Abstract

Efficient tunable photonic integrated devices are important for the realization of reconfigurable photonic systems. Thermal tuning is a convenient and effective approach, and silicon’s large heat conductivity, thermo-optical coefficient, and CMOS fabrication compatibility make it a good candidate material for tunable optical microcavities, which are versatile elements in low-cost, large-scale photonic integrated circuits. Metal heaters are traditionally used for tuning, and a thick SiO2 upper-cladding layer is usually needed to prevent light absorption by the metal since that could reduce response speed and heating efficiency. In this paper, we propose and experimentally demonstrate thermally tunable silicon photonic microdisk resonators by introducing transparent graphene nanoheaters, which contact the silicon core directly without any isolator layer. The theoretical and experimental results show that the transparent graphene nanoheaters improve the heating efficiency, the temporal response, and the achievable temperature in comparison with a traditional metal heater. Furthermore, the graphene nanoheater is convenient for use in ultrasmall nanophotonic integrated devices due to its single-atom thickness and excellent flexibility. Both experiments and simulations show that the transparent graphene nanoheater is a promising option for other thermally tunable photonic integrated devices such as optical filters and switches.

© 2016 Optical Society of America

Full Article  |  PDF Article
Related Articles
Integrated NiSi waveguide heaters for CMOS-compatible silicon thermo-optic devices

Joris Van Campenhout, William M. J. Green, Solomon Assefa, and Yurii A. Vlasov
Opt. Lett. 35(7) 1013-1015 (2010)

Thermo-optic mode extinction modulator based on graphene plasmonic waveguide

Jin Tae Kim, Kwang Hyo Chung, and Choon-Gi Choi
Opt. Express 21(13) 15280-15286 (2013)

Widely tunable dual-mode distributed feedback laser fabricated by selective area growth technology integrated with Ti heaters

Can Zhang, Song Liang, Hongliang Zhu, and Wei Wang
Opt. Lett. 38(16) 3050-3053 (2013)

References

  • View by:
  • |
  • |
  • |

  1. M. Hochberg and T. Baehr-Jones, “Towards fabless silicon photonics,” Nat. Photonics 4, 492–494 (2010).
    [Crossref]
  2. M. Asghari and A. V. Krishnamoorthy, “Silicon photonics energy-efficient communication,” Nat. Photonics 5, 268–270 (2011).
    [Crossref]
  3. D. X. Xu, A. Densmore, P. Waldron, J. Lapointe, E. Post, A. Delage, S. Janz, P. Cheben, J. H. Schmid, and B. Lamontagne, “High bandwidth SOI photonic wire ring resonators using MMI couplers,” Opt. Express 15, 3149–3155 (2007).
    [Crossref]
  4. V. R. Almeida, C. A. Barrios, R. R. Panepucci, M. Lipson, M. A. Foster, D. G. Ouzounov, and A. L. Gaeta, “All-optical switching on a silicon chip,” Opt. Lett. 29, 2867–2869 (2004).
    [Crossref]
  5. Q. F. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature 435, 325–327 (2005).
    [Crossref]
  6. X. K. Wang, X. W. Guan, Q. S. Huang, J. J. Zheng, Y. C. Shi, and D. X. Dai, “Suspended ultra-small disk resonator on silicon for optical sensing,” Opt. Lett. 38, 5405–5408 (2013).
    [Crossref]
  7. R. L. Espinola, M. C. Tsai, J. T. Yardley, and R. M. Osgood, “Fast and low-power thermooptic switch on thin silicon-on-insulator,” IEEE Photon. Technol. Lett. 15, 1366–1368 (2003).
    [Crossref]
  8. P. Dong, W. Qian, H. Liang, R. Shafiiha, D. Z. Feng, G. L. Li, J. E. Cunningham, A. V. Krishnamoorthy, and M. Asghari, “Thermally tunable silicon racetrack resonators with ultralow tuning power,” Opt. Express 18, 20298–20304 (2010).
    [Crossref]
  9. E. Timurdogan, E. S. Hosseini, G. Leake, D. D. Coolbaugh, and M. R. Watts, “L-shaped resonant microring (LRM) filter with integrated thermal tuner,” in Conference on Laser Electro-Optics (Optical Society of America, 2013), paper CTh4F.2.
  10. M. R. Watts, W. A. Zortman, D. C. Trotter, G. N. Nielson, D. L. Luck, and R. W. Young, “Adiabatic resonant microrings (ARMs) with directly integrated thermal microphotonics,” in Conference on Lasers and Electro-Optics (Optical Society of America, 2009), paper CPDB10.
  11. F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics 4, 611–622 (2010).
    [Crossref]
  12. Q. L. Bao and K. P. Loh, “Graphene photonics, plasmonics, and broadband optoelectronic devices,” ACS Nano 6, 3677–3694 (2012).
    [Crossref]
  13. A. K. Geim and K. S. Novoselov, “The rise of graphene,” Nat. Mater. 6, 183–191 (2007).
    [Crossref]
  14. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306, 666–669 (2004).
    [Crossref]
  15. K. I. Bolotin, K. J. Sikes, Z. Jiang, M. Klima, G. Fudenberg, J. Hone, P. Kim, and H. L. Stormer, “Ultrahigh electron mobility in suspended graphene,” Solid State Commun. 146, 351–355 (2008).
    [Crossref]
  16. X. Du, I. Skachko, A. Barker, and E. Y. Andrei, “Approaching ballistic transport in suspended graphene,” Nat. Nanotechnol. 3, 491–495 (2008).
    [Crossref]
  17. A. A. Balandin, “Thermal properties of graphene and nanostructured carbon materials,” Nat. Mater. 10, 569–581 (2011).
    [Crossref]
  18. D. L. Nika, E. P. Pokatilov, A. S. Askerov, and A. A. Balandin, “Phonon thermal conduction in graphene: role of Umklapp and edge roughness scattering,” Phys. Rev. B 79, 155413 (2009).
    [Crossref]
  19. A. A. Balandin, S. Ghosh, W. Z. Bao, I. Calizo, D. Teweldebrhan, F. Miao, and C. N. Lau, “Superior thermal conductivity of single-layer graphene,” Nano Lett. 8, 902–907 (2008).
    [Crossref]
  20. M. M. Sadeghi, M. T. Pettes, and L. Shi, “Thermal transport in graphene,” Solid State Commun. 152, 1321–1330 (2012).
    [Crossref]
  21. S. Ghosh, I. Calizo, D. Teweldebrhan, E. P. Pokatilov, D. L. Nika, A. A. Balandin, W. Bao, F. Miao, and C. N. Lau, “Extremely high thermal conductivity of graphene: prospects for thermal management applications in nanoelectronic circuits,” Appl. Phys. Lett. 92, 151911 (2008).
    [Crossref]
  22. S. Subrina, D. Kotchetkov, and A. A. Balandin, “Heat removal in silicon-on-insulator integrated circuits with graphene lateral heat spreaders,” IEEE Electron Device Lett. 30, 1281–1283 (2009).
    [Crossref]
  23. R. Prasher, “Graphene spreads the heat,” Science 328, 185–186 (2010).
    [Crossref]
  24. J. Kang, H. Kim, K. S. Kim, S. K. Lee, S. Bae, J. H. Ahn, Y. J. Kim, J. B. Choi, and B. H. Hong, “High-performance graphene-based transparent flexible heaters,” Nano Lett. 11, 5154–5158 (2011).
    [Crossref]
  25. D. Sui, Y. Huang, L. Huang, J. J. Liang, Y. F. Ma, and Y. S. Chen, “Flexible and transparent electrothermal film heaters based on graphene materials,” Small 7, 3186–3192 (2011).
    [Crossref]
  26. L. Yu, S. He, J. Zheng, and D. Dai, “Graphene-based transparent nano-heater for thermally-tuning silicon nanophotonic integrated devices,” in Progress in Electromagnetics Research Symposium (PIERS) Proceedings, Guangzhou, China, 2014, p. 1735–1738.
  27. L. H. Yu, D. X. Dai, and S. L. He, “Graphene-based transparent flexible heat conductor for thermally tuning nanophotonic integrated devices,” Appl. Phys. Lett. 105, 251104 (2014).
    [Crossref]
  28. L. Yu, Y. Xu, Y. Shi, and D. Dai, “Linear and nonlinear optical absorption of on-chip silicon-on-insulator nanowires with graphene,” in Asia Communications and Photonics Conference (Optical Society of America, 2012), paper AS1B.3.
  29. L. Yu, J. Zheng, Y. Xu, D. Dai, and S. He, “Local and nonlocal optically induced transparency effects in graphene-silicon hybrid nanophotonic integrated circuits,” ACS Nano 8, 11386–11393 (2014).
    [Crossref]
  30. S. L. McCall, A. F. J. Levi, R. E. Slusher, S. J. Pearton, and R. A. Logan, “Whispering-gallery mode microdisk lasers,” Appl. Phys. Lett. 60, 289–291 (1992).
    [Crossref]
  31. D. Taillaert, F. V. Laere, M. Ayre, W. Bogaerts, D. V. Thourhout, P. Bienstman, and R. Baets, “Grating couplers for coupling between optical fibers and nanophotonic waveguides,” Jpn. J. Appl. Phys. 45, 6071–6077 (2006).
    [Crossref]
  32. W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. K. Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photon. Rev. 6, 47–73 (2012).
    [Crossref]
  33. V. P. Gusynin, S. G. Sharapov, and J. P. Carbotte, “Magneto-optical conductivity in graphene,” J. Phys. 19, 026222 (2007).
  34. G. W. Hanson, “Dyadic Green’s functions and guided surface waves for a surface conductivity model of graphene,” J. Appl. Phys. 103, 064302 (2008).
    [Crossref]
  35. M. Liu, X. B. Yin, E. Ulin-Avila, B. S. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474, 64–67 (2011).
    [Crossref]
  36. J. T. Smith, A. D. Franklin, D. B. Farmer, and C. D. Dimitrakopoulos, “Reducing contact resistance in graphene devices through contact area patterning,” ACS Nano 7, 3661–3667 (2013).
    [Crossref]
  37. F. N. Xia, V. Perebeinos, Y. M. Lin, Y. Q. Wu, and P. Avouris, “The origins and limits of metal-graphene junction resistance,” Nat. Nanotechnol. 6, 179–184 (2011).
    [Crossref]
  38. L. Wang, I. Meric, P. Y. Huang, Q. Gao, Y. Gao, H. Tran, T. Taniguchi, K. Watanabe, L. M. Campos, D. A. Muller, J. Guo, P. Kim, J. Hone, K. L. Shepard, and C. R. Dean, “One-dimensional electrical contact to a two-dimensional material,” Science 342, 614–617 (2013).
    [Crossref]
  39. A. N. Sidorov, D. K. Benjamin, and C. Foy, “Comparative thermal conductivity measurement of chemical vapor deposition grown graphene supported on substrate,” Appl. Phys. Lett. 103, 243103 (2013).
  40. W. W. Cai, A. L. Moore, Y. W. Zhu, X. S. Li, S. S. Chen, L. Shi, and R. S. Ruoff, “Thermal transport in suspended and supported monolayer graphene grown by chemical vapor deposition,” Nano Lett. 10, 1645–1651 (2010).
    [Crossref]
  41. L. Yang, D. X. Dai, and S. L. He, “Thermal analysis for a photonic Si ridge wire with a submicron metal heater,” Opt. Commun. 281, 2467–2471 (2008).
    [Crossref]
  42. M. M. Geng, L. X. Jia, L. Zhang, L. Yang, P. Chen, T. Wang, and Y. L. Liu, “Four-channel reconfigurable optical add-drop multiplexer based on photonic wire waveguide,” Opt. Express 17, 5502–5516 (2009).
    [Crossref]
  43. R. Murali, Y. X. Yang, K. Brenner, T. Beck, and J. D. Meindl, “Breakdown current density of graphene nanoribbons,” Appl. Phys. Lett. 94, 243114 (2009).
    [Crossref]
  44. S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440, 508–511 (2006).
    [Crossref]
  45. R. Charbonneau and N. Lahoud, “Demonstration of integrated optics elements based on long-ranging surface plasmon polaritons,” Opt. Express 13, 977–984 (2005).
    [Crossref]
  46. D. X. Dai and S. L. He, “A silicon-based hybrid plasmonic waveguide with a metal cap for a nano-scale light confinement,” Opt. Express 17, 16646–16653 (2009).
    [Crossref]
  47. A. Das, S. Pisana, B. Chakraborty, S. Piscanec, S. K. Saha, U. V. Waghmare, K. S. Novoselov, H. R. Krishnamurthy, A. K. Geim, A. C. Ferrari, and A. K. Sood, “Monitoring dopants by Raman scattering in an electrochemically top-gated graphene transistor,” Nat. Nanotechnol. 3, 210–215 (2008).
    [Crossref]

