Abstract

Optical coherence tomography (OCT) is a powerful three-dimensional (3D) imaging modality with micrometer-scale axial resolution and up to multi-GigaVoxel/s imaging speed. However, the imaging range of high-speed OCT has been limited. Here, we report 3D OCT over cubic meter volumes using a long coherence length, 1310 nm vertical-cavity surface-emitting laser and silicon photonic integrated circuit dual-quadrature receiver technology combined with enhanced signal processing. We achieved 15 μm depth resolution for tomographic imaging at a 100 kHz axial scan rate over a 1.5 m range. We show 3D macroscopic imaging examples of a human mannequin, bicycle, machine shop gauge blocks, and a human skull/brain model. High-bandwidth, meter-range OCT demonstrates new capabilities that promise to enable a wide range of biomedical, scientific, industrial, and research applications.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Interleaved optical coherence tomography

Hee Yoon Lee, Helge Sudkamp, Tahereh Marvdashti, and Audrey K. Ellerbee
Opt. Express 21(22) 26542-26556 (2013)

Retinal, anterior segment and full eye imaging using ultrahigh speed swept source OCT with vertical-cavity surface emitting lasers

Ireneusz Grulkowski, Jonathan J. Liu, Benjamin Potsaid, Vijaysekhar Jayaraman, Chen D. Lu, James Jiang, Alex E. Cable, Jay S. Duker, and James G. Fujimoto
Biomed. Opt. Express 3(11) 2733-2751 (2012)

References

  • View by:
  • |
  • |
  • |

  1. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, T. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
    [Crossref]
  2. W. Wieser, W. Draxinger, T. Klein, S. Karpf, T. Pfeiffer, and R. Huber, “High definition live 3D-OCT in vivo: design and evaluation of a 4D OCT engine with 1  GVoxel/s,” Biomed. Opt. Express 5, 2963–2977 (2014).
    [Crossref]
  3. K. Liang, G. Traverso, H. Lee, O. O. Ahsen, Z. Wang, B. Potsaid, M. Giacomelli, V. Jayaraman, R. Barman, A. Cable, H. Mashimo, R. Langer, and J. G. Fujimoto, “Ultrahigh speed en face OCT capsule for endoscopic imaging,” Biomed. Opt. Express 6, 1146–1163 (2015).
    [Crossref]
  4. W. Drexler and J. G. Fujimoto, “Optical coherence tomography: technology and applications,” in Springer Science & Business Media (Springer, 2015), Chap. 5, p. 169.
  5. R. Leitgeb, C. Hitzenberger, and A. F. Fercher, “Performance of Fourier domain vs. time domain optical coherence tomography,” Opt. Express 11, 889–894 (2003).
    [Crossref]
  6. J. F. de Boer, B. Cense, B. H. Park, M. C. Pierce, G. J. Tearney, and B. E. Bouma, “Improved signal-to-noise ratio in spectral-domain compared with time-domain optical coherence tomography,” Opt. Lett. 28, 2067–2069 (2003).
    [Crossref]
  7. M. A. Choma, M. V. Sarunic, C. Yang, and J. A. Izatt, “Sensitivity advantage of swept source and Fourier domain optical coherence tomography,” Opt. Express 11, 2183–2189 (2003).
    [Crossref]
  8. M. Wojtkowski, R. Leitgeb, A. Kowalczyk, T. Bajraszewski, and A. F. Fercher, “In vivo human retinal imaging by Fourier domain optical coherence tomography,” J. Biomed. Opt. 7, 457–463 (2002).
    [Crossref]
  9. S. Yun, G. Tearney, J. de Boer, N. Iftimia, and B. Bouma, “High-speed optical frequency-domain imaging,” Opt. Express 11, 2953–2963 (2003).
    [Crossref]
  10. I. Grulkowski, J. J. Liu, B. Potsaid, V. Jayaraman, C. D. Lu, J. Jiang, A. E. Cable, J. S. Duker, and J. G. Fujimoto, “Retinal, anterior segment and full eye imaging using ultrahigh speed swept source OCT with vertical-cavity surface emitting lasers,” Biomed. Opt. Express 3, 2733–2751 (2012).
    [Crossref]
  11. I. Grulkowski, J. J. Liu, B. Potsaid, V. Jayaraman, J. Jang, J. G. Fujimoto, and A. E. Cable, “High-precision, high-accuracy ultralong-range swept-source optical coherence tomography using vertical cavity surface emitting laser light source,” Opt. Lett. 38, 673–675 (2013).
    [Crossref]
  12. J. Posdamer and M. Altschuler, “Surface measurement by space-encoded projected beam systems,” Comput. Gr. Image Process. 18, 1–17 (1982).
    [Crossref]
  13. M. Levoy, K. Pulli, B. Curless, S. Rusinkiewicz, D. Koller, L. Pereira, M. Ginzton, S. Anderson, J. Davis, and J. Ginsberg, “The digital Michelangelo project: 3D scanning of large statues,” in Proceedings of the 27th annual conference on Computer Graphics and Interactive Techniques (ACM/Addison-Wesley, 2000), pp. 131–144.
  14. M.-C. Amann, T. Bosch, M. Lescure, R. Myllyla, and M. Rioux, “Laser ranging: a critical review of usual techniques for distance measurement,” Opt. Eng. 40, 10–19 (2001).
    [Crossref]
  15. B. Sun, M. P. Edgar, R. Bowman, L. E. Vittert, S. Welsh, A. Bowman, and M. Padgett, “3D computational imaging with single-pixel detectors,” Science 340, 844–847 (2013).
    [Crossref]
  16. D. J. Cuccia, F. Bevilacqua, A. J. Durkin, F. R. Ayers, and B. J. Tromberg, “Modulated imaging: quantitative analysis and tomography of turbid media in the spatial-frequency domain,” Opt. Lett. 30, 1354–1356 (2005).
    [Crossref]
  17. D. J. Cuccia, F. Bevilacqua, A. J. Durkin, F. R. Ayers, and B. J. Tromberg, “Quantitation and mapping of tissue optical properties using modulated imaging,” J. Biomed. Opt. 14, 024012 (2009).
    [Crossref]
  18. A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. El-Zaiat, “Measurement of intraocular distances by backscattering spectral interferometry,” Opt. Commun. 117, 43–48 (1995).
    [Crossref]
  19. S. Chinn, E. Swanson, and J. G. Fujimoto, “Optical coherence tomography using a frequency-tunable optical source,” Opt. Lett. 22, 340–342 (1997).
    [Crossref]
  20. V. Jayaraman, G. D. Cole, M. Robertson, A. Uddin, and A. Cable, “High-sweep-rate 1310  nm MEMS-VCSEL with 150  nm continuous tuning range,” Electron. Lett. 48, 867–869 (2012).
    [Crossref]
  21. B. Potsaid, V. Jayaraman, J. G. Fujimoto, J. Jiang, P. J. S. Heim, and A. E. Cable, “MEMS tunable VCSEL light source for ultrahigh speed 60  kHz–1  MHz axial scan rate and long range centimeter class OCT imaging,” Proc. SPIE 8213, 82130M (2012).
    [Crossref]
  22. D. D. John, C. B. Burgner, B. Potsaid, M. E. Robertson, B. K. Lee, W. J. Choi, A. E. Cable, J. G. Fujimoto, and V. Jayaraman, “Wideband electrically-pumped 1050  nm MEMS-tunable VCSEL for ophthalmic imaging,” J. Lightwave Technol. 33, 3461–3468 (2015).
    [Crossref]
  23. Z. Wang, H. C. Lee, D. Vermeulen, L. Chen, T. Nielsen, S. Y. Park, A. Ghaemi, E. Swanson, C. Doerr, and J. Fujimoto, “Silicon photonic integrated circuit swept-source optical coherence tomography receiver with dual polarization, dual balanced, in-phase and quadrature detection,” Biomed. Opt. Express 6, 2562–2574 (2015).
    [Crossref]
  24. M. Siddiqui, S. Tozburun, E. Z. Zhang, and B. J. Vakoc, “Compensation of spectral and RF errors in swept-source OCT for high extinction complex demodulation,” Opt. Express 23, 5508–5520 (2015).
    [Crossref]
  25. O. O. Ahsen, Y. K. Tao, B. M. Potsaid, Y. Sheikine, J. Jiang, I. Grulkowski, T.-H. Tsai, V. Jayaraman, M. F. Kraus, and J. L. Connolly, “Swept source optical coherence microscopy using a 1310  nm VCSEL light source,” Opt. Express 21, 18021–18033 (2013).
    [Crossref]
  26. E. Baumann, F. R. Giorgetta, J. D. Deschênes, W. C. Swann, I. Coddington, and N. R. Newbury, “Comb-calibrated laser ranging for three-dimensional surface profiling with micrometer-level precision at a distance,” Opt. Express 22, 24914–24928 (2014).
    [Crossref]
  27. K. Lau, R. J. Hocken, and W. C. Haight, “Automatic laser tracking interferometer system for robot metrology,” Precis. Eng. 8, 3–8 (1986).
    [Crossref]
  28. K. Minoshima and H. Matsumoto, “High-accuracy measurement of 240-m distance in an optical tunnel by use of a compact femtosecond laser,” Appl. Opt. 39, 5512–5517 (2000).
    [Crossref]
  29. I. Coddington, W. C. Swann, L. Nenadovic, and N. R. Newbury, “Rapid and precise absolute distance measurements at long range,” Nat. Photonics 3, 351–356 (2009).
    [Crossref]
  30. J. Lee, Y.-J. Kim, K. Lee, S. Lee, and S.-W. Kim, “Time-of-flight measurement with femtosecond light pulses,” Nat. Photonics 4, 716–720 (2010).
    [Crossref]
  31. T. S. Ralston, D. L. Marks, P. S. Carney, and S. A. Boppart, “Interferometric synthetic aperture microscopy,” Nat. Phys. 3, 129–134 (2007).
    [Crossref]
  32. A. L. Washburn and R. C. Bailey, “Photonics-on-a-chip: recent advances in integrated waveguides as enabling detection elements for real-world, lab-on-a-chip biosensing applications,” Analyst 136, 227–236 (2011).
    [Crossref]
  33. L. Chen, C. R. Doerr, L. Buhl, Y. Baeyens, and R. A. Aroca, “Monolithically integrated 40-wavelength demultiplexer and photodetector array on silicon,” IEEE Photon. Technol. Lett. 23, 869–871 (2011).
    [Crossref]
  34. B. Kögel, P. Debernardi, P. Westbergh, J. S. Gustavsson, Å. Haglund, E. Haglund, J. Bengtsson, and A. Larsson, “Integrated MEMS-tunable VCSELs using a self-aligned reflow process,” IEEE J. Quantum Electron. 48, 144–152 (2012).
    [Crossref]
  35. V. D. Nguyen, N. Weiss, W. Beeker, M. Hoekman, A. Leinse, R. G. Heideman, T. G. van Leeuwen, and J. Kalkman, “Integrated-optics-based swept-source optical coherence tomography,” Opt. Lett. 37, 4820–4822 (2012).
    [Crossref]
  36. G. Yurtsever, N. Weiss, J. Kalkman, T. G. van Leeuwen, and R. Baets, “Ultra-compact silicon photonic integrated interferometer for swept-source optical coherence tomography,” Opt. Lett. 39, 5228–5231 (2014).
    [Crossref]
  37. D. Stifter, “Beyond biomedicine: a review of alternative applications and developments for optical coherence tomography,” Appl. Phys. B 88, 337–357 (2007).
    [Crossref]
  38. P. Targowski, M. Gora, and M. Wojtkowski, “Optical coherence tomography for artwork diagnostics,” Laser Chem. 2006, 1–11 (2006).
  39. C. Laperle and M. O’Sullivan, “Advances in high-speed DACs, ADCs, and DSP for optical coherent transceivers,” J. Lightwave Technol. 32, 629–643 (2014).
    [Crossref]
  40. H. Hassanieh, P. Indyk, D. Katabi, and E. Price, “Simple and practical algorithm for sparse Fourier transform,” in Proceedings of the Twenty-third Annual ACM-SIAM Symposium on Discrete Algorithms (Society for Industrial and Applied Mathematics, 2012) pp. 1183–1194.
  41. H. Hassanieh, P. Indyk, D. Katabi, and E. Price, “Nearly optimal sparse Fourier transform,” in Proceedings of the Forty-fourth Annual ACM Symposium on Theory of Computing (ACM, 2012), pp. 563–578.

