Abstract

The maturation of many photonic technologies from individual components to next-generation system-level circuits will require exceptional active control of complex states of light. A prime example is in quantum photonic technology: while single-photon processes are often probabilistic, it has been shown in theory that rapid and adaptive feedforward operations are sufficient to enable scalability. Here, we use simple “off-the-shelf” optical components to demonstrate active multiplexing—adaptive rerouting to single modes—of eight single-photon “bins” from a heralded source. Unlike other possible implementations, which can be costly in terms of resources or temporal delays, our new configuration exploits the benefits of both time and space degrees of freedom, enabling a significant increase in the single-photon emission probability. This approach is likely to be employed in future near-deterministic photon multiplexers with expected improvements in integrated quantum photonic technology.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Heralded single-photon source utilizing highly nondegenerate, spectrally factorable spontaneous parametric downconversion

Fumihiro Kaneda, Karina Garay-Palmett, Alfred B. U’Ren, and Paul G. Kwiat
Opt. Express 24(10) 10733-10747 (2016)

Reducing multi-photon rates in pulsed down-conversion by temporal multiplexing

M. A. Broome, M. P. Almeida, A. Fedrizzi, and A. G. White
Opt. Express 19(23) 22698-22708 (2011)

Material platforms for integrated quantum photonics

S. Bogdanov, M. Y. Shalaginov, A. Boltasseva, and V. M. Shalaev
Opt. Mater. Express 7(1) 111-132 (2017)

References

  • View by:
  • |
  • |
  • |

  1. F. Morichetti, S. Grillanda, and A. Melloni, “Breakthroughs in photonics 2013: toward feedback-controlled integrated photonics,” IEEE Photon. J. 6, 1–6 (2014).
    [Crossref]
  2. R. Hamerly and H. Mabuchi, “Advantages of coherent feedback for cooling quantum oscillators,” Phys. Rev. Lett. 109, 173602 (2012).
    [Crossref]
  3. N. Tezak and H. Mabuchi, “A coherent perceptron for all-optical learning,” EPJ Quantum Technol. 2, 10 (2015).
    [Crossref]
  4. E. Knill, R. Laflamme, and G. J. Milburn, “A scheme for efficient quantum computation with linear optics,” Nature 409, 46–52 (2001).
    [Crossref]
  5. D. E. Browne and T. Rudolph, “Resource-efficient linear optical quantum computation,” Phys. Rev. Lett. 95, 010501 (2005).
    [Crossref]
  6. M. D. Eisaman, J. Fan, A. Migdall, and S. V. Polyakov, “Single-photon sources and detectors,” Rev. Sci. Instrum. 82, 071101 (2011).
    [Crossref]
  7. A. Christ and C. Silberhorn, “Limits on the deterministic creation of pure single-photon states using parametric down-conversion,” Phys. Rev. A 85, 023829 (2012).
    [Crossref]
  8. Q. Zhang, X. H. Bao, C. Y. Lu, X. Q. Zhou, T. Yang, T. Rudolph, and J. W. Pan, “Demonstration of a scheme for the generation of event-ready entangled photon pairs from a single-photon source,” Phys. Rev. A 77, 062316 (2008).
    [Crossref]
  9. M. Varnava, D. Browne, and T. Rudolph, “How good must single photon sources and detectors be for efficient linear optical quantum computation?” Phys. Rev. Lett. 100, 060502 (2008).
    [Crossref]
  10. H. Cable and J. Dowling, “Efficient generation of large number-path entanglement using only linear optics and feed-forward,” Phys. Rev. Lett. 99, 163604 (2007).
    [Crossref]
  11. A. L. Migdall, D. Branning, and S. Castelletto, “Tailoring single-photon and multiphoton probabilities of a single-photon on-demand source,” Phys. Rev. A 66, 053805 (2002).
    [Crossref]
  12. J. H. Shapiro and F. N. Wong, “On-demand single-photon generation using a modular array of parametric downconverters with electro-optic polarization controls,” Opt. Lett. 32, 2698–2700 (2007).
    [Crossref]
  13. T. Jennewein, M. Barbieri, and A. G. White, “Single-photon device requirements for operating linear optics quantum computing outside the post-selection basis,” J. Mod. Opt. 58, 276–287 (2011).
    [Crossref]
  14. M. G. Segovia, P. Shadbolt, D. E. Browne, and T. Rudolph, “From three-photon GHZ states to universal ballistic quantum computation,” Phys. Rev. Lett. 115, 020502 (2015).
    [Crossref]
  15. D. Bonneau, G. J. Mendoza, J. L. O’Brien, and M. G. Thompson, “Effect of loss on multiplexed single-photon sources,” New J. Phys. 17, 043057 (2015).
    [Crossref]
  16. X. Ma, S. Zotter, J. Kofler, T. Jennewein, and A. Zeilinger, “Experimental generation of single photons via active multiplexing,” Phys. Rev. A 83, 043814 (2011).
    [Crossref]
  17. M. J. Collins, C. Xiong, I. H. Rey, T. D. Vo, J. He, S. Shahnia, C. Reardon, T. F. Krauss, M. J. Steel, A. S. Clark, and B. J. Eggleton, “Integrated spatial multiplexing of heralded single-photon sources,” Nat. Commun. 4, 2582 (2013).
  18. T. Meany, L. A. Ngah, M. J. Collins, A. S. Clark, R. J. Williams, B. J. Eggleton, M. J. Steel, M. J. Withford, O. Alibart, and S. Tanzilli, “Hybrid photonic circuit for multiplexed heralded single photons,” Laser Photon. Rev. 8, L42–L46 (2014).
    [Crossref]
  19. C. Xiong, T. D. Vo, M. J. Collins, J. Li, T. F. Krauss, M. J. Steel, A. S. Clark, and B. J. Eggleton, “Bidirectional multiplexing of heralded single photons from a silicon chip,” Opt. Lett. 38, 5176–5179 (2013).
    [Crossref]
  20. Y. Li, P. C. Humphreys, G. J. Mendoza, and S. C. Benjamin, “Resource costs for fault-tolerant linear optical quantum computing,” Phys. Rev. X 5, 041007 (2015).
  21. J. Mower and D. Englund, “Efficient generation of single and entangled photons on a silicon photonic integrated chip,” Phys. Rev. A 84, 052326 (2011).
    [Crossref]
  22. C. T. Schmiegelow and M. A. Larotonda, “Multiplexing photons with a binary division strategy,” Appl. Phys. B 116, 447–454 (2013).
    [Crossref]
  23. T. B. Pittman, M. J. Fitch, B. C. Jacobs, and J. D. Franson, “Periodic single-photon source and quantum memory,” Proc. SPIE 5161, 57–65 (2004).
  24. P. P. Rohde, L. G. Helt, M. J. Steel, and A. Gilchrist, “Multiplexed single-photon state preparation using a fibre-loop architecture,” Phys. Rev. A 92, 053829 (2015).
  25. R. J. A. Francis-Jones and P. J. Mosley, “Temporal loop multiplexing: a resource efficient scheme for multiplexed photon-pair sources,” arXiv:1503.06178 (2015).
  26. K. T. McCusker and P. G. Kwiat, “Efficient optical quantum state engineering,” Phys. Rev. Lett. 103, 163602 (2009).
    [Crossref]
  27. K. R. Motes, A. Gilchrist, J. P. Dowling, and P. P. Rohde, “Scalable boson-sampling with time-bin encoding using a loop-based architecture,” Phys. Rev. Lett. 113, 120501 (2014).
    [Crossref]
  28. M. A. Broome, M. P. Almeida, A. Fedrizzi, and A. G. White, “Reducing multi-photon rates in pulsed down-conversion by temporal multiplexing,” Opt. Express 19, 22698–22708 (2011).
    [Crossref]
  29. P. P. Rohde, “Simple scheme for universal linear-optics quantum computing with constant experimental complexity using fiber loops,” Phys. Rev. A 91, 012306 (2015).
    [Crossref]
  30. W. Grice, A. U’Ren, and I. Walmsley, “Eliminating frequency and space-time correlations in multiphoton states,” Phys. Rev. A 64, 063815 (2001).
    [Crossref]
  31. C. Gerry and P. Knight, Introductory Quantum Optics (Cambridge University, 2004).
  32. F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” Nat. Photonics 7, 210–214 (2013).
    [Crossref]
  33. T. M. Rambo, K. McCuster, Y. Huang, and P. Kumar, “Low-loss all-optical quantum switching,” in IEEE Photonics Society Summer Topical Meeting Series (IEEE, 2013), pp. 179–180.
  34. A. Rao, A. Patil, J. Chiles, M. Malinowski, S. Novak, K. Richardson, P. Rabiei, and S. Fathpour, “Heterogeneous microring and Mach-Zehnder lithium niobate electro-optical modulators on silicon,” in Conference on Lasers and Electro-Optics (CLEO), OSA Technical Digest (Optical Society of America, 2015), paper STu2F-4.
  35. D. Moss, R. Morandotti, A. L. Gaeta, and M. Lipson, “New CMOS-compatible platforms based on silicon nitride and Hydex for nonlinear optics,” Nat. Photonics 7, 597–607 (2013).
    [Crossref]
  36. P. Aboussouan, O. Alibart, D. B. Ostrowsky, P. Baldi, and S. Tanzilli, “High-visibility two-photon interference at a telecom wavelength using picosecond-regime separated sources,” Phys. Rev. A 81, 021801 (2010).
    [Crossref]
  37. J. Silverstone, D. Bonneau, K. Ohira, N. Suzuki, H. Yoshida, N. Iizuka, M. Ezaki, C. M. Natarajan, M. G. Tanner, R. H. Hadfield, V. Zwiller, G. D. Marshall, J. G. Rarity, J. L. O’Brien, and M. G. Thompson, “On-chip quantum interference between silicon photon-pair sources,” Nat. Photonics 8, 104–108 (2014).
    [Crossref]
  38. C. Lacava, M. J. Strain, P. Minzioni, I. Cristiani, and M. Sorel, “Integrated nonlinear Mach Zehnder for 40  Gbit/s all-optical switching,” Opt. Express 21, 21587–21595 (2013).
    [Crossref]
  39. S. H. Jeong, D. Shimura, T. Simoyama, M. Seki, N. Yokoyama, M. Ohtsuka, K. Koshino, T. Horikawa, Y. Tanaka, and K. Morito, “Low-loss, flat-topped and spectrally uniform silicon-nanowire-based 5th-order CROW fabricated by ArF-immersion lithography process on a 300-mm SOI wafer,” Opt. Express 21, 30163–30174 (2013).
    [Crossref]
  40. H. Lee, T. Chen, J. Li, O. Painter, and K. J. Vahala, “Ultra-low-loss optical delay line on a silicon chip,” Nat. Commun. 3, 867 (2012).
    [Crossref]