2014 (2)

L. H. Yu, D. X. Dai, and S. L. He, “Graphene-based transparent flexible heat conductor for thermally tuning nanophotonic integrated devices,” Appl. Phys. Lett. 105, 251104 (2014).
[Crossref]

L. Yu, J. Zheng, Y. Xu, D. Dai, and S. He, “Local and nonlocal optically induced transparency effects in graphene-silicon hybrid nanophotonic integrated circuits,” ACS Nano 8, 11386–11393 (2014).
[Crossref]

2013 (4)

J. T. Smith, A. D. Franklin, D. B. Farmer, and C. D. Dimitrakopoulos, “Reducing contact resistance in graphene devices through contact area patterning,” ACS Nano 7, 3661–3667 (2013).
[Crossref]

L. Wang, I. Meric, P. Y. Huang, Q. Gao, Y. Gao, H. Tran, T. Taniguchi, K. Watanabe, L. M. Campos, D. A. Muller, J. Guo, P. Kim, J. Hone, K. L. Shepard, and C. R. Dean, “One-dimensional electrical contact to a two-dimensional material,” Science 342, 614–617 (2013).
[Crossref]

A. N. Sidorov, D. K. Benjamin, and C. Foy, “Comparative thermal conductivity measurement of chemical vapor deposition grown graphene supported on substrate,” Appl. Phys. Lett. 103, 243103 (2013).

X. K. Wang, X. W. Guan, Q. S. Huang, J. J. Zheng, Y. C. Shi, and D. X. Dai, “Suspended ultra-small disk resonator on silicon for optical sensing,” Opt. Lett. 38, 5405–5408 (2013).
[Crossref]

2012 (3)

Q. L. Bao and K. P. Loh, “Graphene photonics, plasmonics, and broadband optoelectronic devices,” ACS Nano 6, 3677–3694 (2012).
[Crossref]

M. M. Sadeghi, M. T. Pettes, and L. Shi, “Thermal transport in graphene,” Solid State Commun. 152, 1321–1330 (2012).
[Crossref]

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. K. Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photon. Rev. 6, 47–73 (2012).
[Crossref]

2011 (6)

J. Kang, H. Kim, K. S. Kim, S. K. Lee, S. Bae, J. H. Ahn, Y. J. Kim, J. B. Choi, and B. H. Hong, “High-performance graphene-based transparent flexible heaters,” Nano Lett. 11, 5154–5158 (2011).
[Crossref]

D. Sui, Y. Huang, L. Huang, J. J. Liang, Y. F. Ma, and Y. S. Chen, “Flexible and transparent electrothermal film heaters based on graphene materials,” Small 7, 3186–3192 (2011).
[Crossref]

F. N. Xia, V. Perebeinos, Y. M. Lin, Y. Q. Wu, and P. Avouris, “The origins and limits of metal-graphene junction resistance,” Nat. Nanotechnol. 6, 179–184 (2011).
[Crossref]

A. A. Balandin, “Thermal properties of graphene and nanostructured carbon materials,” Nat. Mater. 10, 569–581 (2011).
[Crossref]

M. Asghari and A. V. Krishnamoorthy, “Silicon photonics energy-efficient communication,” Nat. Photonics 5, 268–270 (2011).
[Crossref]

M. Liu, X. B. Yin, E. Ulin-Avila, B. S. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474, 64–67 (2011).
[Crossref]

2010 (5)

M. Hochberg and T. Baehr-Jones, “Towards fabless silicon photonics,” Nat. Photonics 4, 492–494 (2010).
[Crossref]

P. Dong, W. Qian, H. Liang, R. Shafiiha, D. Z. Feng, G. L. Li, J. E. Cunningham, A. V. Krishnamoorthy, and M. Asghari, “Thermally tunable silicon racetrack resonators with ultralow tuning power,” Opt. Express 18, 20298–20304 (2010).
[Crossref]

F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics 4, 611–622 (2010).
[Crossref]

W. W. Cai, A. L. Moore, Y. W. Zhu, X. S. Li, S. S. Chen, L. Shi, and R. S. Ruoff, “Thermal transport in suspended and supported monolayer graphene grown by chemical vapor deposition,” Nano Lett. 10, 1645–1651 (2010).
[Crossref]

R. Prasher, “Graphene spreads the heat,” Science 328, 185–186 (2010).
[Crossref]

2009 (5)

S. Subrina, D. Kotchetkov, and A. A. Balandin, “Heat removal in silicon-on-insulator integrated circuits with graphene lateral heat spreaders,” IEEE Electron Device Lett. 30, 1281–1283 (2009).
[Crossref]

D. L. Nika, E. P. Pokatilov, A. S. Askerov, and A. A. Balandin, “Phonon thermal conduction in graphene: role of Umklapp and edge roughness scattering,” Phys. Rev. B 79, 155413 (2009).
[Crossref]

D. X. Dai and S. L. He, “A silicon-based hybrid plasmonic waveguide with a metal cap for a nano-scale light confinement,” Opt. Express 17, 16646–16653 (2009).
[Crossref]

M. M. Geng, L. X. Jia, L. Zhang, L. Yang, P. Chen, T. Wang, and Y. L. Liu, “Four-channel reconfigurable optical add-drop multiplexer based on photonic wire waveguide,” Opt. Express 17, 5502–5516 (2009).
[Crossref]

R. Murali, Y. X. Yang, K. Brenner, T. Beck, and J. D. Meindl, “Breakdown current density of graphene nanoribbons,” Appl. Phys. Lett. 94, 243114 (2009).
[Crossref]

2008 (7)

A. Das, S. Pisana, B. Chakraborty, S. Piscanec, S. K. Saha, U. V. Waghmare, K. S. Novoselov, H. R. Krishnamurthy, A. K. Geim, A. C. Ferrari, and A. K. Sood, “Monitoring dopants by Raman scattering in an electrochemically top-gated graphene transistor,” Nat. Nanotechnol. 3, 210–215 (2008).
[Crossref]

A. A. Balandin, S. Ghosh, W. Z. Bao, I. Calizo, D. Teweldebrhan, F. Miao, and C. N. Lau, “Superior thermal conductivity of single-layer graphene,” Nano Lett. 8, 902–907 (2008).
[Crossref]

S. Ghosh, I. Calizo, D. Teweldebrhan, E. P. Pokatilov, D. L. Nika, A. A. Balandin, W. Bao, F. Miao, and C. N. Lau, “Extremely high thermal conductivity of graphene: prospects for thermal management applications in nanoelectronic circuits,” Appl. Phys. Lett. 92, 151911 (2008).
[Crossref]

K. I. Bolotin, K. J. Sikes, Z. Jiang, M. Klima, G. Fudenberg, J. Hone, P. Kim, and H. L. Stormer, “Ultrahigh electron mobility in suspended graphene,” Solid State Commun. 146, 351–355 (2008).
[Crossref]

X. Du, I. Skachko, A. Barker, and E. Y. Andrei, “Approaching ballistic transport in suspended graphene,” Nat. Nanotechnol. 3, 491–495 (2008).
[Crossref]

L. Yang, D. X. Dai, and S. L. He, “Thermal analysis for a photonic Si ridge wire with a submicron metal heater,” Opt. Commun. 281, 2467–2471 (2008).
[Crossref]

G. W. Hanson, “Dyadic Green’s functions and guided surface waves for a surface conductivity model of graphene,” J. Appl. Phys. 103, 064302 (2008).
[Crossref]

2007 (3)

V. P. Gusynin, S. G. Sharapov, and J. P. Carbotte, “Magneto-optical conductivity in graphene,” J. Phys. 19, 026222 (2007).

A. K. Geim and K. S. Novoselov, “The rise of graphene,” Nat. Mater. 6, 183–191 (2007).
[Crossref]

D. X. Xu, A. Densmore, P. Waldron, J. Lapointe, E. Post, A. Delage, S. Janz, P. Cheben, J. H. Schmid, and B. Lamontagne, “High bandwidth SOI photonic wire ring resonators using MMI couplers,” Opt. Express 15, 3149–3155 (2007).
[Crossref]

2006 (2)

D. Taillaert, F. V. Laere, M. Ayre, W. Bogaerts, D. V. Thourhout, P. Bienstman, and R. Baets, “Grating couplers for coupling between optical fibers and nanophotonic waveguides,” Jpn. J. Appl. Phys. 45, 6071–6077 (2006).
[Crossref]

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440, 508–511 (2006).
[Crossref]

2005 (2)

R. Charbonneau and N. Lahoud, “Demonstration of integrated optics elements based on long-ranging surface plasmon polaritons,” Opt. Express 13, 977–984 (2005).
[Crossref]

Q. F. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature 435, 325–327 (2005).
[Crossref]

2004 (2)

V. R. Almeida, C. A. Barrios, R. R. Panepucci, M. Lipson, M. A. Foster, D. G. Ouzounov, and A. L. Gaeta, “All-optical switching on a silicon chip,” Opt. Lett. 29, 2867–2869 (2004).
[Crossref]

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306, 666–669 (2004).
[Crossref]

2003 (1)

R. L. Espinola, M. C. Tsai, J. T. Yardley, and R. M. Osgood, “Fast and low-power thermooptic switch on thin silicon-on-insulator,” IEEE Photon. Technol. Lett. 15, 1366–1368 (2003).
[Crossref]

1992 (1)

S. L. McCall, A. F. J. Levi, R. E. Slusher, S. J. Pearton, and R. A. Logan, “Whispering-gallery mode microdisk lasers,” Appl. Phys. Lett. 60, 289–291 (1992).
[Crossref]

Ahn, J. H.

