Abstract

Interaction between the polarization and spatial degrees of freedom of a light field has become a powerful tool to tailor the amplitude and phase of light beams. This usually implies the use of space-variant photonic elements involving sophisticated fabrication technologies. Here we report on the optical spin–orbit engineering of the intensity, phase, and polarization structure of Bessel light beams using a homogeneous birefringent axicon. Various kinds of spatially modulated free-space light fields are predicted depending on the nature of the incident light field impinging on the birefringent axicon. In particular, we present the generation of bottle beam arrays, hollow beams with periodic modulation of the core size, and hollow needle beams with periodic modulation of the orbital angular momentum. An experimental attempt is also reported. The proposed structured light fields may find applications in long-distance optical manipulation endowed with self-healing features, periodic atomic waveguides, contactless handling of high aspect ratio micro-objects, and optical shearing of matter.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Extreme spin-orbit coupling in crystal-traveling paraxial beams

Tatyana A. Fadeyeva and Alexander V. Volyar
J. Opt. Soc. Am. A 27(3) 381-389 (2010)

Poynting vector and orbital angular momentum density of superpositions of Bessel beams

Igor A. Litvin, Angela Dudley, and Andrew Forbes
Opt. Express 19(18) 16760-16771 (2011)

Free-space optical communication link with shape-invariant orbital angular momentum Bessel beams

Nokwazi Mphuthi, Lucas Gailele, Igor Litvin, Angela Dudley, Roelf Botha, and Andrew Forbes
Appl. Opt. 58(16) 4258-4264 (2019)

