli, L. Aparo, P. Matalon, F. Sciarrino, A. Crespi, R. Ramponi, and R. Osellame, “Three-photon bosonic coalescence in an integrated tritter,” Nat. Commun. 4, 1606 (2013).
[Crossref]

Wakui, K.

Walther, P.

X. song Ma, B. Dakic, W. Naylor, A. Zeilinger, and P. Walther, “Quantum simulation of the wavefunction to probe frustrated heisenberg spin systems,” Nature Phys. 7, 399–405 (2011).
[Crossref]

Wang, J.

J. Wang, A. Santamato, P. Jiang, D. Bonneau, E. Engin, J. W. Silverstone, M. Lermer, J. Beetz, M. Kamp, S. Höfling, M. G. Tanner, C. M. Natarajan, R. H. Hadfield, S. N. Dorenbos, V. Zwiller, J. L. O’Brien, and M. G. Thompson, “Gallium arsenide (GaAs) quantum photonic waveguide circuits,” Opt. Commun. 327, 49–55 (2014).
[Crossref]

Wang, W.

H. Jin, F. Liu, P. Xu, J. Xia, M. Zhong, Y. Yuan, J. Zhou, Y. Gong, W. Wang, and S. Zhu, “On-chip generation and manipulation of entangled photons based on reconfigurable lithium-niobate waveguide circuits,” Phys. Rev. Lett. 113, 103601 (2014).
[Crossref]

Wasley, N. A.

I. J. Luxmoore, R. Toro, O. D. Pozo-Zamudio, N. A. Wasley, E. A. Chekhovich, A. M. Sanchez, R. Beanland, A. M. Fox, M. S. Skolnick, H. Y. Liu, and A. I. Tartakovskii, “III-V quantum light source and cavity-qed on silicon,” Sci. Rep. 3, 1239 (2013).
[Crossref]

Weihs, G.

R. T. Horn, P. Kolenderski, D. Kang, P. Abolghasem, C. Scarcella, A. D. Frera, A. Tosi, L. G. Helt, S. V. Zhukovsky, J. E. Sipe, G. Weihs, A. S. Helmy, and T. Jennewein, “Inherent polarization entanglement generated from a monolithic semiconductor chip,” Sci. Rep. 3, 2314 (2013).
[Crossref]

Wingen, G.

A. Stöhr, O. Humbach, S. Zumkley, G. Wingen, G. David, D. Jäger, B. Bollig, E. C. Larkins, and J. D. Ralston, “InGaAs/GaAs multiple-quantum-well modulators and switches,” Opt. Quantum Electron. 25, S865–S883 (1993).

Wood, T. H.

T. H. Wood, “Multiple quantum well (MQW) waveguide modulators,” J. Lightwave Technol. 6, 743–757 (1988).
[Crossref]

Wootters, W. K.

W. K. Wootters, “Entanglement of formation of an arbitrary state of two qubits,” Phys. Rev. Lett. 80, 2245–2248 (1998).
[Crossref]

S. Hill and W. K. Wootters, “Entanglement of a pair of quantum bits,” Phys. Rev. Lett. 78, 5022–5025 (1997).
[Crossref]

Xia, F.

M. Davanço, J. R. Ong, A. B. Shehata, A. Tosi, I. Agha, S. Assefa, F. Xia, W. M. J. Green, S. Mookherjea, and K. Srinivasan, “Telecommunications-band heralded single photons from a silicon nanophotonic chip,” Appl. Phys. Lett. 100, 261104 (2012).
[Crossref]

Xia, J.

H. Jin, F. Liu, P. Xu, J. Xia, M. Zhong, Y. Yuan, J. Zhou, Y. Gong, W. Wang, and S. Zhu, “On-chip generation and manipulation of entangled photons based on reconfigurable lithium-niobate waveguide circuits,” Phys. Rev. Lett. 113, 103601 (2014).
[Crossref]

Xu, P.

