A. Ciattoni and C. Rizza, “Nonlocal homogenization theory in metamaterials: effective electromagnetic spatial dispersion and artificial chirality,” Phys. Rev. B 91, 184207 (2015).

[Crossref]

L. Sun, Z. Li, T. S. Luk, X. Yang, and J. Gao, “Nonlocal effective medium analysis in symmetric metal-dielectric multilayer metamaterials,” Phys. Rev. B 91, 195147 (2015).

[Crossref]

Z. Awan, “Nonlocal effective parameters of a coated sphere medium,” J. Mod. Opt. 62, 528–535 (2014).

[Crossref]

A. Silva, F. Monticone, G. Castaldi, V. Galdi, A. Alù, and N. Engheta, “Performing mathematical operations with metamaterials,” Science 343, 160–163 (2014).

[Crossref]

B. M. Wells, A. V. Zayats, and V. A. Podolskiy, “Nonlocal optics of plasmonic nanowire metamaterials,” Phys. Rev. B 89, 035111 (2014).

[Crossref]

A. Davoyan and N. Engheta, “Electrically controlled one-way photon flow in plasmonic nanostructures,” Nat. Commun. 5, 5250 (2014).

[Crossref]

M. Moccia, G. Castaldi, S. Savo, Y. Sato, and V. Galdi, “Independent manipulation of heat and electrical current via bifunctional metamaterials,” Phys. Rev. X 4, 021025 (2014).

U. K. Chettiar, A. R. Davoyan, and N. Engheta, “Hotspots from nonreciprocal surface waves,” Opt. Lett. 39, 1760–1763 (2014).

[Crossref]

R.-L. Chern, “Spatial dispersion and nonlocal effective permittivity for periodic layered metamaterials,” Opt. Express 21, 16514–16527 (2013).

[Crossref]

L. Sun, J. Gao, and X. Yang, “Giant optical nonlocality near the Dirac point in metal-dielectric multilayer metamaterials,” Opt. Express 21, 21542–21555 (2013).

[Crossref]

Y. P. Bliokh, V. Freilikher, and F. Nori, “Ballistic charge transport in graphene and light propagation in periodic dielectric structures with metamaterials: a comparative study,” Phys. Rev. B 87, 245134 (2013).

[Crossref]

X. Lin, Y. Xu, B. Zhang, R. Hao, H. Chen, and E. Li, “Unidirectional surface plasmons in nonreciprocal graphene,” New J. Phys. 15, 113003 (2013).

[Crossref]

G. Castaldi, S. Savoia, V. Galdi, A. Alù, and N. Engheta, “PT metamaterials via complex-coordinate transformation optics,” Phys. Rev. Lett. 110, 173901 (2013).

[Crossref]

M. Kadic, T. Bückmann, R. Schittny, and M. Wegener, “Metamaterials beyond electromagnetism,” Rep. Progress Phys. 76, 126501 (2013).

[Crossref]

A. Poddubny, I. Iorsh, P. Belov, and Y. Kivshar, “Hyperbolic metamaterials,” Nat. Photonics 7, 948–957 (2013).

[Crossref]

A. V. Chebykin, A. A. Orlov, C. R. Simovski, Y. S. Kivshar, and P. A. Belov, “Nonlocal effective parameters of multilayered metal-dielectric metamaterials,” Phys. Rev. B 86, 115420 (2012).

[Crossref]

G. Castaldi, V. Galdi, A. Alù, and N. Engheta, “Nonlocal transformation optics,” Phys. Rev. Lett. 108, 063902 (2012).

[Crossref]

O. Paul and M. Rahm, “Covariant description of transformation optics in nonlinear media,” Opt. Express 20, 8982–8997 (2012).

[Crossref]

X. Huang, Y. Lai, Z. H. Hang, H. Zheng, and C. T. Chan, “Dirac cones induced by accidental degeneracy in photonic crystals and zero-refractive-index materials,” Nat. Mater. 10, 582–586 (2011).

[Crossref]

M. G. Silveirinha, “Time domain homogenization of metamaterials,” Phys. Rev. B 83, 165104 (2011).

[Crossref]

A. V. Chebykin, A. A. Orlov, A. V. Vozianova, S. I. Maslovski, Y. S. Kivshar, and P. A. Belov, “Nonlocal effective medium model for multilayered metal-dielectric metamaterials,” Phys. Rev. B 84, 115438 (2011).

[Crossref]

G. A. Wurtz, R. Pollard, W. Hendren, G. Wiederrecht, D. Gosztola, V. Podolskiy, and A. V. Zayats, “Designed ultrafast optical nonlinearity in a plasmonic nanorod metamaterial enhanced by nonlocality,” Nat. Nanotechnol. 6, 107–111 (2011).

[Crossref]

L. Bergamin, P. Alitalo, and S. A. Tretyakov, “Nonlinear transformation optics and engineering of the Kerr effect,” Phys. Rev. B 84, 205103 (2011).

[Crossref]

S. A. Cummer and R. T. Thompson, “Frequency conversion by exploiting time in transformation optics,” J. Opt. 13, 024007 (2011).

[Crossref]

G. Castaldi, I. Gallina, V. Galdi, A. Alù, and N. Engheta, “Transformation-optics generalization of tunnelling effects in bi-layers made of paired pseudo-epsilon-negative/mu-negative media,” J. Opt. 13, 024011 (2011).

[Crossref]

R. T. Thompson, S. A. Cummer, and J. Frauendiener, “A completely covariant approach to transformation optics,” J. Opt. 13, 024008 (2011).

[Crossref]

B.-I. Popa and S. A. Cummer, “Complex coordinates in transformation optics,” Phys. Rev. A 84, 063837 (2011).

[Crossref]

A. Figotin and I. Vitebskiy, “Slow wave phenomena in photonic crystals,” Laser Photon. Rev. 5, 201–213 (2011).

[Crossref]

S. H. Nam, A. J. Taylor, and A. Efimov, “Diabolical point and conical-like diffraction in periodic plasmonic nanostructures,” Opt. Express 18, 10120–10126 (2010).

[Crossref]

S. H. Nam, J. Zhou, A. J. Taylor, and A. Efimov, “Dirac dynamics in one-dimensional graphene-like plasmonic crystals: pseudo-spin, chirality, and diffraction anomaly,” Opt. Express 18, 25329–25338 (2010).

[Crossref]

A. B. Khanikaev and M. J. Steel, “Low-symmetry magnetic photonic crystals for nonreciprocal and unidirectional devices,” Opt. Express 17, 5265–5272 (2009).

[Crossref]

L.-G. Wang, Z.-G. Wang, J.-X. Zhang, and S.-Y. Zhu, “Realization of Dirac point with double cones in optics,” Opt. Lett. 34, 1510–1512 (2009).

[Crossref]

Z. Wang, Y. Chong, J. Joannopoulos, and M. Soljačić, “Observation of unidirectional backscattering-immune topological electromagnetic states,” Nature 461, 772–775 (2009).

[Crossref]

T. Ochiai and M. Onoda, “Photonic analog of graphene model and its extension: Dirac cone, symmetry, and edge states,” Phys. Rev. B 80, 155103 (2009).

[Crossref]

Z. Yu, G. Veronis, Z. Wang, and S. Fan, “One-way electromagnetic waveguide formed at the interface between a plasmonic metal under a static magnetic field and a photonic crystal,” Phys. Rev. Lett. 100, 023902 (2008).