References

  • View by:
  • |
  • |
  • |

  1. K. Dholakia and T. Čižmár, “Shaping the future of manipulation,” Nat. Photon. 5, 335–342 (2011).
    [Crossref]
  2. M. Woerdemann, C. Alpmann, M. Esseling, and C. Denz, “Advanced optical trapping by complex beam shaping,” Laser Photon. Rev. 7, 839–854 (2013).
    [Crossref]
  3. R. Barboza, U. Bortolozzo, M. G. Clerc, S. Residori, and E. Vidal-Henriquez, “Optical vortex induction via light–matter interaction in liquid-crystal media,” Adv. Opt. Photon. 7, 635–683 (2015).
    [Crossref]
  4. A. Volyar, T. Fadeyeva, and Y. A. Egorov, “Vector singularities of Gaussian beams in uniaxial crystals: optical vortex generation,” Tech. Phys. Lett. 28, 958–961 (2002).
    [Crossref]
  5. A. Volyar and T. Fadeyeva, “Generation of singular beams in uniaxial crystals,” Opt. Spectrosc. 94, 235–244 (2003).
    [Crossref]
  6. A. Ciattoni, G. Cincotti, and C. Palma, “Circularly polarized beams and vortex generation in uniaxial media,” J. Opt. Soc. Am. A 20, 163–171 (2003).
    [Crossref]
  7. T. King, W. Hogervorst, N. Kazak, N. Khilo, and A. Ryzhevich, “Formation of higher-order Bessel light beams in biaxial crystals,” Opt. Commun. 187, 407–414 (2001).
    [Crossref]
  8. N. A. Khilo, E. S. Petrova, and A. A. Ryzhevich, “Transformation of the order of Bessel beams in uniaxial crystals,” Quantum Electron. 31, 85–89 (2001).
    [Crossref]
  9. T. A. Fadeyeva, V. G. Shvedov, Y. V. Izdebskaya, A. V. Volyar, E. Brasselet, D. N. Neshev, A. S. Desyatnikov, W. Krolikowski, and Y. S. Kivshar, “Spatially engineered polarization states and optical vortices in uniaxial crystals,” Opt. Express 18, 10848 (2010).
    [Crossref]
  10. S. Khonina and S. Kharitonov, “Comparative investigation of nonparaxial mode propagation along the axis of uniaxial crystal,” J. Mod. Opt. 62, 125–134 (2015).
    [Crossref]
  11. S. Chavez-Cerda, E. Tepichin, M. A. Meneses-Nava, G. Ramirez, and J. M. Hickmann, “Experimental observation of interfering Bessel beams,” Opt. Express 3, 524–529 (1998).
    [Crossref]
  12. T. Cizmar, V. Garces-Chavez, K. Dholakia, and P. Zemanek, “Optical conveyor belt for delivery of submicron objects,” Appl. Phys. Lett. 86, 174101 (2005).
    [Crossref]
  13. D. McGloin, G. Spalding, H. Melville, W. Sibbett, and K. Dholakia, “Three-dimensional arrays of optical bottle beams,” Opt. Commun. 225, 215–222 (2003).
    [Crossref]
  14. P. Muys, T. Moser, and T. Feurer, “Polarization eigenstates of an axially symmetric laser beam in a c-cut uniaxial crystal,” J. Opt. Soc. Am. B 24, 2627–2631 (2007).
    [Crossref]
  15. E. Wolf, “Electromagnetic diffraction in optical systems. I. An integral representation of the image field,” Proc. R. Soc. Lond. A 253, 349–357 (1959).
    [Crossref]
  16. E. Wolf and Y. Li, “Conditions for the validity of the Debye integral representation of focused fields,” Proc. R. Soc. Lond. A 39, 205–210 (1981).
  17. B. Richards and E. Wolf, “Electromagnetic diffraction in optical systems. II. Structure of the image field in an aplanatic system,” Proc. R. Soc. Lond. A 253, 358–379 (1959).
    [Crossref]
  18. C. Loussert and E. Brasselet, “Efficient scalar and vectorial singular beam shaping using homogeneous anisotropic media,” Opt. Lett. 35, 7–9 (2010).
    [Crossref]
  19. E. Brasselet, Y. Izdebskaya, V. Shvedov, A. S. Desyatnikov, W. Krolikowski, and Y. S. Kivshar, “Dynamics of optical spin-orbit coupling in uniaxial crystals,” Opt. Lett. 34, 1021–1023 (2009).
    [Crossref]
  20. D. McGloin and K. Dholakia, “Bessel beams: diffraction in a new light,” Contemp. Phys. 46, 15–28 (2005).
    [Crossref]
  21. J. Arlt and M. J. Padgett, “Generation of a beam with a dark focus surrounded by regions of higher intensity: the optical bottle beam,” Opt. Lett. 25, 191–193 (2000).
    [Crossref]
  22. V. G. Shvedov, Y. V. Izdebskaya, A. V. Rode, A. Desyatnikov, W. Krolikowski, and Y. S. Kivshar, “Generation of optical bottle beams by incoherent white-light vortices,” Opt. Express 16, 20902–20907 (2008).
    [Crossref]
  23. V. G. Shvedov, C. Hnatovsky, N. Shostka, and W. Krolikowski, “Generation of vector bottle beams with a uniaxial crystal,” J. Opt. Soc. Am. B 30, 1–6 (2013).
    [Crossref]
  24. A. Turpin, V. Shvedov, C. Hnatovsky, Y. V. Loiko, J. Mompart, and W. Krolikowski, “Optical vault: a reconfigurable bottle beam based on conical refraction of light,” Opt. Express 21, 26335–26340 (2013).
    [Crossref]
  25. Y. V. Loiko, A. Turpin, T. K. Kalkandjiev, E. U. Rafailov, and J. Mompart, “Generating a three-dimensional dark focus from a single conically refracted light beam,” Opt. Lett. 38, 4648–4651 (2013).
    [Crossref]
  26. J. Arlt, V. Garces-Chavez, W. Sibbett, and K. Dholakia, “Optical micromanipulation using a Bessel light beam,” Opt. Commun. 197, 239–245 (2001).
    [Crossref]
  27. V. Garces-Chavez, D. McGloin, H. Melville, W. Sibbett, and K. Dholakia, “Simultaneous micromanipulation in multiple planes using a self-reconstructing light beam,” Nature 419, 145–147 (2002).
    [Crossref]
  28. V. G. Shvedov, A. S. Desyatnikov, A. V. Rode, W. Krolikowski, and Y. S. Kivshar, “Optical guiding of absorbing nanoclusters in air,” Opt. Express 17, 5743–5757 (2009).
    [Crossref]
  29. A. S. Desyatnikov, V. G. Shvedov, A. V. Rode, W. Krolikowski, and Y. S. Kivshar, “Photophoretic manipulation of absorbing aerosol particles with vortex beams: theory versus experiment,” Opt. Express 17, 8201–8211 (2009).
    [Crossref]
  30. J. Arlt, K. Dholakia, J. Soneson, and E. M. Wright, “Optical dipole traps and atomic waveguides based on Bessel light beams,” Opt. Commun. 63, 063602 (2001).
  31. M. S. Soskin, V. N. Gorshkov, M. V. Vasnetsov, J. T. Malos, and N. R. Heckenberg, “Topological charge and angular momentum of light beams carrying optical vortices,” Phys. Rev. A 56, 4064–4075 (1997).
    [Crossref]
  32. D. G. Grier, “A revolution in optical manipulation,” Nature 424, 810–816 (2003).
    [Crossref]
  33. N. B. Simpson, K. Dholakia, L. Allen, and M. J. Padgett, “Mechanical equivalence of spin and orbital angular momentum of light: an optical spanner,” Opt. Lett. 22, 52–54 (1997).
    [Crossref]
  34. J. Guck, R. Ananthakrishnan, H. Mahmood, T. J. Moon, C. C. Cunningham, and J. Kas, “The optical stretcher: a novel laser tool to micromanipulate cells,” Biophys. J. 81, 767–784 (2001).
    [Crossref]
  35. J. Xavier, R. Dasgupta, S. Ahlawat, J. Joseph, and P. K. Gupta, “Three dimensional optical twisters-driven helically stacked multi-layered microrotors,” Appl. Phys. Lett. 100, 121101 (2012).
    [Crossref]
  36. E. Brasselet, N. Murazawa, H. Misawa, and S. Juodkazis, “Optical vortices from liquid crystal droplets,” Phys. Rev. Lett. 103, 103903 (2009).
    [Crossref]
  37. K. Y. Bliokh, E. A. Ostrovskaya, M. A. Alonso, O. G. Rodríguez-Herrera, D. Lara, and C. Dainty, “Spin-to-orbital angular momentum conversion in focusing, scattering, and imaging systems,” Opt. Express 19, 26132–26149 (2011).
    [Crossref]

2015 (2)

S. Khonina and S. Kharitonov, “Comparative investigation of nonparaxial mode propagation along the axis of uniaxial crystal,” J. Mod. Opt. 62, 125–134 (2015).
[Crossref]

R. Barboza, U. Bortolozzo, M. G. Clerc, S. Residori, and E. Vidal-Henriquez, “Optical vortex induction via light–matter interaction in liquid-crystal media,” Adv. Opt. Photon. 7, 635–683 (2015).
[Crossref]

2013 (4)

2012 (1)

J. Xavier, R. Dasgupta, S. Ahlawat, J. Joseph, and P. K. Gupta, “Three dimensional optical twisters-driven helically stacked multi-layered microrotors,” Appl. Phys. Lett. 100, 121101 (2012).
[Crossref]

2011 (2)

2010 (2)

2009 (4)

2008 (1)

2007 (1)

2005 (2)

T. Cizmar, V. Garces-Chavez, K. Dholakia, and P. Zemanek, “Optical conveyor belt for delivery of submicron objects,” Appl. Phys. Lett. 86, 174101 (2005).
[Crossref]

D. McGloin and K. Dholakia, “Bessel beams: diffraction in a new light,” Contemp. Phys. 46, 15–28 (2005).
[Crossref]

2003 (4)

D. McGloin, G. Spalding, H. Melville, W. Sibbett, and K. Dholakia, “Three-dimensional arrays of optical bottle beams,” Opt. Commun. 225, 215–222 (2003).
[Crossref]

