Abstract

Transparent conductive oxides (TCOs), such as the well-known indium-tin oxide, find widespread use in modern (nano)technological applications because of their unique combination of negligible optical absorption and good electric conductivity. We, however, show that despite the near-zero imaginary part of the refractive index that is responsible for the material’s transparency, TCOs drastically quench optical emitters when the emitter is within 10 nm from the TCO. Our results reveal that the pure near-field nature of this dissipation makes for an exquisite short-range optical ruler. Previous quenching-based optical rulers, based on interactions with plasmonic or graphene materials, have allowed measuring distances in the 20–100 nm range. Distances below 20 nm have, however, been hard to assess due to poor photon yields or weak absolute variations. We show that TCO-based rulers close this gap, allowing distance measurements with far-field optics in the 1–10 nm distance range with deep subnanometer sensitivity.

© 2016 Optical Society of America

Full Article  |  PDF Article

Corrections

22 January 2016: A correction was made to Ref. 23.


OSA Recommended Articles
Investigating the distance limit of a metal nanoparticle based spectroscopic ruler

Subhasish Chatterjee, Jong Bum Lee, Nikesh V. Valappil, Dan Luo, and Vinod M. Menon
Biomed. Opt. Express 2(6) 1727-1733 (2011)

Energy transfer from colloidal nanocrystals into Si substrates studied via photoluminescence photon counts and decay kinetics

H. M. Nguyen, O. Seitz, Yu. N. Gartstein, Y. J. Chabal, and A. V. Malko
J. Opt. Soc. Am. B 30(9) 2401-2408 (2013)

References

  • View by:
  • |
  • |
  • |

  1. K. H. Drexhage, “Influence of a dielectric interface on fluorescence decay time,” J. Lumin. 1–2, 693–701 (1970).
    [Crossref]
  2. R. R. Chance, A. H. Miller, A. Prock, and R. Silbey, “Fluorescence and energy transfer near interfaces: the complete and quantitative description of the Eu+3/mirror systems,” J. Chem. Phys. 63, 1589–1595 (1975).
    [Crossref]
  3. I. Pockrand, A. Brillante, and D. Möbius, “Nonradiative decay of excited molecules near a metal surface,” Chem. Phys. Lett. 69, 499–504 (1980).
    [Crossref]
  4. J. I. Pankove, Optical Processes in Semiconductors (Dover, 1971), Chap. 4, pp. 87–89.
  5. W. L. Barnes, “Fluorescence near interfaces: the role of photonic mode density,” J. Mod. Opt. 45, 661–699 (1998).
    [Crossref]
  6. L. Novotny and B. Hecht, Principles of Nano-optics, 1st ed. (Cambridge University, 2006).
  7. J. Seelig, K. Leslie, A. Renn, S. Kuhn, V. Jacobsen, M. van de Corput, C. Wyman, and V. Sandoghdar, “Nanoparticle-induced fluorescence lifetime modification as nanoscopic ruler: demonstration at the single molecule level,” Nano Lett. 7, 685–689 (2007).
    [Crossref]
  8. A. I. Chizhik, J. Rother, I. Gregor, A. Janshoff, and J. Enderlein, “Metal-induced energy transfer for live cell nanoscopy,” Nat. Photonics 8, 124–127 (2014).
    [Crossref]
  9. T. Hayashi, T. G. Castner, and R. W. Boyd, “Quenching of molecular fluorescence near the surface of a semiconductor,” Chem. Phys. Lett. 94, 461–466 (1983).
    [Crossref]
  10. A. P. Alivisatos, M. F. Arndt, S. Efrima, D. H. Waldeck, and C. B. Harris, “Electronic energy transfer at semiconductor interfaces. I. Energy transfer from two-dimensional molecular films to Si(111),” J. Chem. Phys. 86, 6540–6549 (1987).
    [Crossref]
  11. M. I. Sluch, A. G. Vitukhnovsky, and M. C. Petty, “Anomalous distance dependence of fluorescence lifetime quenched by a semiconductor,” Phys. Lett. A 200, 61–64 (1995).
    [Crossref]
  12. G. Gómez-Santos and T. Stauber, “Fluorescence quenching in graphene: a fundamental ruler and evidence for transverse plasmons,” Phys. Rev. B 84, 165438 (2011).
    [Crossref]
  13. L. Gaudreau, K. J. Tielrooij, G. E. Prawiroatmodjo, J. Osmond, F. J. Garcia de Abajo, and F. H. Koppens, “Universal distance-scaling of nonradiative energy transfer to graphene,” Nano Lett. 13, 2030–2035 (2013).
    [Crossref]
  14. J. Tisler, T. Oeckinghaus, R. J. Stohr, R. Kolesov, R. Reuter, F. Reinhard, and J. Wrachtrup, “Single defect center scanning near-field optical microscopy on graphene,” Nano Lett. 13, 3152–3156 (2013).
    [Crossref]
  15. L. Stryer and R. P. Haugland, “Energy transfer: a spectroscopic ruler,” Proc. Natl. Acad. Sci. USA 58, 719–726 (1967).
    [Crossref]
  16. P. R. Selvin, “The renaissance of fluorescence resonance energy transfer,” Nat. Struct. Biol. 7, 730–734 (2000).
    [Crossref]
  17. C. Sönnichsen, B. M. Reinhard, J. Liphardt, and A. P. Alivisatos, “A molecular ruler based on plasmon coupling of single gold and silver nanoparticles,” Nat. Biotechnol. 23, 741–745 (2005).
    [Crossref]
  18. H. Weyl, “Ausbreitung elektromagnetischer wellen über einem ebenen leiter,” Ann. Phys. 365, 481–500 (1919).
    [Crossref]
  19. W. Lukosz and R. E. Kunz, “Light-emission by magnetic and electric dipoles close to a plane interface. I. Total radiated power,” J. Opt. Soc. Am. 67, 1607–1615 (1977).
    [Crossref]
  20. G. W. Ford and W. H. Weber, “Electromagnetic interactions of molecules with metal surfaces,” Phys. Rep. 113, 195–287 (1984).
    [Crossref]
  21. L. Novotny, “Allowed and forbidden light in near-field optics. I. a single dipolar light source,” J. Opt. Soc. Am. A 14, 91–104 (1997).
    [Crossref]
  22. We restrict ourselves to a horizontal dipole, but similar conclusions can be drawn for a vertical dipole (see Supplement 1, Section 6, and Fig. S6).
  23. D. W. Lynch and W. R. Hunter, “Comments on the optical constants of metals and an introduction to the data for several metals,” in Handbook of Optical Constants of Solids, E. D. Palik, ed. (Academic, 1997), pp. 275–367.
  24. P. P. Jha and P. Guyot-Sionnest, “Electrochemical switching of the photoluminescence of single quantum dots,” J. Phys. Chem. C 114, 21138–21141 (2010).
    [Crossref]
  25. S. Jin, N. Song, and T. Lian, “Suppressed blinking dynamics of single QDs on ITO,” ACS Nano 4, 1545–1552 (2010).
    [Crossref]
  26. K. Patty, S. M. Sadeghi, A. Nejat, and C. B. Mao, “Enhancement of emission efficiency of colloidal CdSe quantum dots on silicon substrate via an ultra-thin layer of aluminum oxide,” Nanotechnology 25, 155701 (2014).
    [Crossref]
  27. S. M. Barnett, B. Huttner, R. Loudon, and R. Matloob, “Decay of excited atoms in absorbing dielectrics,” J. Phys. B 29, 3763–3781 (1996).
    [Crossref]
  28. M. Bruna and S. Borini, “Optical constants of graphene layers in the visible range,” Appl. Phys. Lett. 94, 031901 (2009).
    [Crossref]
  29. M. Abb, P. Albella, J. Aizpurua, and O. L. Muskens, “All-optical control of a single plasmonic nanoantenna—ITO hybrid,” Nano Lett. 11, 2457–2463 (2011).
    [Crossref]
  30. M. D. Losego, A. Y. Efremenko, C. L. Rhodes, M. G. Cerruti, S. Franzen, and J.-P. Maria, “Conductive oxide thin films: model systems for understanding and controlling surface plasmon resonance,” J. Appl. Phys. 106, 024903 (2009).
    [Crossref]
  31. S. Barnett, B. Huttner, and R. Loudon, “Spontaneous emission in absorbing dielectric media,” Phys. Rev. Lett. 68, 3698–3701 (1992).
    [Crossref]