2015 (6)

N. Tezak and H. Mabuchi, “A coherent perceptron for all-optical learning,” EPJ Quantum Technol. 2, 10 (2015).
[Crossref]

Y. Li, P. C. Humphreys, G. J. Mendoza, and S. C. Benjamin, “Resource costs for fault-tolerant linear optical quantum computing,” Phys. Rev. X 5, 041007 (2015).

P. P. Rohde, L. G. Helt, M. J. Steel, and A. Gilchrist, “Multiplexed single-photon state preparation using a fibre-loop architecture,” Phys. Rev. A 92, 053829 (2015).

P. P. Rohde, “Simple scheme for universal linear-optics quantum computing with constant experimental complexity using fiber loops,” Phys. Rev. A 91, 012306 (2015).
[Crossref]

M. G. Segovia, P. Shadbolt, D. E. Browne, and T. Rudolph, “From three-photon GHZ states to universal ballistic quantum computation,” Phys. Rev. Lett. 115, 020502 (2015).
[Crossref]

D. Bonneau, G. J. Mendoza, J. L. O’Brien, and M. G. Thompson, “Effect of loss on multiplexed single-photon sources,” New J. Phys. 17, 043057 (2015).
[Crossref]

2014 (4)

J. Silverstone, D. Bonneau, K. Ohira, N. Suzuki, H. Yoshida, N. Iizuka, M. Ezaki, C. M. Natarajan, M. G. Tanner, R. H. Hadfield, V. Zwiller, G. D. Marshall, J. G. Rarity, J. L. O’Brien, and M. G. Thompson, “On-chip quantum interference between silicon photon-pair sources,” Nat. Photonics 8, 104–108 (2014).
[Crossref]

K. R. Motes, A. Gilchrist, J. P. Dowling, and P. P. Rohde, “Scalable boson-sampling with time-bin encoding using a loop-based architecture,” Phys. Rev. Lett. 113, 120501 (2014).
[Crossref]

T. Meany, L. A. Ngah, M. J. Collins, A. S. Clark, R. J. Williams, B. J. Eggleton, M. J. Steel, M. J. Withford, O. Alibart, and S. Tanzilli, “Hybrid photonic circuit for multiplexed heralded single photons,” Laser Photon. Rev. 8, L42–L46 (2014).
[Crossref]

F. Morichetti, S. Grillanda, and A. Melloni, “Breakthroughs in photonics 2013: toward feedback-controlled integrated photonics,” IEEE Photon. J. 6, 1–6 (2014).
[Crossref]

2013 (7)

C. T. Schmiegelow and M. A. Larotonda, “Multiplexing photons with a binary division strategy,” Appl. Phys. B 116, 447–454 (2013).
[Crossref]

M. J. Collins, C. Xiong, I. H. Rey, T. D. Vo, J. He, S. Shahnia, C. Reardon, T. F. Krauss, M. J. Steel, A. S. Clark, and B. J. Eggleton, “Integrated spatial multiplexing of heralded single-photon sources,” Nat. Commun. 4, 2582 (2013).

C. Lacava, M. J. Strain, P. Minzioni, I. Cristiani, and M. Sorel, “Integrated nonlinear Mach Zehnder for 40  Gbit/s all-optical switching,” Opt. Express 21, 21587–21595 (2013).
[Crossref]

C. Xiong, T. D. Vo, M. J. Collins, J. Li, T. F. Krauss, M. J. Steel, A. S. Clark, and B. J. Eggleton, “Bidirectional multiplexing of heralded single photons from a silicon chip,” Opt. Lett. 38, 5176–5179 (2013).
[Crossref]

S. H. Jeong, D. Shimura, T. Simoyama, M. Seki, N. Yokoyama, M. Ohtsuka, K. Koshino, T. Horikawa, Y. Tanaka, and K. Morito, “Low-loss, flat-topped and spectrally uniform silicon-nanowire-based 5th-order CROW fabricated by ArF-immersion lithography process on a 300-mm SOI wafer,” Opt. Express 21, 30163–30174 (2013).
[Crossref]

F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” Nat. Photonics 7, 210–214 (2013).
[Crossref]

D. Moss, R. Morandotti, A. L. Gaeta, and M. Lipson, “New CMOS-compatible platforms based on silicon nitride and Hydex for nonlinear optics,” Nat. Photonics 7, 597–607 (2013).
[Crossref]

2012 (3)

H. Lee, T. Chen, J. Li, O. Painter, and K. J. Vahala, “Ultra-low-loss optical delay line on a silicon chip,” Nat. Commun. 3, 867 (2012).
[Crossref]

R. Hamerly and H. Mabuchi, “Advantages of coherent feedback for cooling quantum oscillators,” Phys. Rev. Lett. 109, 173602 (2012).
[Crossref]

A. Christ and C. Silberhorn, “Limits on the deterministic creation of pure single-photon states using parametric down-conversion,” Phys. Rev. A 85, 023829 (2012).
[Crossref]

2011 (5)

J. Mower and D. Englund, “Efficient generation of single and entangled photons on a silicon photonic integrated chip,” Phys. Rev. A 84, 052326 (2011).
[Crossref]

M. D. Eisaman, J. Fan, A. Migdall, and S. V. Polyakov, “Single-photon sources and detectors,” Rev. Sci. Instrum. 82, 071101 (2011).
[Crossref]

M. A. Broome, M. P. Almeida, A. Fedrizzi, and A. G. White, “Reducing multi-photon rates in pulsed down-conversion by temporal multiplexing,” Opt. Express 19, 22698–22708 (2011).
[Crossref]

T. Jennewein, M. Barbieri, and A. G. White, “Single-photon device requirements for operating linear optics quantum computing outside the post-selection basis,” J. Mod. Opt. 58, 276–287 (2011).
[Crossref]

X. Ma, S. Zotter, J. Kofler, T. Jennewein, and A. Zeilinger, “Experimental generation of single photons via active multiplexing,” Phys. Rev. A 83, 043814 (2011).
[Crossref]

2010 (1)

P. Aboussouan, O. Alibart, D. B. Ostrowsky, P. Baldi, and S. Tanzilli, “High-visibility two-photon interference at a telecom wavelength using picosecond-regime separated sources,” Phys. Rev. A 81, 021801 (2010).
[Crossref]

2009 (1)

K. T. McCusker and P. G. Kwiat, “Efficient optical quantum state engineering,” Phys. Rev. Lett. 103, 163602 (2009).
[Crossref]

2008 (2)

Q. Zhang, X. H. Bao, C. Y. Lu, X. Q. Zhou, T. Yang, T. Rudolph, and J. W. Pan, “Demonstration of a scheme for the generation of event-ready entangled photon pairs from a single-photon source,” Phys. Rev. A 77, 062316 (2008).
[Crossref]

M. Varnava, D. Browne, and T. Rudolph, “How good must single photon sources and detectors be for efficient linear optical quantum computation?” Phys. Rev. Lett. 100, 060502 (2008).
[Crossref]

2007 (2)

H. Cable and J. Dowling, “Efficient generation of large number-path entanglement using only linear optics and feed-forward,” Phys. Rev. Lett. 99, 163604 (2007).
[Crossref]

J. H. Shapiro and F. N. Wong, “On-demand single-photon generation using a modular array of parametric downconverters with electro-optic polarization controls,” Opt. Lett. 32, 2698–2700 (2007).
[Crossref]

2005 (1)

D. E. Browne and T. Rudolph, “Resource-efficient linear optical quantum computation,” Phys. Rev. Lett. 95, 010501 (2005).
[Crossref]

2004 (1)

T. B. Pittman, M. J. Fitch, B. C. Jacobs, and J. D. Franson, “Periodic single-photon source and quantum memory,” Proc. SPIE 5161, 57–65 (2004).