A. Volyar and T. Fadeyeva, “Generation of singular beams in uniaxial crystals,” Opt. Spectrosc. 94, 235–244 (2003).
[Crossref]

A. Ciattoni, G. Cincotti, and C. Palma, “Circularly polarized beams and vortex generation in uniaxial media,” J. Opt. Soc. Am. A 20, 163–171 (2003).
[Crossref]

D. G. Grier, “A revolution in optical manipulation,” Nature 424, 810–816 (2003).
[Crossref]

2002 (2)

A. Volyar, T. Fadeyeva, and Y. A. Egorov, “Vector singularities of Gaussian beams in uniaxial crystals: optical vortex generation,” Tech. Phys. Lett. 28, 958–961 (2002).
[Crossref]

V. Garces-Chavez, D. McGloin, H. Melville, W. Sibbett, and K. Dholakia, “Simultaneous micromanipulation in multiple planes using a self-reconstructing light beam,” Nature 419, 145–147 (2002).
[Crossref]

2001 (5)

J. Arlt, K. Dholakia, J. Soneson, and E. M. Wright, “Optical dipole traps and atomic waveguides based on Bessel light beams,” Opt. Commun. 63, 063602 (2001).

J. Arlt, V. Garces-Chavez, W. Sibbett, and K. Dholakia, “Optical micromanipulation using a Bessel light beam,” Opt. Commun. 197, 239–245 (2001).
[Crossref]

T. King, W. Hogervorst, N. Kazak, N. Khilo, and A. Ryzhevich, “Formation of higher-order Bessel light beams in biaxial crystals,” Opt. Commun. 187, 407–414 (2001).
[Crossref]

N. A. Khilo, E. S. Petrova, and A. A. Ryzhevich, “Transformation of the order of Bessel beams in uniaxial crystals,” Quantum Electron. 31, 85–89 (2001).
[Crossref]

J. Guck, R. Ananthakrishnan, H. Mahmood, T. J. Moon, C. C. Cunningham, and J. Kas, “The optical stretcher: a novel laser tool to micromanipulate cells,” Biophys. J. 81, 767–784 (2001).
[Crossref]

2000 (1)

1998 (1)

1997 (2)

N. B. Simpson, K. Dholakia, L. Allen, and M. J. Padgett, “Mechanical equivalence of spin and orbital angular momentum of light: an optical spanner,” Opt. Lett. 22, 52–54 (1997).
[Crossref]

M. S. Soskin, V. N. Gorshkov, M. V. Vasnetsov, J. T. Malos, and N. R. Heckenberg, “Topological charge and angular momentum of light beams carrying optical vortices,” Phys. Rev. A 56, 4064–4075 (1997).
[Crossref]

1981 (1)

E. Wolf and Y. Li, “Conditions for the validity of the Debye integral representation of focused fields,” Proc. R. Soc. Lond. A 39, 205–210 (1981).

1959 (2)

B. Richards and E. Wolf, “Electromagnetic diffraction in optical systems. II. Structure of the image field in an aplanatic system,” Proc. R. Soc. Lond. A 253, 358–379 (1959).
[Crossref]

E. Wolf, “Electromagnetic diffraction in optical systems. I. An integral representation of the image field,” Proc. R. Soc. Lond. A 253, 349–357 (1959).
[Crossref]

Ahlawat, S.

J. Xavier, R. Dasgupta, S. Ahlawat, J. Joseph, and P. K. Gupta, “Three dimensional optical twisters-driven helically stacked multi-layered microrotors,” Appl. Phys. Lett. 100, 121101 (2012).
[Crossref]

Allen, L.

Alonso, M. A.

Alpmann, C.

M. Woerdemann, C. Alpmann, M. Esseling, and C. Denz, “Advanced optical trapping by complex beam shaping,” Laser Photon. Rev. 7, 839–854 (2013).
[Crossref]

Ananthakrishnan, R.

J. Guck, R. Ananthakrishnan, H. Mahmood, T. J. Moon, C. C. Cunningham, and J. Kas, “The optical stretcher: a novel laser tool to micromanipulate cells,” Biophys. J. 81, 767–784 (2001).
[Crossref]

Arlt, J.

J. Arlt, V. Garces-Chavez, W. Sibbett, and K. Dholakia, “Optical micromanipulation using a Bessel light beam,” Opt. Commun. 197, 239–245 (2001).
[Crossref]

J. Arlt, K. Dholakia, J. Soneson, and E. M. Wright, “Optical dipole traps and atomic waveguides based on Bessel light beams,” Opt. Commun. 63, 063602 (2001).

J. Arlt and M. J. Padgett, “Generation of a beam with a dark focus surrounded by regions of higher intensity: the optical bottle beam,” Opt. Lett. 25, 191–193 (2000).
[Crossref]

Barboza, R.

Bliokh, K. Y.

Bortolozzo, U.

Brasselet, E.

Chavez-Cerda, S.

Ciattoni, A.

Cincotti, G.

Cizmar, T.

T. Cizmar, V. Garces-Chavez, K. Dholakia, and P. Zemanek, “Optical conveyor belt for delivery of submicron objects,” Appl. Phys. Lett. 86, 174101 (2005).
[Crossref]

Cižmár, T.

K. Dholakia and T. Čižmár, “Shaping the future of manipulation,” Nat. Photon. 5, 335–342 (2011).
[Crossref]

Clerc, M. G.

Cunningham, C. C.

J. Guck, R. Ananthakrishnan, H. Mahmood, T. J. Moon, C. C. Cunningham, and J. Kas, “The optical stretcher: a novel laser tool to micromanipulate cells,” Biophys. J. 81, 767–784 (2001).
[Crossref]

Dainty, C.

Dasgupta, R.

J. Xavier, R. Dasgupta, S. Ahlawat, J. Joseph, and P. K. Gupta, “Three dimensional optical twisters-driven helically stacked multi-layered microrotors,” Appl. Phys. Lett. 100, 121101 (2012).
[Crossref]

Denz, C.