2014 (2)

A. I. Chizhik, J. Rother, I. Gregor, A. Janshoff, and J. Enderlein, “Metal-induced energy transfer for live cell nanoscopy,” Nat. Photonics 8, 124–127 (2014).
[Crossref]

K. Patty, S. M. Sadeghi, A. Nejat, and C. B. Mao, “Enhancement of emission efficiency of colloidal CdSe quantum dots on silicon substrate via an ultra-thin layer of aluminum oxide,” Nanotechnology 25, 155701 (2014).
[Crossref]

2013 (2)

L. Gaudreau, K. J. Tielrooij, G. E. Prawiroatmodjo, J. Osmond, F. J. Garcia de Abajo, and F. H. Koppens, “Universal distance-scaling of nonradiative energy transfer to graphene,” Nano Lett. 13, 2030–2035 (2013).
[Crossref]

J. Tisler, T. Oeckinghaus, R. J. Stohr, R. Kolesov, R. Reuter, F. Reinhard, and J. Wrachtrup, “Single defect center scanning near-field optical microscopy on graphene,” Nano Lett. 13, 3152–3156 (2013).
[Crossref]

2011 (2)

G. Gómez-Santos and T. Stauber, “Fluorescence quenching in graphene: a fundamental ruler and evidence for transverse plasmons,” Phys. Rev. B 84, 165438 (2011).
[Crossref]

M. Abb, P. Albella, J. Aizpurua, and O. L. Muskens, “All-optical control of a single plasmonic nanoantenna—ITO hybrid,” Nano Lett. 11, 2457–2463 (2011).
[Crossref]

2010 (2)

P. P. Jha and P. Guyot-Sionnest, “Electrochemical switching of the photoluminescence of single quantum dots,” J. Phys. Chem. C 114, 21138–21141 (2010).
[Crossref]

S. Jin, N. Song, and T. Lian, “Suppressed blinking dynamics of single QDs on ITO,” ACS Nano 4, 1545–1552 (2010).
[Crossref]

2009 (2)

M. D. Losego, A. Y. Efremenko, C. L. Rhodes, M. G. Cerruti, S. Franzen, and J.-P. Maria, “Conductive oxide thin films: model systems for understanding and controlling surface plasmon resonance,” J. Appl. Phys. 106, 024903 (2009).
[Crossref]

M. Bruna and S. Borini, “Optical constants of graphene layers in the visible range,” Appl. Phys. Lett. 94, 031901 (2009).
[Crossref]

2007 (1)

J. Seelig, K. Leslie, A. Renn, S. Kuhn, V. Jacobsen, M. van de Corput, C. Wyman, and V. Sandoghdar, “Nanoparticle-induced fluorescence lifetime modification as nanoscopic ruler: demonstration at the single molecule level,” Nano Lett. 7, 685–689 (2007).
[Crossref]

2005 (1)

C. Sönnichsen, B. M. Reinhard, J. Liphardt, and A. P. Alivisatos, “A molecular ruler based on plasmon coupling of single gold and silver nanoparticles,” Nat. Biotechnol. 23, 741–745 (2005).
[Crossref]

2000 (1)

P. R. Selvin, “The renaissance of fluorescence resonance energy transfer,” Nat. Struct. Biol. 7, 730–734 (2000).
[Crossref]

1998 (1)

W. L. Barnes, “Fluorescence near interfaces: the role of photonic mode density,” J. Mod. Opt. 45, 661–699 (1998).
[Crossref]

1997 (1)

1996 (1)

S. M. Barnett, B. Huttner, R. Loudon, and R. Matloob, “Decay of excited atoms in absorbing dielectrics,” J. Phys. B 29, 3763–3781 (1996).
[Crossref]

1995 (1)

M. I. Sluch, A. G. Vitukhnovsky, and M. C. Petty, “Anomalous distance dependence of fluorescence lifetime quenched by a semiconductor,” Phys. Lett. A 200, 61–64 (1995).
[Crossref]

