Abstract

A linear modulator is indispensable for radio frequency photonics or analog photonic link applications where high dynamic range is required. There is also great interest to integrate the modulator with other photonic components, to create a photonic integrated circuit for these applications, with particular focus on silicon photonics integration in order to take advantage of complementary metal–oxide–semiconductor compatible foundries for high-volume, low-cost devices. However, all silicon modulators, including the highest performing Mach–Zehnder interferometer (MZI) type, have poor linearity, partially due to the inherent nonlinearity of the MZI transfer characteristic, but mostly due to the nonlinearity of silicon’s electro-optic phase shift response. In this work, we demonstrate ultralinear ring-assisted MZI (RAMZI) modulators, incorporating heterogeneously integrated III–V multiple quantum wells on silicon phase modulation sections to eliminate the nonlinear silicon phase modulation response. The heterogeneously integrated III–V/Si RAMZI modulators achieve record-high spurious free dynamic range (SFDR) for silicon-based modulators, as high as 117.5  dB·Hz2/3 at 10 GHz for a weakly coupled ring design, and 117  dB·Hz2/3 for a strongly coupled ring design with higher output power. This is a higher SFDR than typically obtained with commercial lithium niobate modulators. This approach advances integrated modulator designs on silicon for applications in compact and high-performance analog optical systems.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Highly linear heterogeneous-integrated Mach-Zehnder interferometer modulators on Si

Chong Zhang, Paul A. Morton, Jacob B. Khurgin, Jon D. Peters, and John E. Bowers
Opt. Express 24(17) 19040-19047 (2016)

Linearized silicon modulator based on a ring assisted Mach Zehnder inteferometer

Jaime Cardenas, Paul A. Morton, Jacob B. Khurgin, Austin Griffith, Carl B. Poitras, Kyle Preston, and Michal Lipson
Opt. Express 21(19) 22549-22557 (2013)

Highly linear ring modulator from hybrid silicon and lithium niobate

Li Chen, Jiahong Chen, Jonathan Nagy, and Ronald M. Reano
Opt. Express 23(10) 13255-13264 (2015)

References

  • View by:
  • |
  • |
  • |

  1. G. C. Valley, “Photonic analog-to-digital converters,” Opt. Express 15, 1955–1982 (2007).
    [Crossref]
  2. W. S. C. Chang, RF Photonic Technology in Optical Fiber Links (Cambridge University, 2002), Chap. 4.
  3. P. Dong, L. Chen, and Y.-K. Chen, “High-speed low-voltage single-drive push-pull silicon Mach–Zehnder modulators,” Opt. Express 20, 6163–6169 (2012).
    [Crossref]
  4. H. Yi, Q. Long, W. Tan, L. Li, X. Wang, and Z. Zhou, “Demonstration of low power penalty of silicon Mach–Zehnder modulator in long-haul transmission,” Opt. Express 20, 27562–27568 (2012).
    [Crossref]
  5. G. V. Treyz, P. G. May, and J.-M. Halbout, “Silicon Mach–Zehnder waveguide interferometers based on the plasma dispersion effect,” Appl. Phys. Lett. 59, 771–773 (1991).
    [Crossref]
  6. Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature 435, 325–327 (2005).
    [Crossref]
  7. M. Streshinsky, A. Ayazi, Z. Xuan, A. E.-J. Lim, G.-Q. Lo, T. Baehr-Jones, and M. Hochberg, “Highly linear silicon traveling wave Mach–Zehnder carrier depletion modulator based on differential drive,” Opt. Express 21, 3818–3825 (2013).
    [Crossref]
  8. C. H. Cox, E. I. Ackerman, G. E. Betts, and J. L. Prince, “Limits on the performance of RF-over-fiber links and their impact on device design,” IEEE Trans. Microwave Theory Tech. 54, 906–920 (2006).
    [Crossref]
  9. R.-J. Essiambre, P. J. Winzer, X. Wang, W. Lee, C. A. White, and E. C. Burrows, “Electronic predistortion and fiber nonlinearity,” IEEE Photon. Technol. Lett. 18, 1804–1806 (2006).
    [Crossref]
  10. C. Weber, C.-A. Bunge, and K. Petermann, “Fiber nonlinearities in systems using electronic predistortion of dispersion at 10 and 40 Gbit/s,” J. Lightwave Technol. 27, 3654–3661 (2009).
    [Crossref]
  11. X. Xie, J. B. Khurgin, J. Kang, and F.-S. Chow, “Linearized Mach–Zehnder intensity modulator,” IEEE Photon. Technol. Lett. 15, 531–533 (2003).
    [Crossref]
  12. J. Cardenas, P. A. Morton, J. B. Khurgin, A. Griffith, C. B. Poitras, K. Preston, and M. Lipson, “Linearized silicon modulator based on a ring assisted Mach–Zehnder interferometer,” Opt. Express 21, 22549–22557 (2013).
    [Crossref]
  13. L. Chen, J. Chen, J. Nagy, and R. M. Reano, “Highly linear ring modulator from hybrid silicon and lithium niobate,” Opt. Express 23, 13255–13264 (2015).
    [Crossref]
  14. C. Zhang, P. A. Morton, J. B. Khurgin, J. D. Peters, and J. E. Bowers, “Highly linear heterogeneous-integrated Mach–Zehnder interferometer modulators on Si,” Opt. Express 24, 19040–19047 (2016).
    [Crossref]
  15. H.-W. Chen, Y.-H. Kuo, and J. E. Bowers, “A hybrid silicon-AlGaInAs phase modulator,” IEEE Photon. Technol. Lett. 20, 1920–1922 (2008).
    [Crossref]
  16. Y. Zhou, L. Zhou, F. Su, J. Xie, H. Zhu, X. Li, and J. Chen, “Linearity measurement of a silicon single-drive push-pull Mach–Zehnder modulator,” in Conference on Lasers and Electro-Optics (Optical Society of America, 2015), paper SW3N.6.