2002 (1)

A. L. Migdall, D. Branning, and S. Castelletto, “Tailoring single-photon and multiphoton probabilities of a single-photon on-demand source,” Phys. Rev. A 66, 053805 (2002).
[Crossref]

2001 (2)

E. Knill, R. Laflamme, and G. J. Milburn, “A scheme for efficient quantum computation with linear optics,” Nature 409, 46–52 (2001).
[Crossref]

W. Grice, A. U’Ren, and I. Walmsley, “Eliminating frequency and space-time correlations in multiphoton states,” Phys. Rev. A 64, 063815 (2001).
[Crossref]

Aboussouan, P.

P. Aboussouan, O. Alibart, D. B. Ostrowsky, P. Baldi, and S. Tanzilli, “High-visibility two-photon interference at a telecom wavelength using picosecond-regime separated sources,” Phys. Rev. A 81, 021801 (2010).
[Crossref]

Alibart, O.

T. Meany, L. A. Ngah, M. J. Collins, A. S. Clark, R. J. Williams, B. J. Eggleton, M. J. Steel, M. J. Withford, O. Alibart, and S. Tanzilli, “Hybrid photonic circuit for multiplexed heralded single photons,” Laser Photon. Rev. 8, L42–L46 (2014).
[Crossref]

P. Aboussouan, O. Alibart, D. B. Ostrowsky, P. Baldi, and S. Tanzilli, “High-visibility two-photon interference at a telecom wavelength using picosecond-regime separated sources,” Phys. Rev. A 81, 021801 (2010).
[Crossref]

Almeida, M. P.

Baek, B.

F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” Nat. Photonics 7, 210–214 (2013).
[Crossref]

Baldi, P.

P. Aboussouan, O. Alibart, D. B. Ostrowsky, P. Baldi, and S. Tanzilli, “High-visibility two-photon interference at a telecom wavelength using picosecond-regime separated sources,” Phys. Rev. A 81, 021801 (2010).
[Crossref]

Bao, X. H.

Q. Zhang, X. H. Bao, C. Y. Lu, X. Q. Zhou, T. Yang, T. Rudolph, and J. W. Pan, “Demonstration of a scheme for the generation of event-ready entangled photon pairs from a single-photon source,” Phys. Rev. A 77, 062316 (2008).
[Crossref]

Barbieri, M.

T. Jennewein, M. Barbieri, and A. G. White, “Single-photon device requirements for operating linear optics quantum computing outside the post-selection basis,” J. Mod. Opt. 58, 276–287 (2011).
[Crossref]

Benjamin, S. C.

Y. Li, P. C. Humphreys, G. J. Mendoza, and S. C. Benjamin, “Resource costs for fault-tolerant linear optical quantum computing,” Phys. Rev. X 5, 041007 (2015).

Bonneau, D.

D. Bonneau, G. J. Mendoza, J. L. O’Brien, and M. G. Thompson, “Effect of loss on multiplexed single-photon sources,” New J. Phys. 17, 043057 (2015).
[Crossref]

J. Silverstone, D. Bonneau, K. Ohira, N. Suzuki, H. Yoshida, N. Iizuka, M. Ezaki, C. M. Natarajan, M. G. Tanner, R. H. Hadfield, V. Zwiller, G. D. Marshall, J. G. Rarity, J. L. O’Brien, and M. G. Thompson, “On-chip quantum interference between silicon photon-pair sources,” Nat. Photonics 8, 104–108 (2014).
[Crossref]

Branning, D.

A. L. Migdall, D. Branning, and S. Castelletto, “Tailoring single-photon and multiphoton probabilities of a single-photon on-demand source,” Phys. Rev. A 66, 053805 (2002).
[Crossref]

Broome, M. A.

Browne, D.

M. Varnava, D. Browne, and T. Rudolph, “How good must single photon sources and detectors be for efficient linear optical quantum computation?” Phys. Rev. Lett. 100, 060502 (2008).
[Crossref]

Browne, D. E.

M. G. Segovia, P. Shadbolt, D. E. Browne, and T. Rudolph, “From three-photon GHZ states to universal ballistic quantum computation,” Phys. Rev. Lett. 115, 020502 (2015).
[Crossref]

D. E. Browne and T. Rudolph, “Resource-efficient linear optical quantum computation,” Phys. Rev. Lett. 95, 010501 (2005).
[Crossref]

Cable, H.

H. Cable and J. Dowling, “Efficient generation of large number-path entanglement using only linear optics and feed-forward,” Phys. Rev. Lett. 99, 163604 (2007).
[Crossref]

Castelletto, S.

A. L. Migdall, D. Branning, and S. Castelletto, “Tailoring single-photon and multiphoton probabilities of a single-photon on-demand source,” Phys. Rev. A 66, 053805 (2002).
[Crossref]

Chen, T.

H. Lee, T. Chen, J. Li, O. Painter, and K. J. Vahala, “Ultra-low-loss optical delay line on a silicon chip,” Nat. Commun. 3, 867 (2012).
[Crossref]

Chiles, J.

A. Rao, A. Patil, J. Chiles, M. Malinowski, S. Novak, K. Richardson, P. Rabiei, and S. Fathpour, “Heterogeneous microring and Mach-Zehnder lithium niobate electro-optical modulators on silicon,” in Conference on Lasers and Electro-Optics (CLEO), OSA Technical Digest (Optical Society of America, 2015), paper STu2F-4.

Christ, A.

A. Christ and C. Silberhorn, “Limits on the deterministic creation of pure single-photon states using parametric down-conversion,” Phys. Rev. A 85, 023829 (2012).
[Crossref]

Clark, A. S.

T. Meany, L. A. Ngah, M. J. Collins, A. S. Clark, R. J. Williams, B. J. Eggleton, M. J. Steel, M. J. Withford, O. Alibart, and S. Tanzilli, “Hybrid photonic circuit for multiplexed heralded single photons,” Laser Photon. Rev. 8, L42–L46 (2014).
[Crossref]

M. J. Collins, C. Xiong, I. H. Rey, T. D. Vo, J. He, S. Shahnia, C. Reardon, T. F. Krauss, M. J. Steel, A. S. Clark, and B. J. Eggleton, “Integrated spatial multiplexing of heralded single-photon sources,” Nat. Commun. 4, 2582 (2013).

C. Xiong, T. D. Vo, M. J. Collins, J. Li, T. F. Krauss, M. J. Steel, A. S. Clark, and B. J. Eggleton, “Bidirectional multiplexing of heralded single photons from a silicon chip,” Opt. Lett. 38, 5176–5179 (2013).
[Crossref]

Collins, M. J.

T. Meany, L. A. Ngah, M. J. Collins, A. S. Clark, R. J. Williams, B. J. Eggleton, M. J. Steel, M. J. Withford, O. Alibart, and S. Tanzilli, “Hybrid photonic circuit for multiplexed heralded single photons,” Laser Photon. Rev. 8, L42–L46 (2014).
[Crossref]

M. J. Collins, C. Xiong, I. H. Rey, T. D. Vo, J. He, S. Shahnia, C. Reardon, T. F. Krauss, M. J. Steel, A. S. Clark, and B. J. Eggleton, “Integrated spatial multiplexing of heralded single-photon sources,” Nat. Commun. 4, 2582 (2013).

C. Xiong, T. D. Vo, M. J. Collins, J. Li, T. F. Krauss, M. J. Steel, A. S. Clark, and B. J. Eggleton, “Bidirectional multiplexing of heralded single photons from a silicon chip,” Opt. Lett. 38, 5176–5179 (2013).
[Crossref]

Cristiani, I.

Dowling, J.

H. Cable and J. Dowling, “Efficient generation of large number-path entanglement using only linear optics and feed-forward,” Phys. Rev. Lett. 99, 163604 (2007).
[Crossref]

Dowling, J. P.

K. R. Motes, A. Gilchrist, J. P. Dowling, and P. P. Rohde, “Scalable boson-sampling with time-bin encoding using a loop-based architecture,” Phys. Rev. Lett. 113, 120501 (2014).
[Crossref]

Eggleton, B. J.

T. Meany, L. A. Ngah, M. J. Collins, A. S. Clark, R. J. Williams, B. J. Eggleton, M. J. Steel, M. J. Withford, O. Alibart, and S. Tanzilli, “Hybrid photonic circuit for multiplexed heralded single photons,” Laser Photon. Rev. 8, L42–L46 (2014).
[Crossref]

M. J. Collins, C. Xiong, I. H. Rey, T. D. Vo, J. He, S. Shahnia, C. Reardon, T. F. Krauss, M. J. Steel, A. S. Clark, and B. J. Eggleton, “Integrated spatial multiplexing of heralded single-photon sources,” Nat. Commun. 4, 2582 (2013).