2015 (4)

2014 (4)

2013 (3)

2012 (5)

V. Jayaraman, G. D. Cole, M. Robertson, A. Uddin, and A. Cable, “High-sweep-rate 1310  nm MEMS-VCSEL with 150  nm continuous tuning range,” Electron. Lett. 48, 867–869 (2012).
[Crossref]

B. Potsaid, V. Jayaraman, J. G. Fujimoto, J. Jiang, P. J. S. Heim, and A. E. Cable, “MEMS tunable VCSEL light source for ultrahigh speed 60  kHz–1  MHz axial scan rate and long range centimeter class OCT imaging,” Proc. SPIE 8213, 82130M (2012).
[Crossref]

B. Kögel, P. Debernardi, P. Westbergh, J. S. Gustavsson, Å. Haglund, E. Haglund, J. Bengtsson, and A. Larsson, “Integrated MEMS-tunable VCSELs using a self-aligned reflow process,” IEEE J. Quantum Electron. 48, 144–152 (2012).
[Crossref]

I. Grulkowski, J. J. Liu, B. Potsaid, V. Jayaraman, C. D. Lu, J. Jiang, A. E. Cable, J. S. Duker, and J. G. Fujimoto, “Retinal, anterior segment and full eye imaging using ultrahigh speed swept source OCT with vertical-cavity surface emitting lasers,” Biomed. Opt. Express 3, 2733–2751 (2012).
[Crossref]

V. D. Nguyen, N. Weiss, W. Beeker, M. Hoekman, A. Leinse, R. G. Heideman, T. G. van Leeuwen, and J. Kalkman, “Integrated-optics-based swept-source optical coherence tomography,” Opt. Lett. 37, 4820–4822 (2012).
[Crossref]

2011 (2)

A. L. Washburn and R. C. Bailey, “Photonics-on-a-chip: recent advances in integrated waveguides as enabling detection elements for real-world, lab-on-a-chip biosensing applications,” Analyst 136, 227–236 (2011).
[Crossref]

L. Chen, C. R. Doerr, L. Buhl, Y. Baeyens, and R. A. Aroca, “Monolithically integrated 40-wavelength demultiplexer and photodetector array on silicon,” IEEE Photon. Technol. Lett. 23, 869–871 (2011).
[Crossref]

2010 (1)

J. Lee, Y.-J. Kim, K. Lee, S. Lee, and S.-W. Kim, “Time-of-flight measurement with femtosecond light pulses,” Nat. Photonics 4, 716–720 (2010).
[Crossref]