J. Kang, H. Kim, K. S. Kim, S. K. Lee, S. Bae, J. H. Ahn, Y. J. Kim, J. B. Choi, and B. H. Hong, “High-performance graphene-based transparent flexible heaters,” Nano Lett. 11, 5154–5158 (2011).
[Crossref]

Almeida, V. R.

Andrei, E. Y.

X. Du, I. Skachko, A. Barker, and E. Y. Andrei, “Approaching ballistic transport in suspended graphene,” Nat. Nanotechnol. 3, 491–495 (2008).
[Crossref]

Asghari, M.

Askerov, A. S.

D. L. Nika, E. P. Pokatilov, A. S. Askerov, and A. A. Balandin, “Phonon thermal conduction in graphene: role of Umklapp and edge roughness scattering,” Phys. Rev. B 79, 155413 (2009).
[Crossref]

Avouris, P.

F. N. Xia, V. Perebeinos, Y. M. Lin, Y. Q. Wu, and P. Avouris, “The origins and limits of metal-graphene junction resistance,” Nat. Nanotechnol. 6, 179–184 (2011).
[Crossref]

Ayre, M.

D. Taillaert, F. V. Laere, M. Ayre, W. Bogaerts, D. V. Thourhout, P. Bienstman, and R. Baets, “Grating couplers for coupling between optical fibers and nanophotonic waveguides,” Jpn. J. Appl. Phys. 45, 6071–6077 (2006).
[Crossref]

Bae, S.

J. Kang, H. Kim, K. S. Kim, S. K. Lee, S. Bae, J. H. Ahn, Y. J. Kim, J. B. Choi, and B. H. Hong, “High-performance graphene-based transparent flexible heaters,” Nano Lett. 11, 5154–5158 (2011).
[Crossref]

Baehr-Jones, T.

M. Hochberg and T. Baehr-Jones, “Towards fabless silicon photonics,” Nat. Photonics 4, 492–494 (2010).
[Crossref]

Baets, R.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. K. Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photon. Rev. 6, 47–73 (2012).
[Crossref]

D. Taillaert, F. V. Laere, M. Ayre, W. Bogaerts, D. V. Thourhout, P. Bienstman, and R. Baets, “Grating couplers for coupling between optical fibers and nanophotonic waveguides,” Jpn. J. Appl. Phys. 45, 6071–6077 (2006).
[Crossref]

Balandin, A. A.

A. A. Balandin, “Thermal properties of graphene and nanostructured carbon materials,” Nat. Mater. 10, 569–581 (2011).
[Crossref]

D. L. Nika, E. P. Pokatilov, A. S. Askerov, and A. A. Balandin, “Phonon thermal conduction in graphene: role of Umklapp and edge roughness scattering,” Phys. Rev. B 79, 155413 (2009).
[Crossref]

S. Subrina, D. Kotchetkov, and A. A. Balandin, “Heat removal in silicon-on-insulator integrated circuits with graphene lateral heat spreaders,” IEEE Electron Device Lett. 30, 1281–1283 (2009).
[Crossref]

S. Ghosh, I. Calizo, D. Teweldebrhan, E. P. Pokatilov, D. L. Nika, A. A. Balandin, W. Bao, F. Miao, and C. N. Lau, “Extremely high thermal conductivity of graphene: prospects for thermal management applications in nanoelectronic circuits,” Appl. Phys. Lett. 92, 151911 (2008).
[Crossref]

A. A. Balandin, S. Ghosh, W. Z. Bao, I. Calizo, D. Teweldebrhan, F. Miao, and C. N. Lau, “Superior thermal conductivity of single-layer graphene,” Nano Lett. 8, 902–907 (2008).
[Crossref]

Bao, Q. L.

Q. L. Bao and K. P. Loh, “Graphene photonics, plasmonics, and broadband optoelectronic devices,” ACS Nano 6, 3677–3694 (2012).
[Crossref]

Bao, W.

S. Ghosh, I. Calizo, D. Teweldebrhan, E. P. Pokatilov, D. L. Nika, A. A. Balandin, W. Bao, F. Miao, and C. N. Lau, “Extremely high thermal conductivity of graphene: prospects for thermal management applications in nanoelectronic circuits,” Appl. Phys. Lett. 92, 151911 (2008).
[Crossref]

Bao, W. Z.

A. A. Balandin, S. Ghosh, W. Z. Bao, I. Calizo, D. Teweldebrhan, F. Miao, and C. N. Lau, “Superior thermal conductivity of single-layer graphene,” Nano Lett. 8, 902–907 (2008).
[Crossref]

Barker, A.

X. Du, I. Skachko, A. Barker, and E. Y. Andrei, “Approaching ballistic transport in suspended graphene,” Nat. Nanotechnol. 3, 491–495 (2008).
[Crossref]

Barrios, C. A.

Beck, T.

R. Murali, Y. X. Yang, K. Brenner, T. Beck, and J. D. Meindl, “Breakdown current density of graphene nanoribbons,” Appl. Phys. Lett. 94, 243114 (2009).
[Crossref]

Benjamin, D. K.

A. N. Sidorov, D. K. Benjamin, and C. Foy, “Comparative thermal conductivity measurement of chemical vapor deposition grown graphene supported on substrate,” Appl. Phys. Lett. 103, 243103 (2013).

Bienstman, P.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. K. Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photon. Rev. 6, 47–73 (2012).
[Crossref]

D. Taillaert, F. V. Laere, M. Ayre, W. Bogaerts, D. V. Thourhout, P. Bienstman, and R. Baets, “Grating couplers for coupling between optical fibers and nanophotonic waveguides,” Jpn. J. Appl. Phys. 45, 6071–6077 (2006).
[Crossref]

Bogaerts, W.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. K. Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photon. Rev. 6, 47–73 (2012).
[Crossref]

D. Taillaert, F. V. Laere, M. Ayre, W. Bogaerts, D. V. Thourhout, P. Bienstman, and R. Baets, “Grating couplers for coupling between optical fibers and nanophotonic waveguides,” Jpn. J. Appl. Phys. 45, 6071–6077 (2006).
[Crossref]

Bolotin, K. I.

K. I. Bolotin, K. J. Sikes, Z. Jiang, M. Klima, G. Fudenberg, J. Hone, P. Kim, and H. L. Stormer, “Ultrahigh electron mobility in suspended graphene,” Solid State Commun. 146, 351–355 (2008).
[Crossref]

Bonaccorso, F.

F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics 4, 611–622 (2010).
[Crossref]

Bozhevolnyi, S. I.

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440, 508–511 (2006).
[Crossref]

Brenner, K.

R. Murali, Y. X. Yang, K. Brenner, T. Beck, and J. D. Meindl, “Breakdown current density of graphene nanoribbons,” Appl. Phys. Lett. 94, 243114 (2009).
[Crossref]

Cai, W. W.

W. W. Cai, A. L. Moore, Y. W. Zhu, X. S. Li, S. S. Chen, L. Shi, and R. S. Ruoff, “Thermal transport in suspended and supported monolayer graphene grown by chemical vapor deposition,” Nano Lett. 10, 1645–1651 (2010).
[Crossref]

Calizo, I.

A. A. Balandin, S. Ghosh, W. Z. Bao, I. Calizo, D. Teweldebrhan, F. Miao, and C. N. Lau, “Superior thermal conductivity of single-layer graphene,” Nano Lett. 8, 902–907 (2008).
[Crossref]

S. Ghosh, I. Calizo, D. Teweldebrhan, E. P. Pokatilov, D. L. Nika, A. A. Balandin, W. Bao, F. Miao, and C. N. Lau, “Extremely high thermal conductivity of graphene: prospects for thermal management applications in nanoelectronic circuits,” Appl. Phys. Lett. 92, 151911 (2008).
[Crossref]

Campos, L. M.

L. Wang, I. Meric, P. Y. Huang, Q. Gao, Y. Gao, H. Tran, T. Taniguchi, K. Watanabe, L. M. Campos, D. A. Muller, J. Guo, P. Kim, J. Hone, K. L. Shepard, and C. R. Dean, “One-dimensional electrical contact to a two-dimensional material,” Science 342, 614–617 (2013).
[Crossref]

Carbotte, J. P.

V. P. Gusynin, S. G. Sharapov, and J. P. Carbotte, “Magneto-optical conductivity in graphene,” J. Phys. 19, 026222 (2007).

Chakraborty, B.

A. Das, S. Pisana, B. Chakraborty, S. Piscanec, S. K. Saha, U. V. Waghmare, K. S. Novoselov, H. R. Krishnamurthy, A. K. Geim, A. C. Ferrari, and A. K. Sood, “Monitoring dopants by Raman scattering in an electrochemically top-gated graphene transistor,” Nat. Nanotechnol. 3, 210–215 (2008).
[Crossref]

Charbonneau, R.

Cheben, P.

Chen, P.

Chen, S. S.

W. W. Cai, A. L. Moore, Y. W. Zhu, X. S. Li, S. S. Chen, L. Shi, and R. S. Ruoff, “Thermal transport in suspended and supported monolayer graphene grown by chemical vapor deposition,” Nano Lett. 10, 1645–1651 (2010).
[Crossref]

Chen, Y. S.

D. Sui, Y. Huang, L. Huang, J. J. Liang, Y. F. Ma, and Y. S. Chen, “Flexible and transparent electrothermal film heaters based on graphene materials,” Small 7, 3186–3192 (2011).
[Crossref]

Choi, J. B.

J. Kang, H. Kim, K. S. Kim, S. K. Lee, S. Bae, J. H. Ahn, Y. J. Kim, J. B. Choi, and B. H. Hong, “High-performance graphene-based transparent flexible heaters,” Nano Lett. 11, 5154–5158 (2011).
[Crossref]

Claes, T.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. K. Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photon. Rev. 6, 47–73 (2012).
[Crossref]

Coolbaugh, D. D.

E. Timurdogan, E. S. Hosseini, G. Leake, D. D. Coolbaugh, and M. R. Watts, “L-shaped resonant microring (LRM) filter with integrated thermal tuner,” in Conference on Laser Electro-Optics (Optical Society of America, 2013), paper CTh4F.2.

Cunningham, J. E.

Dai, D.

L. Yu, J. Zheng, Y. Xu, D. Dai, and S. He, “Local and nonlocal optically induced transparency effects in graphene-silicon hybrid nanophotonic integrated circuits,” ACS Nano 8, 11386–11393 (2014).
[Crossref]

L. Yu, S. He, J. Zheng, and D. Dai, “Graphene-based transparent nano-heater for thermally-tuning silicon nanophotonic integrated devices,” in Progress in Electromagnetics Research Symposium (PIERS) Proceedings, Guangzhou, China, 2014, p. 1735–1738.

L. Yu, Y. Xu, Y. Shi, and D. Dai, “Linear and nonlinear optical absorption of on-chip silicon-on-insulator nanowires with graphene,” in Asia Communications and Photonics Conference (Optical Society of America, 2012), paper AS1B.3.

Dai, D. X.