M. Woerdemann, C. Alpmann, M. Esseling, and C. Denz, “Advanced optical trapping by complex beam shaping,” Laser Photon. Rev. 7, 839–854 (2013).
[Crossref]

Desyatnikov, A.

Desyatnikov, A. S.

Dholakia, K.

K. Dholakia and T. Čižmár, “Shaping the future of manipulation,” Nat. Photon. 5, 335–342 (2011).
[Crossref]

T. Cizmar, V. Garces-Chavez, K. Dholakia, and P. Zemanek, “Optical conveyor belt for delivery of submicron objects,” Appl. Phys. Lett. 86, 174101 (2005).
[Crossref]

D. McGloin and K. Dholakia, “Bessel beams: diffraction in a new light,” Contemp. Phys. 46, 15–28 (2005).
[Crossref]

D. McGloin, G. Spalding, H. Melville, W. Sibbett, and K. Dholakia, “Three-dimensional arrays of optical bottle beams,” Opt. Commun. 225, 215–222 (2003).
[Crossref]

V. Garces-Chavez, D. McGloin, H. Melville, W. Sibbett, and K. Dholakia, “Simultaneous micromanipulation in multiple planes using a self-reconstructing light beam,” Nature 419, 145–147 (2002).
[Crossref]

J. Arlt, V. Garces-Chavez, W. Sibbett, and K. Dholakia, “Optical micromanipulation using a Bessel light beam,” Opt. Commun. 197, 239–245 (2001).
[Crossref]

J. Arlt, K. Dholakia, J. Soneson, and E. M. Wright, “Optical dipole traps and atomic waveguides based on Bessel light beams,” Opt. Commun. 63, 063602 (2001).

N. B. Simpson, K. Dholakia, L. Allen, and M. J. Padgett, “Mechanical equivalence of spin and orbital angular momentum of light: an optical spanner,” Opt. Lett. 22, 52–54 (1997).
[Crossref]

Egorov, Y. A.

A. Volyar, T. Fadeyeva, and Y. A. Egorov, “Vector singularities of Gaussian beams in uniaxial crystals: optical vortex generation,” Tech. Phys. Lett. 28, 958–961 (2002).
[Crossref]

Esseling, M.

M. Woerdemann, C. Alpmann, M. Esseling, and C. Denz, “Advanced optical trapping by complex beam shaping,” Laser Photon. Rev. 7, 839–854 (2013).
[Crossref]

Fadeyeva, T.

A. Volyar and T. Fadeyeva, “Generation of singular beams in uniaxial crystals,” Opt. Spectrosc. 94, 235–244 (2003).
[Crossref]

A. Volyar, T. Fadeyeva, and Y. A. Egorov, “Vector singularities of Gaussian beams in uniaxial crystals: optical vortex generation,” Tech. Phys. Lett. 28, 958–961 (2002).
[Crossref]

Fadeyeva, T. A.

Feurer, T.

Garces-Chavez, V.

T. Cizmar, V. Garces-Chavez, K. Dholakia, and P. Zemanek, “Optical conveyor belt for delivery of submicron objects,” Appl. Phys. Lett. 86, 174101 (2005).
[Crossref]

V. Garces-Chavez, D. McGloin, H. Melville, W. Sibbett, and K. Dholakia, “Simultaneous micromanipulation in multiple planes using a self-reconstructing light beam,” Nature 419, 145–147 (2002).
[Crossref]

J. Arlt, V. Garces-Chavez, W. Sibbett, and K. Dholakia, “Optical micromanipulation using a Bessel light beam,” Opt. Commun. 197, 239–245 (2001).
[Crossref]

Gorshkov, V. N.

M. S. Soskin, V. N. Gorshkov, M. V. Vasnetsov, J. T. Malos, and N. R. Heckenberg, “Topological charge and angular momentum of light beams carrying optical vortices,” Phys. Rev. A 56, 4064–4075 (1997).
[Crossref]

Grier, D. G.

D. G. Grier, “A revolution in optical manipulation,” Nature 424, 810–816 (2003).
[Crossref]

Guck, J.

J. Guck, R. Ananthakrishnan, H. Mahmood, T. J. Moon, C. C. Cunningham, and J. Kas, “The optical stretcher: a novel laser tool to micromanipulate cells,” Biophys. J. 81, 767–784 (2001).
[Crossref]

Gupta, P. K.

J. Xavier, R. Dasgupta, S. Ahlawat, J. Joseph, and P. K. Gupta, “Three dimensional optical twisters-driven helically stacked multi-layered microrotors,” Appl. Phys. Lett. 100, 121101 (2012).
[Crossref]

Heckenberg, N. R.

M. S. Soskin, V. N. Gorshkov, M. V. Vasnetsov, J. T. Malos, and N. R. Heckenberg, “Topological charge and angular momentum of light beams carrying optical vortices,” Phys. Rev. A 56, 4064–4075 (1997).
[Crossref]

Hickmann, J. M.

Hnatovsky, C.

Hogervorst, W.

T. King, W. Hogervorst, N. Kazak, N. Khilo, and A. Ryzhevich, “Formation of higher-order Bessel light beams in biaxial crystals,” Opt. Commun. 187, 407–414 (2001).
[Crossref]

Izdebskaya, Y.

Izdebskaya, Y. V.

Joseph, J.

J. Xavier, R. Dasgupta, S. Ahlawat, J. Joseph, and P. K. Gupta, “Three dimensional optical twisters-driven helically stacked multi-layered microrotors,” Appl. Phys. Lett. 100, 121101 (2012).
[Crossref]

Juodkazis, S.

E. Brasselet, N. Murazawa, H. Misawa, and S. Juodkazis, “Optical vortices from liquid crystal droplets,” Phys. Rev. Lett. 103, 103903 (2009).
[Crossref]

Kalkandjiev, T. K.

Kas, J.

J. Guck, R. Ananthakrishnan, H. Mahmood, T. J. Moon, C. C. Cunningham, and J. Kas, “The optical stretcher: a novel laser tool to micromanipulate cells,” Biophys. J. 81, 767–784 (2001).
[Crossref]

Kazak, N.