2009 (2)

I. Coddington, W. C. Swann, L. Nenadovic, and N. R. Newbury, “Rapid and precise absolute distance measurements at long range,” Nat. Photonics 3, 351–356 (2009).
[Crossref]

D. J. Cuccia, F. Bevilacqua, A. J. Durkin, F. R. Ayers, and B. J. Tromberg, “Quantitation and mapping of tissue optical properties using modulated imaging,” J. Biomed. Opt. 14, 024012 (2009).
[Crossref]

2007 (2)

T. S. Ralston, D. L. Marks, P. S. Carney, and S. A. Boppart, “Interferometric synthetic aperture microscopy,” Nat. Phys. 3, 129–134 (2007).
[Crossref]

D. Stifter, “Beyond biomedicine: a review of alternative applications and developments for optical coherence tomography,” Appl. Phys. B 88, 337–357 (2007).
[Crossref]

2006 (1)

P. Targowski, M. Gora, and M. Wojtkowski, “Optical coherence tomography for artwork diagnostics,” Laser Chem. 2006, 1–11 (2006).

2005 (1)

2003 (4)

2002 (1)

M. Wojtkowski, R. Leitgeb, A. Kowalczyk, T. Bajraszewski, and A. F. Fercher, “In vivo human retinal imaging by Fourier domain optical coherence tomography,” J. Biomed. Opt. 7, 457–463 (2002).
[Crossref]

2001 (1)

M.-C. Amann, T. Bosch, M. Lescure, R. Myllyla, and M. Rioux, “Laser ranging: a critical review of usual techniques for distance measurement,” Opt. Eng. 40, 10–19 (2001).
[Crossref]

2000 (1)

1997 (1)

1995 (1)

A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. El-Zaiat, “Measurement of intraocular distances by backscattering spectral interferometry,” Opt. Commun. 117, 43–48 (1995).
[Crossref]

1991 (1)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, T. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[Crossref]

1986 (1)

K. Lau, R. J. Hocken, and W. C. Haight, “Automatic laser tracking interferometer system for robot metrology,” Precis. Eng. 8, 3–8 (1986).
[Crossref]

1982 (1)

J. Posdamer and M. Altschuler, “Surface measurement by space-encoded projected beam systems,” Comput. Gr. Image Process. 18, 1–17 (1982).
[Crossref]

Ahsen, O. O.

Altschuler, M.

J. Posdamer and M. Altschuler, “Surface measurement by space-encoded projected beam systems,” Comput. Gr. Image Process. 18, 1–17 (1982).
[Crossref]

Amann, M.-C.

M.-C. Amann, T. Bosch, M. Lescure, R. Myllyla, and M. Rioux, “Laser ranging: a critical review of usual techniques for distance measurement,” Opt. Eng. 40, 10–19 (2001).
[Crossref]

Anderson, S.

M. Levoy, K. Pulli, B. Curless, S. Rusinkiewicz, D. Koller, L. Pereira, M. Ginzton, S. Anderson, J. Davis, and J. Ginsberg, “The digital Michelangelo project: 3D scanning of large statues,” in Proceedings of the 27th annual conference on Computer Graphics and Interactive Techniques (ACM/Addison-Wesley, 2000), pp. 131–144.

Aroca, R. A.

L. Chen, C. R. Doerr, L. Buhl, Y. Baeyens, and R. A. Aroca, “Monolithically integrated 40-wavelength demultiplexer and photodetector array on silicon,” IEEE Photon. Technol. Lett. 23, 869–871 (2011).
[Crossref]

Ayers, F. R.

D. J. Cuccia, F. Bevilacqua, A. J. Durkin, F. R. Ayers, and B. J. Tromberg, “Quantitation and mapping of tissue optical properties using modulated imaging,” J. Biomed. Opt. 14, 024012 (2009).
[Crossref]

D. J. Cuccia, F. Bevilacqua, A. J. Durkin, F. R. Ayers, and B. J. Tromberg, “Modulated imaging: quantitative analysis and tomography of turbid media in the spatial-frequency domain,” Opt. Lett. 30, 1354–1356 (2005).
[Crossref]

Baets, R.

Baeyens, Y.

L. Chen, C. R. Doerr, L. Buhl, Y. Baeyens, and R. A. Aroca, “Monolithically integrated 40-wavelength demultiplexer and photodetector array on silicon,” IEEE Photon. Technol. Lett. 23, 869–871 (2011).
[Crossref]

Bailey, R. C.

A. L. Washburn and R. C. Bailey, “Photonics-on-a-chip: recent advances in integrated waveguides as enabling detection elements for real-world, lab-on-a-chip biosensing applications,” Analyst 136, 227–236 (2011).
[Crossref]

Bajraszewski, T.

M. Wojtkowski, R. Leitgeb, A. Kowalczyk, T. Bajraszewski, and A. F. Fercher, “In vivo human retinal imaging by Fourier domain optical coherence tomography,” J. Biomed. Opt. 7, 457–463 (2002).
[Crossref]

Barman, R.

Baumann, E.

Beeker, W.

Bengtsson, J.

B. Kögel, P. Debernardi, P. Westbergh, J. S. Gustavsson, Å. Haglund, E. Haglund, J. Bengtsson, and A. Larsson, “Integrated MEMS-tunable VCSELs using a self-aligned reflow process,” IEEE J. Quantum Electron. 48, 144–152 (2012).
[Crossref]

Bevilacqua, F.

D. J. Cuccia, F. Bevilacqua, A. J. Durkin, F. R. Ayers, and B. J. Tromberg, “Quantitation and mapping of tissue optical properties using modulated imaging,” J. Biomed. Opt. 14, 024012 (2009).
[Crossref]

D. J. Cuccia, F. Bevilacqua, A. J. Durkin, F. R. Ayers, and B. J. Tromberg, “Modulated imaging: quantitative analysis and tomography of turbid media in the spatial-frequency domain,” Opt. Lett. 30, 1354–1356 (2005).
[Crossref]

Boppart, S. A.

T. S. Ralston, D. L. Marks, P. S. Carney, and S. A. Boppart, “Interferometric synthetic aperture microscopy,” Nat. Phys. 3, 129–134 (2007).
[Crossref]

Bosch, T.

M.-C. Amann, T. Bosch, M. Lescure, R. Myllyla, and M. Rioux, “Laser ranging: a critical review of usual techniques for distance measurement,” Opt. Eng. 40, 10–19 (2001).
[Crossref]

Bouma, B.

Bouma, B. E.

Bowman, A.

B. Sun, M. P. Edgar, R. Bowman, L. E. Vittert, S. Welsh, A. Bowman, and M. Padgett, “3D computational imaging with single-pixel detectors,” Science 340, 844–847 (2013).
[Crossref]

Bowman, R.

B. Sun, M. P. Edgar, R. Bowman, L. E. Vittert, S. Welsh, A. Bowman, and M. Padgett, “3D computational imaging with single-pixel detectors,” Science 340, 844–847 (2013).
[Crossref]

Buhl, L.

L. Chen, C. R. Doerr, L. Buhl, Y. Baeyens, and R. A. Aroca, “Monolithically integrated 40-wavelength demultiplexer and photodetector array on silicon,” IEEE Photon. Technol. Lett. 23, 869–871 (2011).
[Crossref]

Burgner, C. B.

Cable, A.

Cable, A. E.

Carney, P. S.