H. Jin, F. Liu, P. Xu, J. Xia, M. Zhong, Y. Yuan, J. Zhou, Y. Gong, W. Wang, and S. Zhu, “On-chip generation and manipulation of entangled photons based on reconfigurable lithium-niobate waveguide circuits,” Phys. Rev. Lett. 113, 103601 (2014).
[Crossref]

Yamada, K.

N. Matsuda, H. L. Jeannic, H. Fukuda, T. Tsuchizawa, W. J. Munro, K. Shimizu, K. Yamada, Y. Tokura, and H. Takesue, “A monolithically integrated polarization entangled photon pair source on a silicon chip,” Sci. Rep. 2, 817 (2012).

Yang, Z.

Z. Yang, M. Liscidini, and J. E. Sipe, “Spontaneous parametric down-conversion in waveguides: A backward Heisenberg picture approach,” Phys. Rev. A 77, 033808 (2008).
[Crossref]

Yariv, A.

H. F. Taylor and A. Yariv, “Guided wave optics,” Proc. IEEE 62, 1044–1060 (1974).
[Crossref]

A. Yariv, “Coupled-mode theory for guided-wave optics,” IEEE J. Quantum Electron. 9, 919–933 (1973).
[Crossref]

Yoshida, H.

J. W. Silverstone, D. Bonneau, K. Ohira, N. Suzuki, H. Yoshida, N. Iizuka, M. Ezaki, C. M. Natarajan, M. G. Tanner, R. H. Hadfield, V. Zwiller, G. D. Marshall, J. G. Rarity, J. L. O’Brien, and M. G. Thompson, “On-chip quantum interference between silicon photon-pair sources,” Nat. Photonics 8, 104–108 (2014).
[Crossref]

Yuan, Y.

H. Jin, F. Liu, P. Xu, J. Xia, M. Zhong, Y. Yuan, J. Zhou, Y. Gong, W. Wang, and S. Zhu, “On-chip generation and manipulation of entangled photons based on reconfigurable lithium-niobate waveguide circuits,” Phys. Rev. Lett. 113, 103601 (2014).
[Crossref]

Zeilinger, A.

G. B. Lemos, V. Borish, G. D. Cole, S. Ramelow, R. Lapkiewicz, and A. Zeilinger, “Quantum imaging with undetected photons,” Nature 512, 409–412 (2014).
[Crossref]

X. song Ma, B. Dakic, W. Naylor, A. Zeilinger, and P. Walther, “Quantum simulation of the wavefunction to probe frustrated heisenberg spin systems,” Nature Phys. 7, 399–405 (2011).
[Crossref]

Zhang, Y.

B. G. Christensen, K. T. McCusker, J. B. Altepeter, B. Calkins, T. Gerrits, A. E. Lita, A. Miller, L. K. Shalm, Y. Zhang, S. Nam, N. Brunner, C. C. Lim, N. Gisin, and P. G. Kwiat, “Detection-loophole-free test of quantum nonlocality, and applications,” Phys. Rev. Lett. 111, 130406 (2013).
[Crossref]

Zhao, Y.

Zhong, M.

H. Jin, F. Liu, P. Xu, J. Xia, M. Zhong, Y. Yuan, J. Zhou, Y. Gong, W. Wang, and S. Zhu, “On-chip generation and manipulation of entangled photons based on reconfigurable lithium-niobate waveguide circuits,” Phys. Rev. Lett. 113, 103601 (2014).
[Crossref]

Zhou, J.

H. Jin, F. Liu, P. Xu, J. Xia, M. Zhong, Y. Yuan, J. Zhou, Y. Gong, W. Wang, and S. Zhu, “On-chip generation and manipulation of entangled photons based on reconfigurable lithium-niobate waveguide circuits,” Phys. Rev. Lett. 113, 103601 (2014).
[Crossref]

Zhu, S.