1992 (1)

S. Barnett, B. Huttner, and R. Loudon, “Spontaneous emission in absorbing dielectric media,” Phys. Rev. Lett. 68, 3698–3701 (1992).
[Crossref]

1987 (1)

A. P. Alivisatos, M. F. Arndt, S. Efrima, D. H. Waldeck, and C. B. Harris, “Electronic energy transfer at semiconductor interfaces. I. Energy transfer from two-dimensional molecular films to Si(111),” J. Chem. Phys. 86, 6540–6549 (1987).
[Crossref]

1984 (1)

G. W. Ford and W. H. Weber, “Electromagnetic interactions of molecules with metal surfaces,” Phys. Rep. 113, 195–287 (1984).
[Crossref]

1983 (1)

T. Hayashi, T. G. Castner, and R. W. Boyd, “Quenching of molecular fluorescence near the surface of a semiconductor,” Chem. Phys. Lett. 94, 461–466 (1983).
[Crossref]

1980 (1)

I. Pockrand, A. Brillante, and D. Möbius, “Nonradiative decay of excited molecules near a metal surface,” Chem. Phys. Lett. 69, 499–504 (1980).
[Crossref]

1977 (1)

1975 (1)

R. R. Chance, A. H. Miller, A. Prock, and R. Silbey, “Fluorescence and energy transfer near interfaces: the complete and quantitative description of the Eu+3/mirror systems,” J. Chem. Phys. 63, 1589–1595 (1975).
[Crossref]

1970 (1)

K. H. Drexhage, “Influence of a dielectric interface on fluorescence decay time,” J. Lumin. 1–2, 693–701 (1970).
[Crossref]

1967 (1)

L. Stryer and R. P. Haugland, “Energy transfer: a spectroscopic ruler,” Proc. Natl. Acad. Sci. USA 58, 719–726 (1967).
[Crossref]

1919 (1)

H. Weyl, “Ausbreitung elektromagnetischer wellen über einem ebenen leiter,” Ann. Phys. 365, 481–500 (1919).
[Crossref]

Abb, M.

M. Abb, P. Albella, J. Aizpurua, and O. L. Muskens, “All-optical control of a single plasmonic nanoantenna—ITO hybrid,” Nano Lett. 11, 2457–2463 (2011).
[Crossref]

Aizpurua, J.

M. Abb, P. Albella, J. Aizpurua, and O. L. Muskens, “All-optical control of a single plasmonic nanoantenna—ITO hybrid,” Nano Lett. 11, 2457–2463 (2011).
[Crossref]

Albella, P.

M. Abb, P. Albella, J. Aizpurua, and O. L. Muskens, “All-optical control of a single plasmonic nanoantenna—ITO hybrid,” Nano Lett. 11, 2457–2463 (2011).
[Crossref]

Alivisatos, A. P.

C. Sönnichsen, B. M. Reinhard, J. Liphardt, and A. P. Alivisatos, “A molecular ruler based on plasmon coupling of single gold and silver nanoparticles,” Nat. Biotechnol. 23, 741–745 (2005).
[Crossref]

A. P. Alivisatos, M. F. Arndt, S. Efrima, D. H. Waldeck, and C. B. Harris, “Electronic energy transfer at semiconductor interfaces. I. Energy transfer from two-dimensional molecular films to Si(111),” J. Chem. Phys. 86, 6540–6549 (1987).
[Crossref]

Arndt, M. F.

A. P. Alivisatos, M. F. Arndt, S. Efrima, D. H. Waldeck, and C. B. Harris, “Electronic energy transfer at semiconductor interfaces. I. Energy transfer from two-dimensional molecular films to Si(111),” J. Chem. Phys. 86, 6540–6549 (1987).
[Crossref]

Barnes, W. L.

W. L. Barnes, “Fluorescence near interfaces: the role of photonic mode density,” J. Mod. Opt. 45, 661–699 (1998).
[Crossref]

Barnett, S.

S. Barnett, B. Huttner, and R. Loudon, “Spontaneous emission in absorbing dielectric media,” Phys. Rev. Lett. 68, 3698–3701 (1992).
[Crossref]

Barnett, S. M.

S. M. Barnett, B. Huttner, R. Loudon, and R. Matloob, “Decay of excited atoms in absorbing dielectrics,” J. Phys. B 29, 3763–3781 (1996).
[Crossref]

Borini, S.

M. Bruna and S. Borini, “Optical constants of graphene layers in the visible range,” Appl. Phys. Lett. 94, 031901 (2009).
[Crossref]

Boyd, R. W.

T. Hayashi, T. G. Castner, and R. W. Boyd, “Quenching of molecular fluorescence near the surface of a semiconductor,” Chem. Phys. Lett. 94, 461–466 (1983).
[Crossref]

Brillante, A.

I. Pockrand, A. Brillante, and D. Möbius, “Nonradiative decay of excited molecules near a metal surface,” Chem. Phys. Lett. 69, 499–504 (1980).
[Crossref]

Bruna, M.

M. Bruna and S. Borini, “Optical constants of graphene layers in the visible range,” Appl. Phys. Lett. 94, 031901 (2009).
[Crossref]

Castner, T. G.

T. Hayashi, T. G. Castner, and R. W. Boyd, “Quenching of molecular fluorescence near the surface of a semiconductor,” Chem. Phys. Lett. 94, 461–466 (1983).
[Crossref]

Cerruti, M. G.

M. D. Losego, A. Y. Efremenko, C. L. Rhodes, M. G. Cerruti, S. Franzen, and J.-P. Maria, “Conductive oxide thin films: model systems for understanding and controlling surface plasmon resonance,” J. Appl. Phys. 106, 024903 (2009).
[Crossref]

Chance, R. R.

R. R. Chance, A. H. Miller, A. Prock, and R. Silbey, “Fluorescence and energy transfer near interfaces: the complete and quantitative description of the Eu+3/mirror systems,” J. Chem. Phys. 63, 1589–1595 (1975).
[Crossref]

Chizhik, A. I.

A. I. Chizhik, J. Rother, I. Gregor, A. Janshoff, and J. Enderlein, “Metal-induced energy transfer for live cell nanoscopy,” Nat. Photonics 8, 124–127 (2014).
[Crossref]

Drexhage, K. H.

