Abstract

Mid-infrared (IR) lasers are currently an area of rapid development, with several competing technologies. In traditional gas lasers, the effective interaction length is limited and the system as a whole is bulky and inflexible, limiting their applications. Standard gain fibers cannot be used in the mid-IR because the glass forming the fiber core is not transparent at these longer wavelengths. In this Letter, we report the demonstration of a mid-IR fiber gas laser using feedback in an optical cavity. The laser uses acetylene gas in a high-performance silica hollow-core fiber as the gain medium, and lases either continuous wave or synchronously pumped when pumped by telecom-wavelength diode lasers. We have demonstrated lasing on a number of transitions in the spectral band of 3.1–3.2 μm. The system could be extended to other selected molecular species to generate output in the spectral band up to 5 μm, and it has excellent potential for power scaling.

Published by The Optical Society under the terms of the Creative Commons Attribution 4.0 License. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Y. Yao, A. J. Hoffman, and C. F. Gmachl, Nat. Photonics 6, 432 (2012).
    [Crossref]
  2. D. J. Richardson, J. Nilsson, and W. A. Clarkson, J. Opt. Soc. Am. B 27, B63 (2010).
    [Crossref]
  3. S. D. Jackson, Nat. Photonics 6, 423 (2012).
    [Crossref]
  4. R. A. Kaindl, M. Wurm, K. Reimann, P. Hamm, A. M. Weiner, and M. Woerner, J. Opt. Soc. Am. B 17, 2086 (2000).
    [Crossref]
  5. F. Yu, W. J. Wadsworth, and J. C. Knight, Opt. Express 20, 11153 (2012).
    [Crossref]
  6. F. Yu and J. C. Knight, Opt. Express 21, 21466 (2013).
    [Crossref]
  7. N. V. Wheeler, A. M. Heidt, N. K. Baddela, E. N. Fokoua, J. R. Hayes, S. R. Sandoghchi, F. Poletti, M. N. Petrovich, and D. J. Richardson, Opt. Lett. 39, 295 (2014).
    [Crossref]
  8. J. Bei, T. M. Monro, A. Hemming, and H. Ebendorff-Heidepriem, Opt. Mater. Express 3, 1285 (2013).
    [Crossref]
  9. W. H. Kim, V. Q. Nguyen, L. B. Shaw, L. E. Busse, C. Florea, D. J. Gibson, R. R. Gattass, S. S. Bayya, F. H. Kung, G. D. Chin, R. E. Miklos, I. D. Aggarwal, and J. S. Sanghera, J. Non. Cryst. Solids 431, 8 (2016).
    [Crossref]
  10. P. Jaworski, F. Yu, R. R. J. Maier, W. J. Wadsworth, J. C. Knight, J. D. Shephard, and D. P. Hand, Opt. Express 21, 22742 (2013).
    [Crossref]
  11. P. Jaworski, F. Yu, R. M. Carter, J. C. Knight, J. D. Shephard, and D. P. Hand, Opt. Express 23, 8498 (2015).
    [Crossref]
  12. M. G. Welch, C. E. de Nobriga, R. A. Correa, W. J. Wadsworth, and J. C. Knight, Opt. Express 17, 9006 (2009).
    [Crossref]
  13. D. G. Ouzounov, F. R. Ahmad, D. Müller, N. Venkataraman, M. T. Gallagher, M. G. Thomas, J. Silcox, K. W. Koch, and A. L. Gaeta, Science 301, 1702 (2003).
    [Crossref]
  14. A. V. V. Nampoothiri, A. Ratanavis, N. Campbell, and W. Rudolph, Opt. Express 18, 1946 (2010).
    [Crossref]
  15. A. M. Jones, A. V. V. Nampoothiri, A. Ratanavis, T. Fiedler, N. V. Wheeler, F. Couny, R. Kadel, F. Benabid, B. R. Washburn, K. L. Corwin, and W. Rudolph, Opt. Express 19, 2309 (2011).
    [Crossref]
  16. Z. Wang, W. Belardi, F. Yu, W. J. Wadsworth, and J. C. Knight, Opt. Express 22, 21872 (2014).
    [Crossref]
  17. J. Han, K. Freel, and M. C. Heaven, J. Chem. Phys. 135, 244304 (2011).
    [Crossref]
  18. A. V. V. Nampoothiri, B. Debord, M. Alharbi, F. Gérôme, F. Benabid, and W. Rudolph, Opt. Lett. 40, 605 (2015).
    [Crossref]
  19. A. V. V. Nampoothiri, A. M. Jones, C. Fourcade-Dutin, C. Mao, N. Dadashzadeh, B. Baumgart, Y. Y. Wang, M. Alharbi, T. Bradley, N. Campbell, F. Benabid, B. R. Washburn, K. L. Corwin, and W. Rudolph, Opt. Mater. Express 2, 948 (2012).
    [Crossref]
  20. http://doi.org/10.15125/BATH-00101 .