H. Jin, F. Liu, P. Xu, J. Xia, M. Zhong, Y. Yuan, J. Zhou, Y. Gong, W. Wang, and S. Zhu, “On-chip generation and manipulation of entangled photons based on reconfigurable lithium-niobate waveguide circuits,” Phys. Rev. Lett. 113, 103601 (2014).
[Crossref]

Zhukovsky, S. V.

R. T. Horn, P. Kolenderski, D. Kang, P. Abolghasem, C. Scarcella, A. D. Frera, A. Tosi, L. G. Helt, S. V. Zhukovsky, J. E. Sipe, G. Weihs, A. S. Helmy, and T. Jennewein, “Inherent polarization entanglement generated from a monolithic semiconductor chip,” Sci. Rep. 3, 2314 (2013).
[Crossref]

Zumkley, S.

A. Stöhr, O. Humbach, S. Zumkley, G. Wingen, G. David, D. Jäger, B. Bollig, E. C. Larkins, and J. D. Ralston, “InGaAs/GaAs multiple-quantum-well modulators and switches,” Opt. Quantum Electron. 25, S865–S883 (1993).

Zwiller, V.

J. Wang, A. Santamato, P. Jiang, D. Bonneau, E. Engin, J. W. Silverstone, M. Lermer, J. Beetz, M. Kamp, S. Höfling, M. G. Tanner, C. M. Natarajan, R. H. Hadfield, S. N. Dorenbos, V. Zwiller, J. L. O’Brien, and M. G. Thompson, “Gallium arsenide (GaAs) quantum photonic waveguide circuits,” Opt. Commun. 327, 49–55 (2014).
[Crossref]

J. W. Silverstone, D. Bonneau, K. Ohira, N. Suzuki, H. Yoshida, N. Iizuka, M. Ezaki, C. M. Natarajan, M. G. Tanner, R. H. Hadfield, V. Zwiller, G. D. Marshall, J. G. Rarity, J. L. O’Brien, and M. G. Thompson, “On-chip quantum interference between silicon photon-pair sources,” Nat. Photonics 8, 104–108 (2014).
[Crossref]

Appl. Phys. Lett. (2)

M. Davanço, J. R. Ong, A. B. Shehata, A. Tosi, I. Agha, S. Assefa, F. Xia, W. M. J. Green, S. Mookherjea, and K. Srinivasan, “Telecommunications-band heralded single photons from a silicon nanophotonic chip,” Appl. Phys. Lett. 100, 261104 (2012).
[Crossref]

A. Laing, A. Peruzzo, A. Politi, M. R. Verde, M. Halder, T. C. Ralph, M. G. Thompson, and J. L. O’Brien, “High-fidelity operation of quantum photonic circuits,” Appl. Phys. Lett. 97, 211109 (2010).
[Crossref]

IEEE J. Quantum Electron. (2)

M. J. F. Digonnet and H. J. Shaw, “Analysis of a tunable single mode optical fiber coupler,” IEEE J. Quantum Electron. 18, 746–754 (1982).
[Crossref]

A. Yariv, “Coupled-mode theory for guided-wave optics,” IEEE J. Quantum Electron. 9, 919–933 (1973).
[Crossref]

J. Chem. Phys. (1)

F. Schlawin and S. Mukamel, “Two-photon spectroscopy of excitons with entangled photons,” J. Chem. Phys. 139, 244110 (2013).
[Crossref]

J. Lightwave Technol. (2)

A. Takagi, K. Jinguji, and M. Kawachi, “Wavelength characteristics of (2x2) optical channel-type directional couplers with symmetric or nonsymmetric coupling structures,” J. Lightwave Technol. 10, 735–746 (1992).
[Crossref]

T. H. Wood, “Multiple quantum well (MQW) waveguide modulators,” J. Lightwave Technol. 6, 743–757 (1988).
[Crossref]

J. Opt. Soc. Am. B (1)

Nat. Commun. (4)