L. H. Yu, D. X. Dai, and S. L. He, “Graphene-based transparent flexible heat conductor for thermally tuning nanophotonic integrated devices,” Appl. Phys. Lett. 105, 251104 (2014).
[Crossref]

X. K. Wang, X. W. Guan, Q. S. Huang, J. J. Zheng, Y. C. Shi, and D. X. Dai, “Suspended ultra-small disk resonator on silicon for optical sensing,” Opt. Lett. 38, 5405–5408 (2013).
[Crossref]

D. X. Dai and S. L. He, “A silicon-based hybrid plasmonic waveguide with a metal cap for a nano-scale light confinement,” Opt. Express 17, 16646–16653 (2009).
[Crossref]

L. Yang, D. X. Dai, and S. L. He, “Thermal analysis for a photonic Si ridge wire with a submicron metal heater,” Opt. Commun. 281, 2467–2471 (2008).
[Crossref]

Das, A.

A. Das, S. Pisana, B. Chakraborty, S. Piscanec, S. K. Saha, U. V. Waghmare, K. S. Novoselov, H. R. Krishnamurthy, A. K. Geim, A. C. Ferrari, and A. K. Sood, “Monitoring dopants by Raman scattering in an electrochemically top-gated graphene transistor,” Nat. Nanotechnol. 3, 210–215 (2008).
[Crossref]

De Heyn, P.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. K. Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photon. Rev. 6, 47–73 (2012).
[Crossref]

De Vos, K.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. K. Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photon. Rev. 6, 47–73 (2012).
[Crossref]

Dean, C. R.

L. Wang, I. Meric, P. Y. Huang, Q. Gao, Y. Gao, H. Tran, T. Taniguchi, K. Watanabe, L. M. Campos, D. A. Muller, J. Guo, P. Kim, J. Hone, K. L. Shepard, and C. R. Dean, “One-dimensional electrical contact to a two-dimensional material,” Science 342, 614–617 (2013).
[Crossref]

Delage, A.

Densmore, A.

Devaux, E.

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440, 508–511 (2006).
[Crossref]

Dimitrakopoulos, C. D.

J. T. Smith, A. D. Franklin, D. B. Farmer, and C. D. Dimitrakopoulos, “Reducing contact resistance in graphene devices through contact area patterning,” ACS Nano 7, 3661–3667 (2013).
[Crossref]

Dong, P.

Du, X.

X. Du, I. Skachko, A. Barker, and E. Y. Andrei, “Approaching ballistic transport in suspended graphene,” Nat. Nanotechnol. 3, 491–495 (2008).
[Crossref]

Dubonos, S. V.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306, 666–669 (2004).
[Crossref]

Dumon, P.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. K. Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photon. Rev. 6, 47–73 (2012).
[Crossref]

Ebbesen, T. W.

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440, 508–511 (2006).
[Crossref]

Espinola, R. L.

R. L. Espinola, M. C. Tsai, J. T. Yardley, and R. M. Osgood, “Fast and low-power thermooptic switch on thin silicon-on-insulator,” IEEE Photon. Technol. Lett. 15, 1366–1368 (2003).
[Crossref]

Farmer, D. B.

J. T. Smith, A. D. Franklin, D. B. Farmer, and C. D. Dimitrakopoulos, “Reducing contact resistance in graphene devices through contact area patterning,” ACS Nano 7, 3661–3667 (2013).
[Crossref]

Feng, D. Z.

Ferrari, A. C.

F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics 4, 611–622 (2010).
[Crossref]

A. Das, S. Pisana, B. Chakraborty, S. Piscanec, S. K. Saha, U. V. Waghmare, K. S. Novoselov, H. R. Krishnamurthy, A. K. Geim, A. C. Ferrari, and A. K. Sood, “Monitoring dopants by Raman scattering in an electrochemically top-gated graphene transistor,” Nat. Nanotechnol. 3, 210–215 (2008).
[Crossref]

Firsov, A. A.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306, 666–669 (2004).
[Crossref]

Foster, M. A.

Foy, C.

A. N. Sidorov, D. K. Benjamin, and C. Foy, “Comparative thermal conductivity measurement of chemical vapor deposition grown graphene supported on substrate,” Appl. Phys. Lett. 103, 243103 (2013).

Franklin, A. D.

J. T. Smith, A. D. Franklin, D. B. Farmer, and C. D. Dimitrakopoulos, “Reducing contact resistance in graphene devices through contact area patterning,” ACS Nano 7, 3661–3667 (2013).
[Crossref]

Fudenberg, G.

K. I. Bolotin, K. J. Sikes, Z. Jiang, M. Klima, G. Fudenberg, J. Hone, P. Kim, and H. L. Stormer, “Ultrahigh electron mobility in suspended graphene,” Solid State Commun. 146, 351–355 (2008).
[Crossref]

Gaeta, A. L.

Gao, Q.

L. Wang, I. Meric, P. Y. Huang, Q. Gao, Y. Gao, H. Tran, T. Taniguchi, K. Watanabe, L. M. Campos, D. A. Muller, J. Guo, P. Kim, J. Hone, K. L. Shepard, and C. R. Dean, “One-dimensional electrical contact to a two-dimensional material,” Science 342, 614–617 (2013).
[Crossref]

Gao, Y.

L. Wang, I. Meric, P. Y. Huang, Q. Gao, Y. Gao, H. Tran, T. Taniguchi, K. Watanabe, L. M. Campos, D. A. Muller, J. Guo, P. Kim, J. Hone, K. L. Shepard, and C. R. Dean, “One-dimensional electrical contact to a two-dimensional material,” Science 342, 614–617 (2013).
[Crossref]

Geim, A. K.

A. Das, S. Pisana, B. Chakraborty, S. Piscanec, S. K. Saha, U. V. Waghmare, K. S. Novoselov, H. R. Krishnamurthy, A. K. Geim, A. C. Ferrari, and A. K. Sood, “Monitoring dopants by Raman scattering in an electrochemically top-gated graphene transistor,” Nat. Nanotechnol. 3, 210–215 (2008).
[Crossref]

A. K. Geim and K. S. Novoselov, “The rise of graphene,” Nat. Mater. 6, 183–191 (2007).
[Crossref]

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306, 666–669 (2004).
[Crossref]

Geng, B. S.

M. Liu, X. B. Yin, E. Ulin-Avila, B. S. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474, 64–67 (2011).
[Crossref]

Geng, M. M.

Ghosh, S.

A. A. Balandin, S. Ghosh, W. Z. Bao, I. Calizo, D. Teweldebrhan, F. Miao, and C. N. Lau, “Superior thermal conductivity of single-layer graphene,” Nano Lett. 8, 902–907 (2008).
[Crossref]

S. Ghosh, I. Calizo, D. Teweldebrhan, E. P. Pokatilov, D. L. Nika, A. A. Balandin, W. Bao, F. Miao, and C. N. Lau, “Extremely high thermal conductivity of graphene: prospects for thermal management applications in nanoelectronic circuits,” Appl. Phys. Lett. 92, 151911 (2008).
[Crossref]

Grigorieva, I. V.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306, 666–669 (2004).
[Crossref]

Guan, X. W.

Guo, J.

L. Wang, I. Meric, P. Y. Huang, Q. Gao, Y. Gao, H. Tran, T. Taniguchi, K. Watanabe, L. M. Campos, D. A. Muller, J. Guo, P. Kim, J. Hone, K. L. Shepard, and C. R. Dean, “One-dimensional electrical contact to a two-dimensional material,” Science 342, 614–617 (2013).
[Crossref]

Gusynin, V. P.

V. P. Gusynin, S. G. Sharapov, and J. P. Carbotte, “Magneto-optical conductivity in graphene,” J. Phys. 19, 026222 (2007).

Hanson, G. W.

G. W. Hanson, “Dyadic Green’s functions and guided surface waves for a surface conductivity model of graphene,” J. Appl. Phys. 103, 064302 (2008).
[Crossref]

Hasan, T.

F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics 4, 611–622 (2010).
[Crossref]

He, S.

L. Yu, J. Zheng, Y. Xu, D. Dai, and S. He, “Local and nonlocal optically induced transparency effects in graphene-silicon hybrid nanophotonic integrated circuits,” ACS Nano 8, 11386–11393 (2014).
[Crossref]

L. Yu, S. He, J. Zheng, and D. Dai, “Graphene-based transparent nano-heater for thermally-tuning silicon nanophotonic integrated devices,” in Progress in Electromagnetics Research Symposium (PIERS) Proceedings, Guangzhou, China, 2014, p. 1735–1738.

He, S. L.

L. H. Yu, D. X. Dai, and S. L. He, “Graphene-based transparent flexible heat conductor for thermally tuning nanophotonic integrated devices,” Appl. Phys. Lett. 105, 251104 (2014).
[Crossref]

D. X. Dai and S. L. He, “A silicon-based hybrid plasmonic waveguide with a metal cap for a nano-scale light confinement,” Opt. Express 17, 16646–16653 (2009).
[Crossref]

L. Yang, D. X. Dai, and S. L. He, “Thermal analysis for a photonic Si ridge wire with a submicron metal heater,” Opt. Commun. 281, 2467–2471 (2008).
[Crossref]

Hochberg, M.

M. Hochberg and T. Baehr-Jones, “Towards fabless silicon photonics,” Nat. Photonics 4, 492–494 (2010).
[Crossref]

Hone, J.

L. Wang, I. Meric, P. Y. Huang, Q. Gao, Y. Gao, H. Tran, T. Taniguchi, K. Watanabe, L. M. Campos, D. A. Muller, J. Guo, P. Kim, J. Hone, K. L. Shepard, and C. R. Dean, “One-dimensional electrical contact to a two-dimensional material,” Science 342, 614–617 (2013).
[Crossref]

K. I. Bolotin, K. J. Sikes, Z. Jiang, M. Klima, G. Fudenberg, J. Hone, P. Kim, and H. L. Stormer, “Ultrahigh electron mobility in suspended graphene,” Solid State Commun. 146, 351–355 (2008).
[Crossref]

Hong, B. H.

J. Kang, H. Kim, K. S. Kim, S. K. Lee, S. Bae, J. H. Ahn, Y. J. Kim, J. B. Choi, and B. H. Hong, “High-performance graphene-based transparent flexible heaters,” Nano Lett. 11, 5154–5158 (2011).
[Crossref]

Hosseini, E. S.

E. Timurdogan, E. S. Hosseini, G. Leake, D. D. Coolbaugh, and M. R. Watts, “L-shaped resonant microring (LRM) filter with integrated thermal tuner,” in Conference on Laser Electro-Optics (Optical Society of America, 2013), paper CTh4F.2.

Huang, L.

D. Sui, Y. Huang, L. Huang, J. J. Liang, Y. F. Ma, and Y. S. Chen, “Flexible and transparent electrothermal film heaters based on graphene materials,” Small 7, 3186–3192 (2011).
[Crossref]

Huang, P. Y.

L. Wang, I. Meric, P. Y. Huang, Q. Gao, Y. Gao, H. Tran, T. Taniguchi, K. Watanabe, L. M. Campos, D. A. Muller, J. Guo, P. Kim, J. Hone, K. L. Shepard, and C. R. Dean, “One-dimensional electrical contact to a two-dimensional material,” Science 342, 614–617 (2013).
[Crossref]

Huang, Q. S.

Huang, Y.

D. Sui, Y. Huang, L. Huang, J. J. Liang, Y. F. Ma, and Y. S. Chen, “Flexible and transparent electrothermal film heaters based on graphene materials,” Small 7, 3186–3192 (2011).
[Crossref]

Janz, S.