T. King, W. Hogervorst, N. Kazak, N. Khilo, and A. Ryzhevich, “Formation of higher-order Bessel light beams in biaxial crystals,” Opt. Commun. 187, 407–414 (2001).
[Crossref]

Kharitonov, S.

S. Khonina and S. Kharitonov, “Comparative investigation of nonparaxial mode propagation along the axis of uniaxial crystal,” J. Mod. Opt. 62, 125–134 (2015).
[Crossref]

Khilo, N.

T. King, W. Hogervorst, N. Kazak, N. Khilo, and A. Ryzhevich, “Formation of higher-order Bessel light beams in biaxial crystals,” Opt. Commun. 187, 407–414 (2001).
[Crossref]

Khilo, N. A.

N. A. Khilo, E. S. Petrova, and A. A. Ryzhevich, “Transformation of the order of Bessel beams in uniaxial crystals,” Quantum Electron. 31, 85–89 (2001).
[Crossref]

Khonina, S.

S. Khonina and S. Kharitonov, “Comparative investigation of nonparaxial mode propagation along the axis of uniaxial crystal,” J. Mod. Opt. 62, 125–134 (2015).
[Crossref]

King, T.

T. King, W. Hogervorst, N. Kazak, N. Khilo, and A. Ryzhevich, “Formation of higher-order Bessel light beams in biaxial crystals,” Opt. Commun. 187, 407–414 (2001).
[Crossref]

Kivshar, Y. S.

Krolikowski, W.

A. Turpin, V. Shvedov, C. Hnatovsky, Y. V. Loiko, J. Mompart, and W. Krolikowski, “Optical vault: a reconfigurable bottle beam based on conical refraction of light,” Opt. Express 21, 26335–26340 (2013).
[Crossref]

V. G. Shvedov, C. Hnatovsky, N. Shostka, and W. Krolikowski, “Generation of vector bottle beams with a uniaxial crystal,” J. Opt. Soc. Am. B 30, 1–6 (2013).
[Crossref]

T. A. Fadeyeva, V. G. Shvedov, Y. V. Izdebskaya, A. V. Volyar, E. Brasselet, D. N. Neshev, A. S. Desyatnikov, W. Krolikowski, and Y. S. Kivshar, “Spatially engineered polarization states and optical vortices in uniaxial crystals,” Opt. Express 18, 10848 (2010).
[Crossref]

A. S. Desyatnikov, V. G. Shvedov, A. V. Rode, W. Krolikowski, and Y. S. Kivshar, “Photophoretic manipulation of absorbing aerosol particles with vortex beams: theory versus experiment,” Opt. Express 17, 8201–8211 (2009).
[Crossref]

E. Brasselet, Y. Izdebskaya, V. Shvedov, A. S. Desyatnikov, W. Krolikowski, and Y. S. Kivshar, “Dynamics of optical spin-orbit coupling in uniaxial crystals,” Opt. Lett. 34, 1021–1023 (2009).
[Crossref]

V. G. Shvedov, A. S. Desyatnikov, A. V. Rode, W. Krolikowski, and Y. S. Kivshar, “Optical guiding of absorbing nanoclusters in air,” Opt. Express 17, 5743–5757 (2009).
[Crossref]

V. G. Shvedov, Y. V. Izdebskaya, A. V. Rode, A. Desyatnikov, W. Krolikowski, and Y. S. Kivshar, “Generation of optical bottle beams by incoherent white-light vortices,” Opt. Express 16, 20902–20907 (2008).
[Crossref]

Lara, D.

Li, Y.

E. Wolf and Y. Li, “Conditions for the validity of the Debye integral representation of focused fields,” Proc. R. Soc. Lond. A 39, 205–210 (1981).

Loiko, Y. V.

Loussert, C.

Mahmood, H.

J. Guck, R. Ananthakrishnan, H. Mahmood, T. J. Moon, C. C. Cunningham, and J. Kas, “The optical stretcher: a novel laser tool to micromanipulate cells,” Biophys. J. 81, 767–784 (2001).
[Crossref]

Malos, J. T.

M. S. Soskin, V. N. Gorshkov, M. V. Vasnetsov, J. T. Malos, and N. R. Heckenberg, “Topological charge and angular momentum of light beams carrying optical vortices,” Phys. Rev. A 56, 4064–4075 (1997).
[Crossref]

McGloin, D.

D. McGloin and K. Dholakia, “Bessel beams: diffraction in a new light,” Contemp. Phys. 46, 15–28 (2005).
[Crossref]

D. McGloin, G. Spalding, H. Melville, W. Sibbett, and K. Dholakia, “Three-dimensional arrays of optical bottle beams,” Opt. Commun. 225, 215–222 (2003).
[Crossref]

V. Garces-Chavez, D. McGloin, H. Melville, W. Sibbett, and K. Dholakia, “Simultaneous micromanipulation in multiple planes using a self-reconstructing light beam,” Nature 419, 145–147 (2002).
[Crossref]

Melville, H.

D. McGloin, G. Spalding, H. Melville, W. Sibbett, and K. Dholakia, “Three-dimensional arrays of optical bottle beams,” Opt. Commun. 225, 215–222 (2003).
[Crossref]

V. Garces-Chavez, D. McGloin, H. Melville, W. Sibbett, and K. Dholakia, “Simultaneous micromanipulation in multiple planes using a self-reconstructing light beam,” Nature 419, 145–147 (2002).
[Crossref]

Meneses-Nava, M. A.

Misawa, H.

E. Brasselet, N. Murazawa, H. Misawa, and S. Juodkazis, “Optical vortices from liquid crystal droplets,” Phys. Rev. Lett. 103, 103903 (2009).
[Crossref]

Mompart, J.

Moon, T. J.