W. H. P. Pernice, C. Schuck, O. Minaeva, M. Li, G. Goltsman, A. Sergienko, and H. Tang, “High-speed and high-efficiency travelling wave single-photon detectors embedded in nanophotonic circuits,” Nat. Commun. 3, 1325 (2012).
[Crossref]

F. Schlawin, K. E. Dorfman, B. P. Fingerhut, and S. Mukamel, “Suppression of population transport and control of exciton distributions by entangled photons,” Nat. Commun. 4, 1782 (2013).
[Crossref]

N. Spagnolo, C. Vitelli, L. Aparo, P. Matalon, F. Sciarrino, A. Crespi, R. Ramponi, and R. Osellame, “Three-photon bosonic coalescence in an integrated tritter,” Nat. Commun. 4, 1606 (2013).
[Crossref]

R. Kumar, J. R. Ong, M. Savanier, and S. Mookherjea, “Controlling the spectrum of photons generated on a silicon nanophotonic chip,” Nat. Commun. 5, 5489 (2014).
[Crossref]

Nat. Photonics (3)

J. C. F. Matthews, A. Politi, A. Stefanov, and J. L. O’Brien, “Manipulation of multiphoton entanglement in waveguide quantum circuits,” Nat. Photonics 3, 346–350 (2009).
[Crossref]

P. J. Shadbolt, M. R. Verde, A. Peruzzo, A. Politi, A. Laing, M. Lobino, J. C. F. Matthews, M. G. Thompson, and J. L. O’Brien, “Generating, manipulating and measuring entanglement and mixture with a reconfigurable photonic circuit,” Nat. Photonics 6, 45–49 (2012).
[Crossref]

J. W. Silverstone, D. Bonneau, K. Ohira, N. Suzuki, H. Yoshida, N. Iizuka, M. Ezaki, C. M. Natarajan, M. G. Tanner, R. H. Hadfield, V. Zwiller, G. D. Marshall, J. G. Rarity, J. L. O’Brien, and M. G. Thompson, “On-chip quantum interference between silicon photon-pair sources,” Nat. Photonics 8, 104–108 (2014).
[Crossref]

Nature (1)

G. B. Lemos, V. Borish, G. D. Cole, S. Ramelow, R. Lapkiewicz, and A. Zeilinger, “Quantum imaging with undetected photons,” Nature 512, 409–412 (2014).
[Crossref]

Nature Phys. (1)

X. song Ma, B. Dakic, W. Naylor, A. Zeilinger, and P. Walther, “Quantum simulation of the wavefunction to probe frustrated heisenberg spin systems,” Nature Phys. 7, 399–405 (2011).
[Crossref]

Opt. Commun. (1)

J. Wang, A. Santamato, P. Jiang, D. Bonneau, E. Engin, J. W. Silverstone, M. Lermer, J. Beetz, M. Kamp, S. Höfling, M. G. Tanner, C. M. Natarajan, R. H. Hadfield, S. N. Dorenbos, V. Zwiller, J. L. O’Brien, and M. G. Thompson, “Gallium arsenide (GaAs) quantum photonic waveguide circuits,” Opt. Commun. 327, 49–55 (2014).
[Crossref]

Opt. Express (1)

Opt. Lett. (3)

Opt. Quantum Electron. (1)

A. Stöhr, O. Humbach, S. Zumkley, G. Wingen, G. David, D. Jäger, B. Bollig, E. C. Larkins, and J. D. Ralston, “InGaAs/GaAs multiple-quantum-well modulators and switches,” Opt. Quantum Electron. 25, S865–S883 (1993).