Jia, L. X.

Jiang, D.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306, 666–669 (2004).
[Crossref]

Jiang, Z.

K. I. Bolotin, K. J. Sikes, Z. Jiang, M. Klima, G. Fudenberg, J. Hone, P. Kim, and H. L. Stormer, “Ultrahigh electron mobility in suspended graphene,” Solid State Commun. 146, 351–355 (2008).
[Crossref]

Ju, L.

M. Liu, X. B. Yin, E. Ulin-Avila, B. S. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474, 64–67 (2011).
[Crossref]

Kang, J.

J. Kang, H. Kim, K. S. Kim, S. K. Lee, S. Bae, J. H. Ahn, Y. J. Kim, J. B. Choi, and B. H. Hong, “High-performance graphene-based transparent flexible heaters,” Nano Lett. 11, 5154–5158 (2011).
[Crossref]

Kim, H.

J. Kang, H. Kim, K. S. Kim, S. K. Lee, S. Bae, J. H. Ahn, Y. J. Kim, J. B. Choi, and B. H. Hong, “High-performance graphene-based transparent flexible heaters,” Nano Lett. 11, 5154–5158 (2011).
[Crossref]

Kim, K. S.

J. Kang, H. Kim, K. S. Kim, S. K. Lee, S. Bae, J. H. Ahn, Y. J. Kim, J. B. Choi, and B. H. Hong, “High-performance graphene-based transparent flexible heaters,” Nano Lett. 11, 5154–5158 (2011).
[Crossref]

Kim, P.

L. Wang, I. Meric, P. Y. Huang, Q. Gao, Y. Gao, H. Tran, T. Taniguchi, K. Watanabe, L. M. Campos, D. A. Muller, J. Guo, P. Kim, J. Hone, K. L. Shepard, and C. R. Dean, “One-dimensional electrical contact to a two-dimensional material,” Science 342, 614–617 (2013).
[Crossref]

K. I. Bolotin, K. J. Sikes, Z. Jiang, M. Klima, G. Fudenberg, J. Hone, P. Kim, and H. L. Stormer, “Ultrahigh electron mobility in suspended graphene,” Solid State Commun. 146, 351–355 (2008).
[Crossref]

Kim, Y. J.

J. Kang, H. Kim, K. S. Kim, S. K. Lee, S. Bae, J. H. Ahn, Y. J. Kim, J. B. Choi, and B. H. Hong, “High-performance graphene-based transparent flexible heaters,” Nano Lett. 11, 5154–5158 (2011).
[Crossref]

Klima, M.

K. I. Bolotin, K. J. Sikes, Z. Jiang, M. Klima, G. Fudenberg, J. Hone, P. Kim, and H. L. Stormer, “Ultrahigh electron mobility in suspended graphene,” Solid State Commun. 146, 351–355 (2008).
[Crossref]

Kotchetkov, D.

S. Subrina, D. Kotchetkov, and A. A. Balandin, “Heat removal in silicon-on-insulator integrated circuits with graphene lateral heat spreaders,” IEEE Electron Device Lett. 30, 1281–1283 (2009).
[Crossref]

Krishnamoorthy, A. V.

Krishnamurthy, H. R.

A. Das, S. Pisana, B. Chakraborty, S. Piscanec, S. K. Saha, U. V. Waghmare, K. S. Novoselov, H. R. Krishnamurthy, A. K. Geim, A. C. Ferrari, and A. K. Sood, “Monitoring dopants by Raman scattering in an electrochemically top-gated graphene transistor,” Nat. Nanotechnol. 3, 210–215 (2008).
[Crossref]

Laere, F. V.

D. Taillaert, F. V. Laere, M. Ayre, W. Bogaerts, D. V. Thourhout, P. Bienstman, and R. Baets, “Grating couplers for coupling between optical fibers and nanophotonic waveguides,” Jpn. J. Appl. Phys. 45, 6071–6077 (2006).
[Crossref]

Lahoud, N.

Laluet, J. Y.

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440, 508–511 (2006).
[Crossref]

Lamontagne, B.

Lapointe, J.

Lau, C. N.

S. Ghosh, I. Calizo, D. Teweldebrhan, E. P. Pokatilov, D. L. Nika, A. A. Balandin, W. Bao, F. Miao, and C. N. Lau, “Extremely high thermal conductivity of graphene: prospects for thermal management applications in nanoelectronic circuits,” Appl. Phys. Lett. 92, 151911 (2008).
[Crossref]

A. A. Balandin, S. Ghosh, W. Z. Bao, I. Calizo, D. Teweldebrhan, F. Miao, and C. N. Lau, “Superior thermal conductivity of single-layer graphene,” Nano Lett. 8, 902–907 (2008).
[Crossref]

Leake, G.

E. Timurdogan, E. S. Hosseini, G. Leake, D. D. Coolbaugh, and M. R. Watts, “L-shaped resonant microring (LRM) filter with integrated thermal tuner,” in Conference on Laser Electro-Optics (Optical Society of America, 2013), paper CTh4F.2.

Lee, S. K.

J. Kang, H. Kim, K. S. Kim, S. K. Lee, S. Bae, J. H. Ahn, Y. J. Kim, J. B. Choi, and B. H. Hong, “High-performance graphene-based transparent flexible heaters,” Nano Lett. 11, 5154–5158 (2011).
[Crossref]

Levi, A. F. J.

S. L. McCall, A. F. J. Levi, R. E. Slusher, S. J. Pearton, and R. A. Logan, “Whispering-gallery mode microdisk lasers,” Appl. Phys. Lett. 60, 289–291 (1992).
[Crossref]

Li, G. L.

Li, X. S.

W. W. Cai, A. L. Moore, Y. W. Zhu, X. S. Li, S. S. Chen, L. Shi, and R. S. Ruoff, “Thermal transport in suspended and supported monolayer graphene grown by chemical vapor deposition,” Nano Lett. 10, 1645–1651 (2010).
[Crossref]

Liang, H.

Liang, J. J.

D. Sui, Y. Huang, L. Huang, J. J. Liang, Y. F. Ma, and Y. S. Chen, “Flexible and transparent electrothermal film heaters based on graphene materials,” Small 7, 3186–3192 (2011).
[Crossref]

Lin, Y. M.

F. N. Xia, V. Perebeinos, Y. M. Lin, Y. Q. Wu, and P. Avouris, “The origins and limits of metal-graphene junction resistance,” Nat. Nanotechnol. 6, 179–184 (2011).
[Crossref]

Lipson, M.

Liu, M.

M. Liu, X. B. Yin, E. Ulin-Avila, B. S. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474, 64–67 (2011).
[Crossref]

Liu, Y. L.

Logan, R. A.

S. L. McCall, A. F. J. Levi, R. E. Slusher, S. J. Pearton, and R. A. Logan, “Whispering-gallery mode microdisk lasers,” Appl. Phys. Lett. 60, 289–291 (1992).
[Crossref]

Loh, K. P.

Q. L. Bao and K. P. Loh, “Graphene photonics, plasmonics, and broadband optoelectronic devices,” ACS Nano 6, 3677–3694 (2012).
[Crossref]

Luck, D. L.

M. R. Watts, W. A. Zortman, D. C. Trotter, G. N. Nielson, D. L. Luck, and R. W. Young, “Adiabatic resonant microrings (ARMs) with directly integrated thermal microphotonics,” in Conference on Lasers and Electro-Optics (Optical Society of America, 2009), paper CPDB10.

Ma, Y. F.

D. Sui, Y. Huang, L. Huang, J. J. Liang, Y. F. Ma, and Y. S. Chen, “Flexible and transparent electrothermal film heaters based on graphene materials,” Small 7, 3186–3192 (2011).
[Crossref]

McCall, S. L.

S. L. McCall, A. F. J. Levi, R. E. Slusher, S. J. Pearton, and R. A. Logan, “Whispering-gallery mode microdisk lasers,” Appl. Phys. Lett. 60, 289–291 (1992).
[Crossref]

Meindl, J. D.

R. Murali, Y. X. Yang, K. Brenner, T. Beck, and J. D. Meindl, “Breakdown current density of graphene nanoribbons,” Appl. Phys. Lett. 94, 243114 (2009).
[Crossref]

Meric, I.

L. Wang, I. Meric, P. Y. Huang, Q. Gao, Y. Gao, H. Tran, T. Taniguchi, K. Watanabe, L. M. Campos, D. A. Muller, J. Guo, P. Kim, J. Hone, K. L. Shepard, and C. R. Dean, “One-dimensional electrical contact to a two-dimensional material,” Science 342, 614–617 (2013).
[Crossref]

Miao, F.

S. Ghosh, I. Calizo, D. Teweldebrhan, E. P. Pokatilov, D. L. Nika, A. A. Balandin, W. Bao, F. Miao, and C. N. Lau, “Extremely high thermal conductivity of graphene: prospects for thermal management applications in nanoelectronic circuits,” Appl. Phys. Lett. 92, 151911 (2008).
[Crossref]

A. A. Balandin, S. Ghosh, W. Z. Bao, I. Calizo, D. Teweldebrhan, F. Miao, and C. N. Lau, “Superior thermal conductivity of single-layer graphene,” Nano Lett. 8, 902–907 (2008).
[Crossref]

Moore, A. L.

W. W. Cai, A. L. Moore, Y. W. Zhu, X. S. Li, S. S. Chen, L. Shi, and R. S. Ruoff, “Thermal transport in suspended and supported monolayer graphene grown by chemical vapor deposition,” Nano Lett. 10, 1645–1651 (2010).
[Crossref]

Morozov, S. V.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306, 666–669 (2004).
[Crossref]

Muller, D. A.

L. Wang, I. Meric, P. Y. Huang, Q. Gao, Y. Gao, H. Tran, T. Taniguchi, K. Watanabe, L. M. Campos, D. A. Muller, J. Guo, P. Kim, J. Hone, K. L. Shepard, and C. R. Dean, “One-dimensional electrical contact to a two-dimensional material,” Science 342, 614–617 (2013).
[Crossref]

Murali, R.

R. Murali, Y. X. Yang, K. Brenner, T. Beck, and J. D. Meindl, “Breakdown current density of graphene nanoribbons,” Appl. Phys. Lett. 94, 243114 (2009).
[Crossref]

Nielson, G. N.

M. R. Watts, W. A. Zortman, D. C. Trotter, G. N. Nielson, D. L. Luck, and R. W. Young, “Adiabatic resonant microrings (ARMs) with directly integrated thermal microphotonics,” in Conference on Lasers and Electro-Optics (Optical Society of America, 2009), paper CPDB10.

Nika, D. L.

D. L. Nika, E. P. Pokatilov, A. S. Askerov, and A. A. Balandin, “Phonon thermal conduction in graphene: role of Umklapp and edge roughness scattering,” Phys. Rev. B 79, 155413 (2009).
[Crossref]

S. Ghosh, I. Calizo, D. Teweldebrhan, E. P. Pokatilov, D. L. Nika, A. A. Balandin, W. Bao, F. Miao, and C. N. Lau, “Extremely high thermal conductivity of graphene: prospects for thermal management applications in nanoelectronic circuits,” Appl. Phys. Lett. 92, 151911 (2008).
[Crossref]

Novoselov, K. S.

