Abstract

Nanoplasmonic antennas are well established for focusing light from the far field into subwavelength-sized dimensions, while simultaneously increasing strongly the local electromagnetic field—an important ingredient for boosting nonlinear optical effects. Here, we study both the optical and structural properties of gold bowtie nanoantennas under illumination with femtosecond laser pulses and observe a pronounced metamorphism of the antennas, while the upconverted incoherent nonlinear emission increases simultaneously. Scanning electron microscopy images recorded before and after illumination show a clear modification of the antenna feedgap, accompanied by an 100× increase of the nonlinear signal. This is caused by laser-induced electromigration of gold nanoparticles, a process that is feedgap-size-dependent, self-limiting, and irreversible. Moreover, it is identified as the root cause for the strong enhancement of the nonlinear conversion efficiency by a factor of 4×106 as compared with an unpatterned gold film. By experimentally quantifying the electric field enhancement inside the nanoantenna feedgap to be >2000×, we demonstrate consistency with the observed enhancement of the nonlinear signal. Complete switching off of the nonlinear response of such metamorphic nanoantennas with a degree of polarization >99% indicates their potential for novel, nonlinear all-optical devices. Furthermore, we envision the controlled, laser-induced modification of plasmonic nanoantennas may provide a promising route to realize antennas with even higher field enhancements and, moreover, might enable deterministic quantum plasmonic experiments that require sub-nanometer-sized feedgaps.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Self-optimization of plasmonic nanoantennas in strong femtosecond fields

Liping Shi, Bianca Iwan, Rana Nicolas, Quentin Ripault, Jose R. C. Andrade, Seunghwoi Han, Hyunwoong Kim, Willem Boutu, Dominik Franz, Torsten Heidenblut, Carsten Reinhardt, Bert Bastiaens, Tamas Nagy, Ihar Babushkin, Uwe Morgner, Seung-Woo Kim, Günter Steinmeyer, Hamed Merdji, and Milutin Kovacev
Optica 4(9) 1038-1043 (2017)

Plasmonic nanoantenna-dielectric nanocavity hybrids for ultrahigh local electric field enhancement

Yan-Hui Deng, Zhong-Jian Yang, and Jun He
Opt. Express 26(24) 31116-31128 (2018)

Nested plasmonic resonances: extraordinary enhancement of linear and nonlinear interactions

Domenico de Ceglia, Maria Antonietta Vincenti, Neset Akozbek, Mark J. Bloemer, and Michael Scalora
Opt. Express 25(4) 3980-3990 (2017)