[Crossref]

F. D. M. Haldane and S. Raghu, “Possible realization of directional optical waveguides in photonic crystals with broken time-reversal symmetry,” Phys. Rev. Lett. 100, 013904 (2008).

[Crossref]

X. Zhang, “Observing Zitterbewegung for photons near the Dirac point of a two-dimensional photonic crystal,” Phys. Rev. Lett. 100, 113903 (2008).

[Crossref]

E. H. Lock, “The properties of isofrequency dependences and the laws of geometrical optics,” Phys. Usp. 51, 375–394 (2008).

[Crossref]

S. A. Tretyakov, I. S. Nefedov, and P. Alitalo, “Generalized field-transforming metamaterials,” New J. Phys. 10, 115028 (2008).

[Crossref]

L. Bergamin, “Generalized transformation optics from triple spacetime metamaterials,” Phys. Rev. A 78, 043825 (2008).

[Crossref]

J. Elser, V. A. Podolskiy, I. Salakhutdinov, and I. Avrutsky, “Nonlocal effects in effective-medium response of nanolayered metamaterials,” Appl. Phys. Lett. 90, 191109 (2007).

[Crossref]

M. G. Silveirinha, “Generalized Lorentz-Lorenz formulas for microstructured materials,” Phys. Rev. B 76, 245117 (2007).

[Crossref]

R. A. Sepkhanov, Y. B. Bazaliy, and C. W. J. Beenakker, “Extremal transmission at the Dirac point of a photonic band structure,” Phys. Rev. A 75, 063813 (2007).

[Crossref]

O. Peleg, G. Bartal, B. Freedman, O. Manela, M. Segev, and D. N. Christodoulides, “Conical diffraction and gap solitons in honeycomb photonic lattices,” Phys. Rev. Lett. 98, 103901 (2007).

[Crossref]

U. Leonhardt, “Optical conformal mapping,” Science 312, 1777–1780 (2006).

[Crossref]

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312, 1780–1782 (2006).

[Crossref]

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, “Two-dimensional gas of massless Dirac fermions in graphene,” Nature 438, 197–200 (2005).

[Crossref]

A. Figotin and I. Vitebskiy, “Electromagnetic unidirectionality in magnetic photonic crystals,” Phys. Rev. B 67, 165210 (2003).

[Crossref]

V. M. Agranovich and V. Ginzburg, Crystal Optics with Spatial Dispersion, and Excitons, Springer Series in Solid-State Sciences (Springer, 2013).

L. Bergamin, P. Alitalo, and S. A. Tretyakov, “Nonlinear transformation optics and engineering of the Kerr effect,” Phys. Rev. B 84, 205103 (2011).

[Crossref]

S. A. Tretyakov, I. S. Nefedov, and P. Alitalo, “Generalized field-transforming metamaterials,” New J. Phys. 10, 115028 (2008).

[Crossref]

A. Silva, F. Monticone, G. Castaldi, V. Galdi, A. Alù, and N. Engheta, “Performing mathematical operations with metamaterials,” Science 343, 160–163 (2014).

[Crossref]

G. Castaldi, S. Savoia, V. Galdi, A. Alù, and N. Engheta, “PT metamaterials via complex-coordinate transformation optics,” Phys. Rev. Lett. 110, 173901 (2013).

[Crossref]

G. Castaldi, V. Galdi, A. Alù, and N. Engheta, “Nonlocal transformation optics,” Phys. Rev. Lett. 108, 063902 (2012).

[Crossref]

G. Castaldi, I. Gallina, V. Galdi, A. Alù, and N. Engheta, “Transformation-optics generalization of tunnelling effects in bi-layers made of paired pseudo-epsilon-negative/mu-negative media,” J. Opt. 13, 024011 (2011).

[Crossref]

J. Elser, V. A. Podolskiy, I. Salakhutdinov, and I. Avrutsky, “Nonlocal effects in effective-medium response of nanolayered metamaterials,” Appl. Phys. Lett. 90, 191109 (2007).

[Crossref]

Z. Awan, “Nonlocal effective parameters of a coated sphere medium,” J. Mod. Opt. 62, 528–535 (2014).

[Crossref]

O. Peleg, G. Bartal, B. Freedman, O. Manela, M. Segev, and D. N. Christodoulides, “Conical diffraction and gap solitons in honeycomb photonic lattices,” Phys. Rev. Lett. 98, 103901 (2007).

[Crossref]

R. A. Sepkhanov, Y. B. Bazaliy, and C. W. J. Beenakker, “Extremal transmission at the Dirac point of a photonic band structure,” Phys. Rev. A 75, 063813 (2007).

[Crossref]

R. A. Sepkhanov, Y. B. Bazaliy, and C. W. J. Beenakker, “Extremal transmission at the Dirac point of a photonic band structure,” Phys. Rev. A 75, 063813 (2007).

[Crossref]

L. D. Landau, J. S. Bell, J. Kearsley, L. P. Pitaevskii, E. M. Lifshitz, and J. B. Sykes, Electrodynamics of Continuous Media, Vol. 8 of Course of Theoretical Physics (Elsevier, 1984).

A. Poddubny, I. Iorsh, P. Belov, and Y. Kivshar, “Hyperbolic metamaterials,” Nat. Photonics 7, 948–957 (2013).

[Crossref]

A. V. Chebykin, A. A. Orlov, C. R. Simovski, Y. S. Kivshar, and P. A. Belov, “Nonlocal effective parameters of multilayered metal-dielectric metamaterials,” Phys. Rev. B 86, 115420 (2012).

[Crossref]

A. V. Chebykin, A. A. Orlov, A. V. Vozianova, S. I. Maslovski, Y. S. Kivshar, and P. A. Belov, “Nonlocal effective medium model for multilayered metal-dielectric metamaterials,” Phys. Rev. B 84, 115438 (2011).

[Crossref]

M. A. Gorlach and P. A. Belov, “Nonlocality in uniaxially polarizable media,” arXiv:1505.01064 (2015).

L. Bergamin, P. Alitalo, and S. A. Tretyakov, “Nonlinear transformation optics and engineering of the Kerr effect,” Phys. Rev. B 84, 205103 (2011).

[Crossref]

L. Bergamin, “Generalized transformation optics from triple spacetime metamaterials,” Phys. Rev. A 78, 043825 (2008).

[Crossref]

Y. P. Bliokh, V. Freilikher, and F. Nori, “Ballistic charge transport in graphene and light propagation in periodic dielectric structures with metamaterials: a comparative study,” Phys. Rev. B 87, 245134 (2013).

[Crossref]

M. Kadic, T. Bückmann, R. Schittny, and M. Wegener, “Metamaterials beyond electromagnetism,” Rep. Progress Phys. 76, 126501 (2013).

[Crossref]

M. Moccia, G. Castaldi, S. Savo, Y. Sato, and V. Galdi, “Independent manipulation of heat and electrical current via bifunctional metamaterials,” Phys. Rev. X 4, 021025 (2014).

A. Silva, F. Monticone, G. Castaldi, V. Galdi, A. Alù, and N. Engheta, “Performing mathematical operations with metamaterials,” Science 343, 160–163 (2014).

[Crossref]

G. Castaldi, S. Savoia, V. Galdi, A. Alù, and N. Engheta, “PT metamaterials via complex-coordinate transformation optics,” Phys. Rev. Lett. 110, 173901 (2013).