2016 (1)

W. H. Kim, V. Q. Nguyen, L. B. Shaw, L. E. Busse, C. Florea, D. J. Gibson, R. R. Gattass, S. S. Bayya, F. H. Kung, G. D. Chin, R. E. Miklos, I. D. Aggarwal, and J. S. Sanghera, J. Non. Cryst. Solids 431, 8 (2016).
[Crossref]

2015 (2)

2014 (2)

2013 (3)

2012 (4)

2011 (2)

2010 (2)

2009 (1)

2003 (1)

D. G. Ouzounov, F. R. Ahmad, D. Müller, N. Venkataraman, M. T. Gallagher, M. G. Thomas, J. Silcox, K. W. Koch, and A. L. Gaeta, Science 301, 1702 (2003).
[Crossref]

2000 (1)

Aggarwal, I. D.

W. H. Kim, V. Q. Nguyen, L. B. Shaw, L. E. Busse, C. Florea, D. J. Gibson, R. R. Gattass, S. S. Bayya, F. H. Kung, G. D. Chin, R. E. Miklos, I. D. Aggarwal, and J. S. Sanghera, J. Non. Cryst. Solids 431, 8 (2016).
[Crossref]

Ahmad, F. R.

D. G. Ouzounov, F. R. Ahmad, D. Müller, N. Venkataraman, M. T. Gallagher, M. G. Thomas, J. Silcox, K. W. Koch, and A. L. Gaeta, Science 301, 1702 (2003).
[Crossref]

Alharbi, M.

Baddela, N. K.

Baumgart, B.

Bayya, S. S.

W. H. Kim, V. Q. Nguyen, L. B. Shaw, L. E. Busse, C. Florea, D. J. Gibson, R. R. Gattass, S. S. Bayya, F. H. Kung, G. D. Chin, R. E. Miklos, I. D. Aggarwal, and J. S. Sanghera, J. Non. Cryst. Solids 431, 8 (2016).
[Crossref]

Bei, J.

Belardi, W.

Benabid, F.

Bradley, T.

Busse, L. E.

W. H. Kim, V. Q. Nguyen, L. B. Shaw, L. E. Busse, C. Florea, D. J. Gibson, R. R. Gattass, S. S. Bayya, F. H. Kung, G. D. Chin, R. E. Miklos, I. D. Aggarwal, and J. S. Sanghera, J. Non. Cryst. Solids 431, 8 (2016).
[Crossref]

Campbell, N.

Carter, R. M.

Chin, G. D.

W. H. Kim, V. Q. Nguyen, L. B. Shaw, L. E. Busse, C. Florea, D. J. Gibson, R. R. Gattass, S. S. Bayya, F. H. Kung, G. D. Chin, R. E. Miklos, I. D. Aggarwal, and J. S. Sanghera, J. Non. Cryst. Solids 431, 8 (2016).
[Crossref]

Clarkson, W. A.

Correa, R. A.