T. S. Ralston, D. L. Marks, P. S. Carney, and S. A. Boppart, “Interferometric synthetic aperture microscopy,” Nat. Phys. 3, 129–134 (2007).
[Crossref]

Cense, B.

Chang, W.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, T. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[Crossref]

Chen, L.

Chinn, S.

Choi, W. J.

Choma, M. A.

Coddington, I.

Cole, G. D.

V. Jayaraman, G. D. Cole, M. Robertson, A. Uddin, and A. Cable, “High-sweep-rate 1310  nm MEMS-VCSEL with 150  nm continuous tuning range,” Electron. Lett. 48, 867–869 (2012).
[Crossref]

Connolly, J. L.

Cuccia, D. J.

D. J. Cuccia, F. Bevilacqua, A. J. Durkin, F. R. Ayers, and B. J. Tromberg, “Quantitation and mapping of tissue optical properties using modulated imaging,” J. Biomed. Opt. 14, 024012 (2009).
[Crossref]

D. J. Cuccia, F. Bevilacqua, A. J. Durkin, F. R. Ayers, and B. J. Tromberg, “Modulated imaging: quantitative analysis and tomography of turbid media in the spatial-frequency domain,” Opt. Lett. 30, 1354–1356 (2005).
[Crossref]

Curless, B.

M. Levoy, K. Pulli, B. Curless, S. Rusinkiewicz, D. Koller, L. Pereira, M. Ginzton, S. Anderson, J. Davis, and J. Ginsberg, “The digital Michelangelo project: 3D scanning of large statues,” in Proceedings of the 27th annual conference on Computer Graphics and Interactive Techniques (ACM/Addison-Wesley, 2000), pp. 131–144.

Davis, J.

M. Levoy, K. Pulli, B. Curless, S. Rusinkiewicz, D. Koller, L. Pereira, M. Ginzton, S. Anderson, J. Davis, and J. Ginsberg, “The digital Michelangelo project: 3D scanning of large statues,” in Proceedings of the 27th annual conference on Computer Graphics and Interactive Techniques (ACM/Addison-Wesley, 2000), pp. 131–144.

de Boer, J.

de Boer, J. F.

Debernardi, P.

B. Kögel, P. Debernardi, P. Westbergh, J. S. Gustavsson, Å. Haglund, E. Haglund, J. Bengtsson, and A. Larsson, “Integrated MEMS-tunable VCSELs using a self-aligned reflow process,” IEEE J. Quantum Electron. 48, 144–152 (2012).
[Crossref]

Deschênes, J. D.

Doerr, C.

Doerr, C. R.

L. Chen, C. R. Doerr, L. Buhl, Y. Baeyens, and R. A. Aroca, “Monolithically integrated 40-wavelength demultiplexer and photodetector array on silicon,” IEEE Photon. Technol. Lett. 23, 869–871 (2011).
[Crossref]

Draxinger, W.

Drexler, W.

W. Drexler and J. G. Fujimoto, “Optical coherence tomography: technology and applications,” in Springer Science & Business Media (Springer, 2015), Chap. 5, p. 169.

Duker, J. S.

Durkin, A. J.

D. J. Cuccia, F. Bevilacqua, A. J. Durkin, F. R. Ayers, and B. J. Tromberg, “Quantitation and mapping of tissue optical properties using modulated imaging,” J. Biomed. Opt. 14, 024012 (2009).
[Crossref]

D. J. Cuccia, F. Bevilacqua, A. J. Durkin, F. R. Ayers, and B. J. Tromberg, “Modulated imaging: quantitative analysis and tomography of turbid media in the spatial-frequency domain,” Opt. Lett. 30, 1354–1356 (2005).
[Crossref]

Edgar, M. P.

B. Sun, M. P. Edgar, R. Bowman, L. E. Vittert, S. Welsh, A. Bowman, and M. Padgett, “3D computational imaging with single-pixel detectors,” Science 340, 844–847 (2013).
[Crossref]

El-Zaiat, S. Y.

A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. El-Zaiat, “Measurement of intraocular distances by backscattering spectral interferometry,” Opt. Commun. 117, 43–48 (1995).
[Crossref]

Fercher, A. F.

R. Leitgeb, C. Hitzenberger, and A. F. Fercher, “Performance of Fourier domain vs. time domain optical coherence tomography,” Opt. Express 11, 889–894 (2003).
[Crossref]

M. Wojtkowski, R. Leitgeb, A. Kowalczyk, T. Bajraszewski, and A. F. Fercher, “In vivo human retinal imaging by Fourier domain optical coherence tomography,” J. Biomed. Opt. 7, 457–463 (2002).
[Crossref]

A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. El-Zaiat, “Measurement of intraocular distances by backscattering spectral interferometry,” Opt. Commun. 117, 43–48 (1995).
[Crossref]

Flotte, T.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, T. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[Crossref]

Fujimoto, J.

Fujimoto, J. G.

K. Liang, G. Traverso, H. Lee, O. O. Ahsen, Z. Wang, B. Potsaid, M. Giacomelli, V. Jayaraman, R. Barman, A. Cable, H. Mashimo, R. Langer, and J. G. Fujimoto, “Ultrahigh speed en face OCT capsule for endoscopic imaging,” Biomed. Opt. Express 6, 1146–1163 (2015).
[Crossref]

D. D. John, C. B. Burgner, B. Potsaid, M. E. Robertson, B. K. Lee, W. J. Choi, A. E. Cable, J. G. Fujimoto, and V. Jayaraman, “Wideband electrically-pumped 1050  nm MEMS-tunable VCSEL for ophthalmic imaging,” J. Lightwave Technol. 33, 3461–3468 (2015).
[Crossref]

I. Grulkowski, J. J. Liu, B. Potsaid, V. Jayaraman, J. Jang, J. G. Fujimoto, and A. E. Cable, “High-precision, high-accuracy ultralong-range swept-source optical coherence tomography using vertical cavity surface emitting laser light source,” Opt. Lett. 38, 673–675 (2013).
[Crossref]

B. Potsaid, V. Jayaraman, J. G. Fujimoto, J. Jiang, P. J. S. Heim, and A. E. Cable, “MEMS tunable VCSEL light source for ultrahigh speed 60  kHz–1  MHz axial scan rate and long range centimeter class OCT imaging,” Proc. SPIE 8213, 82130M (2012).
[Crossref]

I. Grulkowski, J. J. Liu, B. Potsaid, V. Jayaraman, C. D. Lu, J. Jiang, A. E. Cable, J. S. Duker, and J. G. Fujimoto, “Retinal, anterior segment and full eye imaging using ultrahigh speed swept source OCT with vertical-cavity surface emitting lasers,” Biomed. Opt. Express 3, 2733–2751 (2012).
[Crossref]

S. Chinn, E. Swanson, and J. G. Fujimoto, “Optical coherence tomography using a frequency-tunable optical source,” Opt. Lett. 22, 340–342 (1997).
[Crossref]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, T. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[Crossref]

W. Drexler and J. G. Fujimoto, “Optical coherence tomography: technology and applications,” in Springer Science & Business Media (Springer, 2015), Chap. 5, p. 169.

Ghaemi, A.

Giacomelli, M.

Ginsberg, J.

M. Levoy, K. Pulli, B. Curless, S. Rusinkiewicz, D. Koller, L. Pereira, M. Ginzton, S. Anderson, J. Davis, and J. Ginsberg, “The digital Michelangelo project: 3D scanning of large statues,” in Proceedings of the 27th annual conference on Computer Graphics and Interactive Techniques (ACM/Addison-Wesley, 2000), pp. 131–144.