[Crossref]

G. Castaldi, V. Galdi, A. Alù, and N. Engheta, “Nonlocal transformation optics,” Phys. Rev. Lett. 108, 063902 (2012).

[Crossref]

G. Castaldi, I. Gallina, V. Galdi, A. Alù, and N. Engheta, “Transformation-optics generalization of tunnelling effects in bi-layers made of paired pseudo-epsilon-negative/mu-negative media,” J. Opt. 13, 024011 (2011).

[Crossref]

X. Huang, Y. Lai, Z. H. Hang, H. Zheng, and C. T. Chan, “Dirac cones induced by accidental degeneracy in photonic crystals and zero-refractive-index materials,” Nat. Mater. 10, 582–586 (2011).

[Crossref]

A. V. Chebykin, A. A. Orlov, C. R. Simovski, Y. S. Kivshar, and P. A. Belov, “Nonlocal effective parameters of multilayered metal-dielectric metamaterials,” Phys. Rev. B 86, 115420 (2012).

[Crossref]

A. V. Chebykin, A. A. Orlov, A. V. Vozianova, S. I. Maslovski, Y. S. Kivshar, and P. A. Belov, “Nonlocal effective medium model for multilayered metal-dielectric metamaterials,” Phys. Rev. B 84, 115438 (2011).

[Crossref]

X. Lin, Y. Xu, B. Zhang, R. Hao, H. Chen, and E. Li, “Unidirectional surface plasmons in nonreciprocal graphene,” New J. Phys. 15, 113003 (2013).

[Crossref]

Z. Wang, Y. Chong, J. Joannopoulos, and M. Soljačić, “Observation of unidirectional backscattering-immune topological electromagnetic states,” Nature 461, 772–775 (2009).

[Crossref]

O. Peleg, G. Bartal, B. Freedman, O. Manela, M. Segev, and D. N. Christodoulides, “Conical diffraction and gap solitons in honeycomb photonic lattices,” Phys. Rev. Lett. 98, 103901 (2007).

[Crossref]

A. Ciattoni and C. Rizza, “Nonlocal homogenization theory in metamaterials: effective electromagnetic spatial dispersion and artificial chirality,” Phys. Rev. B 91, 184207 (2015).

[Crossref]

S. A. Cummer and R. T. Thompson, “Frequency conversion by exploiting time in transformation optics,” J. Opt. 13, 024007 (2011).

[Crossref]

B.-I. Popa and S. A. Cummer, “Complex coordinates in transformation optics,” Phys. Rev. A 84, 063837 (2011).

[Crossref]

R. T. Thompson, S. A. Cummer, and J. Frauendiener, “A completely covariant approach to transformation optics,” J. Opt. 13, 024008 (2011).

[Crossref]

A. Davoyan and N. Engheta, “Electrically controlled one-way photon flow in plasmonic nanostructures,” Nat. Commun. 5, 5250 (2014).

[Crossref]

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, “Two-dimensional gas of massless Dirac fermions in graphene,” Nature 438, 197–200 (2005).

[Crossref]

S. H. Nam, J. Zhou, A. J. Taylor, and A. Efimov, “Dirac dynamics in one-dimensional graphene-like plasmonic crystals: pseudo-spin, chirality, and diffraction anomaly,” Opt. Express 18, 25329–25338 (2010).

[Crossref]

S. H. Nam, A. J. Taylor, and A. Efimov, “Diabolical point and conical-like diffraction in periodic plasmonic nanostructures,” Opt. Express 18, 10120–10126 (2010).

[Crossref]

J. Elser, V. A. Podolskiy, I. Salakhutdinov, and I. Avrutsky, “Nonlocal effects in effective-medium response of nanolayered metamaterials,” Appl. Phys. Lett. 90, 191109 (2007).

[Crossref]

A. Davoyan and N. Engheta, “Electrically controlled one-way photon flow in plasmonic nanostructures,” Nat. Commun. 5, 5250 (2014).

[Crossref]

A. Silva, F. Monticone, G. Castaldi, V. Galdi, A. Alù, and N. Engheta, “Performing mathematical operations with metamaterials,” Science 343, 160–163 (2014).

[Crossref]

U. K. Chettiar, A. R. Davoyan, and N. Engheta, “Hotspots from nonreciprocal surface waves,” Opt. Lett. 39, 1760–1763 (2014).

[Crossref]

G. Castaldi, S. Savoia, V. Galdi, A. Alù, and N. Engheta, “PT metamaterials via complex-coordinate transformation optics,” Phys. Rev. Lett. 110, 173901 (2013).

[Crossref]

G. Castaldi, V. Galdi, A. Alù, and N. Engheta, “Nonlocal transformation optics,” Phys. Rev. Lett. 108, 063902 (2012).

[Crossref]

G. Castaldi, I. Gallina, V. Galdi, A. Alù, and N. Engheta, “Transformation-optics generalization of tunnelling effects in bi-layers made of paired pseudo-epsilon-negative/mu-negative media,” J. Opt. 13, 024011 (2011).

[Crossref]

Z. Yu, G. Veronis, Z. Wang, and S. Fan, “One-way electromagnetic waveguide formed at the interface between a plasmonic metal under a static magnetic field and a photonic crystal,” Phys. Rev. Lett. 100, 023902 (2008).

[Crossref]

A. Figotin and I. Vitebskiy, “Slow wave phenomena in photonic crystals,” Laser Photon. Rev. 5, 201–213 (2011).

[Crossref]

A. Figotin and I. Vitebskiy, “Electromagnetic unidirectionality in magnetic photonic crystals,” Phys. Rev. B 67, 165210 (2003).

[Crossref]

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, “Two-dimensional gas of massless Dirac fermions in graphene,” Nature 438, 197–200 (2005).

[Crossref]

R. T. Thompson, S. A. Cummer, and J. Frauendiener, “A completely covariant approach to transformation optics,” J. Opt. 13, 024008 (2011).

[Crossref]

O. Peleg, G. Bartal, B. Freedman, O. Manela, M. Segev, and D. N. Christodoulides, “Conical diffraction and gap solitons in honeycomb photonic lattices,” Phys. Rev. Lett. 98, 103901 (2007).

[Crossref]

Y. P. Bliokh, V. Freilikher, and F. Nori, “Ballistic charge transport in graphene and light propagation in periodic dielectric structures with metamaterials: a comparative study,” Phys. Rev. B 87, 245134 (2013).

[Crossref]

A. Silva, F. Monticone, G. Castaldi, V. Galdi, A. Alù, and N. Engheta, “Performing mathematical operations with metamaterials,” Science 343, 160–163 (2014).

[Crossref]

M. Moccia, G. Castaldi, S. Savo, Y. Sato, and V. Galdi, “Independent manipulation of heat and electrical current via bifunctional metamaterials,” Phys. Rev. X 4, 021025 (2014).

G. Castaldi, S. Savoia, V. Galdi, A. Alù, and N. Engheta, “PT metamaterials via complex-coordinate transformation optics,” Phys. Rev. Lett. 110, 173901 (2013).

[Crossref]

G. Castaldi, V. Galdi, A. Alù, and N. Engheta, “Nonlocal transformation optics,” Phys. Rev. Lett. 108, 063902 (2012).

[Crossref]

G. Castaldi, I. Gallina, V. Galdi, A. Alù, and N. Engheta, “Transformation-optics generalization of tunnelling effects in bi-layers made of paired pseudo-epsilon-negative/mu-negative media,” J. Opt. 13, 024011 (2011).