Phys. Rev. A (8)

S. Parker, S. Bose, and M. B. Plenio, “Entanglement quantification and purification in continuous-variable systems,” Phys. Rev. A 61, 032305 (2000).
[Crossref]

T. S. Humble and W. P. Grice, “Effects of spectral entanglement in polarization-entanglement swapping and type-I fusion gates,” Phys. Rev. A 77, 022312 (2008).
[Crossref]

Z. Yang, M. Liscidini, and J. E. Sipe, “Spontaneous parametric down-conversion in waveguides: A backward Heisenberg picture approach,” Phys. Rev. A 77, 033808 (2008).
[Crossref]

G. S. Agarwal and S. D. Gupta, “Filtering of two-photon quantum correlations by optical cavities: Cancellation of dispersive effects,” Phys. Rev. A 49, 3954–3957 (1994).
[Crossref]

F. Schlawin and S. Mukamel, “Matter correlations induced by coupling to quantum light,” Phys. Rev. A 89, 013830 (2014).
[Crossref]

J. Chen, X. Li, and P. Kumar, “Two-photon-state generation via four-wave mixing in optical fibers,” Phys. Rev. A 72, 033801 (2005).
[Crossref]

D. V. Strekalov, T. B. Pittman, and Y. H. Shih, “What we can learn about single photons in a two-photon interference experiment,” Phys. Rev. A 57, 567–570 (1998).
[Crossref]

J. Chen, K. F. Lee, and P. Kumar, “Deterministic quantum splitter based on time-reversed Hong-Ou-Mandel interference,” Phys. Rev. A 76, 031804 (2007).
[Crossref]

Phys. Rev. Lett. (10)

H. Jin, F. Liu, P. Xu, J. Xia, M. Zhong, Y. Yuan, J. Zhou, Y. Gong, W. Wang, and S. Zhu, “On-chip generation and manipulation of entangled photons based on reconfigurable lithium-niobate waveguide circuits,” Phys. Rev. Lett. 113, 103601 (2014).
[Crossref]

C. K. Hong, Z. Y. Ou, and L. Mandel, “Measurement of subpicosecond time intervals between two photons by interference,” Phys. Rev. Lett. 59, 2044–2046 (1987).
[Crossref]

T. B. Pittman, D. V. Strekalov, A. Migdall, M. H. Rubin, A. V. Sergienko, and Y. H. Shih, “Can two-photon interference be considered the interference of two photons?” Phys. Rev. Lett. 77, 1917–1920 (1996).
[Crossref]

A. Muthukrishnan, G. S. Agarwal, and M. O. Scully, “Inducing disallowed two-atom transitions with temporally entangled photons,” Phys. Rev. Lett. 93, 093002 (2004).
[Crossref]

Y. Bromberg, Y. Lahini, and Y. Silberberg, “Quantum and classical correlations in waveguide lattices,” Phys. Rev. Lett. 105, 263604 (2010).
[Crossref]

S. Hill and W. K. Wootters, “Entanglement of a pair of quantum bits,” Phys. Rev. Lett. 78, 5022–5025 (1997).
[Crossref]

W. K. Wootters, “Entanglement of formation of an arbitrary state of two qubits,” Phys. Rev. Lett. 80, 2245–2248 (1998).
[Crossref]

B. G. Christensen, K. T. McCusker, J. B. Altepeter, B. Calkins, T. Gerrits, A. E. Lita, A. Miller, L. K. Shalm, Y. Zhang, S. Nam, N. Brunner, C. C. Lim, N. Gisin, and P. G. Kwiat, “Detection-loophole-free test of quantum nonlocality, and applications,” Phys. Rev. Lett. 111, 130406 (2013).
[Crossref]

H.-K. Lo, M. Curty, and B. Qi, “Measurement-device-independent quantum key distribution,” Phys. Rev. Lett. 108, 130503 (2012).
[Crossref]

A. Eckstein, A. Christ, P. J. Mosley, and C. Silberhorn, “Highly efficient single-pass source of pulsed single-mode twin beams of light,” Phys. Rev. Lett. 106, 013603 (2011).
[Crossref]

Proc. IEEE (1)

H. F. Taylor and A. Yariv, “Guided wave optics,” Proc. IEEE 62, 1044–1060 (1974).
[Crossref]

Rev. Mod. Phys. (1)