C. Xiong, T. D. Vo, M. J. Collins, J. Li, T. F. Krauss, M. J. Steel, A. S. Clark, and B. J. Eggleton, “Bidirectional multiplexing of heralded single photons from a silicon chip,” Opt. Lett. 38, 5176–5179 (2013).
[Crossref]

Eisaman, M. D.

M. D. Eisaman, J. Fan, A. Migdall, and S. V. Polyakov, “Single-photon sources and detectors,” Rev. Sci. Instrum. 82, 071101 (2011).
[Crossref]

Englund, D.

J. Mower and D. Englund, “Efficient generation of single and entangled photons on a silicon photonic integrated chip,” Phys. Rev. A 84, 052326 (2011).
[Crossref]

Ezaki, M.

J. Silverstone, D. Bonneau, K. Ohira, N. Suzuki, H. Yoshida, N. Iizuka, M. Ezaki, C. M. Natarajan, M. G. Tanner, R. H. Hadfield, V. Zwiller, G. D. Marshall, J. G. Rarity, J. L. O’Brien, and M. G. Thompson, “On-chip quantum interference between silicon photon-pair sources,” Nat. Photonics 8, 104–108 (2014).
[Crossref]

Fan, J.

M. D. Eisaman, J. Fan, A. Migdall, and S. V. Polyakov, “Single-photon sources and detectors,” Rev. Sci. Instrum. 82, 071101 (2011).
[Crossref]

Fathpour, S.

A. Rao, A. Patil, J. Chiles, M. Malinowski, S. Novak, K. Richardson, P. Rabiei, and S. Fathpour, “Heterogeneous microring and Mach-Zehnder lithium niobate electro-optical modulators on silicon,” in Conference on Lasers and Electro-Optics (CLEO), OSA Technical Digest (Optical Society of America, 2015), paper STu2F-4.

Fedrizzi, A.

Fitch, M. J.

T. B. Pittman, M. J. Fitch, B. C. Jacobs, and J. D. Franson, “Periodic single-photon source and quantum memory,” Proc. SPIE 5161, 57–65 (2004).

Francis-Jones, R. J. A.

R. J. A. Francis-Jones and P. J. Mosley, “Temporal loop multiplexing: a resource efficient scheme for multiplexed photon-pair sources,” arXiv:1503.06178 (2015).

Franson, J. D.

T. B. Pittman, M. J. Fitch, B. C. Jacobs, and J. D. Franson, “Periodic single-photon source and quantum memory,” Proc. SPIE 5161, 57–65 (2004).

Gaeta, A. L.

D. Moss, R. Morandotti, A. L. Gaeta, and M. Lipson, “New CMOS-compatible platforms based on silicon nitride and Hydex for nonlinear optics,” Nat. Photonics 7, 597–607 (2013).
[Crossref]

Gerrits, T.

F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” Nat. Photonics 7, 210–214 (2013).
[Crossref]

Gerry, C.

C. Gerry and P. Knight, Introductory Quantum Optics (Cambridge University, 2004).

Gilchrist, A.

P. P. Rohde, L. G. Helt, M. J. Steel, and A. Gilchrist, “Multiplexed single-photon state preparation using a fibre-loop architecture,” Phys. Rev. A 92, 053829 (2015).

K. R. Motes, A. Gilchrist, J. P. Dowling, and P. P. Rohde, “Scalable boson-sampling with time-bin encoding using a loop-based architecture,” Phys. Rev. Lett. 113, 120501 (2014).
[Crossref]

Grice, W.

W. Grice, A. U’Ren, and I. Walmsley, “Eliminating frequency and space-time correlations in multiphoton states,” Phys. Rev. A 64, 063815 (2001).
[Crossref]

Grillanda, S.

F. Morichetti, S. Grillanda, and A. Melloni, “Breakthroughs in photonics 2013: toward feedback-controlled integrated photonics,” IEEE Photon. J. 6, 1–6 (2014).
[Crossref]

Hadfield, R. H.

J. Silverstone, D. Bonneau, K. Ohira, N. Suzuki, H. Yoshida, N. Iizuka, M. Ezaki, C. M. Natarajan, M. G. Tanner, R. H. Hadfield, V. Zwiller, G. D. Marshall, J. G. Rarity, J. L. O’Brien, and M. G. Thompson, “On-chip quantum interference between silicon photon-pair sources,” Nat. Photonics 8, 104–108 (2014).
[Crossref]

Hamerly, R.

R. Hamerly and H. Mabuchi, “Advantages of coherent feedback for cooling quantum oscillators,” Phys. Rev. Lett. 109, 173602 (2012).
[Crossref]

Harrington, S.

F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” Nat. Photonics 7, 210–214 (2013).
[Crossref]

He, J.

M. J. Collins, C. Xiong, I. H. Rey, T. D. Vo, J. He, S. Shahnia, C. Reardon, T. F. Krauss, M. J. Steel, A. S. Clark, and B. J. Eggleton, “Integrated spatial multiplexing of heralded single-photon sources,” Nat. Commun. 4, 2582 (2013).

Helt, L. G.

P. P. Rohde, L. G. Helt, M. J. Steel, and A. Gilchrist, “Multiplexed single-photon state preparation using a fibre-loop architecture,” Phys. Rev. A 92, 053829 (2015).

Horikawa, T.

Huang, Y.

T. M. Rambo, K. McCuster, Y. Huang, and P. Kumar, “Low-loss all-optical quantum switching,” in IEEE Photonics Society Summer Topical Meeting Series (IEEE, 2013), pp. 179–180.

Humphreys, P. C.

Y. Li, P. C. Humphreys, G. J. Mendoza, and S. C. Benjamin, “Resource costs for fault-tolerant linear optical quantum computing,” Phys. Rev. X 5, 041007 (2015).

Iizuka, N.

J. Silverstone, D. Bonneau, K. Ohira, N. Suzuki, H. Yoshida, N. Iizuka, M. Ezaki, C. M. Natarajan, M. G. Tanner, R. H. Hadfield, V. Zwiller, G. D. Marshall, J. G. Rarity, J. L. O’Brien, and M. G. Thompson, “On-chip quantum interference between silicon photon-pair sources,” Nat. Photonics 8, 104–108 (2014).
[Crossref]

Jacobs, B. C.

T. B. Pittman, M. J. Fitch, B. C. Jacobs, and J. D. Franson, “Periodic single-photon source and quantum memory,” Proc. SPIE 5161, 57–65 (2004).

Jennewein, T.

X. Ma, S. Zotter, J. Kofler, T. Jennewein, and A. Zeilinger, “Experimental generation of single photons via active multiplexing,” Phys. Rev. A 83, 043814 (2011).
[Crossref]

T. Jennewein, M. Barbieri, and A. G. White, “Single-photon device requirements for operating linear optics quantum computing outside the post-selection basis,” J. Mod. Opt. 58, 276–287 (2011).
[Crossref]

Jeong, S. H.

Knight, P.

C. Gerry and P. Knight, Introductory Quantum Optics (Cambridge University, 2004).

Knill, E.

E. Knill, R. Laflamme, and G. J. Milburn, “A scheme for efficient quantum computation with linear optics,” Nature 409, 46–52 (2001).
[Crossref]

Kofler, J.

X. Ma, S. Zotter, J. Kofler, T. Jennewein, and A. Zeilinger, “Experimental generation of single photons via active multiplexing,” Phys. Rev. A 83, 043814 (2011).
[Crossref]

Koshino, K.

Krauss, T. F.

M. J. Collins, C. Xiong, I. H. Rey, T. D. Vo, J. He, S. Shahnia, C. Reardon, T. F. Krauss, M. J. Steel, A. S. Clark, and B. J. Eggleton, “Integrated spatial multiplexing of heralded single-photon sources,” Nat. Commun. 4, 2582 (2013).

C. Xiong, T. D. Vo, M. J. Collins, J. Li, T. F. Krauss, M. J. Steel, A. S. Clark, and B. J. Eggleton, “Bidirectional multiplexing of heralded single photons from a silicon chip,” Opt. Lett. 38, 5176–5179 (2013).
[Crossref]

Kumar, P.

T. M. Rambo, K. McCuster, Y. Huang, and P. Kumar, “Low-loss all-optical quantum switching,” in IEEE Photonics Society Summer Topical Meeting Series (IEEE, 2013), pp. 179–180.

Kwiat, P. G.

K. T. McCusker and P. G. Kwiat, “Efficient optical quantum state engineering,” Phys. Rev. Lett. 103, 163602 (2009).
[Crossref]

Lacava, C.

Laflamme, R.

E. Knill, R. Laflamme, and G. J. Milburn, “A scheme for efficient quantum computation with linear optics,” Nature 409, 46–52 (2001).
[Crossref]

Larotonda, M. A.

C. T. Schmiegelow and M. A. Larotonda, “Multiplexing photons with a binary division strategy,” Appl. Phys. B 116, 447–454 (2013).
[Crossref]

Lee, H.

H. Lee, T. Chen, J. Li, O. Painter, and K. J. Vahala, “Ultra-low-loss optical delay line on a silicon chip,” Nat. Commun. 3, 867 (2012).
[Crossref]

Li, J.