K. H. Drexhage, “Influence of a dielectric interface on fluorescence decay time,” J. Lumin. 1–2, 693–701 (1970).
[Crossref]

Efremenko, A. Y.

M. D. Losego, A. Y. Efremenko, C. L. Rhodes, M. G. Cerruti, S. Franzen, and J.-P. Maria, “Conductive oxide thin films: model systems for understanding and controlling surface plasmon resonance,” J. Appl. Phys. 106, 024903 (2009).
[Crossref]

Efrima, S.

A. P. Alivisatos, M. F. Arndt, S. Efrima, D. H. Waldeck, and C. B. Harris, “Electronic energy transfer at semiconductor interfaces. I. Energy transfer from two-dimensional molecular films to Si(111),” J. Chem. Phys. 86, 6540–6549 (1987).
[Crossref]

Enderlein, J.

A. I. Chizhik, J. Rother, I. Gregor, A. Janshoff, and J. Enderlein, “Metal-induced energy transfer for live cell nanoscopy,” Nat. Photonics 8, 124–127 (2014).
[Crossref]

Ford, G. W.

G. W. Ford and W. H. Weber, “Electromagnetic interactions of molecules with metal surfaces,” Phys. Rep. 113, 195–287 (1984).
[Crossref]

Franzen, S.

M. D. Losego, A. Y. Efremenko, C. L. Rhodes, M. G. Cerruti, S. Franzen, and J.-P. Maria, “Conductive oxide thin films: model systems for understanding and controlling surface plasmon resonance,” J. Appl. Phys. 106, 024903 (2009).
[Crossref]

Garcia de Abajo, F. J.

L. Gaudreau, K. J. Tielrooij, G. E. Prawiroatmodjo, J. Osmond, F. J. Garcia de Abajo, and F. H. Koppens, “Universal distance-scaling of nonradiative energy transfer to graphene,” Nano Lett. 13, 2030–2035 (2013).
[Crossref]

Gaudreau, L.

L. Gaudreau, K. J. Tielrooij, G. E. Prawiroatmodjo, J. Osmond, F. J. Garcia de Abajo, and F. H. Koppens, “Universal distance-scaling of nonradiative energy transfer to graphene,” Nano Lett. 13, 2030–2035 (2013).
[Crossref]

Gómez-Santos, G.

G. Gómez-Santos and T. Stauber, “Fluorescence quenching in graphene: a fundamental ruler and evidence for transverse plasmons,” Phys. Rev. B 84, 165438 (2011).
[Crossref]

Gregor, I.

A. I. Chizhik, J. Rother, I. Gregor, A. Janshoff, and J. Enderlein, “Metal-induced energy transfer for live cell nanoscopy,” Nat. Photonics 8, 124–127 (2014).
[Crossref]

Guyot-Sionnest, P.

P. P. Jha and P. Guyot-Sionnest, “Electrochemical switching of the photoluminescence of single quantum dots,” J. Phys. Chem. C 114, 21138–21141 (2010).
[Crossref]

Harris, C. B.

A. P. Alivisatos, M. F. Arndt, S. Efrima, D. H. Waldeck, and C. B. Harris, “Electronic energy transfer at semiconductor interfaces. I. Energy transfer from two-dimensional molecular films to Si(111),” J. Chem. Phys. 86, 6540–6549 (1987).
[Crossref]

Haugland, R. P.

L. Stryer and R. P. Haugland, “Energy transfer: a spectroscopic ruler,” Proc. Natl. Acad. Sci. USA 58, 719–726 (1967).
[Crossref]

Hayashi, T.

T. Hayashi, T. G. Castner, and R. W. Boyd, “Quenching of molecular fluorescence near the surface of a semiconductor,” Chem. Phys. Lett. 94, 461–466 (1983).
[Crossref]

Hecht, B.

L. Novotny and B. Hecht, Principles of Nano-optics, 1st ed. (Cambridge University, 2006).

Hunter, W. R.

D. W. Lynch and W. R. Hunter, “Comments on the optical constants of metals and an introduction to the data for several metals,” in Handbook of Optical Constants of Solids, E. D. Palik, ed. (Academic, 1997), pp. 275–367.

Huttner, B.

S. M. Barnett, B. Huttner, R. Loudon, and R. Matloob, “Decay of excited atoms in absorbing dielectrics,” J. Phys. B 29, 3763–3781 (1996).
[Crossref]

S. Barnett, B. Huttner, and R. Loudon, “Spontaneous emission in absorbing dielectric media,” Phys. Rev. Lett. 68, 3698–3701 (1992).
[Crossref]

Jacobsen, V.

J. Seelig, K. Leslie, A. Renn, S. Kuhn, V. Jacobsen, M. van de Corput, C. Wyman, and V. Sandoghdar, “Nanoparticle-induced fluorescence lifetime modification as nanoscopic ruler: demonstration at the single molecule level,” Nano Lett. 7, 685–689 (2007).
[Crossref]

Janshoff, A.

A. I. Chizhik, J. Rother, I. Gregor, A. Janshoff, and J. Enderlein, “Metal-induced energy transfer for live cell nanoscopy,” Nat. Photonics 8, 124–127 (2014).
[Crossref]

Jha, P. P.

P. P. Jha and P. Guyot-Sionnest, “Electrochemical switching of the photoluminescence of single quantum dots,” J. Phys. Chem. C 114, 21138–21141 (2010).
[Crossref]

Jin, S.

S. Jin, N. Song, and T. Lian, “Suppressed blinking dynamics of single QDs on ITO,” ACS Nano 4, 1545–1552 (2010).
[Crossref]

Kolesov, R.

J. Tisler, T. Oeckinghaus, R. J. Stohr, R. Kolesov, R. Reuter, F. Reinhard, and J. Wrachtrup, “Single defect center scanning near-field optical microscopy on graphene,” Nano Lett. 13, 3152–3156 (2013).
[Crossref]

Koppens, F. H.

L. Gaudreau, K. J. Tielrooij, G. E. Prawiroatmodjo, J. Osmond, F. J. Garcia de Abajo, and F. H. Koppens, “Universal distance-scaling of nonradiative energy transfer to graphene,” Nano Lett. 13, 2030–2035 (2013).
[Crossref]

Kuhn, S.