R. Horodecki, P. Horodecki, M. Horodecki, and K. Horodecki, “Quantum entanglement,” Rev. Mod. Phys. 81, 865–942 (2009).
[Crossref]

Sci. Rep. (4)

G. Reithmaier, S. Lichtmannecker, T. Reichert, P. Hasch, K. Müller, M. Bichler, R. Gross, and J. J. Finley, “On-chip time resolved detection of quantum dot emission using integrated superconducting single photon detectors,” Sci. Rep. 3, 1901 (2013).
[Crossref]

I. J. Luxmoore, R. Toro, O. D. Pozo-Zamudio, N. A. Wasley, E. A. Chekhovich, A. M. Sanchez, R. Beanland, A. M. Fox, M. S. Skolnick, H. Y. Liu, and A. I. Tartakovskii, “III-V quantum light source and cavity-qed on silicon,” Sci. Rep. 3, 1239 (2013).
[Crossref]

N. Matsuda, H. L. Jeannic, H. Fukuda, T. Tsuchizawa, W. J. Munro, K. Shimizu, K. Yamada, Y. Tokura, and H. Takesue, “A monolithically integrated polarization entangled photon pair source on a silicon chip,” Sci. Rep. 2, 817 (2012).

R. T. Horn, P. Kolenderski, D. Kang, P. Abolghasem, C. Scarcella, A. D. Frera, A. Tosi, L. G. Helt, S. V. Zhukovsky, J. E. Sipe, G. Weihs, A. S. Helmy, and T. Jennewein, “Inherent polarization entanglement generated from a monolithic semiconductor chip,” Sci. Rep. 3, 2314 (2013).
[Crossref]

Supplementary Material (1)