Li, Y.

Y. Li, P. C. Humphreys, G. J. Mendoza, and S. C. Benjamin, “Resource costs for fault-tolerant linear optical quantum computing,” Phys. Rev. X 5, 041007 (2015).

Lipson, M.

D. Moss, R. Morandotti, A. L. Gaeta, and M. Lipson, “New CMOS-compatible platforms based on silicon nitride and Hydex for nonlinear optics,” Nat. Photonics 7, 597–607 (2013).
[Crossref]

Lita, A. E.

F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” Nat. Photonics 7, 210–214 (2013).
[Crossref]

Lu, C. Y.

Q. Zhang, X. H. Bao, C. Y. Lu, X. Q. Zhou, T. Yang, T. Rudolph, and J. W. Pan, “Demonstration of a scheme for the generation of event-ready entangled photon pairs from a single-photon source,” Phys. Rev. A 77, 062316 (2008).
[Crossref]

Ma, X.

X. Ma, S. Zotter, J. Kofler, T. Jennewein, and A. Zeilinger, “Experimental generation of single photons via active multiplexing,” Phys. Rev. A 83, 043814 (2011).
[Crossref]

Mabuchi, H.

N. Tezak and H. Mabuchi, “A coherent perceptron for all-optical learning,” EPJ Quantum Technol. 2, 10 (2015).
[Crossref]

R. Hamerly and H. Mabuchi, “Advantages of coherent feedback for cooling quantum oscillators,” Phys. Rev. Lett. 109, 173602 (2012).
[Crossref]

Malinowski, M.

A. Rao, A. Patil, J. Chiles, M. Malinowski, S. Novak, K. Richardson, P. Rabiei, and S. Fathpour, “Heterogeneous microring and Mach-Zehnder lithium niobate electro-optical modulators on silicon,” in Conference on Lasers and Electro-Optics (CLEO), OSA Technical Digest (Optical Society of America, 2015), paper STu2F-4.

Marshall, G. D.

J. Silverstone, D. Bonneau, K. Ohira, N. Suzuki, H. Yoshida, N. Iizuka, M. Ezaki, C. M. Natarajan, M. G. Tanner, R. H. Hadfield, V. Zwiller, G. D. Marshall, J. G. Rarity, J. L. O’Brien, and M. G. Thompson, “On-chip quantum interference between silicon photon-pair sources,” Nat. Photonics 8, 104–108 (2014).
[Crossref]

Marsili, F.

F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” Nat. Photonics 7, 210–214 (2013).
[Crossref]

McCusker, K. T.

K. T. McCusker and P. G. Kwiat, “Efficient optical quantum state engineering,” Phys. Rev. Lett. 103, 163602 (2009).
[Crossref]

McCuster, K.

T. M. Rambo, K. McCuster, Y. Huang, and P. Kumar, “Low-loss all-optical quantum switching,” in IEEE Photonics Society Summer Topical Meeting Series (IEEE, 2013), pp. 179–180.

Meany, T.

T. Meany, L. A. Ngah, M. J. Collins, A. S. Clark, R. J. Williams, B. J. Eggleton, M. J. Steel, M. J. Withford, O. Alibart, and S. Tanzilli, “Hybrid photonic circuit for multiplexed heralded single photons,” Laser Photon. Rev. 8, L42–L46 (2014).
[Crossref]

Melloni, A.

F. Morichetti, S. Grillanda, and A. Melloni, “Breakthroughs in photonics 2013: toward feedback-controlled integrated photonics,” IEEE Photon. J. 6, 1–6 (2014).
[Crossref]

Mendoza, G. J.

D. Bonneau, G. J. Mendoza, J. L. O’Brien, and M. G. Thompson, “Effect of loss on multiplexed single-photon sources,” New J. Phys. 17, 043057 (2015).
[Crossref]

Y. Li, P. C. Humphreys, G. J. Mendoza, and S. C. Benjamin, “Resource costs for fault-tolerant linear optical quantum computing,” Phys. Rev. X 5, 041007 (2015).

Migdall, A.

M. D. Eisaman, J. Fan, A. Migdall, and S. V. Polyakov, “Single-photon sources and detectors,” Rev. Sci. Instrum. 82, 071101 (2011).
[Crossref]

Migdall, A. L.

A. L. Migdall, D. Branning, and S. Castelletto, “Tailoring single-photon and multiphoton probabilities of a single-photon on-demand source,” Phys. Rev. A 66, 053805 (2002).
[Crossref]

Milburn, G. J.

E. Knill, R. Laflamme, and G. J. Milburn, “A scheme for efficient quantum computation with linear optics,” Nature 409, 46–52 (2001).
[Crossref]

Minzioni, P.

Mirin, R. P.

F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” Nat. Photonics 7, 210–214 (2013).
[Crossref]

Morandotti, R.

D. Moss, R. Morandotti, A. L. Gaeta, and M. Lipson, “New CMOS-compatible platforms based on silicon nitride and Hydex for nonlinear optics,” Nat. Photonics 7, 597–607 (2013).
[Crossref]

Morichetti, F.

F. Morichetti, S. Grillanda, and A. Melloni, “Breakthroughs in photonics 2013: toward feedback-controlled integrated photonics,” IEEE Photon. J. 6, 1–6 (2014).
[Crossref]

Morito, K.

Mosley, P. J.

R. J. A. Francis-Jones and P. J. Mosley, “Temporal loop multiplexing: a resource efficient scheme for multiplexed photon-pair sources,” arXiv:1503.06178 (2015).

Moss, D.

D. Moss, R. Morandotti, A. L. Gaeta, and M. Lipson, “New CMOS-compatible platforms based on silicon nitride and Hydex for nonlinear optics,” Nat. Photonics 7, 597–607 (2013).
[Crossref]

Motes, K. R.

K. R. Motes, A. Gilchrist, J. P. Dowling, and P. P. Rohde, “Scalable boson-sampling with time-bin encoding using a loop-based architecture,” Phys. Rev. Lett. 113, 120501 (2014).
[Crossref]

Mower, J.

J. Mower and D. Englund, “Efficient generation of single and entangled photons on a silicon photonic integrated chip,” Phys. Rev. A 84, 052326 (2011).
[Crossref]

Nam, S. W.

F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” Nat. Photonics 7, 210–214 (2013).
[Crossref]

Natarajan, C. M.

J. Silverstone, D. Bonneau, K. Ohira, N. Suzuki, H. Yoshida, N. Iizuka, M. Ezaki, C. M. Natarajan, M. G. Tanner, R. H. Hadfield, V. Zwiller, G. D. Marshall, J. G. Rarity, J. L. O’Brien, and M. G. Thompson, “On-chip quantum interference between silicon photon-pair sources,” Nat. Photonics 8, 104–108 (2014).
[Crossref]

Ngah, L. A.

T. Meany, L. A. Ngah, M. J. Collins, A. S. Clark, R. J. Williams, B. J. Eggleton, M. J. Steel, M. J. Withford, O. Alibart, and S. Tanzilli, “Hybrid photonic circuit for multiplexed heralded single photons,” Laser Photon. Rev. 8, L42–L46 (2014).
[Crossref]

Novak, S.

A. Rao, A. Patil, J. Chiles, M. Malinowski, S. Novak, K. Richardson, P. Rabiei, and S. Fathpour, “Heterogeneous microring and Mach-Zehnder lithium niobate electro-optical modulators on silicon,” in Conference on Lasers and Electro-Optics (CLEO), OSA Technical Digest (Optical Society of America, 2015), paper STu2F-4.

O’Brien, J. L.

D. Bonneau, G. J. Mendoza, J. L. O’Brien, and M. G. Thompson, “Effect of loss on multiplexed single-photon sources,” New J. Phys. 17, 043057 (2015).
[Crossref]

J. Silverstone, D. Bonneau, K. Ohira, N. Suzuki, H. Yoshida, N. Iizuka, M. Ezaki, C. M. Natarajan, M. G. Tanner, R. H. Hadfield, V. Zwiller, G. D. Marshall, J. G. Rarity, J. L. O’Brien, and M. G. Thompson, “On-chip quantum interference between silicon photon-pair sources,” Nat. Photonics 8, 104–108 (2014).
[Crossref]

Ohira, K.

J. Silverstone, D. Bonneau, K. Ohira, N. Suzuki, H. Yoshida, N. Iizuka, M. Ezaki, C. M. Natarajan, M. G. Tanner, R. H. Hadfield, V. Zwiller, G. D. Marshall, J. G. Rarity, J. L. O’Brien, and M. G. Thompson, “On-chip quantum interference between silicon photon-pair sources,” Nat. Photonics 8, 104–108 (2014).
[Crossref]

Ohtsuka, M.

Ostrowsky, D. B.

P. Aboussouan, O. Alibart, D. B. Ostrowsky, P. Baldi, and S. Tanzilli, “High-visibility two-photon interference at a telecom wavelength using picosecond-regime separated sources,” Phys. Rev. A 81, 021801 (2010).
[Crossref]

Painter, O.