A. Das, S. Pisana, B. Chakraborty, S. Piscanec, S. K. Saha, U. V. Waghmare, K. S. Novoselov, H. R. Krishnamurthy, A. K. Geim, A. C. Ferrari, and A. K. Sood, “Monitoring dopants by Raman scattering in an electrochemically top-gated graphene transistor,” Nat. Nanotechnol. 3, 210–215 (2008).
[Crossref]

A. K. Geim and K. S. Novoselov, “The rise of graphene,” Nat. Mater. 6, 183–191 (2007).
[Crossref]

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306, 666–669 (2004).
[Crossref]

Osgood, R. M.

R. L. Espinola, M. C. Tsai, J. T. Yardley, and R. M. Osgood, “Fast and low-power thermooptic switch on thin silicon-on-insulator,” IEEE Photon. Technol. Lett. 15, 1366–1368 (2003).
[Crossref]

Ouzounov, D. G.

Panepucci, R. R.

Pearton, S. J.

S. L. McCall, A. F. J. Levi, R. E. Slusher, S. J. Pearton, and R. A. Logan, “Whispering-gallery mode microdisk lasers,” Appl. Phys. Lett. 60, 289–291 (1992).
[Crossref]

Perebeinos, V.

F. N. Xia, V. Perebeinos, Y. M. Lin, Y. Q. Wu, and P. Avouris, “The origins and limits of metal-graphene junction resistance,” Nat. Nanotechnol. 6, 179–184 (2011).
[Crossref]

Pettes, M. T.

M. M. Sadeghi, M. T. Pettes, and L. Shi, “Thermal transport in graphene,” Solid State Commun. 152, 1321–1330 (2012).
[Crossref]

Pisana, S.

A. Das, S. Pisana, B. Chakraborty, S. Piscanec, S. K. Saha, U. V. Waghmare, K. S. Novoselov, H. R. Krishnamurthy, A. K. Geim, A. C. Ferrari, and A. K. Sood, “Monitoring dopants by Raman scattering in an electrochemically top-gated graphene transistor,” Nat. Nanotechnol. 3, 210–215 (2008).
[Crossref]

Piscanec, S.

A. Das, S. Pisana, B. Chakraborty, S. Piscanec, S. K. Saha, U. V. Waghmare, K. S. Novoselov, H. R. Krishnamurthy, A. K. Geim, A. C. Ferrari, and A. K. Sood, “Monitoring dopants by Raman scattering in an electrochemically top-gated graphene transistor,” Nat. Nanotechnol. 3, 210–215 (2008).
[Crossref]

Pokatilov, E. P.

D. L. Nika, E. P. Pokatilov, A. S. Askerov, and A. A. Balandin, “Phonon thermal conduction in graphene: role of Umklapp and edge roughness scattering,” Phys. Rev. B 79, 155413 (2009).
[Crossref]

S. Ghosh, I. Calizo, D. Teweldebrhan, E. P. Pokatilov, D. L. Nika, A. A. Balandin, W. Bao, F. Miao, and C. N. Lau, “Extremely high thermal conductivity of graphene: prospects for thermal management applications in nanoelectronic circuits,” Appl. Phys. Lett. 92, 151911 (2008).
[Crossref]

Post, E.

Pradhan, S.

Q. F. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature 435, 325–327 (2005).
[Crossref]

Prasher, R.

R. Prasher, “Graphene spreads the heat,” Science 328, 185–186 (2010).
[Crossref]

Qian, W.

Ruoff, R. S.

W. W. Cai, A. L. Moore, Y. W. Zhu, X. S. Li, S. S. Chen, L. Shi, and R. S. Ruoff, “Thermal transport in suspended and supported monolayer graphene grown by chemical vapor deposition,” Nano Lett. 10, 1645–1651 (2010).
[Crossref]

Sadeghi, M. M.

M. M. Sadeghi, M. T. Pettes, and L. Shi, “Thermal transport in graphene,” Solid State Commun. 152, 1321–1330 (2012).
[Crossref]

Saha, S. K.

A. Das, S. Pisana, B. Chakraborty, S. Piscanec, S. K. Saha, U. V. Waghmare, K. S. Novoselov, H. R. Krishnamurthy, A. K. Geim, A. C. Ferrari, and A. K. Sood, “Monitoring dopants by Raman scattering in an electrochemically top-gated graphene transistor,” Nat. Nanotechnol. 3, 210–215 (2008).
[Crossref]

Schmid, J. H.

Schmidt, B.

Q. F. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature 435, 325–327 (2005).
[Crossref]

Selvaraja, S. K.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. K. Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photon. Rev. 6, 47–73 (2012).
[Crossref]

Shafiiha, R.

Sharapov, S. G.

V. P. Gusynin, S. G. Sharapov, and J. P. Carbotte, “Magneto-optical conductivity in graphene,” J. Phys. 19, 026222 (2007).

Shepard, K. L.

L. Wang, I. Meric, P. Y. Huang, Q. Gao, Y. Gao, H. Tran, T. Taniguchi, K. Watanabe, L. M. Campos, D. A. Muller, J. Guo, P. Kim, J. Hone, K. L. Shepard, and C. R. Dean, “One-dimensional electrical contact to a two-dimensional material,” Science 342, 614–617 (2013).
[Crossref]

Shi, L.

M. M. Sadeghi, M. T. Pettes, and L. Shi, “Thermal transport in graphene,” Solid State Commun. 152, 1321–1330 (2012).
[Crossref]

W. W. Cai, A. L. Moore, Y. W. Zhu, X. S. Li, S. S. Chen, L. Shi, and R. S. Ruoff, “Thermal transport in suspended and supported monolayer graphene grown by chemical vapor deposition,” Nano Lett. 10, 1645–1651 (2010).
[Crossref]

Shi, Y.

L. Yu, Y. Xu, Y. Shi, and D. Dai, “Linear and nonlinear optical absorption of on-chip silicon-on-insulator nanowires with graphene,” in Asia Communications and Photonics Conference (Optical Society of America, 2012), paper AS1B.3.

Shi, Y. C.

Sidorov, A. N.

A. N. Sidorov, D. K. Benjamin, and C. Foy, “Comparative thermal conductivity measurement of chemical vapor deposition grown graphene supported on substrate,” Appl. Phys. Lett. 103, 243103 (2013).

Sikes, K. J.

K. I. Bolotin, K. J. Sikes, Z. Jiang, M. Klima, G. Fudenberg, J. Hone, P. Kim, and H. L. Stormer, “Ultrahigh electron mobility in suspended graphene,” Solid State Commun. 146, 351–355 (2008).
[Crossref]

Skachko, I.

X. Du, I. Skachko, A. Barker, and E. Y. Andrei, “Approaching ballistic transport in suspended graphene,” Nat. Nanotechnol. 3, 491–495 (2008).
[Crossref]

Slusher, R. E.

S. L. McCall, A. F. J. Levi, R. E. Slusher, S. J. Pearton, and R. A. Logan, “Whispering-gallery mode microdisk lasers,” Appl. Phys. Lett. 60, 289–291 (1992).
[Crossref]

Smith, J. T.

J. T. Smith, A. D. Franklin, D. B. Farmer, and C. D. Dimitrakopoulos, “Reducing contact resistance in graphene devices through contact area patterning,” ACS Nano 7, 3661–3667 (2013).
[Crossref]

Sood, A. K.

A. Das, S. Pisana, B. Chakraborty, S. Piscanec, S. K. Saha, U. V. Waghmare, K. S. Novoselov, H. R. Krishnamurthy, A. K. Geim, A. C. Ferrari, and A. K. Sood, “Monitoring dopants by Raman scattering in an electrochemically top-gated graphene transistor,” Nat. Nanotechnol. 3, 210–215 (2008).
[Crossref]

Stormer, H. L.

K. I. Bolotin, K. J. Sikes, Z. Jiang, M. Klima, G. Fudenberg, J. Hone, P. Kim, and H. L. Stormer, “Ultrahigh electron mobility in suspended graphene,” Solid State Commun. 146, 351–355 (2008).
[Crossref]

Subrina, S.

S. Subrina, D. Kotchetkov, and A. A. Balandin, “Heat removal in silicon-on-insulator integrated circuits with graphene lateral heat spreaders,” IEEE Electron Device Lett. 30, 1281–1283 (2009).
[Crossref]

Sui, D.

D. Sui, Y. Huang, L. Huang, J. J. Liang, Y. F. Ma, and Y. S. Chen, “Flexible and transparent electrothermal film heaters based on graphene materials,” Small 7, 3186–3192 (2011).
[Crossref]

Sun, Z.

F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics 4, 611–622 (2010).
[Crossref]

Taillaert, D.

D. Taillaert, F. V. Laere, M. Ayre, W. Bogaerts, D. V. Thourhout, P. Bienstman, and R. Baets, “Grating couplers for coupling between optical fibers and nanophotonic waveguides,” Jpn. J. Appl. Phys. 45, 6071–6077 (2006).
[Crossref]

Taniguchi, T.

L. Wang, I. Meric, P. Y. Huang, Q. Gao, Y. Gao, H. Tran, T. Taniguchi, K. Watanabe, L. M. Campos, D. A. Muller, J. Guo, P. Kim, J. Hone, K. L. Shepard, and C. R. Dean, “One-dimensional electrical contact to a two-dimensional material,” Science 342, 614–617 (2013).
[Crossref]

Teweldebrhan, D.

S. Ghosh, I. Calizo, D. Teweldebrhan, E. P. Pokatilov, D. L. Nika, A. A. Balandin, W. Bao, F. Miao, and C. N. Lau, “Extremely high thermal conductivity of graphene: prospects for thermal management applications in nanoelectronic circuits,” Appl. Phys. Lett. 92, 151911 (2008).
[Crossref]

A. A. Balandin, S. Ghosh, W. Z. Bao, I. Calizo, D. Teweldebrhan, F. Miao, and C. N. Lau, “Superior thermal conductivity of single-layer graphene,” Nano Lett. 8, 902–907 (2008).
[Crossref]

Thourhout, D. V.

D. Taillaert, F. V. Laere, M. Ayre, W. Bogaerts, D. V. Thourhout, P. Bienstman, and R. Baets, “Grating couplers for coupling between optical fibers and nanophotonic waveguides,” Jpn. J. Appl. Phys. 45, 6071–6077 (2006).
[Crossref]

Timurdogan, E.

E. Timurdogan, E. S. Hosseini, G. Leake, D. D. Coolbaugh, and M. R. Watts, “L-shaped resonant microring (LRM) filter with integrated thermal tuner,” in Conference on Laser Electro-Optics (Optical Society of America, 2013), paper CTh4F.2.

Tran, H.

L. Wang, I. Meric, P. Y. Huang, Q. Gao, Y. Gao, H. Tran, T. Taniguchi, K. Watanabe, L. M. Campos, D. A. Muller, J. Guo, P. Kim, J. Hone, K. L. Shepard, and C. R. Dean, “One-dimensional electrical contact to a two-dimensional material,” Science 342, 614–617 (2013).
[Crossref]

Trotter, D. C.