J. Guck, R. Ananthakrishnan, H. Mahmood, T. J. Moon, C. C. Cunningham, and J. Kas, “The optical stretcher: a novel laser tool to micromanipulate cells,” Biophys. J. 81, 767–784 (2001).
[Crossref]

Moser, T.

Murazawa, N.

E. Brasselet, N. Murazawa, H. Misawa, and S. Juodkazis, “Optical vortices from liquid crystal droplets,” Phys. Rev. Lett. 103, 103903 (2009).
[Crossref]

Muys, P.

Neshev, D. N.

Ostrovskaya, E. A.

Padgett, M. J.

Palma, C.

Petrova, E. S.

N. A. Khilo, E. S. Petrova, and A. A. Ryzhevich, “Transformation of the order of Bessel beams in uniaxial crystals,” Quantum Electron. 31, 85–89 (2001).
[Crossref]

Rafailov, E. U.

Ramirez, G.

Residori, S.

Richards, B.

B. Richards and E. Wolf, “Electromagnetic diffraction in optical systems. II. Structure of the image field in an aplanatic system,” Proc. R. Soc. Lond. A 253, 358–379 (1959).
[Crossref]

Rode, A. V.

Rodríguez-Herrera, O. G.

Ryzhevich, A.

T. King, W. Hogervorst, N. Kazak, N. Khilo, and A. Ryzhevich, “Formation of higher-order Bessel light beams in biaxial crystals,” Opt. Commun. 187, 407–414 (2001).
[Crossref]

Ryzhevich, A. A.

N. A. Khilo, E. S. Petrova, and A. A. Ryzhevich, “Transformation of the order of Bessel beams in uniaxial crystals,” Quantum Electron. 31, 85–89 (2001).
[Crossref]

Shostka, N.

Shvedov, V.

Shvedov, V. G.

Sibbett, W.

D. McGloin, G. Spalding, H. Melville, W. Sibbett, and K. Dholakia, “Three-dimensional arrays of optical bottle beams,” Opt. Commun. 225, 215–222 (2003).
[Crossref]

V. Garces-Chavez, D. McGloin, H. Melville, W. Sibbett, and K. Dholakia, “Simultaneous micromanipulation in multiple planes using a self-reconstructing light beam,” Nature 419, 145–147 (2002).
[Crossref]

J. Arlt, V. Garces-Chavez, W. Sibbett, and K. Dholakia, “Optical micromanipulation using a Bessel light beam,” Opt. Commun. 197, 239–245 (2001).
[Crossref]

Simpson, N. B.

Soneson, J.

J. Arlt, K. Dholakia, J. Soneson, and E. M. Wright, “Optical dipole traps and atomic waveguides based on Bessel light beams,” Opt. Commun. 63, 063602 (2001).

Soskin, M. S.

M. S. Soskin, V. N. Gorshkov, M. V. Vasnetsov, J. T. Malos, and N. R. Heckenberg, “Topological charge and angular momentum of light beams carrying optical vortices,” Phys. Rev. A 56, 4064–4075 (1997).
[Crossref]

Spalding, G.

D. McGloin, G. Spalding, H. Melville, W. Sibbett, and K. Dholakia, “Three-dimensional arrays of optical bottle beams,” Opt. Commun. 225, 215–222 (2003).
[Crossref]

Tepichin, E.

Turpin, A.

Vasnetsov, M. V.

M. S. Soskin, V. N. Gorshkov, M. V. Vasnetsov, J. T. Malos, and N. R. Heckenberg, “Topological charge and angular momentum of light beams carrying optical vortices,” Phys. Rev. A 56, 4064–4075 (1997).
[Crossref]

Vidal-Henriquez, E.

Volyar, A.

A. Volyar and T. Fadeyeva, “Generation of singular beams in uniaxial crystals,” Opt. Spectrosc. 94, 235–244 (2003).
[Crossref]

A. Volyar, T. Fadeyeva, and Y. A. Egorov, “Vector singularities of Gaussian beams in uniaxial crystals: optical vortex generation,” Tech. Phys. Lett. 28, 958–961 (2002).
[Crossref]

Volyar, A. V.

Woerdemann, M.

M. Woerdemann, C. Alpmann, M. Esseling, and C. Denz, “Advanced optical trapping by complex beam shaping,” Laser Photon. Rev. 7, 839–854 (2013).
[Crossref]

Wolf, E.

E. Wolf and Y. Li, “Conditions for the validity of the Debye integral representation of focused fields,” Proc. R. Soc. Lond. A 39, 205–210 (1981).

B. Richards and E. Wolf, “Electromagnetic diffraction in optical systems. II. Structure of the image field in an aplanatic system,” Proc. R. Soc. Lond. A 253, 358–379 (1959).
[Crossref]

E. Wolf, “Electromagnetic diffraction in optical systems. I. An integral representation of the image field,” Proc. R. Soc. Lond. A 253, 349–357 (1959).
[Crossref]

Wright, E. M.

J. Arlt, K. Dholakia, J. Soneson, and E. M. Wright, “Optical dipole traps and atomic waveguides based on Bessel light beams,” Opt. Commun. 63, 063602 (2001).

Xavier, J.

J. Xavier, R. Dasgupta, S. Ahlawat, J. Joseph, and P. K. Gupta, “Three dimensional optical twisters-driven helically stacked multi-layered microrotors,” Appl. Phys. Lett. 100, 121101 (2012).
[Crossref]

Zemanek, P.