H. Lee, T. Chen, J. Li, O. Painter, and K. J. Vahala, “Ultra-low-loss optical delay line on a silicon chip,” Nat. Commun. 3, 867 (2012).
[Crossref]

Pan, J. W.

Q. Zhang, X. H. Bao, C. Y. Lu, X. Q. Zhou, T. Yang, T. Rudolph, and J. W. Pan, “Demonstration of a scheme for the generation of event-ready entangled photon pairs from a single-photon source,” Phys. Rev. A 77, 062316 (2008).
[Crossref]

Patil, A.

A. Rao, A. Patil, J. Chiles, M. Malinowski, S. Novak, K. Richardson, P. Rabiei, and S. Fathpour, “Heterogeneous microring and Mach-Zehnder lithium niobate electro-optical modulators on silicon,” in Conference on Lasers and Electro-Optics (CLEO), OSA Technical Digest (Optical Society of America, 2015), paper STu2F-4.

Pittman, T. B.

T. B. Pittman, M. J. Fitch, B. C. Jacobs, and J. D. Franson, “Periodic single-photon source and quantum memory,” Proc. SPIE 5161, 57–65 (2004).

Polyakov, S. V.

M. D. Eisaman, J. Fan, A. Migdall, and S. V. Polyakov, “Single-photon sources and detectors,” Rev. Sci. Instrum. 82, 071101 (2011).
[Crossref]

Rabiei, P.

A. Rao, A. Patil, J. Chiles, M. Malinowski, S. Novak, K. Richardson, P. Rabiei, and S. Fathpour, “Heterogeneous microring and Mach-Zehnder lithium niobate electro-optical modulators on silicon,” in Conference on Lasers and Electro-Optics (CLEO), OSA Technical Digest (Optical Society of America, 2015), paper STu2F-4.

Rambo, T. M.

T. M. Rambo, K. McCuster, Y. Huang, and P. Kumar, “Low-loss all-optical quantum switching,” in IEEE Photonics Society Summer Topical Meeting Series (IEEE, 2013), pp. 179–180.

Rao, A.

A. Rao, A. Patil, J. Chiles, M. Malinowski, S. Novak, K. Richardson, P. Rabiei, and S. Fathpour, “Heterogeneous microring and Mach-Zehnder lithium niobate electro-optical modulators on silicon,” in Conference on Lasers and Electro-Optics (CLEO), OSA Technical Digest (Optical Society of America, 2015), paper STu2F-4.

Rarity, J. G.

J. Silverstone, D. Bonneau, K. Ohira, N. Suzuki, H. Yoshida, N. Iizuka, M. Ezaki, C. M. Natarajan, M. G. Tanner, R. H. Hadfield, V. Zwiller, G. D. Marshall, J. G. Rarity, J. L. O’Brien, and M. G. Thompson, “On-chip quantum interference between silicon photon-pair sources,” Nat. Photonics 8, 104–108 (2014).
[Crossref]

Reardon, C.

M. J. Collins, C. Xiong, I. H. Rey, T. D. Vo, J. He, S. Shahnia, C. Reardon, T. F. Krauss, M. J. Steel, A. S. Clark, and B. J. Eggleton, “Integrated spatial multiplexing of heralded single-photon sources,” Nat. Commun. 4, 2582 (2013).

Rey, I. H.

M. J. Collins, C. Xiong, I. H. Rey, T. D. Vo, J. He, S. Shahnia, C. Reardon, T. F. Krauss, M. J. Steel, A. S. Clark, and B. J. Eggleton, “Integrated spatial multiplexing of heralded single-photon sources,” Nat. Commun. 4, 2582 (2013).

Richardson, K.

A. Rao, A. Patil, J. Chiles, M. Malinowski, S. Novak, K. Richardson, P. Rabiei, and S. Fathpour, “Heterogeneous microring and Mach-Zehnder lithium niobate electro-optical modulators on silicon,” in Conference on Lasers and Electro-Optics (CLEO), OSA Technical Digest (Optical Society of America, 2015), paper STu2F-4.

Rohde, P. P.

P. P. Rohde, “Simple scheme for universal linear-optics quantum computing with constant experimental complexity using fiber loops,” Phys. Rev. A 91, 012306 (2015).
[Crossref]

P. P. Rohde, L. G. Helt, M. J. Steel, and A. Gilchrist, “Multiplexed single-photon state preparation using a fibre-loop architecture,” Phys. Rev. A 92, 053829 (2015).

K. R. Motes, A. Gilchrist, J. P. Dowling, and P. P. Rohde, “Scalable boson-sampling with time-bin encoding using a loop-based architecture,” Phys. Rev. Lett. 113, 120501 (2014).
[Crossref]

Rudolph, T.

M. G. Segovia, P. Shadbolt, D. E. Browne, and T. Rudolph, “From three-photon GHZ states to universal ballistic quantum computation,” Phys. Rev. Lett. 115, 020502 (2015).
[Crossref]

M. Varnava, D. Browne, and T. Rudolph, “How good must single photon sources and detectors be for efficient linear optical quantum computation?” Phys. Rev. Lett. 100, 060502 (2008).
[Crossref]

Q. Zhang, X. H. Bao, C. Y. Lu, X. Q. Zhou, T. Yang, T. Rudolph, and J. W. Pan, “Demonstration of a scheme for the generation of event-ready entangled photon pairs from a single-photon source,” Phys. Rev. A 77, 062316 (2008).
[Crossref]

D. E. Browne and T. Rudolph, “Resource-efficient linear optical quantum computation,” Phys. Rev. Lett. 95, 010501 (2005).
[Crossref]

Schmiegelow, C. T.

C. T. Schmiegelow and M. A. Larotonda, “Multiplexing photons with a binary division strategy,” Appl. Phys. B 116, 447–454 (2013).
[Crossref]

Segovia, M. G.

M. G. Segovia, P. Shadbolt, D. E. Browne, and T. Rudolph, “From three-photon GHZ states to universal ballistic quantum computation,” Phys. Rev. Lett. 115, 020502 (2015).
[Crossref]

Seki, M.

Shadbolt, P.

M. G. Segovia, P. Shadbolt, D. E. Browne, and T. Rudolph, “From three-photon GHZ states to universal ballistic quantum computation,” Phys. Rev. Lett. 115, 020502 (2015).
[Crossref]

Shahnia, S.

M. J. Collins, C. Xiong, I. H. Rey, T. D. Vo, J. He, S. Shahnia, C. Reardon, T. F. Krauss, M. J. Steel, A. S. Clark, and B. J. Eggleton, “Integrated spatial multiplexing of heralded single-photon sources,” Nat. Commun. 4, 2582 (2013).

Shapiro, J. H.

Shaw, M. D.

F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” Nat. Photonics 7, 210–214 (2013).
[Crossref]

Shimura, D.

Silberhorn, C.

A. Christ and C. Silberhorn, “Limits on the deterministic creation of pure single-photon states using parametric down-conversion,” Phys. Rev. A 85, 023829 (2012).
[Crossref]

Silverstone, J.

J. Silverstone, D. Bonneau, K. Ohira, N. Suzuki, H. Yoshida, N. Iizuka, M. Ezaki, C. M. Natarajan, M. G. Tanner, R. H. Hadfield, V. Zwiller, G. D. Marshall, J. G. Rarity, J. L. O’Brien, and M. G. Thompson, “On-chip quantum interference between silicon photon-pair sources,” Nat. Photonics 8, 104–108 (2014).
[Crossref]

Simoyama, T.

Sorel, M.

Steel, M. J.

P. P. Rohde, L. G. Helt, M. J. Steel, and A. Gilchrist, “Multiplexed single-photon state preparation using a fibre-loop architecture,” Phys. Rev. A 92, 053829 (2015).

T. Meany, L. A. Ngah, M. J. Collins, A. S. Clark, R. J. Williams, B. J. Eggleton, M. J. Steel, M. J. Withford, O. Alibart, and S. Tanzilli, “Hybrid photonic circuit for multiplexed heralded single photons,” Laser Photon. Rev. 8, L42–L46 (2014).
[Crossref]

M. J. Collins, C. Xiong, I. H. Rey, T. D. Vo, J. He, S. Shahnia, C. Reardon, T. F. Krauss, M. J. Steel, A. S. Clark, and B. J. Eggleton, “Integrated spatial multiplexing of heralded single-photon sources,” Nat. Commun. 4, 2582 (2013).

C. Xiong, T. D. Vo, M. J. Collins, J. Li, T. F. Krauss, M. J. Steel, A. S. Clark, and B. J. Eggleton, “Bidirectional multiplexing of heralded single photons from a silicon chip,” Opt. Lett. 38, 5176–5179 (2013).
[Crossref]

Stern, J. A.

F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” Nat. Photonics 7, 210–214 (2013).
[Crossref]

Strain, M. J.

Suzuki, N.

J. Silverstone, D. Bonneau, K. Ohira, N. Suzuki, H. Yoshida, N. Iizuka, M. Ezaki, C. M. Natarajan, M. G. Tanner, R. H. Hadfield, V. Zwiller, G. D. Marshall, J. G. Rarity, J. L. O’Brien, and M. G. Thompson, “On-chip quantum interference between silicon photon-pair sources,” Nat. Photonics 8, 104–108 (2014).
[Crossref]

Tanaka, Y.