References

  • View by:
  • |
  • |
  • |

  1. S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007).
  2. D. K. Gramotnev and S. I. Bozhevolnyi, “Nanofocusing of electromagnetic radiation,” Nat. Photonics 8, 13–22 (2013).
    [Crossref]
  3. J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9, 193–204 (2010).
    [Crossref]
  4. M. Kauranen and A. Zayats, “Nonlinear plasmonics,” Nat. Photonics 6, 737–748 (2012).
    [Crossref]
  5. P. Mühlschlegel, H. Eisler, O. Martin, B. Hecht, and D. Pohl, “Resonant optical antennas,” Science 308, 1607–1609 (2005).
    [Crossref]
  6. P. Schuck, D. Fromm, A. Sundaramurthy, G. Kino, and W. Moerner, “Improving the mismatch between light and nanoscale objects with gold bowtie nanoantennas,” Phys. Rev. Lett. 94, 017402 (2005).
    [Crossref]
  7. H. Fischer and O. J. Martin, “Engineering the optical response of plasmonic nanoantennas,” Opt. Express 16, 9144–9154 (2008).
    [Crossref]
  8. K. Ko, A. Kumar, K. Fung, R. Ambekar, G. Liu, N. Fang, and K. Toussaint, “Nonlinear optical response from arrays of Au bowtie nanoantennas,” Nano Lett. 11, 61–65 (2011).
    [Crossref]
  9. T. Hanke, G. Krauss, D. Träutlein, B. Wild, R. Bratschitsch, and A. Leitenstorfer, “Efficient nonlinear light emission of single gold optical antennas driven by few-cycle near-infrared pulses,” Phys. Rev. Lett. 103, 257404 (2009).
    [Crossref]
  10. H. Kollmann, X. Piao, M. Esmann, S. F. Becker, D. Hou, C. Huynh, L.-O. Kautschor, G. Bösker, H. Vieker, A. Beyer, A. Gölzhäuser, P. Namkyoo, R. Vogelgesang, M. Silies, and C. Lienau, “Toward plasmonics with nanometer precision: nonlinear optics of helium-ion milled gold nanoantennas,” Nano Lett. 14, 4778–4784 (2014).
    [Crossref]
  11. M. Agio and A. Alù, Optical Antennas (Cambridge University, 2013).
  12. P. Biagioni, B. Hecht, and J.-S. Huang, “Nanoantennas for visible and infrared radiation,” Rep. Prog. Phys. 75, 024402 (2012).
    [Crossref]
  13. K. F. MacDonald, Z. L. Sámson, M. I. Stockman, and N. I. Zheludev, “Ultrafast active plasmonics,” Nat. Photonics 3, 55–58 (2008).
    [Crossref]
  14. D. Brinks, M. Castro-Lopez, R. Hildner, and N. F. van Hulst, “Plasmonic antennas as design elements for coherent ultrafast nanophotonics,” Proc. Natl. Acad. Sci. USA 110, 18386–18390 (2013).
    [Crossref]
  15. M. Celebrano, X. Wu, M. Baselli, S. Großmann, P. Biagioni, A. Locatelli, C. De Angelis, G. Cerullo, R. Osellame, B. Hecht, L. Duò, F. Ciccacci, and M. Finazzi, “Mode matching in multiresonant plasmonic nanoantennas for enhanced second harmonic generation,” Nat. Nanotechnol. 10, 412–417 (2015).
    [Crossref]
  16. C. Hubert, L. Billot, P.-M. Adam, R. Bachelot, P. Royer, J. Grand, D. Gindre, K. Dorkenoo, and A. Fort, “Role of surface plasmon in second harmonic generation from gold nanorods,” Appl. Phys. Lett. 90, 181105 (2007).
    [Crossref]
  17. M. McMahon, R. Lopez, R. Haglund, E. Ray, and P. Bunton, “Second-harmonic generation from arrays of symmetric gold nanoparticles,” Phys. Rev. B 73, 041401 (2006).
    [Crossref]
  18. H. Aouani, M. Rahmani, M. Navarro-Ca, and S. A. Maier, “Third-harmonic-upconversion enhancement from a single semiconductor nanoparticle coupled to a plasmonic antenna,” Nat. Nanotechnol. 9, 290–294 (2014).
    [Crossref]
  19. T. Hanke, J. Cesar, V. Knittel, A. Trügler, U. Hohenester, A. Leitenstorfer, and R. Bratschitsch, “Tailoring spatiotemporal light confinement in single plasmonic nanoantennas,” Nano Lett. 12, 992–996 (2012).
    [Crossref]