Ginzton, M.

M. Levoy, K. Pulli, B. Curless, S. Rusinkiewicz, D. Koller, L. Pereira, M. Ginzton, S. Anderson, J. Davis, and J. Ginsberg, “The digital Michelangelo project: 3D scanning of large statues,” in Proceedings of the 27th annual conference on Computer Graphics and Interactive Techniques (ACM/Addison-Wesley, 2000), pp. 131–144.

Giorgetta, F. R.

Gora, M.

P. Targowski, M. Gora, and M. Wojtkowski, “Optical coherence tomography for artwork diagnostics,” Laser Chem. 2006, 1–11 (2006).

Gregory, T.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, T. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[Crossref]

Grulkowski, I.

Gustavsson, J. S.

B. Kögel, P. Debernardi, P. Westbergh, J. S. Gustavsson, Å. Haglund, E. Haglund, J. Bengtsson, and A. Larsson, “Integrated MEMS-tunable VCSELs using a self-aligned reflow process,” IEEE J. Quantum Electron. 48, 144–152 (2012).
[Crossref]

Haglund, Å.

B. Kögel, P. Debernardi, P. Westbergh, J. S. Gustavsson, Å. Haglund, E. Haglund, J. Bengtsson, and A. Larsson, “Integrated MEMS-tunable VCSELs using a self-aligned reflow process,” IEEE J. Quantum Electron. 48, 144–152 (2012).
[Crossref]

Haglund, E.

B. Kögel, P. Debernardi, P. Westbergh, J. S. Gustavsson, Å. Haglund, E. Haglund, J. Bengtsson, and A. Larsson, “Integrated MEMS-tunable VCSELs using a self-aligned reflow process,” IEEE J. Quantum Electron. 48, 144–152 (2012).
[Crossref]

Haight, W. C.

K. Lau, R. J. Hocken, and W. C. Haight, “Automatic laser tracking interferometer system for robot metrology,” Precis. Eng. 8, 3–8 (1986).
[Crossref]

Hassanieh, H.

H. Hassanieh, P. Indyk, D. Katabi, and E. Price, “Nearly optimal sparse Fourier transform,” in Proceedings of the Forty-fourth Annual ACM Symposium on Theory of Computing (ACM, 2012), pp. 563–578.

H. Hassanieh, P. Indyk, D. Katabi, and E. Price, “Simple and practical algorithm for sparse Fourier transform,” in Proceedings of the Twenty-third Annual ACM-SIAM Symposium on Discrete Algorithms (Society for Industrial and Applied Mathematics, 2012) pp. 1183–1194.

Hee, M. R.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, T. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[Crossref]

Heideman, R. G.

Heim, P. J. S.

B. Potsaid, V. Jayaraman, J. G. Fujimoto, J. Jiang, P. J. S. Heim, and A. E. Cable, “MEMS tunable VCSEL light source for ultrahigh speed 60  kHz–1  MHz axial scan rate and long range centimeter class OCT imaging,” Proc. SPIE 8213, 82130M (2012).
[Crossref]

Hitzenberger, C.

Hitzenberger, C. K.

A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. El-Zaiat, “Measurement of intraocular distances by backscattering spectral interferometry,” Opt. Commun. 117, 43–48 (1995).
[Crossref]

Hocken, R. J.

K. Lau, R. J. Hocken, and W. C. Haight, “Automatic laser tracking interferometer system for robot metrology,” Precis. Eng. 8, 3–8 (1986).
[Crossref]

Hoekman, M.

Huang, D.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, T. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[Crossref]

Huber, R.

Iftimia, N.

Indyk, P.

H. Hassanieh, P. Indyk, D. Katabi, and E. Price, “Nearly optimal sparse Fourier transform,” in Proceedings of the Forty-fourth Annual ACM Symposium on Theory of Computing (ACM, 2012), pp. 563–578.

H. Hassanieh, P. Indyk, D. Katabi, and E. Price, “Simple and practical algorithm for sparse Fourier transform,” in Proceedings of the Twenty-third Annual ACM-SIAM Symposium on Discrete Algorithms (Society for Industrial and Applied Mathematics, 2012) pp. 1183–1194.

Izatt, J. A.

Jang, J.

Jayaraman, V.

D. D. John, C. B. Burgner, B. Potsaid, M. E. Robertson, B. K. Lee, W. J. Choi, A. E. Cable, J. G. Fujimoto, and V. Jayaraman, “Wideband electrically-pumped 1050  nm MEMS-tunable VCSEL for ophthalmic imaging,” J. Lightwave Technol. 33, 3461–3468 (2015).
[Crossref]

K. Liang, G. Traverso, H. Lee, O. O. Ahsen, Z. Wang, B. Potsaid, M. Giacomelli, V. Jayaraman, R. Barman, A. Cable, H. Mashimo, R. Langer, and J. G. Fujimoto, “Ultrahigh speed en face OCT capsule for endoscopic imaging,” Biomed. Opt. Express 6, 1146–1163 (2015).
[Crossref]

I. Grulkowski, J. J. Liu, B. Potsaid, V. Jayaraman, J. Jang, J. G. Fujimoto, and A. E. Cable, “High-precision, high-accuracy ultralong-range swept-source optical coherence tomography using vertical cavity surface emitting laser light source,” Opt. Lett. 38, 673–675 (2013).
[Crossref]

O. O. Ahsen, Y. K. Tao, B. M. Potsaid, Y. Sheikine, J. Jiang, I. Grulkowski, T.-H. Tsai, V. Jayaraman, M. F. Kraus, and J. L. Connolly, “Swept source optical coherence microscopy using a 1310  nm VCSEL light source,” Opt. Express 21, 18021–18033 (2013).
[Crossref]

B. Potsaid, V. Jayaraman, J. G. Fujimoto, J. Jiang, P. J. S. Heim, and A. E. Cable, “MEMS tunable VCSEL light source for ultrahigh speed 60  kHz–1  MHz axial scan rate and long range centimeter class OCT imaging,” Proc. SPIE 8213, 82130M (2012).
[Crossref]

V. Jayaraman, G. D. Cole, M. Robertson, A. Uddin, and A. Cable, “High-sweep-rate 1310  nm MEMS-VCSEL with 150  nm continuous tuning range,” Electron. Lett. 48, 867–869 (2012).
[Crossref]

I. Grulkowski, J. J. Liu, B. Potsaid, V. Jayaraman, C. D. Lu, J. Jiang, A. E. Cable, J. S. Duker, and J. G. Fujimoto, “Retinal, anterior segment and full eye imaging using ultrahigh speed swept source OCT with vertical-cavity surface emitting lasers,” Biomed. Opt. Express 3, 2733–2751 (2012).
[Crossref]

Jiang, J.

John, D. D.

Kalkman, J.

Kamp, G.

A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. El-Zaiat, “Measurement of intraocular distances by backscattering spectral interferometry,” Opt. Commun. 117, 43–48 (1995).
[Crossref]

Karpf, S.

Katabi, D.

H. Hassanieh, P. Indyk, D. Katabi, and E. Price, “Simple and practical algorithm for sparse Fourier transform,” in Proceedings of the Twenty-third Annual ACM-SIAM Symposium on Discrete Algorithms (Society for Industrial and Applied Mathematics, 2012) pp. 1183–1194.

H. Hassanieh, P. Indyk, D. Katabi, and E. Price, “Nearly optimal sparse Fourier transform,” in Proceedings of the Forty-fourth Annual ACM Symposium on Theory of Computing (ACM, 2012), pp. 563–578.