2016 (1)

2015 (1)

2013 (2)

2012 (2)

2009 (1)

2008 (1)

H.-W. Chen, Y.-H. Kuo, and J. E. Bowers, “A hybrid silicon-AlGaInAs phase modulator,” IEEE Photon. Technol. Lett. 20, 1920–1922 (2008).
[Crossref]

2007 (1)

2006 (2)

C. H. Cox, E. I. Ackerman, G. E. Betts, and J. L. Prince, “Limits on the performance of RF-over-fiber links and their impact on device design,” IEEE Trans. Microwave Theory Tech. 54, 906–920 (2006).
[Crossref]

R.-J. Essiambre, P. J. Winzer, X. Wang, W. Lee, C. A. White, and E. C. Burrows, “Electronic predistortion and fiber nonlinearity,” IEEE Photon. Technol. Lett. 18, 1804–1806 (2006).
[Crossref]

2005 (1)

Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature 435, 325–327 (2005).
[Crossref]

2003 (1)

X. Xie, J. B. Khurgin, J. Kang, and F.-S. Chow, “Linearized Mach–Zehnder intensity modulator,” IEEE Photon. Technol. Lett. 15, 531–533 (2003).
[Crossref]

1991 (1)

G. V. Treyz, P. G. May, and J.-M. Halbout, “Silicon Mach–Zehnder waveguide interferometers based on the plasma dispersion effect,” Appl. Phys. Lett. 59, 771–773 (1991).
[Crossref]

Ackerman, E. I.

C. H. Cox, E. I. Ackerman, G. E. Betts, and J. L. Prince, “Limits on the performance of RF-over-fiber links and their impact on device design,” IEEE Trans. Microwave Theory Tech. 54, 906–920 (2006).
[Crossref]

Ayazi, A.

Baehr-Jones, T.

Betts, G. E.

C. H. Cox, E. I. Ackerman, G. E. Betts, and J. L. Prince, “Limits on the performance of RF-over-fiber links and their impact on device design,” IEEE Trans. Microwave Theory Tech. 54, 906–920 (2006).
[Crossref]

Bowers, J. E.

Bunge, C.-A.

Burrows, E. C.