T. Cizmar, V. Garces-Chavez, K. Dholakia, and P. Zemanek, “Optical conveyor belt for delivery of submicron objects,” Appl. Phys. Lett. 86, 174101 (2005).
[Crossref]

Adv. Opt. Photon. (1)

Appl. Phys. Lett. (2)

T. Cizmar, V. Garces-Chavez, K. Dholakia, and P. Zemanek, “Optical conveyor belt for delivery of submicron objects,” Appl. Phys. Lett. 86, 174101 (2005).
[Crossref]

J. Xavier, R. Dasgupta, S. Ahlawat, J. Joseph, and P. K. Gupta, “Three dimensional optical twisters-driven helically stacked multi-layered microrotors,” Appl. Phys. Lett. 100, 121101 (2012).
[Crossref]

Biophys. J. (1)

J. Guck, R. Ananthakrishnan, H. Mahmood, T. J. Moon, C. C. Cunningham, and J. Kas, “The optical stretcher: a novel laser tool to micromanipulate cells,” Biophys. J. 81, 767–784 (2001).
[Crossref]

Contemp. Phys. (1)

D. McGloin and K. Dholakia, “Bessel beams: diffraction in a new light,” Contemp. Phys. 46, 15–28 (2005).
[Crossref]

J. Mod. Opt. (1)

S. Khonina and S. Kharitonov, “Comparative investigation of nonparaxial mode propagation along the axis of uniaxial crystal,” J. Mod. Opt. 62, 125–134 (2015).
[Crossref]

J. Opt. Soc. Am. A (1)

J. Opt. Soc. Am. B (2)

Laser Photon. Rev. (1)

M. Woerdemann, C. Alpmann, M. Esseling, and C. Denz, “Advanced optical trapping by complex beam shaping,” Laser Photon. Rev. 7, 839–854 (2013).
[Crossref]

Nat. Photon. (1)

K. Dholakia and T. Čižmár, “Shaping the future of manipulation,” Nat. Photon. 5, 335–342 (2011).
[Crossref]

Nature (2)

D. G. Grier, “A revolution in optical manipulation,” Nature 424, 810–816 (2003).
[Crossref]

V. Garces-Chavez, D. McGloin, H. Melville, W. Sibbett, and K. Dholakia, “Simultaneous micromanipulation in multiple planes using a self-reconstructing light beam,” Nature 419, 145–147 (2002).
[Crossref]

Opt. Commun. (4)

J. Arlt, K. Dholakia, J. Soneson, and E. M. Wright, “Optical dipole traps and atomic waveguides based on Bessel light beams,” Opt. Commun. 63, 063602 (2001).

J. Arlt, V. Garces-Chavez, W. Sibbett, and K. Dholakia, “Optical micromanipulation using a Bessel light beam,” Opt. Commun. 197, 239–245 (2001).
[Crossref]

T. King, W. Hogervorst, N. Kazak, N. Khilo, and A. Ryzhevich, “Formation of higher-order Bessel light beams in biaxial crystals,” Opt. Commun. 187, 407–414 (2001).
[Crossref]

D. McGloin, G. Spalding, H. Melville, W. Sibbett, and K. Dholakia, “Three-dimensional arrays of optical bottle beams,” Opt. Commun. 225, 215–222 (2003).
[Crossref]

Opt. Express (7)

S. Chavez-Cerda, E. Tepichin, M. A. Meneses-Nava, G. Ramirez, and J. M. Hickmann, “Experimental observation of interfering Bessel beams,” Opt. Express 3, 524–529 (1998).
[Crossref]

T. A. Fadeyeva, V. G. Shvedov, Y. V. Izdebskaya, A. V. Volyar, E. Brasselet, D. N. Neshev, A. S. Desyatnikov, W. Krolikowski, and Y. S. Kivshar, “Spatially engineered polarization states and optical vortices in uniaxial crystals,” Opt. Express 18, 10848 (2010).
[Crossref]

V. G. Shvedov, Y. V. Izdebskaya, A. V. Rode, A. Desyatnikov, W. Krolikowski, and Y. S. Kivshar, “Generation of optical bottle beams by incoherent white-light vortices,” Opt. Express 16, 20902–20907 (2008).
[Crossref]

A. Turpin, V. Shvedov, C. Hnatovsky, Y. V. Loiko, J. Mompart, and W. Krolikowski, “Optical vault: a reconfigurable bottle beam based on conical refraction of light,” Opt. Express 21, 26335–26340 (2013).
[Crossref]

V. G. Shvedov, A. S. Desyatnikov, A. V. Rode, W. Krolikowski, and Y. S. Kivshar, “Optical guiding of absorbing nanoclusters in air,” Opt. Express 17, 5743–5757 (2009).
[Crossref]

A. S. Desyatnikov, V. G. Shvedov, A. V. Rode, W. Krolikowski, and Y. S. Kivshar, “Photophoretic manipulation of absorbing aerosol particles with vortex beams: theory versus experiment,” Opt. Express 17, 8201–8211 (2009).
[Crossref]

K. Y. Bliokh, E. A. Ostrovskaya, M. A. Alonso, O. G. Rodríguez-Herrera, D. Lara, and C. Dainty, “Spin-to-orbital angular momentum conversion in focusing, scattering, and imaging systems,” Opt. Express 19, 26132–26149 (2011).
[Crossref]

Opt. Lett. (5)

Opt. Spectrosc. (1)

A. Volyar and T. Fadeyeva, “Generation of singular beams in uniaxial crystals,” Opt. Spectrosc. 94, 235–244 (2003).
[Crossref]

Phys. Rev. A (1)

M. S. Soskin, V. N. Gorshkov, M. V. Vasnetsov, J. T. Malos, and N. R. Heckenberg, “Topological charge and angular momentum of light beams carrying optical vortices,” Phys. Rev. A 56, 4064–4075 (1997).
[Crossref]

Phys. Rev. Lett. (1)

E. Brasselet, N. Murazawa, H. Misawa, and S. Juodkazis, “Optical vortices from liquid crystal droplets,” Phys. Rev. Lett. 103, 103903 (2009).
[Crossref]

Proc. R. Soc. Lond. A (3)

E. Wolf, “Electromagnetic diffraction in optical systems. I. An integral representation of the image field,” Proc. R. Soc. Lond. A 253, 349–357 (1959).
[Crossref]

E. Wolf and Y. Li, “Conditions for the validity of the Debye integral representation of focused fields,” Proc. R. Soc. Lond. A 39, 205–210 (1981).