[Crossref]

A. Leviyev, B. Stein, T. Galfsky, H. Krishnamoorthy, I. L. Kuskovsky, V. Menon, and A. B. Khanikaev, “Nonreciprocity and one-way topological transitions in hyperbolic metamaterials,” arXiv:1505.05438 (2015).

G. Castaldi, I. Gallina, V. Galdi, A. Alù, and N. Engheta, “Transformation-optics generalization of tunnelling effects in bi-layers made of paired pseudo-epsilon-negative/mu-negative media,” J. Opt. 13, 024011 (2011).

[Crossref]

L. Sun, Z. Li, T. S. Luk, X. Yang, and J. Gao, “Nonlocal effective medium analysis in symmetric metal-dielectric multilayer metamaterials,” Phys. Rev. B 91, 195147 (2015).

[Crossref]

L. Sun, J. Gao, and X. Yang, “Giant optical nonlocality near the Dirac point in metal-dielectric multilayer metamaterials,” Opt. Express 21, 21542–21555 (2013).

[Crossref]

T. Geng, S. Zhuang, J. Gao, and X. Yang, “Nonlocal effective medium approximation for metallic nanorod metamaterials,” arXiv:1506.00727 (2015).

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, “Two-dimensional gas of massless Dirac fermions in graphene,” Nature 438, 197–200 (2005).

[Crossref]

T. Geng, S. Zhuang, J. Gao, and X. Yang, “Nonlocal effective medium approximation for metallic nanorod metamaterials,” arXiv:1506.00727 (2015).

V. M. Agranovich and V. Ginzburg, Crystal Optics with Spatial Dispersion, and Excitons, Springer Series in Solid-State Sciences (Springer, 2013).

M. A. Gorlach and P. A. Belov, “Nonlocality in uniaxially polarizable media,” arXiv:1505.01064 (2015).

G. A. Wurtz, R. Pollard, W. Hendren, G. Wiederrecht, D. Gosztola, V. Podolskiy, and A. V. Zayats, “Designed ultrafast optical nonlinearity in a plasmonic nanorod metamaterial enhanced by nonlocality,” Nat. Nanotechnol. 6, 107–111 (2011).

[Crossref]

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, “Two-dimensional gas of massless Dirac fermions in graphene,” Nature 438, 197–200 (2005).

[Crossref]

F. D. M. Haldane and S. Raghu, “Possible realization of directional optical waveguides in photonic crystals with broken time-reversal symmetry,” Phys. Rev. Lett. 100, 013904 (2008).

[Crossref]

X. Huang, Y. Lai, Z. H. Hang, H. Zheng, and C. T. Chan, “Dirac cones induced by accidental degeneracy in photonic crystals and zero-refractive-index materials,” Nat. Mater. 10, 582–586 (2011).

[Crossref]

X. Lin, Y. Xu, B. Zhang, R. Hao, H. Chen, and E. Li, “Unidirectional surface plasmons in nonreciprocal graphene,” New J. Phys. 15, 113003 (2013).

[Crossref]

R. L. Haupt and D. H. Werner, Genetic Algorithms in Electromagnetics (Wiley, 2007).

G. A. Wurtz, R. Pollard, W. Hendren, G. Wiederrecht, D. Gosztola, V. Podolskiy, and A. V. Zayats, “Designed ultrafast optical nonlinearity in a plasmonic nanorod metamaterial enhanced by nonlocality,” Nat. Nanotechnol. 6, 107–111 (2011).

[Crossref]

X. Huang, Y. Lai, Z. H. Hang, H. Zheng, and C. T. Chan, “Dirac cones induced by accidental degeneracy in photonic crystals and zero-refractive-index materials,” Nat. Mater. 10, 582–586 (2011).

[Crossref]

A. Poddubny, I. Iorsh, P. Belov, and Y. Kivshar, “Hyperbolic metamaterials,” Nat. Photonics 7, 948–957 (2013).

[Crossref]

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, “Two-dimensional gas of massless Dirac fermions in graphene,” Nature 438, 197–200 (2005).

[Crossref]

Z. Wang, Y. Chong, J. Joannopoulos, and M. Soljačić, “Observation of unidirectional backscattering-immune topological electromagnetic states,” Nature 461, 772–775 (2009).

[Crossref]

M. Kadic, T. Bückmann, R. Schittny, and M. Wegener, “Metamaterials beyond electromagnetism,” Rep. Progress Phys. 76, 126501 (2013).

[Crossref]

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, “Two-dimensional gas of massless Dirac fermions in graphene,” Nature 438, 197–200 (2005).

[Crossref]

L. D. Landau, J. S. Bell, J. Kearsley, L. P. Pitaevskii, E. M. Lifshitz, and J. B. Sykes, Electrodynamics of Continuous Media, Vol. 8 of Course of Theoretical Physics (Elsevier, 1984).

A. B. Khanikaev and M. J. Steel, “Low-symmetry magnetic photonic crystals for nonreciprocal and unidirectional devices,” Opt. Express 17, 5265–5272 (2009).

[Crossref]

A. Leviyev, B. Stein, T. Galfsky, H. Krishnamoorthy, I. L. Kuskovsky, V. Menon, and A. B. Khanikaev, “Nonreciprocity and one-way topological transitions in hyperbolic metamaterials,” arXiv:1505.05438 (2015).

S. M. Mikki and A. A. Kishk, “Nonlocal electromagnetic media: a paradigm for material engineering,” in Passive Microwave Components and Antennas, V. Zhurbenko, ed. (InTech, 2010), Chap. 4, pp. 73–94.

A. Poddubny, I. Iorsh, P. Belov, and Y. Kivshar, “Hyperbolic metamaterials,” Nat. Photonics 7, 948–957 (2013).

[Crossref]

A. V. Chebykin, A. A. Orlov, C. R. Simovski, Y. S. Kivshar, and P. A. Belov, “Nonlocal effective parameters of multilayered metal-dielectric metamaterials,” Phys. Rev. B 86, 115420 (2012).

[Crossref]

A. V. Chebykin, A. A. Orlov, A. V. Vozianova, S. I. Maslovski, Y. S. Kivshar, and P. A. Belov, “Nonlocal effective medium model for multilayered metal-dielectric metamaterials,” Phys. Rev. B 84, 115438 (2011).

[Crossref]

A. Leviyev, B. Stein, T. Galfsky, H. Krishnamoorthy, I. L. Kuskovsky, V. Menon, and A. B. Khanikaev, “Nonreciprocity and one-way topological transitions in hyperbolic metamaterials,” arXiv:1505.05438 (2015).

A. Leviyev, B. Stein, T. Galfsky, H. Krishnamoorthy, I. L. Kuskovsky, V. Menon, and A. B. Khanikaev, “Nonreciprocity and one-way topological transitions in hyperbolic metamaterials,” arXiv:1505.05438 (2015).

D. H. Werner and D. H. Kwon, Transformation Electromagnetics and Metamaterials: Fundamental Principles and Applications (Springer, 2013).

X. Huang, Y. Lai, Z. H. Hang, H. Zheng, and C. T. Chan, “Dirac cones induced by accidental degeneracy in photonic crystals and zero-refractive-index materials,” Nat. Mater. 10, 582–586 (2011).