R.-J. Essiambre, P. J. Winzer, X. Wang, W. Lee, C. A. White, and E. C. Burrows, “Electronic predistortion and fiber nonlinearity,” IEEE Photon. Technol. Lett. 18, 1804–1806 (2006).
[Crossref]

Cardenas, J.

Chang, W. S. C.

W. S. C. Chang, RF Photonic Technology in Optical Fiber Links (Cambridge University, 2002), Chap. 4.

Chen, H.-W.

H.-W. Chen, Y.-H. Kuo, and J. E. Bowers, “A hybrid silicon-AlGaInAs phase modulator,” IEEE Photon. Technol. Lett. 20, 1920–1922 (2008).
[Crossref]

Chen, J.

L. Chen, J. Chen, J. Nagy, and R. M. Reano, “Highly linear ring modulator from hybrid silicon and lithium niobate,” Opt. Express 23, 13255–13264 (2015).
[Crossref]

Y. Zhou, L. Zhou, F. Su, J. Xie, H. Zhu, X. Li, and J. Chen, “Linearity measurement of a silicon single-drive push-pull Mach–Zehnder modulator,” in Conference on Lasers and Electro-Optics (Optical Society of America, 2015), paper SW3N.6.

Chen, L.

Chen, Y.-K.

Chow, F.-S.

X. Xie, J. B. Khurgin, J. Kang, and F.-S. Chow, “Linearized Mach–Zehnder intensity modulator,” IEEE Photon. Technol. Lett. 15, 531–533 (2003).
[Crossref]

Cox, C. H.

C. H. Cox, E. I. Ackerman, G. E. Betts, and J. L. Prince, “Limits on the performance of RF-over-fiber links and their impact on device design,” IEEE Trans. Microwave Theory Tech. 54, 906–920 (2006).
[Crossref]

Dong, P.

Essiambre, R.-J.

R.-J. Essiambre, P. J. Winzer, X. Wang, W. Lee, C. A. White, and E. C. Burrows, “Electronic predistortion and fiber nonlinearity,” IEEE Photon. Technol. Lett. 18, 1804–1806 (2006).
[Crossref]

Griffith, A.

Halbout, J.-M.

G. V. Treyz, P. G. May, and J.-M. Halbout, “Silicon Mach–Zehnder waveguide interferometers based on the plasma dispersion effect,” Appl. Phys. Lett. 59, 771–773 (1991).
[Crossref]

Hochberg, M.

Kang, J.

X. Xie, J. B. Khurgin, J. Kang, and F.-S. Chow, “Linearized Mach–Zehnder intensity modulator,” IEEE Photon. Technol. Lett. 15, 531–533 (2003).
[Crossref]

Khurgin, J. B.

Kuo, Y.-H.

H.-W. Chen, Y.-H. Kuo, and J. E. Bowers, “A hybrid silicon-AlGaInAs phase modulator,” IEEE Photon. Technol. Lett. 20, 1920–1922 (2008).
[Crossref]

Lee, W.

R.-J. Essiambre, P. J. Winzer, X. Wang, W. Lee, C. A. White, and E. C. Burrows, “Electronic predistortion and fiber nonlinearity,” IEEE Photon. Technol. Lett. 18, 1804–1806 (2006).
[Crossref]

Li, L.

Li, X.

Y. Zhou, L. Zhou, F. Su, J. Xie, H. Zhu, X. Li, and J. Chen, “Linearity measurement of a silicon single-drive push-pull Mach–Zehnder modulator,” in Conference on Lasers and Electro-Optics (Optical Society of America, 2015), paper SW3N.6.

Lim, A. E.-J.

Lipson, M.

Lo, G.-Q.

Long, Q.

May, P. G.

G. V. Treyz, P. G. May, and J.-M. Halbout, “Silicon Mach–Zehnder waveguide interferometers based on the plasma dispersion effect,” Appl. Phys. Lett. 59, 771–773 (1991).
[Crossref]

Morton, P. A.

Nagy, J.

Petermann, K.

Peters, J. D.

Poitras, C. B.

Pradhan, S.

Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature 435, 325–327 (2005).
[Crossref]

Preston, K.

Prince, J. L.