J. Seelig, K. Leslie, A. Renn, S. Kuhn, V. Jacobsen, M. van de Corput, C. Wyman, and V. Sandoghdar, “Nanoparticle-induced fluorescence lifetime modification as nanoscopic ruler: demonstration at the single molecule level,” Nano Lett. 7, 685–689 (2007).
[Crossref]

Kunz, R. E.

Leslie, K.

J. Seelig, K. Leslie, A. Renn, S. Kuhn, V. Jacobsen, M. van de Corput, C. Wyman, and V. Sandoghdar, “Nanoparticle-induced fluorescence lifetime modification as nanoscopic ruler: demonstration at the single molecule level,” Nano Lett. 7, 685–689 (2007).
[Crossref]

Lian, T.

S. Jin, N. Song, and T. Lian, “Suppressed blinking dynamics of single QDs on ITO,” ACS Nano 4, 1545–1552 (2010).
[Crossref]

Liphardt, J.

C. Sönnichsen, B. M. Reinhard, J. Liphardt, and A. P. Alivisatos, “A molecular ruler based on plasmon coupling of single gold and silver nanoparticles,” Nat. Biotechnol. 23, 741–745 (2005).
[Crossref]

Losego, M. D.

M. D. Losego, A. Y. Efremenko, C. L. Rhodes, M. G. Cerruti, S. Franzen, and J.-P. Maria, “Conductive oxide thin films: model systems for understanding and controlling surface plasmon resonance,” J. Appl. Phys. 106, 024903 (2009).
[Crossref]

Loudon, R.

S. M. Barnett, B. Huttner, R. Loudon, and R. Matloob, “Decay of excited atoms in absorbing dielectrics,” J. Phys. B 29, 3763–3781 (1996).
[Crossref]

S. Barnett, B. Huttner, and R. Loudon, “Spontaneous emission in absorbing dielectric media,” Phys. Rev. Lett. 68, 3698–3701 (1992).
[Crossref]

Lukosz, W.

Lynch, D. W.

D. W. Lynch and W. R. Hunter, “Comments on the optical constants of metals and an introduction to the data for several metals,” in Handbook of Optical Constants of Solids, E. D. Palik, ed. (Academic, 1997), pp. 275–367.

Mao, C. B.

K. Patty, S. M. Sadeghi, A. Nejat, and C. B. Mao, “Enhancement of emission efficiency of colloidal CdSe quantum dots on silicon substrate via an ultra-thin layer of aluminum oxide,” Nanotechnology 25, 155701 (2014).
[Crossref]

Maria, J.-P.

M. D. Losego, A. Y. Efremenko, C. L. Rhodes, M. G. Cerruti, S. Franzen, and J.-P. Maria, “Conductive oxide thin films: model systems for understanding and controlling surface plasmon resonance,” J. Appl. Phys. 106, 024903 (2009).
[Crossref]

Matloob, R.

S. M. Barnett, B. Huttner, R. Loudon, and R. Matloob, “Decay of excited atoms in absorbing dielectrics,” J. Phys. B 29, 3763–3781 (1996).
[Crossref]

Miller, A. H.

R. R. Chance, A. H. Miller, A. Prock, and R. Silbey, “Fluorescence and energy transfer near interfaces: the complete and quantitative description of the Eu+3/mirror systems,” J. Chem. Phys. 63, 1589–1595 (1975).
[Crossref]

Möbius, D.

I. Pockrand, A. Brillante, and D. Möbius, “Nonradiative decay of excited molecules near a metal surface,” Chem. Phys. Lett. 69, 499–504 (1980).
[Crossref]

Muskens, O. L.

M. Abb, P. Albella, J. Aizpurua, and O. L. Muskens, “All-optical control of a single plasmonic nanoantenna—ITO hybrid,” Nano Lett. 11, 2457–2463 (2011).
[Crossref]

Nejat, A.

K. Patty, S. M. Sadeghi, A. Nejat, and C. B. Mao, “Enhancement of emission efficiency of colloidal CdSe quantum dots on silicon substrate via an ultra-thin layer of aluminum oxide,” Nanotechnology 25, 155701 (2014).
[Crossref]

Novotny, L.

Oeckinghaus, T.

J. Tisler, T. Oeckinghaus, R. J. Stohr, R. Kolesov, R. Reuter, F. Reinhard, and J. Wrachtrup, “Single defect center scanning near-field optical microscopy on graphene,” Nano Lett. 13, 3152–3156 (2013).
[Crossref]

Osmond, J.

L. Gaudreau, K. J. Tielrooij, G. E. Prawiroatmodjo, J. Osmond, F. J. Garcia de Abajo, and F. H. Koppens, “Universal distance-scaling of nonradiative energy transfer to graphene,” Nano Lett. 13, 2030–2035 (2013).
[Crossref]

Pankove, J. I.

J. I. Pankove, Optical Processes in Semiconductors (Dover, 1971), Chap. 4, pp. 87–89.

Patty, K.

K. Patty, S. M. Sadeghi, A. Nejat, and C. B. Mao, “Enhancement of emission efficiency of colloidal CdSe quantum dots on silicon substrate via an ultra-thin layer of aluminum oxide,” Nanotechnology 25, 155701 (2014).
[Crossref]

Petty, M. C.

M. I. Sluch, A. G. Vitukhnovsky, and M. C. Petty, “Anomalous distance dependence of fluorescence lifetime quenched by a semiconductor,” Phys. Lett. A 200, 61–64 (1995).
[Crossref]

Pockrand, I.

I. Pockrand, A. Brillante, and D. Möbius, “Nonradiative decay of excited molecules near a metal surface,” Chem. Phys. Lett. 69, 499–504 (1980).
[Crossref]

Prawiroatmodjo, G. E.

L. Gaudreau, K. J. Tielrooij, G. E. Prawiroatmodjo, J. Osmond, F. J. Garcia de Abajo, and F. H. Koppens, “Universal distance-scaling of nonradiative energy transfer to graphene,” Nano Lett. 13, 2030–2035 (2013).
[Crossref]

Prock, A.