  20. S. Kim, J. Jin, Y. Kim, I. Park, Y. Kim, and S. Kim, “High-harmonic generation by resonant plasmon field enhancement,” Nature 453, 757–760 (2008).
  21. M. R. Beversluis, A. Bouhelier, and L. Novotny, “Continuum generation from single gold nanostructures through near-field mediated intraband transitions,” Phys. Rev. B 68, 115433 (2003).
    [Crossref]
  22. P. Biagioni, M. Celebrano, M. Savoini, G. Grancini, D. Brida, S. Mátéfi-Tempfli, M. Mátéfi-Tempfli, L. Duò, B. Hecht, G. Cerullo, and M. Finazzi, “Dependence of the two-photon photoluminescence yield of gold nanostructures on the laser pulse duration,” Phys. Rev. B 80, 045411 (2009).
    [Crossref]
  23. A. Bouhelier, R. Bachelot, G. Lerondel, S. Kostcheev, P. Royer, and G. Wiederrecht, “Surface plasmon characteristics of tunable photoluminescence in single gold nanorods,” Phys. Rev. Lett. 95, 267405 (2005).
    [Crossref]
  24. P. Biagioni, D. Brida, J.-S. Huang, J. Kern, L. Duò, B. Hecht, M. Finazzi, and G. Cerullo, “Dynamics of four-photon photoluminescence in gold nanoantennas,” Nano Lett. 12, 2941–2947 (2012).
    [Crossref]
  25. M. Danckwerts and L. Novotny, “Optical frequency mixing at coupled gold nanoparticles,” Phys. Rev. Lett. 98, 026104 (2007).
    [Crossref]
  26. O. Marti, H. Bielefeldt, B. Hecht, S. Herminghaus, P. Leiderer, and J. Mlynek, “Near-field optical measurement of the surface plasmon field,” Opt. Commun. 96, 225–228 (1993).
    [Crossref]
  27. V. Knittel, M. Fischer, T. de Roo, S. Mecking, A. Leitenstorfer, and D. Brida, “Nonlinear photoluminescence spectrum of single gold nanostructures,” ACS Nano 9, 894–900 (2015).
    [Crossref]
  28. H. Park, A. K. L. Lim, A. P. Alivisatos, J. Park, and P. L. McEuen, “Fabrication of metallic electrodes with nanometer separation by electromigration,” Appl. Phys. Lett. 75, 301 (1999).
    [Crossref]
  29. C. M. Aguirre, C. E. Moran, J. F. Young, and N. J. Halas, “Laser-induced reshaping of metallodielectric nanoshells under femtosecond and nanosecond plasmon resonant illumination,” J. Phys. Chem. B 108, 7040–7045 (2004).
    [Crossref]
  30. J. Wang, Y. Chen, X. Chen, J. Hao, M. Yan, and M. Qiu, “Photothermal reshaping of gold nanoparticles in a plasmonic absorber,” Opt. Express 19, 14726–14734 (2011).
    [Crossref]
  31. X. Zhu, C. Vannahme, E. Højlund-Nielsen, N. A. Mortensen, and A. Kristensen, “Plasmonic colour laser printing,” Nat. Nanotechnol. 11, 325–329 (2015).
    [Crossref]
  32. M. S. Tame, K. R. McEnery, K. Özdemir, J. Lee, S. A. Maier, and M. S. Kim, “Quantum plasmonics,” Nat. Phys. 9, 329–340 (2013).
    [Crossref]
  33. M. Kaniber, K. Schraml, A. Regler, J. Bartl, G. Glashagen, F. Flassig, J. Wierzbowski, and J. J. Finley, “Surface plasmon resonance spectroscopy of single bowtie nano-antennas using a differential reflectivity method,” Sci. Rep. 6, 23203 (2016).
    [Crossref]
  34. D. Fromm, A. Sundaramurthy, P. Schuck, G. Kino, and W. E. Moerner, “Gap-dependent optical coupling of single bowtie nanoantennas resonant in the visible,” Nano Lett. 4, 957–961 (2004).
    [Crossref]
  35. A. Sundaramurthy, K. B. Crozier, G. S. Kino, D. P. Fromm, P. J. Schuck, and W. E. Moerner, “Field enhancement and gap-dependent resonance in a system of two opposing tip-to-tip Au nanotriangles,” Phys. Rev. B 72, 1–6 (2005).
    [Crossref]
  36. K. Schraml, M. Spiegl, M. Kammerlocher, G. Bracher, J. Bartl, T. Campbell, J. Finley, and M. Kaniber, “Optical properties and interparticle coupling of plasmonic bowtie nanoantennas on a semiconducting substrate,” Phys. Rev. B 90, 035435 (2014).
    [Crossref]