Tanner, M. G.

J. Silverstone, D. Bonneau, K. Ohira, N. Suzuki, H. Yoshida, N. Iizuka, M. Ezaki, C. M. Natarajan, M. G. Tanner, R. H. Hadfield, V. Zwiller, G. D. Marshall, J. G. Rarity, J. L. O’Brien, and M. G. Thompson, “On-chip quantum interference between silicon photon-pair sources,” Nat. Photonics 8, 104–108 (2014).
[Crossref]

Tanzilli, S.

T. Meany, L. A. Ngah, M. J. Collins, A. S. Clark, R. J. Williams, B. J. Eggleton, M. J. Steel, M. J. Withford, O. Alibart, and S. Tanzilli, “Hybrid photonic circuit for multiplexed heralded single photons,” Laser Photon. Rev. 8, L42–L46 (2014).
[Crossref]

P. Aboussouan, O. Alibart, D. B. Ostrowsky, P. Baldi, and S. Tanzilli, “High-visibility two-photon interference at a telecom wavelength using picosecond-regime separated sources,” Phys. Rev. A 81, 021801 (2010).
[Crossref]

Tezak, N.

N. Tezak and H. Mabuchi, “A coherent perceptron for all-optical learning,” EPJ Quantum Technol. 2, 10 (2015).
[Crossref]

Thompson, M. G.

D. Bonneau, G. J. Mendoza, J. L. O’Brien, and M. G. Thompson, “Effect of loss on multiplexed single-photon sources,” New J. Phys. 17, 043057 (2015).
[Crossref]

J. Silverstone, D. Bonneau, K. Ohira, N. Suzuki, H. Yoshida, N. Iizuka, M. Ezaki, C. M. Natarajan, M. G. Tanner, R. H. Hadfield, V. Zwiller, G. D. Marshall, J. G. Rarity, J. L. O’Brien, and M. G. Thompson, “On-chip quantum interference between silicon photon-pair sources,” Nat. Photonics 8, 104–108 (2014).
[Crossref]

U’Ren, A.

W. Grice, A. U’Ren, and I. Walmsley, “Eliminating frequency and space-time correlations in multiphoton states,” Phys. Rev. A 64, 063815 (2001).
[Crossref]

Vahala, K. J.

H. Lee, T. Chen, J. Li, O. Painter, and K. J. Vahala, “Ultra-low-loss optical delay line on a silicon chip,” Nat. Commun. 3, 867 (2012).
[Crossref]

Varnava, M.

M. Varnava, D. Browne, and T. Rudolph, “How good must single photon sources and detectors be for efficient linear optical quantum computation?” Phys. Rev. Lett. 100, 060502 (2008).
[Crossref]

Vayshenker, I.

F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” Nat. Photonics 7, 210–214 (2013).
[Crossref]

Verma, V. B.

F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” Nat. Photonics 7, 210–214 (2013).
[Crossref]

Vo, T. D.

C. Xiong, T. D. Vo, M. J. Collins, J. Li, T. F. Krauss, M. J. Steel, A. S. Clark, and B. J. Eggleton, “Bidirectional multiplexing of heralded single photons from a silicon chip,” Opt. Lett. 38, 5176–5179 (2013).
[Crossref]

M. J. Collins, C. Xiong, I. H. Rey, T. D. Vo, J. He, S. Shahnia, C. Reardon, T. F. Krauss, M. J. Steel, A. S. Clark, and B. J. Eggleton, “Integrated spatial multiplexing of heralded single-photon sources,” Nat. Commun. 4, 2582 (2013).

Walmsley, I.

W. Grice, A. U’Ren, and I. Walmsley, “Eliminating frequency and space-time correlations in multiphoton states,” Phys. Rev. A 64, 063815 (2001).
[Crossref]

White, A. G.

M. A. Broome, M. P. Almeida, A. Fedrizzi, and A. G. White, “Reducing multi-photon rates in pulsed down-conversion by temporal multiplexing,” Opt. Express 19, 22698–22708 (2011).
[Crossref]

T. Jennewein, M. Barbieri, and A. G. White, “Single-photon device requirements for operating linear optics quantum computing outside the post-selection basis,” J. Mod. Opt. 58, 276–287 (2011).
[Crossref]

Williams, R. J.

T. Meany, L. A. Ngah, M. J. Collins, A. S. Clark, R. J. Williams, B. J. Eggleton, M. J. Steel, M. J. Withford, O. Alibart, and S. Tanzilli, “Hybrid photonic circuit for multiplexed heralded single photons,” Laser Photon. Rev. 8, L42–L46 (2014).
[Crossref]

Withford, M. J.

T. Meany, L. A. Ngah, M. J. Collins, A. S. Clark, R. J. Williams, B. J. Eggleton, M. J. Steel, M. J. Withford, O. Alibart, and S. Tanzilli, “Hybrid photonic circuit for multiplexed heralded single photons,” Laser Photon. Rev. 8, L42–L46 (2014).
[Crossref]

Wong, F. N.

Xiong, C.

M. J. Collins, C. Xiong, I. H. Rey, T. D. Vo, J. He, S. Shahnia, C. Reardon, T. F. Krauss, M. J. Steel, A. S. Clark, and B. J. Eggleton, “Integrated spatial multiplexing of heralded single-photon sources,” Nat. Commun. 4, 2582 (2013).

C. Xiong, T. D. Vo, M. J. Collins, J. Li, T. F. Krauss, M. J. Steel, A. S. Clark, and B. J. Eggleton, “Bidirectional multiplexing of heralded single photons from a silicon chip,” Opt. Lett. 38, 5176–5179 (2013).
[Crossref]

Yang, T.

Q. Zhang, X. H. Bao, C. Y. Lu, X. Q. Zhou, T. Yang, T. Rudolph, and J. W. Pan, “Demonstration of a scheme for the generation of event-ready entangled photon pairs from a single-photon source,” Phys. Rev. A 77, 062316 (2008).
[Crossref]

Yokoyama, N.

Yoshida, H.

J. Silverstone, D. Bonneau, K. Ohira, N. Suzuki, H. Yoshida, N. Iizuka, M. Ezaki, C. M. Natarajan, M. G. Tanner, R. H. Hadfield, V. Zwiller, G. D. Marshall, J. G. Rarity, J. L. O’Brien, and M. G. Thompson, “On-chip quantum interference between silicon photon-pair sources,” Nat. Photonics 8, 104–108 (2014).
[Crossref]

Zeilinger, A.

X. Ma, S. Zotter, J. Kofler, T. Jennewein, and A. Zeilinger, “Experimental generation of single photons via active multiplexing,” Phys. Rev. A 83, 043814 (2011).
[Crossref]

Zhang, Q.

Q. Zhang, X. H. Bao, C. Y. Lu, X. Q. Zhou, T. Yang, T. Rudolph, and J. W. Pan, “Demonstration of a scheme for the generation of event-ready entangled photon pairs from a single-photon source,” Phys. Rev. A 77, 062316 (2008).
[Crossref]

Zhou, X. Q.

Q. Zhang, X. H. Bao, C. Y. Lu, X. Q. Zhou, T. Yang, T. Rudolph, and J. W. Pan, “Demonstration of a scheme for the generation of event-ready entangled photon pairs from a single-photon source,” Phys. Rev. A 77, 062316 (2008).
[Crossref]

Zotter, S.

X. Ma, S. Zotter, J. Kofler, T. Jennewein, and A. Zeilinger, “Experimental generation of single photons via active multiplexing,” Phys. Rev. A 83, 043814 (2011).
[Crossref]

Zwiller, V.

J. Silverstone, D. Bonneau, K. Ohira, N. Suzuki, H. Yoshida, N. Iizuka, M. Ezaki, C. M. Natarajan, M. G. Tanner, R. H. Hadfield, V. Zwiller, G. D. Marshall, J. G. Rarity, J. L. O’Brien, and M. G. Thompson, “On-chip quantum interference between silicon photon-pair sources,” Nat. Photonics 8, 104–108 (2014).
[Crossref]

Appl. Phys. B (1)

C. T. Schmiegelow and M. A. Larotonda, “Multiplexing photons with a binary division strategy,” Appl. Phys. B 116, 447–454 (2013).
[Crossref]

EPJ Quantum Technol. (1)

N. Tezak and H. Mabuchi, “A coherent perceptron for all-optical learning,” EPJ Quantum Technol. 2, 10 (2015).
[Crossref]

IEEE Photon. J. (1)

F. Morichetti, S. Grillanda, and A. Melloni, “Breakthroughs in photonics 2013: toward feedback-controlled integrated photonics,” IEEE Photon. J. 6, 1–6 (2014).
[Crossref]

J. Mod. Opt. (1)

T. Jennewein, M. Barbieri, and A. G. White, “Single-photon device requirements for operating linear optics quantum computing outside the post-selection basis,” J. Mod. Opt. 58, 276–287 (2011).
[Crossref]

Laser Photon. Rev. (1)

T. Meany, L. A. Ngah, M. J. Collins, A. S. Clark, R. J. Williams, B. J. Eggleton, M. J. Steel, M. J. Withford, O. Alibart, and S. Tanzilli, “Hybrid photonic circuit for multiplexed heralded single photons,” Laser Photon. Rev. 8, L42–L46 (2014).
[Crossref]

Nat. Commun. (2)

M. J. Collins, C. Xiong, I. H. Rey, T. D. Vo, J. He, S. Shahnia, C. Reardon, T. F. Krauss, M. J. Steel, A. S. Clark, and B. J. Eggleton, “Integrated spatial multiplexing of heralded single-photon sources,” Nat. Commun. 4, 2582 (2013).