R. R. Chance, A. H. Miller, A. Prock, and R. Silbey, “Fluorescence and energy transfer near interfaces: the complete and quantitative description of the Eu+3/mirror systems,” J. Chem. Phys. 63, 1589–1595 (1975).
[Crossref]

Reinhard, B. M.

C. Sönnichsen, B. M. Reinhard, J. Liphardt, and A. P. Alivisatos, “A molecular ruler based on plasmon coupling of single gold and silver nanoparticles,” Nat. Biotechnol. 23, 741–745 (2005).
[Crossref]

Reinhard, F.

J. Tisler, T. Oeckinghaus, R. J. Stohr, R. Kolesov, R. Reuter, F. Reinhard, and J. Wrachtrup, “Single defect center scanning near-field optical microscopy on graphene,” Nano Lett. 13, 3152–3156 (2013).
[Crossref]

Renn, A.

J. Seelig, K. Leslie, A. Renn, S. Kuhn, V. Jacobsen, M. van de Corput, C. Wyman, and V. Sandoghdar, “Nanoparticle-induced fluorescence lifetime modification as nanoscopic ruler: demonstration at the single molecule level,” Nano Lett. 7, 685–689 (2007).
[Crossref]

Reuter, R.

J. Tisler, T. Oeckinghaus, R. J. Stohr, R. Kolesov, R. Reuter, F. Reinhard, and J. Wrachtrup, “Single defect center scanning near-field optical microscopy on graphene,” Nano Lett. 13, 3152–3156 (2013).
[Crossref]

Rhodes, C. L.

M. D. Losego, A. Y. Efremenko, C. L. Rhodes, M. G. Cerruti, S. Franzen, and J.-P. Maria, “Conductive oxide thin films: model systems for understanding and controlling surface plasmon resonance,” J. Appl. Phys. 106, 024903 (2009).
[Crossref]

Rother, J.

A. I. Chizhik, J. Rother, I. Gregor, A. Janshoff, and J. Enderlein, “Metal-induced energy transfer for live cell nanoscopy,” Nat. Photonics 8, 124–127 (2014).
[Crossref]

Sadeghi, S. M.

K. Patty, S. M. Sadeghi, A. Nejat, and C. B. Mao, “Enhancement of emission efficiency of colloidal CdSe quantum dots on silicon substrate via an ultra-thin layer of aluminum oxide,” Nanotechnology 25, 155701 (2014).
[Crossref]

Sandoghdar, V.

J. Seelig, K. Leslie, A. Renn, S. Kuhn, V. Jacobsen, M. van de Corput, C. Wyman, and V. Sandoghdar, “Nanoparticle-induced fluorescence lifetime modification as nanoscopic ruler: demonstration at the single molecule level,” Nano Lett. 7, 685–689 (2007).
[Crossref]

Seelig, J.

J. Seelig, K. Leslie, A. Renn, S. Kuhn, V. Jacobsen, M. van de Corput, C. Wyman, and V. Sandoghdar, “Nanoparticle-induced fluorescence lifetime modification as nanoscopic ruler: demonstration at the single molecule level,” Nano Lett. 7, 685–689 (2007).
[Crossref]

Selvin, P. R.

P. R. Selvin, “The renaissance of fluorescence resonance energy transfer,” Nat. Struct. Biol. 7, 730–734 (2000).
[Crossref]

Silbey, R.

R. R. Chance, A. H. Miller, A. Prock, and R. Silbey, “Fluorescence and energy transfer near interfaces: the complete and quantitative description of the Eu+3/mirror systems,” J. Chem. Phys. 63, 1589–1595 (1975).
[Crossref]

Sluch, M. I.

M. I. Sluch, A. G. Vitukhnovsky, and M. C. Petty, “Anomalous distance dependence of fluorescence lifetime quenched by a semiconductor,” Phys. Lett. A 200, 61–64 (1995).
[Crossref]

Song, N.

S. Jin, N. Song, and T. Lian, “Suppressed blinking dynamics of single QDs on ITO,” ACS Nano 4, 1545–1552 (2010).
[Crossref]

Sönnichsen, C.

C. Sönnichsen, B. M. Reinhard, J. Liphardt, and A. P. Alivisatos, “A molecular ruler based on plasmon coupling of single gold and silver nanoparticles,” Nat. Biotechnol. 23, 741–745 (2005).
[Crossref]

Stauber, T.

G. Gómez-Santos and T. Stauber, “Fluorescence quenching in graphene: a fundamental ruler and evidence for transverse plasmons,” Phys. Rev. B 84, 165438 (2011).
[Crossref]

Stohr, R. J.

J. Tisler, T. Oeckinghaus, R. J. Stohr, R. Kolesov, R. Reuter, F. Reinhard, and J. Wrachtrup, “Single defect center scanning near-field optical microscopy on graphene,” Nano Lett. 13, 3152–3156 (2013).
[Crossref]

Stryer, L.

L. Stryer and R. P. Haugland, “Energy transfer: a spectroscopic ruler,” Proc. Natl. Acad. Sci. USA 58, 719–726 (1967).
[Crossref]

Tielrooij, K. J.

L. Gaudreau, K. J. Tielrooij, G. E. Prawiroatmodjo, J. Osmond, F. J. Garcia de Abajo, and F. H. Koppens, “Universal distance-scaling of nonradiative energy transfer to graphene,” Nano Lett. 13, 2030–2035 (2013).
[Crossref]

Tisler, J.

J. Tisler, T. Oeckinghaus, R. J. Stohr, R. Kolesov, R. Reuter, F. Reinhard, and J. Wrachtrup, “Single defect center scanning near-field optical microscopy on graphene,” Nano Lett. 13, 3152–3156 (2013).
[Crossref]

van de Corput, M.

J. Seelig, K. Leslie, A. Renn, S. Kuhn, V. Jacobsen, M. van de Corput, C. Wyman, and V. Sandoghdar, “Nanoparticle-induced fluorescence lifetime modification as nanoscopic ruler: demonstration at the single molecule level,” Nano Lett. 7, 685–689 (2007).
[Crossref]

Vitukhnovsky, A. G.