[Crossref]

L. D. Landau, J. S. Bell, J. Kearsley, L. P. Pitaevskii, E. M. Lifshitz, and J. B. Sykes, Electrodynamics of Continuous Media, Vol. 8 of Course of Theoretical Physics (Elsevier, 1984).

U. Leonhardt, “Optical conformal mapping,” Science 312, 1777–1780 (2006).

[Crossref]

A. Leviyev, B. Stein, T. Galfsky, H. Krishnamoorthy, I. L. Kuskovsky, V. Menon, and A. B. Khanikaev, “Nonreciprocity and one-way topological transitions in hyperbolic metamaterials,” arXiv:1505.05438 (2015).

X. Lin, Y. Xu, B. Zhang, R. Hao, H. Chen, and E. Li, “Unidirectional surface plasmons in nonreciprocal graphene,” New J. Phys. 15, 113003 (2013).

[Crossref]

L. Sun, Z. Li, T. S. Luk, X. Yang, and J. Gao, “Nonlocal effective medium analysis in symmetric metal-dielectric multilayer metamaterials,” Phys. Rev. B 91, 195147 (2015).

[Crossref]

L. D. Landau, J. S. Bell, J. Kearsley, L. P. Pitaevskii, E. M. Lifshitz, and J. B. Sykes, Electrodynamics of Continuous Media, Vol. 8 of Course of Theoretical Physics (Elsevier, 1984).

X. Lin, Y. Xu, B. Zhang, R. Hao, H. Chen, and E. Li, “Unidirectional surface plasmons in nonreciprocal graphene,” New J. Phys. 15, 113003 (2013).

[Crossref]

E. H. Lock, “The properties of isofrequency dependences and the laws of geometrical optics,” Phys. Usp. 51, 375–394 (2008).

[Crossref]

L. Sun, Z. Li, T. S. Luk, X. Yang, and J. Gao, “Nonlocal effective medium analysis in symmetric metal-dielectric multilayer metamaterials,” Phys. Rev. B 91, 195147 (2015).

[Crossref]

O. Peleg, G. Bartal, B. Freedman, O. Manela, M. Segev, and D. N. Christodoulides, “Conical diffraction and gap solitons in honeycomb photonic lattices,” Phys. Rev. Lett. 98, 103901 (2007).

[Crossref]

A. V. Chebykin, A. A. Orlov, A. V. Vozianova, S. I. Maslovski, Y. S. Kivshar, and P. A. Belov, “Nonlocal effective medium model for multilayered metal-dielectric metamaterials,” Phys. Rev. B 84, 115438 (2011).

[Crossref]

A. Leviyev, B. Stein, T. Galfsky, H. Krishnamoorthy, I. L. Kuskovsky, V. Menon, and A. B. Khanikaev, “Nonreciprocity and one-way topological transitions in hyperbolic metamaterials,” arXiv:1505.05438 (2015).

S. M. Mikki and A. A. Kishk, “Nonlocal electromagnetic media: a paradigm for material engineering,” in Passive Microwave Components and Antennas, V. Zhurbenko, ed. (InTech, 2010), Chap. 4, pp. 73–94.

M. Moccia, G. Castaldi, S. Savo, Y. Sato, and V. Galdi, “Independent manipulation of heat and electrical current via bifunctional metamaterials,” Phys. Rev. X 4, 021025 (2014).

A. Silva, F. Monticone, G. Castaldi, V. Galdi, A. Alù, and N. Engheta, “Performing mathematical operations with metamaterials,” Science 343, 160–163 (2014).

[Crossref]

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, “Two-dimensional gas of massless Dirac fermions in graphene,” Nature 438, 197–200 (2005).

[Crossref]

S. H. Nam, J. Zhou, A. J. Taylor, and A. Efimov, “Dirac dynamics in one-dimensional graphene-like plasmonic crystals: pseudo-spin, chirality, and diffraction anomaly,” Opt. Express 18, 25329–25338 (2010).

[Crossref]

S. H. Nam, A. J. Taylor, and A. Efimov, “Diabolical point and conical-like diffraction in periodic plasmonic nanostructures,” Opt. Express 18, 10120–10126 (2010).

[Crossref]

S. A. Tretyakov, I. S. Nefedov, and P. Alitalo, “Generalized field-transforming metamaterials,” New J. Phys. 10, 115028 (2008).

[Crossref]

Y. P. Bliokh, V. Freilikher, and F. Nori, “Ballistic charge transport in graphene and light propagation in periodic dielectric structures with metamaterials: a comparative study,” Phys. Rev. B 87, 245134 (2013).

[Crossref]

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, “Two-dimensional gas of massless Dirac fermions in graphene,” Nature 438, 197–200 (2005).

[Crossref]

T. Ochiai and M. Onoda, “Photonic analog of graphene model and its extension: Dirac cone, symmetry, and edge states,” Phys. Rev. B 80, 155103 (2009).

[Crossref]

T. Ochiai and M. Onoda, “Photonic analog of graphene model and its extension: Dirac cone, symmetry, and edge states,” Phys. Rev. B 80, 155103 (2009).

[Crossref]

A. V. Chebykin, A. A. Orlov, C. R. Simovski, Y. S. Kivshar, and P. A. Belov, “Nonlocal effective parameters of multilayered metal-dielectric metamaterials,” Phys. Rev. B 86, 115420 (2012).

[Crossref]

A. V. Chebykin, A. A. Orlov, A. V. Vozianova, S. I. Maslovski, Y. S. Kivshar, and P. A. Belov, “Nonlocal effective medium model for multilayered metal-dielectric metamaterials,” Phys. Rev. B 84, 115438 (2011).

[Crossref]

O. Peleg, G. Bartal, B. Freedman, O. Manela, M. Segev, and D. N. Christodoulides, “Conical diffraction and gap solitons in honeycomb photonic lattices,” Phys. Rev. Lett. 98, 103901 (2007).

[Crossref]

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312, 1780–1782 (2006).

[Crossref]

L. D. Landau, J. S. Bell, J. Kearsley, L. P. Pitaevskii, E. M. Lifshitz, and J. B. Sykes, Electrodynamics of Continuous Media, Vol. 8 of Course of Theoretical Physics (Elsevier, 1984).

A. Poddubny, I. Iorsh, P. Belov, and Y. Kivshar, “Hyperbolic metamaterials,” Nat. Photonics 7, 948–957 (2013).

[Crossref]

G. A. Wurtz, R. Pollard, W. Hendren, G. Wiederrecht, D. Gosztola, V. Podolskiy, and A. V. Zayats, “Designed ultrafast optical nonlinearity in a plasmonic nanorod metamaterial enhanced by nonlocality,” Nat. Nanotechnol. 6, 107–111 (2011).

[Crossref]

B. M. Wells, A. V. Zayats, and V. A. Podolskiy, “Nonlocal optics of plasmonic nanowire metamaterials,” Phys. Rev. B 89, 035111 (2014).

[Crossref]

J. Elser, V. A. Podolskiy, I. Salakhutdinov, and I. Avrutsky, “Nonlocal effects in effective-medium response of nanolayered metamaterials,” Appl. Phys. Lett. 90, 191109 (2007).