  37. Lumerical Solutions, Inc., 2013, http://www.lumerical.com/tcad-products/fdtd/ .
  38. O. M. Maragò, P. H. Jones, P. G. Gucciardi, G. Volpe, and A. C. Ferrari, “Optical trapping and manipulation of nanostructures,” Nat. Nanotechnol. 8, 807–819 (2013).
    [Crossref]
  39. F. Wen, Y. Zhang, S. Gottheim, N. S. King, Y. Zhang, P. Nordlander, and N. J. Halas, “Charge transfer plasmons: optical frequency conductances and tunable infrared resonances,” ACS Nano 9, 6428–6435 (2015).
    [Crossref]
  40. A. L. Koh, K. Bao, I. Khan, W. E. Smith, G. Kothleitner, P. Nordlander, S. A. Maier, and D. W. McComb, “Electron energy-loss spectroscopy (EELS) of surface plasmons in single silver nanoparticles and dimers: influence of beam damage and mapping of dark modes,” ACS Nano 3, 3015–3022 (2009).
    [Crossref]
  41. A. L. Koh, A. I. Fernández-Domínguez, D. W. McComb, S. A. Maier, and J. K. Yang, “High-resolution mapping of electron-beam-excited plasmon modes in lithographically defined gold nanostructures,” Nano Lett. 11, 1323–1330 (2011).
    [Crossref]
  42. P. Nordlander, C. Oubre, E. Prodan, K. Li, and I. Stockman, “Plasmon hybridization in nanoparticle dimers,” Nano Lett. 4, 899–903 (2004).
    [Crossref]
  43. D. Marinica, A. Kazansky, P. Nordlander, J. Aizpurua, and A. G. Borisov, “Quantum plasmonics: nonlinear effects in the field enhancement of a plasmonic nanoparticle dimer,” Nano Lett. 12, 1333–1339 (2012).
    [Crossref]
  44. J. A. Scholl, A. L. Koh, and J. A. Dionne, “Quantum plasmon resonances of individual metallic nanoparticles,” Nature 483, 421–427 (2012).
  45. K.-P. Chen, V. P. Drachev, J. D. Borneman, A. V. Kildishev, and V. M. Shalaev, “Drude relaxation rate in grained gold nanoantennas,” Nano Lett. 10, 916–922 (2010).
    [Crossref]
  46. N. Liu, F. Wen, Y. Zhao, Y. Wang, P. Nordlander, N. J. Halas, and A. Aluì, “Individual nanoantennas loaded with three-dimensional optical nanocircuits,” Nano Lett. 13, 142–147 (2013).
    [Crossref]
  47. T. Schumacher, K. Kratzer, D. Molnar, M. Hentschel, H. Giessen, and M. Lippitz, “Nanoantenna-enhanced ultrafast nonlinear spectroscopy of a single gold nanoparticle,” Nat. Commun. 2, 333 (2011).
    [Crossref]
  48. R. Esteban, A. G. Borisov, P. Nordlander, and J. Aizpurua, “Bridging quantum and classical plasmonics with a quantum-corrected model,” Nat. Commun. 3, 825 (2012).
    [Crossref]
  49. J. C. Prangsma, J. Kern, A. G. Knapp, S. Grossmann, M. Emmerling, M. Kamp, and B. Hecht, “Electrically connected resonant optical antennas,” Nano Lett. 12, 3915–3919 (2012).
    [Crossref]
  50. K. J. Savage, M. M. Hawkeye, R. Esteban, A. G. Borisov, J. Aizpurua, and J. J. Baumberg, “Revealing the quantum regime in tunnelling plasmonics,” Nature 491, 574–577 (2012).
  51. A. Fiore, V. Berger, E. Rosencher, P. Bravetti, and J. Nagle, “Phase matching using an isotropic nonlinear optical material,” Nature 391, 463–466 (1998).
  52. R. J. Pressley, Handbook of Lasers (Chemical Rubber, 1971).
  53. M. L. Trolle, G. Seifert, and T. G. Pedersen, “Theory of excitonic second-harmonic generation in monolayer MoS2,” Phys. Rev. B 89, 1–8 (2014).
    [Crossref]
  54. D. R. Ward, N. K. Grady, C. S. Levin, N. J. Halas, Y. Wu, P. Nordlander, and D. Natelson, “Electromigrated nanoscale gaps for surface-enhanced Raman spectroscopy,” Nano Lett. 7, 1396–1400 (2007).
    [Crossref]
  55. A. Stolz, J. Berthelot, M. M. Mennemanteuil, G. Colas Des Francs, L. Markey, V. Meunier, and A. Bouhelier, “Nonlinear photon-assisted tunneling transport in optical gap antennas,” Nano Lett. 14, 2330–2338 (2014).
    [Crossref]