C. H. Cox, E. I. Ackerman, G. E. Betts, and J. L. Prince, “Limits on the performance of RF-over-fiber links and their impact on device design,” IEEE Trans. Microwave Theory Tech. 54, 906–920 (2006).
[Crossref]

Reano, R. M.

Schmidt, B.

Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature 435, 325–327 (2005).
[Crossref]

Streshinsky, M.

Su, F.

Y. Zhou, L. Zhou, F. Su, J. Xie, H. Zhu, X. Li, and J. Chen, “Linearity measurement of a silicon single-drive push-pull Mach–Zehnder modulator,” in Conference on Lasers and Electro-Optics (Optical Society of America, 2015), paper SW3N.6.

Tan, W.

Treyz, G. V.

G. V. Treyz, P. G. May, and J.-M. Halbout, “Silicon Mach–Zehnder waveguide interferometers based on the plasma dispersion effect,” Appl. Phys. Lett. 59, 771–773 (1991).
[Crossref]

Valley, G. C.

Wang, X.

H. Yi, Q. Long, W. Tan, L. Li, X. Wang, and Z. Zhou, “Demonstration of low power penalty of silicon Mach–Zehnder modulator in long-haul transmission,” Opt. Express 20, 27562–27568 (2012).
[Crossref]

R.-J. Essiambre, P. J. Winzer, X. Wang, W. Lee, C. A. White, and E. C. Burrows, “Electronic predistortion and fiber nonlinearity,” IEEE Photon. Technol. Lett. 18, 1804–1806 (2006).
[Crossref]

Weber, C.

White, C. A.

R.-J. Essiambre, P. J. Winzer, X. Wang, W. Lee, C. A. White, and E. C. Burrows, “Electronic predistortion and fiber nonlinearity,” IEEE Photon. Technol. Lett. 18, 1804–1806 (2006).
[Crossref]

Winzer, P. J.

R.-J. Essiambre, P. J. Winzer, X. Wang, W. Lee, C. A. White, and E. C. Burrows, “Electronic predistortion and fiber nonlinearity,” IEEE Photon. Technol. Lett. 18, 1804–1806 (2006).
[Crossref]

Xie, J.

Y. Zhou, L. Zhou, F. Su, J. Xie, H. Zhu, X. Li, and J. Chen, “Linearity measurement of a silicon single-drive push-pull Mach–Zehnder modulator,” in Conference on Lasers and Electro-Optics (Optical Society of America, 2015), paper SW3N.6.

Xie, X.

X. Xie, J. B. Khurgin, J. Kang, and F.-S. Chow, “Linearized Mach–Zehnder intensity modulator,” IEEE Photon. Technol. Lett. 15, 531–533 (2003).
[Crossref]

Xu, Q.

Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature 435, 325–327 (2005).
[Crossref]

Xuan, Z.

Yi, H.

Zhang, C.

Zhou, L.

Y. Zhou, L. Zhou, F. Su, J. Xie, H. Zhu, X. Li, and J. Chen, “Linearity measurement of a silicon single-drive push-pull Mach–Zehnder modulator,” in Conference on Lasers and Electro-Optics (Optical Society of America, 2015), paper SW3N.6.

Zhou, Y.

Y. Zhou, L. Zhou, F. Su, J. Xie, H. Zhu, X. Li, and J. Chen, “Linearity measurement of a silicon single-drive push-pull Mach–Zehnder modulator,” in Conference on Lasers and Electro-Optics (Optical Society of America, 2015), paper SW3N.6.

Zhou, Z.

Zhu, H.

Y. Zhou, L. Zhou, F. Su, J. Xie, H. Zhu, X. Li, and J. Chen, “Linearity measurement of a silicon single-drive push-pull Mach–Zehnder modulator,” in Conference on Lasers and Electro-Optics (Optical Society of America, 2015), paper SW3N.6.