M. I. Sluch, A. G. Vitukhnovsky, and M. C. Petty, “Anomalous distance dependence of fluorescence lifetime quenched by a semiconductor,” Phys. Lett. A 200, 61–64 (1995).
[Crossref]

Waldeck, D. H.

A. P. Alivisatos, M. F. Arndt, S. Efrima, D. H. Waldeck, and C. B. Harris, “Electronic energy transfer at semiconductor interfaces. I. Energy transfer from two-dimensional molecular films to Si(111),” J. Chem. Phys. 86, 6540–6549 (1987).
[Crossref]

Weber, W. H.

G. W. Ford and W. H. Weber, “Electromagnetic interactions of molecules with metal surfaces,” Phys. Rep. 113, 195–287 (1984).
[Crossref]

Weyl, H.

H. Weyl, “Ausbreitung elektromagnetischer wellen über einem ebenen leiter,” Ann. Phys. 365, 481–500 (1919).
[Crossref]

Wrachtrup, J.

J. Tisler, T. Oeckinghaus, R. J. Stohr, R. Kolesov, R. Reuter, F. Reinhard, and J. Wrachtrup, “Single defect center scanning near-field optical microscopy on graphene,” Nano Lett. 13, 3152–3156 (2013).
[Crossref]

Wyman, C.

J. Seelig, K. Leslie, A. Renn, S. Kuhn, V. Jacobsen, M. van de Corput, C. Wyman, and V. Sandoghdar, “Nanoparticle-induced fluorescence lifetime modification as nanoscopic ruler: demonstration at the single molecule level,” Nano Lett. 7, 685–689 (2007).
[Crossref]

ACS Nano (1)

S. Jin, N. Song, and T. Lian, “Suppressed blinking dynamics of single QDs on ITO,” ACS Nano 4, 1545–1552 (2010).
[Crossref]

Ann. Phys. (1)

H. Weyl, “Ausbreitung elektromagnetischer wellen über einem ebenen leiter,” Ann. Phys. 365, 481–500 (1919).
[Crossref]

Appl. Phys. Lett. (1)

M. Bruna and S. Borini, “Optical constants of graphene layers in the visible range,” Appl. Phys. Lett. 94, 031901 (2009).
[Crossref]

Chem. Phys. Lett. (2)

I. Pockrand, A. Brillante, and D. Möbius, “Nonradiative decay of excited molecules near a metal surface,” Chem. Phys. Lett. 69, 499–504 (1980).
[Crossref]

T. Hayashi, T. G. Castner, and R. W. Boyd, “Quenching of molecular fluorescence near the surface of a semiconductor,” Chem. Phys. Lett. 94, 461–466 (1983).
[Crossref]

J. Appl. Phys. (1)

M. D. Losego, A. Y. Efremenko, C. L. Rhodes, M. G. Cerruti, S. Franzen, and J.-P. Maria, “Conductive oxide thin films: model systems for understanding and controlling surface plasmon resonance,” J. Appl. Phys. 106, 024903 (2009).
[Crossref]

J. Chem. Phys. (2)

A. P. Alivisatos, M. F. Arndt, S. Efrima, D. H. Waldeck, and C. B. Harris, “Electronic energy transfer at semiconductor interfaces. I. Energy transfer from two-dimensional molecular films to Si(111),” J. Chem. Phys. 86, 6540–6549 (1987).
[Crossref]

R. R. Chance, A. H. Miller, A. Prock, and R. Silbey, “Fluorescence and energy transfer near interfaces: the complete and quantitative description of the Eu+3/mirror systems,” J. Chem. Phys. 63, 1589–1595 (1975).
[Crossref]

J. Lumin. (1)

K. H. Drexhage, “Influence of a dielectric interface on fluorescence decay time,” J. Lumin. 1–2, 693–701 (1970).
[Crossref]

J. Mod. Opt. (1)

W. L. Barnes, “Fluorescence near interfaces: the role of photonic mode density,” J. Mod. Opt. 45, 661–699 (1998).
[Crossref]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. A (1)

J. Phys. B (1)

S. M. Barnett, B. Huttner, R. Loudon, and R. Matloob, “Decay of excited atoms in absorbing dielectrics,” J. Phys. B 29, 3763–3781 (1996).
[Crossref]

J. Phys. Chem. C (1)

P. P. Jha and P. Guyot-Sionnest, “Electrochemical switching of the photoluminescence of single quantum dots,” J. Phys. Chem. C 114, 21138–21141 (2010).
[Crossref]

Nano Lett. (4)

M. Abb, P. Albella, J. Aizpurua, and O. L. Muskens, “All-optical control of a single plasmonic nanoantenna—ITO hybrid,” Nano Lett. 11, 2457–2463 (2011).
[Crossref]

J. Seelig, K. Leslie, A. Renn, S. Kuhn, V. Jacobsen, M. van de Corput, C. Wyman, and V. Sandoghdar, “Nanoparticle-induced fluorescence lifetime modification as nanoscopic ruler: demonstration at the single molecule level,” Nano Lett. 7, 685–689 (2007).
[Crossref]

L. Gaudreau, K. J. Tielrooij, G. E. Prawiroatmodjo, J. Osmond, F. J. Garcia de Abajo, and F. H. Koppens, “Universal distance-scaling of nonradiative energy transfer to graphene,” Nano Lett. 13, 2030–2035 (2013).
[Crossref]

J. Tisler, T. Oeckinghaus, R. J. Stohr, R. Kolesov, R. Reuter, F. Reinhard, and J. Wrachtrup, “Single defect center scanning near-field optical microscopy on graphene,” Nano Lett. 13, 3152–3156 (2013).
[Crossref]

Nanotechnology (1)

K. Patty, S. M. Sadeghi, A. Nejat, and C. B. Mao, “Enhancement of emission efficiency of colloidal CdSe quantum dots on silicon substrate via an ultra-thin layer of aluminum oxide,” Nanotechnology 25, 155701 (2014).
[Crossref]

Nat. Biotechnol. (1)

C. Sönnichsen, B. M. Reinhard, J. Liphardt, and A. P. Alivisatos, “A molecular ruler based on plasmon coupling of single gold and silver nanoparticles,” Nat. Biotechnol. 23, 741–745 (2005).
[Crossref]