M. R. Watts, W. A. Zortman, D. C. Trotter, G. N. Nielson, D. L. Luck, and R. W. Young, “Adiabatic resonant microrings (ARMs) with directly integrated thermal microphotonics,” in Conference on Lasers and Electro-Optics (Optical Society of America, 2009), paper CPDB10.

Tsai, M. C.

R. L. Espinola, M. C. Tsai, J. T. Yardley, and R. M. Osgood, “Fast and low-power thermooptic switch on thin silicon-on-insulator,” IEEE Photon. Technol. Lett. 15, 1366–1368 (2003).
[Crossref]

Ulin-Avila, E.

M. Liu, X. B. Yin, E. Ulin-Avila, B. S. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474, 64–67 (2011).
[Crossref]

Van Thourhout, D.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. K. Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photon. Rev. 6, 47–73 (2012).
[Crossref]

Van Vaerenbergh, T.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. K. Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photon. Rev. 6, 47–73 (2012).
[Crossref]

Volkov, V. S.

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440, 508–511 (2006).
[Crossref]

Waghmare, U. V.

A. Das, S. Pisana, B. Chakraborty, S. Piscanec, S. K. Saha, U. V. Waghmare, K. S. Novoselov, H. R. Krishnamurthy, A. K. Geim, A. C. Ferrari, and A. K. Sood, “Monitoring dopants by Raman scattering in an electrochemically top-gated graphene transistor,” Nat. Nanotechnol. 3, 210–215 (2008).
[Crossref]

Waldron, P.

Wang, F.

M. Liu, X. B. Yin, E. Ulin-Avila, B. S. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474, 64–67 (2011).
[Crossref]

Wang, L.

L. Wang, I. Meric, P. Y. Huang, Q. Gao, Y. Gao, H. Tran, T. Taniguchi, K. Watanabe, L. M. Campos, D. A. Muller, J. Guo, P. Kim, J. Hone, K. L. Shepard, and C. R. Dean, “One-dimensional electrical contact to a two-dimensional material,” Science 342, 614–617 (2013).
[Crossref]

Wang, T.

Wang, X. K.

Watanabe, K.

L. Wang, I. Meric, P. Y. Huang, Q. Gao, Y. Gao, H. Tran, T. Taniguchi, K. Watanabe, L. M. Campos, D. A. Muller, J. Guo, P. Kim, J. Hone, K. L. Shepard, and C. R. Dean, “One-dimensional electrical contact to a two-dimensional material,” Science 342, 614–617 (2013).
[Crossref]

Watts, M. R.

E. Timurdogan, E. S. Hosseini, G. Leake, D. D. Coolbaugh, and M. R. Watts, “L-shaped resonant microring (LRM) filter with integrated thermal tuner,” in Conference on Laser Electro-Optics (Optical Society of America, 2013), paper CTh4F.2.

M. R. Watts, W. A. Zortman, D. C. Trotter, G. N. Nielson, D. L. Luck, and R. W. Young, “Adiabatic resonant microrings (ARMs) with directly integrated thermal microphotonics,” in Conference on Lasers and Electro-Optics (Optical Society of America, 2009), paper CPDB10.

Wu, Y. Q.

F. N. Xia, V. Perebeinos, Y. M. Lin, Y. Q. Wu, and P. Avouris, “The origins and limits of metal-graphene junction resistance,” Nat. Nanotechnol. 6, 179–184 (2011).
[Crossref]

Xia, F. N.

F. N. Xia, V. Perebeinos, Y. M. Lin, Y. Q. Wu, and P. Avouris, “The origins and limits of metal-graphene junction resistance,” Nat. Nanotechnol. 6, 179–184 (2011).
[Crossref]

Xu, D. X.

Xu, Q. F.

Q. F. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature 435, 325–327 (2005).
[Crossref]

Xu, Y.

L. Yu, J. Zheng, Y. Xu, D. Dai, and S. He, “Local and nonlocal optically induced transparency effects in graphene-silicon hybrid nanophotonic integrated circuits,” ACS Nano 8, 11386–11393 (2014).
[Crossref]

L. Yu, Y. Xu, Y. Shi, and D. Dai, “Linear and nonlinear optical absorption of on-chip silicon-on-insulator nanowires with graphene,” in Asia Communications and Photonics Conference (Optical Society of America, 2012), paper AS1B.3.

Yang, L.

M. M. Geng, L. X. Jia, L. Zhang, L. Yang, P. Chen, T. Wang, and Y. L. Liu, “Four-channel reconfigurable optical add-drop multiplexer based on photonic wire waveguide,” Opt. Express 17, 5502–5516 (2009).
[Crossref]

L. Yang, D. X. Dai, and S. L. He, “Thermal analysis for a photonic Si ridge wire with a submicron metal heater,” Opt. Commun. 281, 2467–2471 (2008).
[Crossref]

Yang, Y. X.

R. Murali, Y. X. Yang, K. Brenner, T. Beck, and J. D. Meindl, “Breakdown current density of graphene nanoribbons,” Appl. Phys. Lett. 94, 243114 (2009).
[Crossref]

Yardley, J. T.

R. L. Espinola, M. C. Tsai, J. T. Yardley, and R. M. Osgood, “Fast and low-power thermooptic switch on thin silicon-on-insulator,” IEEE Photon. Technol. Lett. 15, 1366–1368 (2003).
[Crossref]

Yin, X. B.

M. Liu, X. B. Yin, E. Ulin-Avila, B. S. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474, 64–67 (2011).
[Crossref]

Young, R. W.

M. R. Watts, W. A. Zortman, D. C. Trotter, G. N. Nielson, D. L. Luck, and R. W. Young, “Adiabatic resonant microrings (ARMs) with directly integrated thermal microphotonics,” in Conference on Lasers and Electro-Optics (Optical Society of America, 2009), paper CPDB10.

Yu, L.

L. Yu, J. Zheng, Y. Xu, D. Dai, and S. He, “Local and nonlocal optically induced transparency effects in graphene-silicon hybrid nanophotonic integrated circuits,” ACS Nano 8, 11386–11393 (2014).
[Crossref]

L. Yu, Y. Xu, Y. Shi, and D. Dai, “Linear and nonlinear optical absorption of on-chip silicon-on-insulator nanowires with graphene,” in Asia Communications and Photonics Conference (Optical Society of America, 2012), paper AS1B.3.

L. Yu, S. He, J. Zheng, and D. Dai, “Graphene-based transparent nano-heater for thermally-tuning silicon nanophotonic integrated devices,” in Progress in Electromagnetics Research Symposium (PIERS) Proceedings, Guangzhou, China, 2014, p. 1735–1738.

Yu, L. H.

L. H. Yu, D. X. Dai, and S. L. He, “Graphene-based transparent flexible heat conductor for thermally tuning nanophotonic integrated devices,” Appl. Phys. Lett. 105, 251104 (2014).
[Crossref]

Zentgraf, T.

M. Liu, X. B. Yin, E. Ulin-Avila, B. S. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474, 64–67 (2011).
[Crossref]

Zhang, L.

Zhang, X.

M. Liu, X. B. Yin, E. Ulin-Avila, B. S. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474, 64–67 (2011).
[Crossref]

Zhang, Y.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306, 666–669 (2004).
[Crossref]

Zheng, J.

L. Yu, J. Zheng, Y. Xu, D. Dai, and S. He, “Local and nonlocal optically induced transparency effects in graphene-silicon hybrid nanophotonic integrated circuits,” ACS Nano 8, 11386–11393 (2014).
[Crossref]

L. Yu, S. He, J. Zheng, and D. Dai, “Graphene-based transparent nano-heater for thermally-tuning silicon nanophotonic integrated devices,” in Progress in Electromagnetics Research Symposium (PIERS) Proceedings, Guangzhou, China, 2014, p. 1735–1738.

Zheng, J. J.

Zhu, Y. W.

W. W. Cai, A. L. Moore, Y. W. Zhu, X. S. Li, S. S. Chen, L. Shi, and R. S. Ruoff, “Thermal transport in suspended and supported monolayer graphene grown by chemical vapor deposition,” Nano Lett. 10, 1645–1651 (2010).
[Crossref]

Zortman, W. A.

M. R. Watts, W. A. Zortman, D. C. Trotter, G. N. Nielson, D. L. Luck, and R. W. Young, “Adiabatic resonant microrings (ARMs) with directly integrated thermal microphotonics,” in Conference on Lasers and Electro-Optics (Optical Society of America, 2009), paper CPDB10.

ACS Nano (3)

Q. L. Bao and K. P. Loh, “Graphene photonics, plasmonics, and broadband optoelectronic devices,” ACS Nano 6, 3677–3694 (2012).
[Crossref]

L. Yu, J. Zheng, Y. Xu, D. Dai, and S. He, “Local and nonlocal optically induced transparency effects in graphene-silicon hybrid nanophotonic integrated circuits,” ACS Nano 8, 11386–11393 (2014).
[Crossref]

J. T. Smith, A. D. Franklin, D. B. Farmer, and C. D. Dimitrakopoulos, “Reducing contact resistance in graphene devices through contact area patterning,” ACS Nano 7, 3661–3667 (2013).
[Crossref]

Appl. Phys. Lett. (5)

A. N. Sidorov, D. K. Benjamin, and C. Foy, “Comparative thermal conductivity measurement of chemical vapor deposition grown graphene supported on substrate,” Appl. Phys. Lett. 103, 243103 (2013).

R. Murali, Y. X. Yang, K. Brenner, T. Beck, and J. D. Meindl, “Breakdown current density of graphene nanoribbons,” Appl. Phys. Lett. 94, 243114 (2009).
[Crossref]

S. L. McCall, A. F. J. Levi, R. E. Slusher, S. J. Pearton, and R. A. Logan, “Whispering-gallery mode microdisk lasers,” Appl. Phys. Lett. 60, 289–291 (1992).
[Crossref]

L. H. Yu, D. X. Dai, and S. L. He, “Graphene-based transparent flexible heat conductor for thermally tuning nanophotonic integrated devices,” Appl. Phys. Lett. 105, 251104 (2014).
[Crossref]

S. Ghosh, I. Calizo, D. Teweldebrhan, E. P. Pokatilov, D. L. Nika, A. A. Balandin, W. Bao, F. Miao, and C. N. Lau, “Extremely high thermal conductivity of graphene: prospects for thermal management applications in nanoelectronic circuits,” Appl. Phys. Lett. 92, 151911 (2008).
[Crossref]

IEEE Electron Device Lett. (1)

S. Subrina, D. Kotchetkov, and A. A. Balandin, “Heat removal in silicon-on-insulator integrated circuits with graphene lateral heat spreaders,” IEEE Electron Device Lett. 30, 1281–1283 (2009).
[Crossref]

IEEE Photon. Technol. Lett. (1)

R. L. Espinola, M. C. Tsai, J. T. Yardley, and R. M. Osgood, “Fast and low-power thermooptic switch on thin silicon-on-insulator,” IEEE Photon. Technol. Lett. 15, 1366–1368 (2003).
[Crossref]

J. Appl. Phys. (1)

G. W. Hanson, “Dyadic Green’s functions and guided surface waves for a surface conductivity model of graphene,” J. Appl. Phys. 103, 064302 (2008).
[Crossref]

J. Phys. (1)

V. P. Gusynin, S. G. Sharapov, and J. P. Carbotte, “Magneto-optical conductivity in graphene,” J. Phys. 19, 026222 (2007).