[Crossref]

G. A. Wurtz, R. Pollard, W. Hendren, G. Wiederrecht, D. Gosztola, V. Podolskiy, and A. V. Zayats, “Designed ultrafast optical nonlinearity in a plasmonic nanorod metamaterial enhanced by nonlocality,” Nat. Nanotechnol. 6, 107–111 (2011).

[Crossref]

B.-I. Popa and S. A. Cummer, “Complex coordinates in transformation optics,” Phys. Rev. A 84, 063837 (2011).

[Crossref]

F. D. M. Haldane and S. Raghu, “Possible realization of directional optical waveguides in photonic crystals with broken time-reversal symmetry,” Phys. Rev. Lett. 100, 013904 (2008).

[Crossref]

A. Ciattoni and C. Rizza, “Nonlocal homogenization theory in metamaterials: effective electromagnetic spatial dispersion and artificial chirality,” Phys. Rev. B 91, 184207 (2015).

[Crossref]

J. Elser, V. A. Podolskiy, I. Salakhutdinov, and I. Avrutsky, “Nonlocal effects in effective-medium response of nanolayered metamaterials,” Appl. Phys. Lett. 90, 191109 (2007).

[Crossref]

M. Moccia, G. Castaldi, S. Savo, Y. Sato, and V. Galdi, “Independent manipulation of heat and electrical current via bifunctional metamaterials,” Phys. Rev. X 4, 021025 (2014).

M. Moccia, G. Castaldi, S. Savo, Y. Sato, and V. Galdi, “Independent manipulation of heat and electrical current via bifunctional metamaterials,” Phys. Rev. X 4, 021025 (2014).

G. Castaldi, S. Savoia, V. Galdi, A. Alù, and N. Engheta, “PT metamaterials via complex-coordinate transformation optics,” Phys. Rev. Lett. 110, 173901 (2013).

[Crossref]

M. Kadic, T. Bückmann, R. Schittny, and M. Wegener, “Metamaterials beyond electromagnetism,” Rep. Progress Phys. 76, 126501 (2013).

[Crossref]

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312, 1780–1782 (2006).

[Crossref]

O. Peleg, G. Bartal, B. Freedman, O. Manela, M. Segev, and D. N. Christodoulides, “Conical diffraction and gap solitons in honeycomb photonic lattices,” Phys. Rev. Lett. 98, 103901 (2007).

[Crossref]

R. A. Sepkhanov, Y. B. Bazaliy, and C. W. J. Beenakker, “Extremal transmission at the Dirac point of a photonic band structure,” Phys. Rev. A 75, 063813 (2007).

[Crossref]

A. Silva, F. Monticone, G. Castaldi, V. Galdi, A. Alù, and N. Engheta, “Performing mathematical operations with metamaterials,” Science 343, 160–163 (2014).

[Crossref]

M. G. Silveirinha, “Time domain homogenization of metamaterials,” Phys. Rev. B 83, 165104 (2011).

[Crossref]

M. G. Silveirinha, “Generalized Lorentz-Lorenz formulas for microstructured materials,” Phys. Rev. B 76, 245117 (2007).

[Crossref]

A. V. Chebykin, A. A. Orlov, C. R. Simovski, Y. S. Kivshar, and P. A. Belov, “Nonlocal effective parameters of multilayered metal-dielectric metamaterials,” Phys. Rev. B 86, 115420 (2012).

[Crossref]

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312, 1780–1782 (2006).

[Crossref]

Z. Wang, Y. Chong, J. Joannopoulos, and M. Soljačić, “Observation of unidirectional backscattering-immune topological electromagnetic states,” Nature 461, 772–775 (2009).

[Crossref]

A. Leviyev, B. Stein, T. Galfsky, H. Krishnamoorthy, I. L. Kuskovsky, V. Menon, and A. B. Khanikaev, “Nonreciprocity and one-way topological transitions in hyperbolic metamaterials,” arXiv:1505.05438 (2015).

L. Sun, Z. Li, T. S. Luk, X. Yang, and J. Gao, “Nonlocal effective medium analysis in symmetric metal-dielectric multilayer metamaterials,” Phys. Rev. B 91, 195147 (2015).

[Crossref]

L. Sun, J. Gao, and X. Yang, “Giant optical nonlocality near the Dirac point in metal-dielectric multilayer metamaterials,” Opt. Express 21, 21542–21555 (2013).

[Crossref]

L. D. Landau, J. S. Bell, J. Kearsley, L. P. Pitaevskii, E. M. Lifshitz, and J. B. Sykes, Electrodynamics of Continuous Media, Vol. 8 of Course of Theoretical Physics (Elsevier, 1984).

S. H. Nam, J. Zhou, A. J. Taylor, and A. Efimov, “Dirac dynamics in one-dimensional graphene-like plasmonic crystals: pseudo-spin, chirality, and diffraction anomaly,” Opt. Express 18, 25329–25338 (2010).

[Crossref]

S. H. Nam, A. J. Taylor, and A. Efimov, “Diabolical point and conical-like diffraction in periodic plasmonic nanostructures,” Opt. Express 18, 10120–10126 (2010).

[Crossref]

R. T. Thompson, S. A. Cummer, and J. Frauendiener, “A completely covariant approach to transformation optics,” J. Opt. 13, 024008 (2011).

[Crossref]

S. A. Cummer and R. T. Thompson, “Frequency conversion by exploiting time in transformation optics,” J. Opt. 13, 024007 (2011).

[Crossref]

L. Bergamin, P. Alitalo, and S. A. Tretyakov, “Nonlinear transformation optics and engineering of the Kerr effect,” Phys. Rev. B 84, 205103 (2011).

[Crossref]

S. A. Tretyakov, I. S. Nefedov, and P. Alitalo, “Generalized field-transforming metamaterials,” New J. Phys. 10, 115028 (2008).

[Crossref]

Z. Yu, G. Veronis, Z. Wang, and S. Fan, “One-way electromagnetic waveguide formed at the interface between a plasmonic metal under a static magnetic field and a photonic crystal,” Phys. Rev. Lett. 100, 023902 (2008).

[Crossref]

A. Figotin and I. Vitebskiy, “Slow wave phenomena in photonic crystals,” Laser Photon. Rev. 5, 201–213 (2011).

[Crossref]

A. Figotin and I. Vitebskiy, “Electromagnetic unidirectionality in magnetic photonic crystals,” Phys. Rev. B 67, 165210 (2003).

[Crossref]

A. V. Chebykin, A. A. Orlov, A. V. Vozianova, S. I. Maslovski, Y. S. Kivshar, and P. A. Belov, “Nonlocal effective medium model for multilayered metal-dielectric metamaterials,” Phys. Rev. B 84, 115438 (2011).

[Crossref]

Z. Wang, Y. Chong, J. Joannopoulos, and M. Soljačić, “Observation of unidirectional backscattering-immune topological electromagnetic states,” Nature 461, 772–775 (2009).

[Crossref]

Z. Yu, G. Veronis, Z. Wang, and S. Fan, “One-way electromagnetic waveguide formed at the interface between a plasmonic metal under a static magnetic field and a photonic crystal,” Phys. Rev. Lett. 100, 023902 (2008).

[Crossref]

M. Kadic, T. Bückmann, R. Schittny, and M. Wegener, “Metamaterials beyond electromagnetism,” Rep. Progress Phys. 76, 126501 (2013).

[Crossref]

B. M. Wells, A. V. Zayats, and V. A. Podolskiy, “Nonlocal optics of plasmonic nanowire metamaterials,” Phys. Rev. B 89, 035111 (2014).