Kim, S.-W.

J. Lee, Y.-J. Kim, K. Lee, S. Lee, and S.-W. Kim, “Time-of-flight measurement with femtosecond light pulses,” Nat. Photonics 4, 716–720 (2010).
[Crossref]

Kim, Y.-J.

J. Lee, Y.-J. Kim, K. Lee, S. Lee, and S.-W. Kim, “Time-of-flight measurement with femtosecond light pulses,” Nat. Photonics 4, 716–720 (2010).
[Crossref]

Klein, T.

Kögel, B.

B. Kögel, P. Debernardi, P. Westbergh, J. S. Gustavsson, Å. Haglund, E. Haglund, J. Bengtsson, and A. Larsson, “Integrated MEMS-tunable VCSELs using a self-aligned reflow process,” IEEE J. Quantum Electron. 48, 144–152 (2012).
[Crossref]

Koller, D.

M. Levoy, K. Pulli, B. Curless, S. Rusinkiewicz, D. Koller, L. Pereira, M. Ginzton, S. Anderson, J. Davis, and J. Ginsberg, “The digital Michelangelo project: 3D scanning of large statues,” in Proceedings of the 27th annual conference on Computer Graphics and Interactive Techniques (ACM/Addison-Wesley, 2000), pp. 131–144.

Kowalczyk, A.

M. Wojtkowski, R. Leitgeb, A. Kowalczyk, T. Bajraszewski, and A. F. Fercher, “In vivo human retinal imaging by Fourier domain optical coherence tomography,” J. Biomed. Opt. 7, 457–463 (2002).
[Crossref]

Kraus, M. F.

Langer, R.

Laperle, C.

Larsson, A.

B. Kögel, P. Debernardi, P. Westbergh, J. S. Gustavsson, Å. Haglund, E. Haglund, J. Bengtsson, and A. Larsson, “Integrated MEMS-tunable VCSELs using a self-aligned reflow process,” IEEE J. Quantum Electron. 48, 144–152 (2012).
[Crossref]

Lau, K.

K. Lau, R. J. Hocken, and W. C. Haight, “Automatic laser tracking interferometer system for robot metrology,” Precis. Eng. 8, 3–8 (1986).
[Crossref]

Lee, B. K.

Lee, H.

Lee, H. C.

Lee, J.

J. Lee, Y.-J. Kim, K. Lee, S. Lee, and S.-W. Kim, “Time-of-flight measurement with femtosecond light pulses,” Nat. Photonics 4, 716–720 (2010).
[Crossref]

Lee, K.

J. Lee, Y.-J. Kim, K. Lee, S. Lee, and S.-W. Kim, “Time-of-flight measurement with femtosecond light pulses,” Nat. Photonics 4, 716–720 (2010).
[Crossref]

Lee, S.

J. Lee, Y.-J. Kim, K. Lee, S. Lee, and S.-W. Kim, “Time-of-flight measurement with femtosecond light pulses,” Nat. Photonics 4, 716–720 (2010).
[Crossref]

Leinse, A.

Leitgeb, R.

R. Leitgeb, C. Hitzenberger, and A. F. Fercher, “Performance of Fourier domain vs. time domain optical coherence tomography,” Opt. Express 11, 889–894 (2003).
[Crossref]

M. Wojtkowski, R. Leitgeb, A. Kowalczyk, T. Bajraszewski, and A. F. Fercher, “In vivo human retinal imaging by Fourier domain optical coherence tomography,” J. Biomed. Opt. 7, 457–463 (2002).
[Crossref]

Lescure, M.

M.-C. Amann, T. Bosch, M. Lescure, R. Myllyla, and M. Rioux, “Laser ranging: a critical review of usual techniques for distance measurement,” Opt. Eng. 40, 10–19 (2001).
[Crossref]

Levoy, M.

M. Levoy, K. Pulli, B. Curless, S. Rusinkiewicz, D. Koller, L. Pereira, M. Ginzton, S. Anderson, J. Davis, and J. Ginsberg, “The digital Michelangelo project: 3D scanning of large statues,” in Proceedings of the 27th annual conference on Computer Graphics and Interactive Techniques (ACM/Addison-Wesley, 2000), pp. 131–144.

Liang, K.

Lin, C. P.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, T. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[Crossref]

Liu, J. J.

Lu, C. D.

Marks, D. L.

T. S. Ralston, D. L. Marks, P. S. Carney, and S. A. Boppart, “Interferometric synthetic aperture microscopy,” Nat. Phys. 3, 129–134 (2007).
[Crossref]

Mashimo, H.

Matsumoto, H.

Minoshima, K.

Myllyla, R.

M.-C. Amann, T. Bosch, M. Lescure, R. Myllyla, and M. Rioux, “Laser ranging: a critical review of usual techniques for distance measurement,” Opt. Eng. 40, 10–19 (2001).
[Crossref]

Nenadovic, L.

I. Coddington, W. C. Swann, L. Nenadovic, and N. R. Newbury, “Rapid and precise absolute distance measurements at long range,” Nat. Photonics 3, 351–356 (2009).
[Crossref]

Newbury, N. R.

Nguyen, V. D.

Nielsen, T.

O’Sullivan, M.

Padgett, M.

B. Sun, M. P. Edgar, R. Bowman, L. E. Vittert, S. Welsh, A. Bowman, and M. Padgett, “3D computational imaging with single-pixel detectors,” Science 340, 844–847 (2013).
[Crossref]

Park, B. H.

Park, S. Y.

Pereira, L.

M. Levoy, K. Pulli, B. Curless, S. Rusinkiewicz, D. Koller, L. Pereira, M. Ginzton, S. Anderson, J. Davis, and J. Ginsberg, “The digital Michelangelo project: 3D scanning of large statues,” in Proceedings of the 27th annual conference on Computer Graphics and Interactive Techniques (ACM/Addison-Wesley, 2000), pp. 131–144.

Pfeiffer, T.

Pierce, M. C.

Posdamer, J.

J. Posdamer and M. Altschuler, “Surface measurement by space-encoded projected beam systems,” Comput. Gr. Image Process. 18, 1–17 (1982).
[Crossref]

Potsaid, B.

Potsaid, B. M.

Price, E.

H. Hassanieh, P. Indyk, D. Katabi, and E. Price, “Simple and practical algorithm for sparse Fourier transform,” in Proceedings of the Twenty-third Annual ACM-SIAM Symposium on Discrete Algorithms (Society for Industrial and Applied Mathematics, 2012) pp. 1183–1194.

H. Hassanieh, P. Indyk, D. Katabi, and E. Price, “Nearly optimal sparse Fourier transform,” in Proceedings of the Forty-fourth Annual ACM Symposium on Theory of Computing (ACM, 2012), pp. 563–578.

Puliafito, C. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, T. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[Crossref]

Pulli, K.

M. Levoy, K. Pulli, B. Curless, S. Rusinkiewicz, D. Koller, L. Pereira, M. Ginzton, S. Anderson, J. Davis, and J. Ginsberg, “The digital Michelangelo project: 3D scanning of large statues,” in Proceedings of the 27th annual conference on Computer Graphics and Interactive Techniques (ACM/Addison-Wesley, 2000), pp. 131–144.

Ralston, T. S.

T. S. Ralston, D. L. Marks, P. S. Carney, and S. A. Boppart, “Interferometric synthetic aperture microscopy,” Nat. Phys. 3, 129–134 (2007).
[Crossref]

Rioux, M.