Corwin, K. L.

Couny, F.

Dadashzadeh, N.

de Nobriga, C. E.

Debord, B.

Ebendorff-Heidepriem, H.

Fiedler, T.

Florea, C.

W. H. Kim, V. Q. Nguyen, L. B. Shaw, L. E. Busse, C. Florea, D. J. Gibson, R. R. Gattass, S. S. Bayya, F. H. Kung, G. D. Chin, R. E. Miklos, I. D. Aggarwal, and J. S. Sanghera, J. Non. Cryst. Solids 431, 8 (2016).
[Crossref]

Fokoua, E. N.

Fourcade-Dutin, C.

Freel, K.

J. Han, K. Freel, and M. C. Heaven, J. Chem. Phys. 135, 244304 (2011).
[Crossref]

Gaeta, A. L.

D. G. Ouzounov, F. R. Ahmad, D. Müller, N. Venkataraman, M. T. Gallagher, M. G. Thomas, J. Silcox, K. W. Koch, and A. L. Gaeta, Science 301, 1702 (2003).
[Crossref]

Gallagher, M. T.

D. G. Ouzounov, F. R. Ahmad, D. Müller, N. Venkataraman, M. T. Gallagher, M. G. Thomas, J. Silcox, K. W. Koch, and A. L. Gaeta, Science 301, 1702 (2003).
[Crossref]

Gattass, R. R.

W. H. Kim, V. Q. Nguyen, L. B. Shaw, L. E. Busse, C. Florea, D. J. Gibson, R. R. Gattass, S. S. Bayya, F. H. Kung, G. D. Chin, R. E. Miklos, I. D. Aggarwal, and J. S. Sanghera, J. Non. Cryst. Solids 431, 8 (2016).
[Crossref]

Gérôme, F.

Gibson, D. J.

W. H. Kim, V. Q. Nguyen, L. B. Shaw, L. E. Busse, C. Florea, D. J. Gibson, R. R. Gattass, S. S. Bayya, F. H. Kung, G. D. Chin, R. E. Miklos, I. D. Aggarwal, and J. S. Sanghera, J. Non. Cryst. Solids 431, 8 (2016).
[Crossref]

Gmachl, C. F.

Y. Yao, A. J. Hoffman, and C. F. Gmachl, Nat. Photonics 6, 432 (2012).
[Crossref]

Hamm, P.

Han, J.

J. Han, K. Freel, and M. C. Heaven, J. Chem. Phys. 135, 244304 (2011).
[Crossref]

Hand, D. P.

Hayes, J. R.

Heaven, M. C.

J. Han, K. Freel, and M. C. Heaven, J. Chem. Phys. 135, 244304 (2011).
[Crossref]

Heidt, A. M.

Hemming, A.

Hoffman, A. J.

Y. Yao, A. J. Hoffman, and C. F. Gmachl, Nat. Photonics 6, 432 (2012).
[Crossref]

Jackson, S. D.

S. D. Jackson, Nat. Photonics 6, 423 (2012).
[Crossref]

Jaworski, P.

Jones, A. M.

Kadel, R.

Kaindl, R. A.

Kim, W. H.

W. H. Kim, V. Q. Nguyen, L. B. Shaw, L. E. Busse, C. Florea, D. J. Gibson, R. R. Gattass, S. S. Bayya, F. H. Kung, G. D. Chin, R. E. Miklos, I. D. Aggarwal, and J. S. Sanghera, J. Non. Cryst. Solids 431, 8 (2016).
[Crossref]

Knight, J. C.

Koch, K. W.

D. G. Ouzounov, F. R. Ahmad, D. Müller, N. Venkataraman, M. T. Gallagher, M. G. Thomas, J. Silcox, K. W. Koch, and A. L. Gaeta, Science 301, 1702 (2003).
[Crossref]

Kung, F. H.