Jpn. J. Appl. Phys. (1)

D. Taillaert, F. V. Laere, M. Ayre, W. Bogaerts, D. V. Thourhout, P. Bienstman, and R. Baets, “Grating couplers for coupling between optical fibers and nanophotonic waveguides,” Jpn. J. Appl. Phys. 45, 6071–6077 (2006).
[Crossref]

Laser Photon. Rev. (1)

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. K. Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photon. Rev. 6, 47–73 (2012).
[Crossref]

Nano Lett. (3)

J. Kang, H. Kim, K. S. Kim, S. K. Lee, S. Bae, J. H. Ahn, Y. J. Kim, J. B. Choi, and B. H. Hong, “High-performance graphene-based transparent flexible heaters,” Nano Lett. 11, 5154–5158 (2011).
[Crossref]

A. A. Balandin, S. Ghosh, W. Z. Bao, I. Calizo, D. Teweldebrhan, F. Miao, and C. N. Lau, “Superior thermal conductivity of single-layer graphene,” Nano Lett. 8, 902–907 (2008).
[Crossref]

W. W. Cai, A. L. Moore, Y. W. Zhu, X. S. Li, S. S. Chen, L. Shi, and R. S. Ruoff, “Thermal transport in suspended and supported monolayer graphene grown by chemical vapor deposition,” Nano Lett. 10, 1645–1651 (2010).
[Crossref]

Nat. Mater. (2)

A. A. Balandin, “Thermal properties of graphene and nanostructured carbon materials,” Nat. Mater. 10, 569–581 (2011).
[Crossref]

A. K. Geim and K. S. Novoselov, “The rise of graphene,” Nat. Mater. 6, 183–191 (2007).
[Crossref]

Nat. Nanotechnol. (3)

X. Du, I. Skachko, A. Barker, and E. Y. Andrei, “Approaching ballistic transport in suspended graphene,” Nat. Nanotechnol. 3, 491–495 (2008).
[Crossref]

A. Das, S. Pisana, B. Chakraborty, S. Piscanec, S. K. Saha, U. V. Waghmare, K. S. Novoselov, H. R. Krishnamurthy, A. K. Geim, A. C. Ferrari, and A. K. Sood, “Monitoring dopants by Raman scattering in an electrochemically top-gated graphene transistor,” Nat. Nanotechnol. 3, 210–215 (2008).
[Crossref]

F. N. Xia, V. Perebeinos, Y. M. Lin, Y. Q. Wu, and P. Avouris, “The origins and limits of metal-graphene junction resistance,” Nat. Nanotechnol. 6, 179–184 (2011).
[Crossref]

Nat. Photonics (3)

F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics 4, 611–622 (2010).
[Crossref]

M. Hochberg and T. Baehr-Jones, “Towards fabless silicon photonics,” Nat. Photonics 4, 492–494 (2010).
[Crossref]

M. Asghari and A. V. Krishnamoorthy, “Silicon photonics energy-efficient communication,” Nat. Photonics 5, 268–270 (2011).
[Crossref]

Nature (3)

Q. F. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature 435, 325–327 (2005).
[Crossref]

M. Liu, X. B. Yin, E. Ulin-Avila, B. S. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474, 64–67 (2011).
[Crossref]

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440, 508–511 (2006).
[Crossref]

Opt. Commun. (1)

L. Yang, D. X. Dai, and S. L. He, “Thermal analysis for a photonic Si ridge wire with a submicron metal heater,” Opt. Commun. 281, 2467–2471 (2008).
[Crossref]

Opt. Express (5)

Opt. Lett. (2)

Phys. Rev. B (1)

D. L. Nika, E. P. Pokatilov, A. S. Askerov, and A. A. Balandin, “Phonon thermal conduction in graphene: role of Umklapp and edge roughness scattering,” Phys. Rev. B 79, 155413 (2009).
[Crossref]

Science (3)

R. Prasher, “Graphene spreads the heat,” Science 328, 185–186 (2010).
[Crossref]

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306, 666–669 (2004).
[Crossref]

L. Wang, I. Meric, P. Y. Huang, Q. Gao, Y. Gao, H. Tran, T. Taniguchi, K. Watanabe, L. M. Campos, D. A. Muller, J. Guo, P. Kim, J. Hone, K. L. Shepard, and C. R. Dean, “One-dimensional electrical contact to a two-dimensional material,” Science 342, 614–617 (2013).
[Crossref]

Small (1)

D. Sui, Y. Huang, L. Huang, J. J. Liang, Y. F. Ma, and Y. S. Chen, “Flexible and transparent electrothermal film heaters based on graphene materials,” Small 7, 3186–3192 (2011).
[Crossref]

Solid State Commun. (2)

M. M. Sadeghi, M. T. Pettes, and L. Shi, “Thermal transport in graphene,” Solid State Commun. 152, 1321–1330 (2012).
[Crossref]

K. I. Bolotin, K. J. Sikes, Z. Jiang, M. Klima, G. Fudenberg, J. Hone, P. Kim, and H. L. Stormer, “Ultrahigh electron mobility in suspended graphene,” Solid State Commun. 146, 351–355 (2008).
[Crossref]

Other (4)

E. Timurdogan, E. S. Hosseini, G. Leake, D. D. Coolbaugh, and M. R. Watts, “L-shaped resonant microring (LRM) filter with integrated thermal tuner,” in Conference on Laser Electro-Optics (Optical Society of America, 2013), paper CTh4F.2.

M. R. Watts, W. A. Zortman, D. C. Trotter, G. N. Nielson, D. L. Luck, and R. W. Young, “Adiabatic resonant microrings (ARMs) with directly integrated thermal microphotonics,” in Conference on Lasers and Electro-Optics (Optical Society of America, 2009), paper CPDB10.

L. Yu, S. He, J. Zheng, and D. Dai, “Graphene-based transparent nano-heater for thermally-tuning silicon nanophotonic integrated devices,” in Progress in Electromagnetics Research Symposium (PIERS) Proceedings, Guangzhou, China, 2014, p. 1735–1738.

L. Yu, Y. Xu, Y. Shi, and D. Dai, “Linear and nonlinear optical absorption of on-chip silicon-on-insulator nanowires with graphene,” in Asia Communications and Photonics Conference (Optical Society of America, 2012), paper AS1B.3.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Thermally tunable silicon photonic microdisk resonator with a transparent graphene nanoheater. (a) Three-dimensional schematic illustration of a thermally tunable silicon photonic microdisk with a transparent graphene nanoheater. The circular graphene nanoheater is along the edge of the microdisk, and two graphene arms connect the circular nanoheater with the metal contacts at the sides of the microdisk. (b) Top: top view for the microdisk resonator with a graphene nanoheater. Bottom: cross-section view for the WGM of the microdisk resonator. The graphene nanoheater on the microdisk is shown with a green line. (c) Top: top-view microscope image of the fabricated thermally tunable microdisk resonator (scale bar: 100 μm). Bottom: zoom-in view for the black dashed square in the top image (scale bar: 10 μm). The graphene sheet is covered by a polymer film. (d) Top: top-view SEM image of the microdisk resonator covered by the patterned graphene nanoheater (scale bar: 2 μm). Bottom: zoom-in view for the black dashed square in the top image (scale bar: 1 μm). The outlines of the graphene nanoheater are shown by the green dashed lines.

Fig. 2.
Fig. 2.

Characterization of the thermally tunable microdisk resonator with a transparent graphene nanoheater. (a) The measured spectral responses of the thermally tunable microdisk resonator as heating power Pheating varies from 0 to 10.5 mW. (b) The resonant-wavelength shift Δλ as the heating power varies. (c) The spectral responses of the thermally tunable microdisk resonator when Pheating is 0 mW (the solid line) and 4 mW (the dashed line). (d) The measured temporal responses of the modulated heating power Pheating (top) and the corresponding output signal of the photodetector (bottom).

Fig. 3.
Fig. 3.

Theoretical calculation results for the thermally tunable microdisk resonator with a transparent graphene nanoheater. (a) 1/Rtot for the graphene ribbons with varying widths wribbon and lengths Lribbon. (b) Three-dimensional temperature distribution of the heated microdisk resonator by solving the Poisson equation with a 3D finite element method tool. RT is defined as 300 K. (c) Temperature distribution for the cross sections along Cut 1 (top) and Cut 2 (bottom) in (b). (d) Temperature distribution for the heated microdisk resonator. The outlines of the graphene sheet are shown by the black dashed lines.

Fig. 4.
Fig. 4.

Optimization of the transparent graphene nanoheater. (a) Heating efficiency ηt of the thermally tunable microdisk resonator as the outer-edge position (rout) and width (wh) of the graphene nanoheater vary. Inset, cross-section view for the WGM of the microdisk resonator. rout=rh+wh/2 and rin=rhwh/2 are the outer-edge and internal-edge positions of the graphene nanoheater, respectively. The parameters used in our experiments are indicated by a star. (b) Propagation loss α for the WGM of the microdisk as the outer-edge position (rout) and width (wh) of the graphene nanoheater vary. The value of 0.01 dB/μm is shown by the black dashed line. The parameters used in our experiments are indicated by a star. Inset, cross-section view for the WGM of the microdisk resonator. The parameters used in our experiments are indicated by a star. (c) Propagation loss α for the WGM of the microdisk when the graphene nanoheater is replaced by a metal (gold) heater. The thickness of the metal is 100  nm. The gray regions show the conditions with only the plasmonic mode supported in the microdisk resonator. The values of 0.01 and 0.1 dB/μm are shown by black dashed lines. Inset, cross-section view for the WGM of the microdisk resonator when the metal heater has the same parameters (shown as a star) as the graphene nanoheater used in our experiment. (d) The heating efficiency ηt and the propagation loss α for the WGM of the microdisk when using the metal heater (top) and the graphene nanoheater (bottom), respectively. The outer-edge position is rout=4  μm, while the width wh is varied from 0.2 to 2.6 μm, as indicated in the figure. (e) Heating efficiency ηt of the thermally tunable microdisk resonator as the width (wa) and the length (La) of the graphene arms vary. The parameters used in our experiments are indicated by a star.

Fig. 5.
Fig. 5.

Characterization of the 3 μm radius thermally tunable microdisk resonator with a transparent graphene nanoheater. (a) Spectral responses of the thermally tunable microdisk resonator as the heating power Pheating varies from 0 to 2.7 mW. (b) The shift of the resonant wavelength Δλ with varying heating powers. Inset: temperature distribution of the heated microdisk resonator simulated by solving the Poisson equation. The outlines of the graphene nanoheater are shown by black dashed lines. RT is defined as 300 K.

Fig. 6.
Fig. 6.

Summary of the heating efficiency for the microdisk resonators (rd=2, 3, or 5 μm) using transparent graphene nanoheaters. Inset, top-view microscope images of the fabricated thermally tunable microdisk resonators.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

λres=2πneffrdm,
Pheating=I2Rtot.
Rtot=Rcircle+Rarm+Rcontact=πRsrh2wh+RsLawa+2Rcwc,
n¯eff=02πneff(θ)dθ2π,

Metrics