H. Lee, T. Chen, J. Li, O. Painter, and K. J. Vahala, “Ultra-low-loss optical delay line on a silicon chip,” Nat. Commun. 3, 867 (2012).
[Crossref]

Nat. Photonics (3)

D. Moss, R. Morandotti, A. L. Gaeta, and M. Lipson, “New CMOS-compatible platforms based on silicon nitride and Hydex for nonlinear optics,” Nat. Photonics 7, 597–607 (2013).
[Crossref]

J. Silverstone, D. Bonneau, K. Ohira, N. Suzuki, H. Yoshida, N. Iizuka, M. Ezaki, C. M. Natarajan, M. G. Tanner, R. H. Hadfield, V. Zwiller, G. D. Marshall, J. G. Rarity, J. L. O’Brien, and M. G. Thompson, “On-chip quantum interference between silicon photon-pair sources,” Nat. Photonics 8, 104–108 (2014).
[Crossref]

F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” Nat. Photonics 7, 210–214 (2013).
[Crossref]

Nature (1)

E. Knill, R. Laflamme, and G. J. Milburn, “A scheme for efficient quantum computation with linear optics,” Nature 409, 46–52 (2001).
[Crossref]

New J. Phys. (1)

D. Bonneau, G. J. Mendoza, J. L. O’Brien, and M. G. Thompson, “Effect of loss on multiplexed single-photon sources,” New J. Phys. 17, 043057 (2015).
[Crossref]

Opt. Express (3)

Opt. Lett. (2)

Phys. Rev. A (9)

A. L. Migdall, D. Branning, and S. Castelletto, “Tailoring single-photon and multiphoton probabilities of a single-photon on-demand source,” Phys. Rev. A 66, 053805 (2002).
[Crossref]

X. Ma, S. Zotter, J. Kofler, T. Jennewein, and A. Zeilinger, “Experimental generation of single photons via active multiplexing,” Phys. Rev. A 83, 043814 (2011).
[Crossref]

A. Christ and C. Silberhorn, “Limits on the deterministic creation of pure single-photon states using parametric down-conversion,” Phys. Rev. A 85, 023829 (2012).
[Crossref]

Q. Zhang, X. H. Bao, C. Y. Lu, X. Q. Zhou, T. Yang, T. Rudolph, and J. W. Pan, “Demonstration of a scheme for the generation of event-ready entangled photon pairs from a single-photon source,” Phys. Rev. A 77, 062316 (2008).
[Crossref]

J. Mower and D. Englund, “Efficient generation of single and entangled photons on a silicon photonic integrated chip,” Phys. Rev. A 84, 052326 (2011).
[Crossref]

P. P. Rohde, L. G. Helt, M. J. Steel, and A. Gilchrist, “Multiplexed single-photon state preparation using a fibre-loop architecture,” Phys. Rev. A 92, 053829 (2015).

P. P. Rohde, “Simple scheme for universal linear-optics quantum computing with constant experimental complexity using fiber loops,” Phys. Rev. A 91, 012306 (2015).
[Crossref]

W. Grice, A. U’Ren, and I. Walmsley, “Eliminating frequency and space-time correlations in multiphoton states,” Phys. Rev. A 64, 063815 (2001).
[Crossref]

P. Aboussouan, O. Alibart, D. B. Ostrowsky, P. Baldi, and S. Tanzilli, “High-visibility two-photon interference at a telecom wavelength using picosecond-regime separated sources,” Phys. Rev. A 81, 021801 (2010).
[Crossref]

Phys. Rev. Lett. (7)

K. T. McCusker and P. G. Kwiat, “Efficient optical quantum state engineering,” Phys. Rev. Lett. 103, 163602 (2009).
[Crossref]

K. R. Motes, A. Gilchrist, J. P. Dowling, and P. P. Rohde, “Scalable boson-sampling with time-bin encoding using a loop-based architecture,” Phys. Rev. Lett. 113, 120501 (2014).
[Crossref]

M. Varnava, D. Browne, and T. Rudolph, “How good must single photon sources and detectors be for efficient linear optical quantum computation?” Phys. Rev. Lett. 100, 060502 (2008).
[Crossref]

H. Cable and J. Dowling, “Efficient generation of large number-path entanglement using only linear optics and feed-forward,” Phys. Rev. Lett. 99, 163604 (2007).
[Crossref]

D. E. Browne and T. Rudolph, “Resource-efficient linear optical quantum computation,” Phys. Rev. Lett. 95, 010501 (2005).
[Crossref]

M. G. Segovia, P. Shadbolt, D. E. Browne, and T. Rudolph, “From three-photon GHZ states to universal ballistic quantum computation,” Phys. Rev. Lett. 115, 020502 (2015).
[Crossref]

R. Hamerly and H. Mabuchi, “Advantages of coherent feedback for cooling quantum oscillators,” Phys. Rev. Lett. 109, 173602 (2012).
[Crossref]

Phys. Rev. X (1)

Y. Li, P. C. Humphreys, G. J. Mendoza, and S. C. Benjamin, “Resource costs for fault-tolerant linear optical quantum computing,” Phys. Rev. X 5, 041007 (2015).

Proc. SPIE (1)

T. B. Pittman, M. J. Fitch, B. C. Jacobs, and J. D. Franson, “Periodic single-photon source and quantum memory,” Proc. SPIE 5161, 57–65 (2004).

Rev. Sci. Instrum. (1)

M. D. Eisaman, J. Fan, A. Migdall, and S. V. Polyakov, “Single-photon sources and detectors,” Rev. Sci. Instrum. 82, 071101 (2011).
[Crossref]

Other (4)

R. J. A. Francis-Jones and P. J. Mosley, “Temporal loop multiplexing: a resource efficient scheme for multiplexed photon-pair sources,” arXiv:1503.06178 (2015).

T. M. Rambo, K. McCuster, Y. Huang, and P. Kumar, “Low-loss all-optical quantum switching,” in IEEE Photonics Society Summer Topical Meeting Series (IEEE, 2013), pp. 179–180.

A. Rao, A. Patil, J. Chiles, M. Malinowski, S. Novak, K. Richardson, P. Rabiei, and S. Fathpour, “Heterogeneous microring and Mach-Zehnder lithium niobate electro-optical modulators on silicon,” in Conference on Lasers and Electro-Optics (CLEO), OSA Technical Digest (Optical Society of America, 2015), paper STu2F-4.

C. Gerry and P. Knight, Introductory Quantum Optics (Cambridge University, 2004).

Supplementary Material (1)

NameDescription
» Supplement 1: PDF (1492 KB)      Supplemental-document

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1.

Future vision of hybrid temporal and spatial multiplexing of photons for large-scale quantum photonics. In spatial multiplexing (left), a nondeterministic generation process is repeated N times in space; on heralded success, an active N×1 optical switching network will reroute generated photons into specific modes. In temporal multiplexing (right), a nondeterministic generation process is repeated in time with period T; on heralded success, an active optical switching network and delay lines offset photons into output time bins spaced by an integer multiple of the input period and in sync with the system clock cycle. Using both temporal and spatial multiplexing can optimize for resource requirements, spatial footprint, delay line lengths, and clock rate constraints. With sufficiently low-loss switching networks, the generation probability per clock cycle is increased.

Fig. 2.
Fig. 2.

Experimental setup. Pulses from a femtosecond laser are upconverted using an LBO crystal, split into four copies using free-space delay lines, and passed twice through a PPLN crystal for downconversion. Following separation of the photon pairs and pump using filtering, the heralding signals are analyzed by an oversampling FPGA while the signal photons are stored in long fiber delays. The FPGA configures the switching network to deliver the generated signal photons into a single spatial and temporal mode. P1 and P2 indicate Pass 1 and Pass 2.

Fig. 3.
Fig. 3.

Heralded signal photon (coincidence) rate versus CAR for multiplexed and nonmultiplexed sources. (a) The full dataset, and (b) detail at low powers, where saturation effects due to electronics are small. “Delays 0–3” refers to the four effective nonmultiplexed sources passively delayed in time. Red points are for the 8× multiplexed source, and blue points are for the nonmultiplexed sources (Pass 1). Solid lines are based on a theory fit using measured parameters. Dashed line shows a potential improvement using a correction for extrinsic sources of loss based on the theory model.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

|ψ=1|ξ|2(|0i|0s+n=1ξn|ni|ns),
psingleMUX=(1(1ptrig)N)psingle,

Metrics