Nat. Photonics (1)

A. I. Chizhik, J. Rother, I. Gregor, A. Janshoff, and J. Enderlein, “Metal-induced energy transfer for live cell nanoscopy,” Nat. Photonics 8, 124–127 (2014).
[Crossref]

Nat. Struct. Biol. (1)

P. R. Selvin, “The renaissance of fluorescence resonance energy transfer,” Nat. Struct. Biol. 7, 730–734 (2000).
[Crossref]

Phys. Lett. A (1)

M. I. Sluch, A. G. Vitukhnovsky, and M. C. Petty, “Anomalous distance dependence of fluorescence lifetime quenched by a semiconductor,” Phys. Lett. A 200, 61–64 (1995).
[Crossref]

Phys. Rep. (1)

G. W. Ford and W. H. Weber, “Electromagnetic interactions of molecules with metal surfaces,” Phys. Rep. 113, 195–287 (1984).
[Crossref]

Phys. Rev. B (1)

G. Gómez-Santos and T. Stauber, “Fluorescence quenching in graphene: a fundamental ruler and evidence for transverse plasmons,” Phys. Rev. B 84, 165438 (2011).
[Crossref]

Phys. Rev. Lett. (1)

S. Barnett, B. Huttner, and R. Loudon, “Spontaneous emission in absorbing dielectric media,” Phys. Rev. Lett. 68, 3698–3701 (1992).
[Crossref]

Proc. Natl. Acad. Sci. USA (1)

L. Stryer and R. P. Haugland, “Energy transfer: a spectroscopic ruler,” Proc. Natl. Acad. Sci. USA 58, 719–726 (1967).
[Crossref]

Other (4)

L. Novotny and B. Hecht, Principles of Nano-optics, 1st ed. (Cambridge University, 2006).

J. I. Pankove, Optical Processes in Semiconductors (Dover, 1971), Chap. 4, pp. 87–89.

We restrict ourselves to a horizontal dipole, but similar conclusions can be drawn for a vertical dipole (see Supplement 1, Section 6, and Fig. S6).

D. W. Lynch and W. R. Hunter, “Comments on the optical constants of metals and an introduction to the data for several metals,” in Handbook of Optical Constants of Solids, E. D. Palik, ed. (Academic, 1997), pp. 275–367.

Supplementary Material (1)

NameDescription
» Supplement 1: PDF (3463 KB)      Supplemental document

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1. Calculated lifetime and QY of a horizontally oriented emitter. (a) Lifetime as a function of distance from a bare substrate of glass, one coated with 17 nm of silver and one coated with 17 nm of ITO. The lifetime for the emitter above ITO behaves similarly to a lossless dielectric, for distances of more than 10 nm. For smaller distances, the behavior resembles that of an emitter above a metal. (b) QY of an emitter, depending on the distance from the bare glass substrate and silver- and ITO-coated substrates. The QY drops decidedly over the range from 10 nm down to 1 nm, but for a low-loss material like ITO, the QY at 1 nm (1%) still is two orders of magnitude larger than that for silver (0.01%).
Fig. 2.
Fig. 2. Measured lifetime distributions of TPD molecules spin-coated onto ITO/glass substrates with additional alumina spacer layers of various thicknesses. Upon decreasing the thickness of the spacer layer 10-fold, the lifetime decreases by an order of magnitude.
Fig. 3.
Fig. 3. Lifetime and QY reduction above an ITO-coated substrate. (a) The measured mean lifetime versus spacer thickness (diamonds). The solid curve describes the theoretical dependency of the lifetime on the spacer thickness, with a fitted typical distance of the molecules from the spacer layer of 1.13±0.05nm (see Supplement 1, Section 4). The inset displays the measured intensity (diamonds), normalized to the calculated QY (solid curve) at 10 nm. The measured intensity is 2.5% of the intensity of the fluorescence with a spacer layer of 10 nm. The error bars indicate the standard deviation in the measurements. (b) The same experiment is repeated for the commercially available fluorescent label Alexa Fluor 430. Here also the lifetime drops significantly over a distance decrease of 10 nm. The effective dipole distance from the alumina layer is 0.54±0.05nm (see Supplement 1, Section 5).
Fig. 4.
Fig. 4. Lifetime of TPD molecules as a function of layer thickness, where with each consecutive sample the spacer thickness was increased by 0.33 nm, corresponding to three ALD cycles. A linear fit, corresponding to a first-order Taylor approximation of the lifetime versus spacer thickness, agrees excellently with the data and yields a change of 0.58±0.05ns/nm. The error bars indicate the standard deviation in the measured lifetime.
Fig. 5.
Fig. 5. (a) Power density spectrum of a horizontal dipole at four distances from a glass substrate coated with 17 nm ITO (solid curves, λ=600nm). The large dissipation for s>1.52 and h<10nm is related to the nonpropagating part of the k-space spectrum of the dipole field. For comparison, the power density spectrum of a horizontal dipole near a 17 nm thick silver layer is shown as well (dashed curve), which indicates the presence of a surface plasmon pole around s=2, absent for ITO. Moreover, strong near-field dissipation (note the scaling factor of 0.15) due to the nonpropagating part of the k-space spectrum also takes place, similarly to ITO. (b) The nonradiative part of the dipole quenching near the ITO layer is approximated well with a quasi-static description for distances smaller than about 10 nm, as the red curve shows. For comparison, the black curve is the full electromagnetic solution, and the differences are due to the radiative part (gray curve).
Fig. 6.
Fig. 6. Ruler performance comparison of ITO and graphene at short distances. (a) Calculated lifetime and (b) QY at λ=600nm of a horizontally oriented dipolar emitter versus distance from a coated glass substrate. The coatings are 1 nm of ITO (red), 17 nm of ITO (black), and a monolayer of graphene (gray). The black curve for the 17 nm thick ITO are the same data as presented in Figs. 1(a) and 1(b). Clearly, thinning the ITO coating by a factor 17 only marginally modifies the quenching behavior over all practical distances. In both cases, the experimental accessibility of the range of distances from 1 to 10 nm for nanometric ruler applications is superior compared with graphene.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

τ/τ0=γ0/γ=P0/P=LDOS1,

Metrics