M.-C. Amann, T. Bosch, M. Lescure, R. Myllyla, and M. Rioux, “Laser ranging: a critical review of usual techniques for distance measurement,” Opt. Eng. 40, 10–19 (2001).
[Crossref]

Robertson, M.

V. Jayaraman, G. D. Cole, M. Robertson, A. Uddin, and A. Cable, “High-sweep-rate 1310  nm MEMS-VCSEL with 150  nm continuous tuning range,” Electron. Lett. 48, 867–869 (2012).
[Crossref]

Robertson, M. E.

Rusinkiewicz, S.

M. Levoy, K. Pulli, B. Curless, S. Rusinkiewicz, D. Koller, L. Pereira, M. Ginzton, S. Anderson, J. Davis, and J. Ginsberg, “The digital Michelangelo project: 3D scanning of large statues,” in Proceedings of the 27th annual conference on Computer Graphics and Interactive Techniques (ACM/Addison-Wesley, 2000), pp. 131–144.

Sarunic, M. V.

Schuman, J. S.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, T. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[Crossref]

Sheikine, Y.

Siddiqui, M.

Stifter, D.

D. Stifter, “Beyond biomedicine: a review of alternative applications and developments for optical coherence tomography,” Appl. Phys. B 88, 337–357 (2007).
[Crossref]

Stinson, W. G.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, T. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[Crossref]

Sun, B.

B. Sun, M. P. Edgar, R. Bowman, L. E. Vittert, S. Welsh, A. Bowman, and M. Padgett, “3D computational imaging with single-pixel detectors,” Science 340, 844–847 (2013).
[Crossref]

Swann, W. C.

Swanson, E.

Swanson, E. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, T. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[Crossref]

Tao, Y. K.

Targowski, P.

P. Targowski, M. Gora, and M. Wojtkowski, “Optical coherence tomography for artwork diagnostics,” Laser Chem. 2006, 1–11 (2006).

Tearney, G.

Tearney, G. J.

Tozburun, S.

Traverso, G.

Tromberg, B. J.

D. J. Cuccia, F. Bevilacqua, A. J. Durkin, F. R. Ayers, and B. J. Tromberg, “Quantitation and mapping of tissue optical properties using modulated imaging,” J. Biomed. Opt. 14, 024012 (2009).
[Crossref]

D. J. Cuccia, F. Bevilacqua, A. J. Durkin, F. R. Ayers, and B. J. Tromberg, “Modulated imaging: quantitative analysis and tomography of turbid media in the spatial-frequency domain,” Opt. Lett. 30, 1354–1356 (2005).
[Crossref]

Tsai, T.-H.

Uddin, A.

V. Jayaraman, G. D. Cole, M. Robertson, A. Uddin, and A. Cable, “High-sweep-rate 1310  nm MEMS-VCSEL with 150  nm continuous tuning range,” Electron. Lett. 48, 867–869 (2012).
[Crossref]

Vakoc, B. J.

van Leeuwen, T. G.

Vermeulen, D.

Vittert, L. E.

B. Sun, M. P. Edgar, R. Bowman, L. E. Vittert, S. Welsh, A. Bowman, and M. Padgett, “3D computational imaging with single-pixel detectors,” Science 340, 844–847 (2013).
[Crossref]

Wang, Z.

Washburn, A. L.

A. L. Washburn and R. C. Bailey, “Photonics-on-a-chip: recent advances in integrated waveguides as enabling detection elements for real-world, lab-on-a-chip biosensing applications,” Analyst 136, 227–236 (2011).
[Crossref]

Weiss, N.

Welsh, S.

B. Sun, M. P. Edgar, R. Bowman, L. E. Vittert, S. Welsh, A. Bowman, and M. Padgett, “3D computational imaging with single-pixel detectors,” Science 340, 844–847 (2013).
[Crossref]

Westbergh, P.

B. Kögel, P. Debernardi, P. Westbergh, J. S. Gustavsson, Å. Haglund, E. Haglund, J. Bengtsson, and A. Larsson, “Integrated MEMS-tunable VCSELs using a self-aligned reflow process,” IEEE J. Quantum Electron. 48, 144–152 (2012).
[Crossref]

Wieser, W.

Wojtkowski, M.

P. Targowski, M. Gora, and M. Wojtkowski, “Optical coherence tomography for artwork diagnostics,” Laser Chem. 2006, 1–11 (2006).

M. Wojtkowski, R. Leitgeb, A. Kowalczyk, T. Bajraszewski, and A. F. Fercher, “In vivo human retinal imaging by Fourier domain optical coherence tomography,” J. Biomed. Opt. 7, 457–463 (2002).
[Crossref]

Yang, C.

Yun, S.

Yurtsever, G.

Zhang, E. Z.

Analyst (1)

A. L. Washburn and R. C. Bailey, “Photonics-on-a-chip: recent advances in integrated waveguides as enabling detection elements for real-world, lab-on-a-chip biosensing applications,” Analyst 136, 227–236 (2011).
[Crossref]

Appl. Opt. (1)

Appl. Phys. B (1)

D. Stifter, “Beyond biomedicine: a review of alternative applications and developments for optical coherence tomography,” Appl. Phys. B 88, 337–357 (2007).
[Crossref]

Biomed. Opt. Express (4)

Comput. Gr. Image Process. (1)

J. Posdamer and M. Altschuler, “Surface measurement by space-encoded projected beam systems,” Comput. Gr. Image Process. 18, 1–17 (1982).
[Crossref]

Electron. Lett. (1)

V. Jayaraman, G. D. Cole, M. Robertson, A. Uddin, and A. Cable, “High-sweep-rate 1310  nm MEMS-VCSEL with 150  nm continuous tuning range,” Electron. Lett. 48, 867–869 (2012).
[Crossref]

IEEE J. Quantum Electron. (1)

B. Kögel, P. Debernardi, P. Westbergh, J. S. Gustavsson, Å. Haglund, E. Haglund, J. Bengtsson, and A. Larsson, “Integrated MEMS-tunable VCSELs using a self-aligned reflow process,” IEEE J. Quantum Electron. 48, 144–152 (2012).
[Crossref]

IEEE Photon. Technol. Lett. (1)

L. Chen, C. R. Doerr, L. Buhl, Y. Baeyens, and R. A. Aroca, “Monolithically integrated 40-wavelength demultiplexer and photodetector array on silicon,” IEEE Photon. Technol. Lett. 23, 869–871 (2011).
[Crossref]

J. Biomed. Opt. (2)

M. Wojtkowski, R. Leitgeb, A. Kowalczyk, T. Bajraszewski, and A. F. Fercher, “In vivo human retinal imaging by Fourier domain optical coherence tomography,” J. Biomed. Opt. 7, 457–463 (2002).
[Crossref]

D. J. Cuccia, F. Bevilacqua, A. J. Durkin, F. R. Ayers, and B. J. Tromberg, “Quantitation and mapping of tissue optical properties using modulated imaging,” J. Biomed. Opt. 14, 024012 (2009).
[Crossref]

J. Lightwave Technol. (2)

Laser Chem. (1)

P. Targowski, M. Gora, and M. Wojtkowski, “Optical coherence tomography for artwork diagnostics,” Laser Chem. 2006, 1–11 (2006).