[Crossref]

D. H. Werner and D. H. Kwon, Transformation Electromagnetics and Metamaterials: Fundamental Principles and Applications (Springer, 2013).

R. L. Haupt and D. H. Werner, Genetic Algorithms in Electromagnetics (Wiley, 2007).

G. A. Wurtz, R. Pollard, W. Hendren, G. Wiederrecht, D. Gosztola, V. Podolskiy, and A. V. Zayats, “Designed ultrafast optical nonlinearity in a plasmonic nanorod metamaterial enhanced by nonlocality,” Nat. Nanotechnol. 6, 107–111 (2011).

[Crossref]

G. A. Wurtz, R. Pollard, W. Hendren, G. Wiederrecht, D. Gosztola, V. Podolskiy, and A. V. Zayats, “Designed ultrafast optical nonlinearity in a plasmonic nanorod metamaterial enhanced by nonlocality,” Nat. Nanotechnol. 6, 107–111 (2011).

[Crossref]

X. Lin, Y. Xu, B. Zhang, R. Hao, H. Chen, and E. Li, “Unidirectional surface plasmons in nonreciprocal graphene,” New J. Phys. 15, 113003 (2013).

[Crossref]

L. Sun, Z. Li, T. S. Luk, X. Yang, and J. Gao, “Nonlocal effective medium analysis in symmetric metal-dielectric multilayer metamaterials,” Phys. Rev. B 91, 195147 (2015).

[Crossref]

L. Sun, J. Gao, and X. Yang, “Giant optical nonlocality near the Dirac point in metal-dielectric multilayer metamaterials,” Opt. Express 21, 21542–21555 (2013).

[Crossref]

T. Geng, S. Zhuang, J. Gao, and X. Yang, “Nonlocal effective medium approximation for metallic nanorod metamaterials,” arXiv:1506.00727 (2015).

Z. Yu, G. Veronis, Z. Wang, and S. Fan, “One-way electromagnetic waveguide formed at the interface between a plasmonic metal under a static magnetic field and a photonic crystal,” Phys. Rev. Lett. 100, 023902 (2008).

[Crossref]

B. M. Wells, A. V. Zayats, and V. A. Podolskiy, “Nonlocal optics of plasmonic nanowire metamaterials,” Phys. Rev. B 89, 035111 (2014).

[Crossref]

G. A. Wurtz, R. Pollard, W. Hendren, G. Wiederrecht, D. Gosztola, V. Podolskiy, and A. V. Zayats, “Designed ultrafast optical nonlinearity in a plasmonic nanorod metamaterial enhanced by nonlocality,” Nat. Nanotechnol. 6, 107–111 (2011).

[Crossref]

X. Lin, Y. Xu, B. Zhang, R. Hao, H. Chen, and E. Li, “Unidirectional surface plasmons in nonreciprocal graphene,” New J. Phys. 15, 113003 (2013).

[Crossref]

X. Zhang, “Observing Zitterbewegung for photons near the Dirac point of a two-dimensional photonic crystal,” Phys. Rev. Lett. 100, 113903 (2008).

[Crossref]

X. Huang, Y. Lai, Z. H. Hang, H. Zheng, and C. T. Chan, “Dirac cones induced by accidental degeneracy in photonic crystals and zero-refractive-index materials,” Nat. Mater. 10, 582–586 (2011).

[Crossref]

T. Geng, S. Zhuang, J. Gao, and X. Yang, “Nonlocal effective medium approximation for metallic nanorod metamaterials,” arXiv:1506.00727 (2015).

J. Elser, V. A. Podolskiy, I. Salakhutdinov, and I. Avrutsky, “Nonlocal effects in effective-medium response of nanolayered metamaterials,” Appl. Phys. Lett. 90, 191109 (2007).

[Crossref]

Z. Awan, “Nonlocal effective parameters of a coated sphere medium,” J. Mod. Opt. 62, 528–535 (2014).

[Crossref]

S. A. Cummer and R. T. Thompson, “Frequency conversion by exploiting time in transformation optics,” J. Opt. 13, 024007 (2011).

[Crossref]

G. Castaldi, I. Gallina, V. Galdi, A. Alù, and N. Engheta, “Transformation-optics generalization of tunnelling effects in bi-layers made of paired pseudo-epsilon-negative/mu-negative media,” J. Opt. 13, 024011 (2011).

[Crossref]

R. T. Thompson, S. A. Cummer, and J. Frauendiener, “A completely covariant approach to transformation optics,” J. Opt. 13, 024008 (2011).

[Crossref]

A. Figotin and I. Vitebskiy, “Slow wave phenomena in photonic crystals,” Laser Photon. Rev. 5, 201–213 (2011).

[Crossref]

A. Davoyan and N. Engheta, “Electrically controlled one-way photon flow in plasmonic nanostructures,” Nat. Commun. 5, 5250 (2014).

[Crossref]

X. Huang, Y. Lai, Z. H. Hang, H. Zheng, and C. T. Chan, “Dirac cones induced by accidental degeneracy in photonic crystals and zero-refractive-index materials,” Nat. Mater. 10, 582–586 (2011).

[Crossref]

G. A. Wurtz, R. Pollard, W. Hendren, G. Wiederrecht, D. Gosztola, V. Podolskiy, and A. V. Zayats, “Designed ultrafast optical nonlinearity in a plasmonic nanorod metamaterial enhanced by nonlocality,” Nat. Nanotechnol. 6, 107–111 (2011).

[Crossref]

A. Poddubny, I. Iorsh, P. Belov, and Y. Kivshar, “Hyperbolic metamaterials,” Nat. Photonics 7, 948–957 (2013).

[Crossref]

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, “Two-dimensional gas of massless Dirac fermions in graphene,” Nature 438, 197–200 (2005).

[Crossref]

Z. Wang, Y. Chong, J. Joannopoulos, and M. Soljačić, “Observation of unidirectional backscattering-immune topological electromagnetic states,” Nature 461, 772–775 (2009).

[Crossref]

X. Lin, Y. Xu, B. Zhang, R. Hao, H. Chen, and E. Li, “Unidirectional surface plasmons in nonreciprocal graphene,” New J. Phys. 15, 113003 (2013).

[Crossref]

S. A. Tretyakov, I. S. Nefedov, and P. Alitalo, “Generalized field-transforming metamaterials,” New J. Phys. 10, 115028 (2008).

[Crossref]

R.-L. Chern, “Spatial dispersion and nonlocal effective permittivity for periodic layered metamaterials,” Opt. Express 21, 16514–16527 (2013).

[Crossref]

A. B. Khanikaev and M. J. Steel, “Low-symmetry magnetic photonic crystals for nonreciprocal and unidirectional devices,” Opt. Express 17, 5265–5272 (2009).

[Crossref]

O. Paul and M. Rahm, “Covariant description of transformation optics in nonlinear media,” Opt. Express 20, 8982–8997 (2012).

[Crossref]

S. H. Nam, A. J. Taylor, and A. Efimov, “Diabolical point and conical-like diffraction in periodic plasmonic nanostructures,” Opt. Express 18, 10120–10126 (2010).

[Crossref]

S. H. Nam, J. Zhou, A. J. Taylor, and A. Efimov, “Dirac dynamics in one-dimensional graphene-like plasmonic crystals: pseudo-spin, chirality, and diffraction anomaly,” Opt. Express 18, 25329–25338 (2010).