W. H. Kim, V. Q. Nguyen, L. B. Shaw, L. E. Busse, C. Florea, D. J. Gibson, R. R. Gattass, S. S. Bayya, F. H. Kung, G. D. Chin, R. E. Miklos, I. D. Aggarwal, and J. S. Sanghera, J. Non. Cryst. Solids 431, 8 (2016).
[Crossref]

Maier, R. R. J.

Mao, C.

Miklos, R. E.

W. H. Kim, V. Q. Nguyen, L. B. Shaw, L. E. Busse, C. Florea, D. J. Gibson, R. R. Gattass, S. S. Bayya, F. H. Kung, G. D. Chin, R. E. Miklos, I. D. Aggarwal, and J. S. Sanghera, J. Non. Cryst. Solids 431, 8 (2016).
[Crossref]

Monro, T. M.

Müller, D.

D. G. Ouzounov, F. R. Ahmad, D. Müller, N. Venkataraman, M. T. Gallagher, M. G. Thomas, J. Silcox, K. W. Koch, and A. L. Gaeta, Science 301, 1702 (2003).
[Crossref]

Nampoothiri, A. V. V.

Nguyen, V. Q.

W. H. Kim, V. Q. Nguyen, L. B. Shaw, L. E. Busse, C. Florea, D. J. Gibson, R. R. Gattass, S. S. Bayya, F. H. Kung, G. D. Chin, R. E. Miklos, I. D. Aggarwal, and J. S. Sanghera, J. Non. Cryst. Solids 431, 8 (2016).
[Crossref]

Nilsson, J.

Ouzounov, D. G.

D. G. Ouzounov, F. R. Ahmad, D. Müller, N. Venkataraman, M. T. Gallagher, M. G. Thomas, J. Silcox, K. W. Koch, and A. L. Gaeta, Science 301, 1702 (2003).
[Crossref]

Petrovich, M. N.

Poletti, F.

Ratanavis, A.

Reimann, K.

Richardson, D. J.

Rudolph, W.

Sandoghchi, S. R.

Sanghera, J. S.

W. H. Kim, V. Q. Nguyen, L. B. Shaw, L. E. Busse, C. Florea, D. J. Gibson, R. R. Gattass, S. S. Bayya, F. H. Kung, G. D. Chin, R. E. Miklos, I. D. Aggarwal, and J. S. Sanghera, J. Non. Cryst. Solids 431, 8 (2016).
[Crossref]

Shaw, L. B.

W. H. Kim, V. Q. Nguyen, L. B. Shaw, L. E. Busse, C. Florea, D. J. Gibson, R. R. Gattass, S. S. Bayya, F. H. Kung, G. D. Chin, R. E. Miklos, I. D. Aggarwal, and J. S. Sanghera, J. Non. Cryst. Solids 431, 8 (2016).
[Crossref]

Shephard, J. D.

Silcox, J.

D. G. Ouzounov, F. R. Ahmad, D. Müller, N. Venkataraman, M. T. Gallagher, M. G. Thomas, J. Silcox, K. W. Koch, and A. L. Gaeta, Science 301, 1702 (2003).
[Crossref]

Thomas, M. G.

D. G. Ouzounov, F. R. Ahmad, D. Müller, N. Venkataraman, M. T. Gallagher, M. G. Thomas, J. Silcox, K. W. Koch, and A. L. Gaeta, Science 301, 1702 (2003).
[Crossref]

Venkataraman, N.

D. G. Ouzounov, F. R. Ahmad, D. Müller, N. Venkataraman, M. T. Gallagher, M. G. Thomas, J. Silcox, K. W. Koch, and A. L. Gaeta, Science 301, 1702 (2003).
[Crossref]

Wadsworth, W. J.

Wang, Y. Y.

Wang, Z.

Washburn, B. R.

Weiner, A. M.

Welch, M. G.

Wheeler, N. V.

Woerner, M.

Wurm, M.

Yao, Y.

Y. Yao, A. J. Hoffman, and C. F. Gmachl, Nat. Photonics 6, 432 (2012).
[Crossref]

Yu, F.