Nat. Photonics (2)

I. Coddington, W. C. Swann, L. Nenadovic, and N. R. Newbury, “Rapid and precise absolute distance measurements at long range,” Nat. Photonics 3, 351–356 (2009).
[Crossref]

J. Lee, Y.-J. Kim, K. Lee, S. Lee, and S.-W. Kim, “Time-of-flight measurement with femtosecond light pulses,” Nat. Photonics 4, 716–720 (2010).
[Crossref]

Nat. Phys. (1)

T. S. Ralston, D. L. Marks, P. S. Carney, and S. A. Boppart, “Interferometric synthetic aperture microscopy,” Nat. Phys. 3, 129–134 (2007).
[Crossref]

Opt. Commun. (1)

A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. El-Zaiat, “Measurement of intraocular distances by backscattering spectral interferometry,” Opt. Commun. 117, 43–48 (1995).
[Crossref]

Opt. Eng. (1)

M.-C. Amann, T. Bosch, M. Lescure, R. Myllyla, and M. Rioux, “Laser ranging: a critical review of usual techniques for distance measurement,” Opt. Eng. 40, 10–19 (2001).
[Crossref]

Opt. Express (6)

Opt. Lett. (6)

Precis. Eng. (1)

K. Lau, R. J. Hocken, and W. C. Haight, “Automatic laser tracking interferometer system for robot metrology,” Precis. Eng. 8, 3–8 (1986).
[Crossref]

Proc. SPIE (1)

B. Potsaid, V. Jayaraman, J. G. Fujimoto, J. Jiang, P. J. S. Heim, and A. E. Cable, “MEMS tunable VCSEL light source for ultrahigh speed 60  kHz–1  MHz axial scan rate and long range centimeter class OCT imaging,” Proc. SPIE 8213, 82130M (2012).
[Crossref]

Science (2)

B. Sun, M. P. Edgar, R. Bowman, L. E. Vittert, S. Welsh, A. Bowman, and M. Padgett, “3D computational imaging with single-pixel detectors,” Science 340, 844–847 (2013).
[Crossref]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, T. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[Crossref]

Other (4)

W. Drexler and J. G. Fujimoto, “Optical coherence tomography: technology and applications,” in Springer Science & Business Media (Springer, 2015), Chap. 5, p. 169.

M. Levoy, K. Pulli, B. Curless, S. Rusinkiewicz, D. Koller, L. Pereira, M. Ginzton, S. Anderson, J. Davis, and J. Ginsberg, “The digital Michelangelo project: 3D scanning of large statues,” in Proceedings of the 27th annual conference on Computer Graphics and Interactive Techniques (ACM/Addison-Wesley, 2000), pp. 131–144.

H. Hassanieh, P. Indyk, D. Katabi, and E. Price, “Simple and practical algorithm for sparse Fourier transform,” in Proceedings of the Twenty-third Annual ACM-SIAM Symposium on Discrete Algorithms (Society for Industrial and Applied Mathematics, 2012) pp. 1183–1194.

H. Hassanieh, P. Indyk, D. Katabi, and E. Price, “Nearly optimal sparse Fourier transform,” in Proceedings of the Forty-fourth Annual ACM Symposium on Theory of Computing (ACM, 2012), pp. 563–578.

Supplementary Material (4)

NameDescription
» Supplement 1: PDF (3858 KB)      Supplements for the main text
» Visualization 1: AVI (7228 KB)      3D rendering of a life size mannequin with a chess set imaged by meter-range OCT
» Visualization 2: AVI (6488 KB)      3D rendering of an adult bicycle imaged by meter-range OCT
» Visualization 3: AVI (3162 KB)      Merged surface reconstruction of a human skull/brain model

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Details of the imaging system. (a) Schematic and photograph of the MEMS-tunable VCSEL swept laser source. (b) Schematic and photograph of the silicon photonic integrated circuit (PIC) IQ receiver. R, signal input; L, reference input; PBSR, polarization beam splitter; VOA, variable optical attenuators; TIA, trans-impedance amplifier. (c) Imaging system layout. AWG, arbitrary waveform generator; WDM, wavelength division multiplexer; Pol, polarization controller; BOA, booster optical amplifier; OSA, optical spectrum analyzer; Circ, circulator; MZI, Mach–Zehnder interferometer. (d) Spectrum of the BOA-amplified VCSEL emission recorded with the OSA. (e) Definition of scanning volume. (f) Representations of scanned volumes for the bicycle, mannequin, gauge blocks, and skull/brain that are proportionally accurate and show the position of the OCT zero delay.

Fig. 2.
Fig. 2.

System characterization of meter-range OCT. (a) Representative interferograms from a mirror showing two consecutive laser sweeps (I channel only). (b) I and Q channel signals from one sweep showing 90-deg phase relationship between the two channels. (c) Signal roll-off measurement on a logarithmic scale with IQ processing. Negative axis shows suppressed complex conjugates. (d)–(k) Plots of PSFs on a linear scale at different depths. (k) 10 of 100 repeated PSFs at a depth of 718.9  mm.

Fig. 3.
Fig. 3.

(a) Photograph, (b) maximum intensity projection, and (c) 3D OCT visualization of a life-size mannequin with a chess set consisting of 1000×1000 A-scans before scan correction. The volume size is 0.98  m3 (d=89  cm, l=150  cm, θx=27.5  deg, and θy=27.5  deg. For display, an intensity threshold of 10  dB above the mean noise floor was applied. (d) Photograph, (e) maximum intensity projection, and (f) 3D OCT visualization of an adult bicycle more than 1.5 m in length consisting of 1000×1000 A-scans before scan correction. The volume size is 1.8  m3 (d=97  cm, l=150  cm, θx=35.7  deg, and θy=35.7  deg). (g)–(j) Human skull model imaged at 0 deg (g), 90 deg (h), 180 deg (i), and 270 deg (j). Each volume has 500×500 A-scans and a volume of 8000  cm3 (d=97  cm, l=75  cm, θx=10.8  deg, and θy=10.8  deg). (k) 3D skull surface reconstructed by segmenting and merging the individual object surface of (g)–(j) after scan correction. Scale bars are 10 cm. 3D visualization of the objects after scan correction can be found in Visualization 1, Visualization 2, and Visualization 3.

Fig. 4.
Fig. 4.

(a) and (b) Photographs of the aluminum posts and steel gauge blocks on an optics table from two perspectives. (c) Photograph of the gauge blocks. (d) OCT maximum intensity projection. The OCT volume has 500×1000 A-scans. The volume size is 0.288  m3 (d=98  cm, l=150  cm, θx=20.4  deg, and θy=9.7  deg). (e) Distance mapping of the objects in meter scale. (f) Distance mapping of the gauge blocks on a centimeter scale. (g) Visualization of the tilt of an aluminum post with respect to the incident OCT beam on a millimeter scale. (h) Topological mapping of the aluminum surface from the box in (g) after correcting for sample tilt. (i) Relative depths of milled steps in the aluminum post surface from dotted line in (h) on a micrometer scale showing good agreement between the OCT measured surface profile (blue) and nominal depths from the milling machine digital readout (orange). Depth scale was calibrated by measurement of gauge block 1, and the transverse scale was calibrated by the nominal milled widths.

Tables (1)

Tables Icon

Table 1. Quantitative Validation of the OCT Thickness Measurement of the Gauge Blocks

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

E[ks(t)]OCTarg(E(k)MZI)E[kl(k)]OCT,
MI=MIeiχ/2MQ=MQeiχ/2,
MI=FT1(FT(MI)eiδ),
MIQ=MI+iMQ,
MI*=FT1(FT(Re(MIQ))Aave/|FT(Re(MIQ))|)MQ*=FT1(FT(Im(MIQ))Aave/|FT(Im(MIQ))|),

Metrics