[Crossref]

L. Sun, J. Gao, and X. Yang, “Giant optical nonlocality near the Dirac point in metal-dielectric multilayer metamaterials,” Opt. Express 21, 21542–21555 (2013).

[Crossref]

L.-G. Wang, Z.-G. Wang, J.-X. Zhang, and S.-Y. Zhu, “Realization of Dirac point with double cones in optics,” Opt. Lett. 34, 1510–1512 (2009).

[Crossref]

U. K. Chettiar, A. R. Davoyan, and N. Engheta, “Hotspots from nonreciprocal surface waves,” Opt. Lett. 39, 1760–1763 (2014).

[Crossref]

R. A. Sepkhanov, Y. B. Bazaliy, and C. W. J. Beenakker, “Extremal transmission at the Dirac point of a photonic band structure,” Phys. Rev. A 75, 063813 (2007).

[Crossref]

B.-I. Popa and S. A. Cummer, “Complex coordinates in transformation optics,” Phys. Rev. A 84, 063837 (2011).

[Crossref]

L. Bergamin, “Generalized transformation optics from triple spacetime metamaterials,” Phys. Rev. A 78, 043825 (2008).

[Crossref]

L. Bergamin, P. Alitalo, and S. A. Tretyakov, “Nonlinear transformation optics and engineering of the Kerr effect,” Phys. Rev. B 84, 205103 (2011).

[Crossref]

B. M. Wells, A. V. Zayats, and V. A. Podolskiy, “Nonlocal optics of plasmonic nanowire metamaterials,” Phys. Rev. B 89, 035111 (2014).

[Crossref]

A. Ciattoni and C. Rizza, “Nonlocal homogenization theory in metamaterials: effective electromagnetic spatial dispersion and artificial chirality,” Phys. Rev. B 91, 184207 (2015).

[Crossref]

L. Sun, Z. Li, T. S. Luk, X. Yang, and J. Gao, “Nonlocal effective medium analysis in symmetric metal-dielectric multilayer metamaterials,” Phys. Rev. B 91, 195147 (2015).

[Crossref]

A. Figotin and I. Vitebskiy, “Electromagnetic unidirectionality in magnetic photonic crystals,” Phys. Rev. B 67, 165210 (2003).

[Crossref]

M. G. Silveirinha, “Generalized Lorentz-Lorenz formulas for microstructured materials,” Phys. Rev. B 76, 245117 (2007).

[Crossref]

M. G. Silveirinha, “Time domain homogenization of metamaterials,” Phys. Rev. B 83, 165104 (2011).

[Crossref]

A. V. Chebykin, A. A. Orlov, A. V. Vozianova, S. I. Maslovski, Y. S. Kivshar, and P. A. Belov, “Nonlocal effective medium model for multilayered metal-dielectric metamaterials,” Phys. Rev. B 84, 115438 (2011).

[Crossref]

A. V. Chebykin, A. A. Orlov, C. R. Simovski, Y. S. Kivshar, and P. A. Belov, “Nonlocal effective parameters of multilayered metal-dielectric metamaterials,” Phys. Rev. B 86, 115420 (2012).

[Crossref]

Y. P. Bliokh, V. Freilikher, and F. Nori, “Ballistic charge transport in graphene and light propagation in periodic dielectric structures with metamaterials: a comparative study,” Phys. Rev. B 87, 245134 (2013).

[Crossref]

T. Ochiai and M. Onoda, “Photonic analog of graphene model and its extension: Dirac cone, symmetry, and edge states,” Phys. Rev. B 80, 155103 (2009).

[Crossref]

O. Peleg, G. Bartal, B. Freedman, O. Manela, M. Segev, and D. N. Christodoulides, “Conical diffraction and gap solitons in honeycomb photonic lattices,” Phys. Rev. Lett. 98, 103901 (2007).

[Crossref]

F. D. M. Haldane and S. Raghu, “Possible realization of directional optical waveguides in photonic crystals with broken time-reversal symmetry,” Phys. Rev. Lett. 100, 013904 (2008).

[Crossref]

X. Zhang, “Observing Zitterbewegung for photons near the Dirac point of a two-dimensional photonic crystal,” Phys. Rev. Lett. 100, 113903 (2008).

[Crossref]

G. Castaldi, V. Galdi, A. Alù, and N. Engheta, “Nonlocal transformation optics,” Phys. Rev. Lett. 108, 063902 (2012).

[Crossref]

G. Castaldi, S. Savoia, V. Galdi, A. Alù, and N. Engheta, “PT metamaterials via complex-coordinate transformation optics,” Phys. Rev. Lett. 110, 173901 (2013).

[Crossref]

Z. Yu, G. Veronis, Z. Wang, and S. Fan, “One-way electromagnetic waveguide formed at the interface between a plasmonic metal under a static magnetic field and a photonic crystal,” Phys. Rev. Lett. 100, 023902 (2008).

[Crossref]

M. Moccia, G. Castaldi, S. Savo, Y. Sato, and V. Galdi, “Independent manipulation of heat and electrical current via bifunctional metamaterials,” Phys. Rev. X 4, 021025 (2014).

E. H. Lock, “The properties of isofrequency dependences and the laws of geometrical optics,” Phys. Usp. 51, 375–394 (2008).

[Crossref]

M. Kadic, T. Bückmann, R. Schittny, and M. Wegener, “Metamaterials beyond electromagnetism,” Rep. Progress Phys. 76, 126501 (2013).

[Crossref]

U. Leonhardt, “Optical conformal mapping,” Science 312, 1777–1780 (2006).

[Crossref]

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312, 1780–1782 (2006).

[Crossref]

A. Silva, F. Monticone, G. Castaldi, V. Galdi, A. Alù, and N. Engheta, “Performing mathematical operations with metamaterials,” Science 343, 160–163 (2014).

[Crossref]

M. A. Gorlach and P. A. Belov, “Nonlocality in uniaxially polarizable media,” arXiv:1505.01064 (2015).

T. Geng, S. Zhuang, J. Gao, and X. Yang, “Nonlocal effective medium approximation for metallic nanorod metamaterials,” arXiv:1506.00727 (2015).

D. H. Werner and D. H. Kwon, Transformation Electromagnetics and Metamaterials: Fundamental Principles and Applications (Springer, 2013).

L. D. Landau, J. S. Bell, J. Kearsley, L. P. Pitaevskii, E. M. Lifshitz, and J. B. Sykes, Electrodynamics of Continuous Media, Vol. 8 of Course of Theoretical Physics (Elsevier, 1984).

V. M. Agranovich and V. Ginzburg, Crystal Optics with Spatial Dispersion, and Excitons, Springer Series in Solid-State Sciences (Springer, 2013).

S. M. Mikki and A. A. Kishk, “Nonlocal electromagnetic media: a paradigm for material engineering,” in Passive Microwave Components and Antennas, V. Zhurbenko, ed. (InTech, 2010), Chap. 4, pp. 73–94.

A. Leviyev, B. Stein, T. Galfsky, H. Krishnamoorthy, I. L. Kuskovsky, V. Menon, and A. B. Khanikaev, “Nonreciprocity and one-way topological transitions in hyperbolic metamaterials,” arXiv:1505.05438 (2015).

R. L. Haupt and D. H. Werner, Genetic Algorithms in Electromagnetics (Wiley, 2007).