B. Richards and E. Wolf, “Electromagnetic diffraction in optical systems. II. Structure of the image field in an aplanatic system,” Proc. R. Soc. Lond. A 253, 358–379 (1959).
[Crossref]

Quantum Electron. (1)

N. A. Khilo, E. S. Petrova, and A. A. Ryzhevich, “Transformation of the order of Bessel beams in uniaxial crystals,” Quantum Electron. 31, 85–89 (2001).
[Crossref]

Tech. Phys. Lett. (1)

A. Volyar, T. Fadeyeva, and Y. A. Egorov, “Vector singularities of Gaussian beams in uniaxial crystals: optical vortex generation,” Tech. Phys. Lett. 28, 958–961 (2002).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1. SOPHIE geometry. An axisymmetric light beam with finite characteristic transverse size w impinges on a birefringent axicon, defined by the angle α , carved in a uniaxial crystal whose optical axis (see double arrow) lies along its axis of symmetry. Ray tracing for incident rays parallel to the z axis at a distance w from the z axis allows one to define the diffraction-free characteristic distance z max . β refers to the geometrical internal tilt angle with respect to the optical axis, and γ is the external angle. Λ refers to the characteristic spatial scale associated with transverse modulation of the field at the output of the axicon that is mapped into characteristic longitudinal modulation Λ / tan γ .
Fig. 2.
Fig. 2. Notations used for the evaluation of the light field at a distance z from the transmittance mask located at z = 0 , near the propagation axis (in practice, up to several wavelengths from the z axis). See text for details.
Fig. 3.
Fig. 3. (a) Total intensity distribution near the z axis in the case of a c + polarized incident plane wave. The intensity distribution of the c ± polarized components are shown in (b) and (c), whereas the transverse intensity ( I ± ) and phase ( Φ ± ) profiles associated with a local intensity maximum (see dashed vertical lines) are shown in (d), (e) and (f), (g).
Fig. 4.
Fig. 4. Intensity distribution near the z axis of the c σ polarized component of the field in the case of incoherent superposition of two Laguerre–Gaussian beams: (i) a c σ ( σ = ± 1 ) polarized beam of order l = 0 and (ii) a c σ polarized beam of order l = σ . (a) Beam (i) alone. (b) Beam (ii) alone. (c) Beams (i) and (ii) together for a ratio of amplitude E σ / E 0 4.4 . (d) Enlargement of the region near z / z max 0.4 that corresponds to an optical bottle. (e) Normalized transverse intensity profile; see vertical black dashed line in (d). (f) Solid curve. normalized longitudinal intensity profile [see horizontal black dashed line in (d)]; dashed curve, intensity profile along the diagonal white dashed line in (d).
Fig. 5.
Fig. 5. Same as in Fig. 4 in the case of two contracircularly polarized fundamental Gaussian beams ( l = 0 ) for a ratio of amplitude 2.1 between the c σ and c σ polarized incident beams.
Fig. 6.
Fig. 6. Total intensity distribution nearby the z axis of corrugated optical hollow pipes of various inner diameter obtained in the case of two contracircularly polarized Laguerre–Gaussian beams of order l 0 , by selecting the c | l | / l polarized component of the output field. Results are shown for | l | = ( 1,2 , 3 ) for a ratio of amplitudes 1.33, 1.22, and 1.17 between the c σ and c σ polarized incident beams.
Fig. 7.
Fig. 7. (a) Total intensity near the z axis of a hollow beam with self-imaged orbital angular momentum generated from an incident c + Laguerre–Gaussian beam of order l = 1 . (b) Orbital angular momentum density M z ( r , z ) color map, where luminance is proportional to the total intensity shown in panel (a). Transverse phase profiles of the c and c + polarized components are shown in (c) and (d), respectively.
Fig. 8.
Fig. 8. (a) Illustration of the experimental approach: the output light field is observed at a distance z = z max from the birefringent axicon for a c + polarized incident Gaussian beam. (b) and (d) Juxtaposed transverse intensity distribution I ± of the c ± polarized components of the output field at a distance z obs from the axicon above which a central shadow appears. (c) and (e) Corresponding phase difference δ Φ between the c ± polarized components. (b) and (c) Experiments. (d) and (e) Simulations. Incident beam waist is w 6.5    mm .

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

E l ( r , 𝜑 , z = 0 ) = E l u l ( r / w ) e i l 𝜑 ( a c + + b c ) ,
E l ( r , 𝜑 , z > 0 ) A E l ( z tan θ , ϕ , 0 + ) e i k s · r d Ω ( θ , ϕ ) .
E l ( ρ , ϕ , 0 + ) = T ^ ( ρ , ϕ ) · E l ( ρ , ϕ , 0 ) ,
R ^ ( ϕ ) = ( cos ϕ sin ϕ sin ϕ cos ϕ ) ,
P ^ ( ρ ) = ( e i k ρ ( n e ( β ) 1 ) α 0 0 e i k ρ ( n 1 ) α ) ,
T ^ ( ρ , ϕ ) = exp ( i Δ ( ρ ) 2 i k ρ ( n 1 ) α ) × ( C ( ρ ) i S ( ρ ) e 2 i ϕ i S ( ρ ) e 2 i ϕ C ( ρ ) ) ,
Δ ( ρ ) = [ ( n 1 ) 2 ( n 2 n 2 ) / ( 2 n n 2 ) ] α 3 k ρ .
E l ( ρ , ϕ , 0 + ) = ( C ( ρ ) i S ( ρ ) e 2 i ϕ i S ( ρ ) e 2 i ϕ C ( ρ ) ) E l ( ρ , ϕ , 0 ) .
Λ = 2 λ n n 2 ( n 1 ) 2 ( n 2 n 2 ) α 3 .
E l ( r , 𝜑 , z > 0 ) E l u l ( z / z max ) e i l 𝜑 × ( C ( γ z ) J l ( γ k r ) i S ( γ z ) J l 2 ( γ k r ) e 2 i 𝜑 i S ( γ z ) J l + 2 ( γ k r ) e 2 i 𝜑 C ( γ z ) J l ( γ k r ) ) ( a b ) ,

Metrics