Appl. Phys. Lett. (1)

G. V. Treyz, P. G. May, and J.-M. Halbout, “Silicon Mach–Zehnder waveguide interferometers based on the plasma dispersion effect,” Appl. Phys. Lett. 59, 771–773 (1991).
[Crossref]

IEEE Photon. Technol. Lett. (3)

X. Xie, J. B. Khurgin, J. Kang, and F.-S. Chow, “Linearized Mach–Zehnder intensity modulator,” IEEE Photon. Technol. Lett. 15, 531–533 (2003).
[Crossref]

R.-J. Essiambre, P. J. Winzer, X. Wang, W. Lee, C. A. White, and E. C. Burrows, “Electronic predistortion and fiber nonlinearity,” IEEE Photon. Technol. Lett. 18, 1804–1806 (2006).
[Crossref]

H.-W. Chen, Y.-H. Kuo, and J. E. Bowers, “A hybrid silicon-AlGaInAs phase modulator,” IEEE Photon. Technol. Lett. 20, 1920–1922 (2008).
[Crossref]

IEEE Trans. Microwave Theory Tech. (1)

C. H. Cox, E. I. Ackerman, G. E. Betts, and J. L. Prince, “Limits on the performance of RF-over-fiber links and their impact on device design,” IEEE Trans. Microwave Theory Tech. 54, 906–920 (2006).
[Crossref]

J. Lightwave Technol. (1)

Nature (1)

Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature 435, 325–327 (2005).
[Crossref]

Opt. Express (7)

Other (2)

W. S. C. Chang, RF Photonic Technology in Optical Fiber Links (Cambridge University, 2002), Chap. 4.

Y. Zhou, L. Zhou, F. Su, J. Xie, H. Zhu, X. Li, and J. Chen, “Linearity measurement of a silicon single-drive push-pull Mach–Zehnder modulator,” in Conference on Lasers and Electro-Optics (Optical Society of America, 2015), paper SW3N.6.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1. (a) Schematic structure of heterogeneous RAMZI modulator on silicon with different colors representing ridge/stripe/heterogeneous waveguide and corresponding cross sections. The symmetric architecture includes two rings with heterogeneous phase sections, with H1–H4 indicating the locations of extra thermal phase tuners. (b)–(j) Process flow of the heterogeneous RAMZI modulator: (b) define the passive components on silicon; (c) transfer III–V layers to patterned SOI substrate, and remove the InP substrate through wet-etch; (d) etch the III–V mesa and QWs stack; (e) remove the III–V layer on the waveguide; (f) deposit n-type contact metal stack on n-InP; (g) encapsulate the surface with thick SiO 2 layer and etch deep via; (h) deposit p-type contact metal stack, deposit heater metal stack; (i) proton implant to isolate the taper and modulator cavity; and (j) deposit metal probe pads.
Fig. 2.
Fig. 2. Heterogeneous RAMZI modulator with push–pull differential configurations and its microscope image.
Fig. 3.
Fig. 3. Transmission spectrum of the heterogeneous RAMZI modulator with strong-coupled rings with ASE input. (a)–(d) show the operation point change by applying voltage on thermal tuners H1–H4, respectively, with all other tuners unbiased.
Fig. 4.
Fig. 4. Measured SFDR of heterogeneous RAMZI modulator with strong-coupled rings: 57 dB for 1 GHz bandwidth, or 117    dB · Hz 2 / 3 .
Fig. 5.
Fig. 5. SFDR measurements of strong-coupled heterogeneous RAMZI modulator for (a) changing the voltage in one of the heaters, H1, H2, H3, or H4 (with all others = 0    V ) (modulator bias = 3    V , input power = 18    dBm ); (b) changing modulator bias voltage with input power of 15 and 18 dBm, with the voltage in H 1 = H 2 = H 3 = H 4 = 0    V ; and (c) changing laser wavelength with corresponding output power, with the voltage in heaters H 1 = H 3 = H 4 = 0    V , H 2 = 1    V and input power = 18    dBm .
Fig. 6.
Fig. 6. Measured SFDR of heterogeneous RAMZI modulator with weak-coupled ring design: 57.5 dB for 1 GHz bandwidth, or 117.5    dB · Hz 2 / 3 .
Fig. 7.
Fig. 7. SFDR measurement of heterogeneous RAMZI modulators with strong- and weak-coupled rings versus modulator output power. The laser input power and the DC bias voltage of the modulator were fixed at 18 dBm and 2.5    V , respectively.

Metrics