NameDescription
» Supplement 1: PDF (1138 KB)      Supplemental Document

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1. Navigating the coupler response. (a) Depiction of a generic two-port directional coupler, shown with simple implementations of thermal and electro-optic tuning for in situ control over η(λ00); (b) map of possible coupler responses to a two-photon input state, as characterized by Δη. The coordinates labelled BS denote 50:50 beamsplitter behavior, while WD denotes perfect demultiplexing of central wavelengths λ01 and λ02.
Fig. 2.
Fig. 2. Tunability of output state entanglement. (a) Dependence of Schmidt number on the coupler response for post-selected outcomes where the photons are found in different waveguides. The maximum value of SN=2.31 corresponds to the input state entanglement. (b) Slice along MΛ=π/2, plotted in terms of κ(λ00).
Fig. 3.
Fig. 3. Probing matter with tunable time ordering. (a) Photons leaving the coupler from different output ports have two possible pathways: |λ01A|λ02B or |λ01B|λ02A. These coincide temporally and hence are mutually coherent. The photon in waveguide A is then temporally delayed by an interval τ relative to its twin photon in waveguide B, so that one photon always arrives at the sample before the other. The wavelength of the delayed photon depends on whether the pathway was |λ01A|λ02B or |λ01B|λ02A. (b) For μ=0, only the |λ01A|λ02B pathway is allowed, such that the photon of wavelength λ02 is always absorbed first. (c) For μ=1, the superposition permits two absorption pathways: λ02 followed by λ01, and λ01 followed by λ02. In certain systems [31] where it is not possible to distinguish which of these pathways led to the final state of the sample, the pathways destructively interfere to suppress the two-photon absorption probability. Note that at μ=1 the pathways |λ01A|λ02A and |λ01B|λ02B are also present due to nondeterministic separation (the coupler behaves as a beam splitter rather than a WD), yielding photons with no relative delay. These are not time ordered but do support both absorption pathways and therefore compliment the path-interference effects.
Fig. 4.
Fig. 4. Dependence of two-photon path correlations on the coupler response. Calculations depict (a) the “classical” separation probability, (b)–(c) the contribution of quantum interference, (d) the resultant interference visibility, and (e)–(f) total separation probability. Toggling the phase shift from θ=0 to θ=π leads to a sign change for PSI but leaves its magnitude |PSI| unaltered. This sign change, in turn, toggles the line of maximal PS between η(λ00)=0.5 and MΛ=π/2, respectively.
Fig. 5.
Fig. 5. Dependence of PS on entanglement. The calculated two-photon separation probability is shown as a function of the input state Schmidt number for MΛ=0, η(λ00)=0.5, θ=0, and Δλ=10  nm, at several values of MΔλ. For SN>4 (not shown), each curve asymptotically approaches unity.
Fig. 6.
Fig. 6. All-integrated SN measurement. To apply the technique, the photon pairs must be in the generic path-entangled state |Ψ of Eq. (1). The relative phase is ideally θ=0; for other values of θ, PS is less sensitive to SN. To measure SN, the state is sampled at three locations (shown as Y-junctions for simplicity). Detectors A and B sample the two-photon statistics at the coupler output to obtain PS. Detector C obtains spectrographs, and hence Λ and Δλ, by sampling |Ψ via a high-dispersion element such as a fiber or a waveguide grating operated near its band edge. It is sufficient to measure these spectrographs from only one of the source output paths, since the photon pair properties are assumed to be path-indistinguishable (i.e., |ψA=|ψB). The data obtained for Λ and Δλ (together with the dispersive coupler attributes) can then be used to map the measured PS to a corresponding value of SN (see Fig. 5).
Fig. 7.
Fig. 7. State characterization with a multipurpose dispersive coupler. A path superposition of the form |Ψ (Eq. A.1) is created through coherent pumping of two waveguide sources of photon pairs (e.g., generated via parametric downconversion [37]). A tunable Mach–Zehnder interferometer (MZI) allows the relative time delay to be set to either zero (ϕτ=0) or τ (ϕτ=π). Pump power can be adjusted between paths via ϕp to compensate for asymmetric losses when the delay of τ is implemented. Unconverted pump photons are removed using ring filters. MZIs at the output can be toggled (ϕA(B)=π) to sample the two-photon correlations with single-photon detectors. The rate of detection coincidences for zero time delay and a delay of τ can be used to determine VS, which in turn reveals MΛ. The dispersive directional coupler must have η(λ00)=1/2 for this measurement. Note that adding electro-optic or thermal tuners to the dispersive coupler can enable arbitrary control over VS by tuning η(λ00). Spectral-entanglement tuning is also possible when ϕp is set to deliver pump power to only one of the two photon pair sources.

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

|Ψ=[|ψA|0B+eiθ|0A|ψB]/2,
|ψj=dω1dω2ϕj(ω1,ω2)a^j(ω1)a^j(ω2)|vac,
ϕ(ω1,ω2)=ϕP(ω1+ω2)[ϕ1(ω1)ϕ2(ω2)+ϕ2(ω1)ϕ1(ω2)],
[b^A(ω)b^B(ω)]=[cos(κ(ω)L)isin(κ(ω)L)isin(κ(ω)L)cos(κ(ω)L)][a^A(ω)a^B(ω)].
Φjpq(ω1,ω2)=ϕj(ω1,ω2)Gjp(ω1)Gjq(ω2),
Gjq(ω)={cos(κ(ω)L),if  j=q,sin(κ(ω)L),if  jq.
Ppq=RpqC+cos(πδpq)RpqI(θ),
RpqC=dω1dω2(|ΦApq(ω1,ω2)|2+|ΦBpq(ω1,ω2)|2),
RpqI(θ)=dω1dω22Re{eiθΦBpq(ω1,ω2)Φ*Apq(ω1,ω2)},
PS=PAB+PBA=PSC+PSI,
VS=|PS(Λ,0)PS(Λ,τ)|PS(Λ,τ)=|1Rτ/R0|Rτ/R0=|R0Rτ1|.

Metrics