J. Chem. Phys. (1)

J. Han, K. Freel, and M. C. Heaven, J. Chem. Phys. 135, 244304 (2011).
[Crossref]

J. Non. Cryst. Solids (1)

W. H. Kim, V. Q. Nguyen, L. B. Shaw, L. E. Busse, C. Florea, D. J. Gibson, R. R. Gattass, S. S. Bayya, F. H. Kung, G. D. Chin, R. E. Miklos, I. D. Aggarwal, and J. S. Sanghera, J. Non. Cryst. Solids 431, 8 (2016).
[Crossref]

J. Opt. Soc. Am. B (2)

Nat. Photonics (2)

S. D. Jackson, Nat. Photonics 6, 423 (2012).
[Crossref]

Y. Yao, A. J. Hoffman, and C. F. Gmachl, Nat. Photonics 6, 432 (2012).
[Crossref]

Opt. Express (8)

Opt. Lett. (2)

Opt. Mater. Express (2)

Science (1)

D. G. Ouzounov, F. R. Ahmad, D. Müller, N. Venkataraman, M. T. Gallagher, M. G. Thomas, J. Silcox, K. W. Koch, and A. L. Gaeta, Science 301, 1702 (2003).
[Crossref]

Other (1)

http://doi.org/10.15125/BATH-00101 .

Supplementary Material (1)

NameDescription
» Supplement 1: PDF (2022 KB)      Supplemental-document

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

Scanning electron micrographs of the two different forms of hollow fiber used in the experiment. Left: gain fiber with transmission at 1.53 and 3.1 μm wavelengths. Right: feedback fiber with low loss at 3.1 μm.

Fig. 2.
Fig. 2.

Experimental layout of the laser cavity.

Fig. 3.
Fig. 3.

(a) Attenuation curve for the feedback fiber, showing an attenuation of 0.025±0.005  dB/m over the laser wavelength band. Sharp features at 3.3 μm and beyond arise from small quantities of HCl gas present in the fiber core. The pink band indicates the uncertainty in the measurement of minimum attenuation. (b) The measured acetylene (C212H2) P(9) absorption line measured in 10 m gain fiber with 0.3 mBar pressure.

Fig. 4.
Fig. 4.

CW lasing by acetylene. (a) Measured optical spectra for different pump transitions (resolution 1 nm). (b) Selected acetylene molecular energy levels, showing the radiative transitions involved in lasing. Note that there is no radiative transition from the lower laser level to the ground state.

Fig. 5.
Fig. 5.

(a) Pump power–output power curve for pumping at 1530 nm on the P9 transition, showing a threshold of 34 mW and a slope efficiency of 6.7%. The output coupling used was 70%. The incident pump power is measured before coupling into the fiber and the 3 μm output is measured after coupling out by the output coupler. The pump coupling efficiency is 80%. Note that although the laser oscillates bi-directionally, only one of the outputs is measured here. (b) Stability of laser output as a function of time, measured at 10 Hz over more than 1 h. Note that apart from the standard stabilization of the pump laser diodes, there is no frequency locking of the pump, or stabilization or acoustic isolation of the laser cavity. The inset shows the mode profile, measured using a two-dimensional scan across the output beam.

Fig. 6.
Fig. 6.

Pulsed lasing by acetylene. Measured output power as a function of pump repetition rate. The pump pulse duration is 80 ns. The pump amplifier current is kept fixed as the repetition rate is varied.

Fig. 7.
Fig. 7.

Pump power–output power curves for selected repetition rates. The slope efficiency at synchronous pumping is 8.8%, with just one spectral line lasing.

Fig. 8.
Fig. 8.

(a) RF spectra, (b) optical spectra, and (c) time dependence for the pump (blue) and the laser (red) at selected repetition rates spanning the peak performance in Fig. 5. The optical spectra are normalized as a group to the peak spectral power at 2.6 MHz.

Metrics