2016 (1)

M. Kaniber, K. Schraml, A. Regler, J. Bartl, G. Glashagen, F. Flassig, J. Wierzbowski, and J. J. Finley, “Surface plasmon resonance spectroscopy of single bowtie nano-antennas using a differential reflectivity method,” Sci. Rep. 6, 23203 (2016).
[Crossref]

2015 (4)

X. Zhu, C. Vannahme, E. Højlund-Nielsen, N. A. Mortensen, and A. Kristensen, “Plasmonic colour laser printing,” Nat. Nanotechnol. 11, 325–329 (2015).
[Crossref]

F. Wen, Y. Zhang, S. Gottheim, N. S. King, Y. Zhang, P. Nordlander, and N. J. Halas, “Charge transfer plasmons: optical frequency conductances and tunable infrared resonances,” ACS Nano 9, 6428–6435 (2015).
[Crossref]

V. Knittel, M. Fischer, T. de Roo, S. Mecking, A. Leitenstorfer, and D. Brida, “Nonlinear photoluminescence spectrum of single gold nanostructures,” ACS Nano 9, 894–900 (2015).
[Crossref]

M. Celebrano, X. Wu, M. Baselli, S. Großmann, P. Biagioni, A. Locatelli, C. De Angelis, G. Cerullo, R. Osellame, B. Hecht, L. Duò, F. Ciccacci, and M. Finazzi, “Mode matching in multiresonant plasmonic nanoantennas for enhanced second harmonic generation,” Nat. Nanotechnol. 10, 412–417 (2015).
[Crossref]

2014 (5)

H. Aouani, M. Rahmani, M. Navarro-Ca, and S. A. Maier, “Third-harmonic-upconversion enhancement from a single semiconductor nanoparticle coupled to a plasmonic antenna,” Nat. Nanotechnol. 9, 290–294 (2014).
[Crossref]

H. Kollmann, X. Piao, M. Esmann, S. F. Becker, D. Hou, C. Huynh, L.-O. Kautschor, G. Bösker, H. Vieker, A. Beyer, A. Gölzhäuser, P. Namkyoo, R. Vogelgesang, M. Silies, and C. Lienau, “Toward plasmonics with nanometer precision: nonlinear optics of helium-ion milled gold nanoantennas,” Nano Lett. 14, 4778–4784 (2014).
[Crossref]

K. Schraml, M. Spiegl, M. Kammerlocher, G. Bracher, J. Bartl, T. Campbell, J. Finley, and M. Kaniber, “Optical properties and interparticle coupling of plasmonic bowtie nanoantennas on a semiconducting substrate,” Phys. Rev. B 90, 035435 (2014).
[Crossref]

M. L. Trolle, G. Seifert, and T. G. Pedersen, “Theory of excitonic second-harmonic generation in monolayer MoS2,” Phys. Rev. B 89, 1–8 (2014).
[Crossref]

A. Stolz, J. Berthelot, M. M. Mennemanteuil, G. Colas Des Francs, L. Markey, V. Meunier, and A. Bouhelier, “Nonlinear photon-assisted tunneling transport in optical gap antennas,” Nano Lett. 14, 2330–2338 (2014).
[Crossref]

2013 (5)

N. Liu, F. Wen, Y. Zhao, Y. Wang, P. Nordlander, N. J. Halas, and A. Aluì, “Individual nanoantennas loaded with three-dimensional optical nanocircuits,” Nano Lett. 13, 142–147 (2013).
[Crossref]

O. M. Maragò, P. H. Jones, P. G. Gucciardi, G. Volpe, and A. C. Ferrari, “Optical trapping and manipulation of nanostructures,” Nat. Nanotechnol. 8, 807–819 (2013).
[Crossref]

M. S. Tame, K. R. McEnery, K. Özdemir, J. Lee, S. A. Maier, and M. S. Kim, “Quantum plasmonics,” Nat. Phys. 9, 329–340 (2013).
[Crossref]

D. K. Gramotnev and S. I. Bozhevolnyi, “Nanofocusing of electromagnetic radiation,” Nat. Photonics 8, 13–22 (2013).
[Crossref]

D. Brinks, M. Castro-Lopez, R. Hildner, and N. F. van Hulst, “Plasmonic antennas as design elements for coherent ultrafast nanophotonics,” Proc. Natl. Acad. Sci. USA 110, 18386–18390 (2013).
[Crossref]

2012 (9)

T. Hanke, J. Cesar, V. Knittel, A. Trügler, U. Hohenester, A. Leitenstorfer, and R. Bratschitsch, “Tailoring spatiotemporal light confinement in single plasmonic nanoantennas,” Nano Lett. 12, 992–996 (2012).
[Crossref]

M. Kauranen and A. Zayats, “Nonlinear plasmonics,” Nat. Photonics 6, 737–748 (2012).
[Crossref]

P. Biagioni, B. Hecht, and J.-S. Huang, “Nanoantennas for visible and infrared radiation,” Rep. Prog. Phys. 75, 024402 (2012).
[Crossref]

P. Biagioni, D. Brida, J.-S. Huang, J. Kern, L. Duò, B. Hecht, M. Finazzi, and G. Cerullo, “Dynamics of four-photon photoluminescence in gold nanoantennas,” Nano Lett. 12, 2941–2947 (2012).
[Crossref]

D. Marinica, A. Kazansky, P. Nordlander, J. Aizpurua, and A. G. Borisov, “Quantum plasmonics: nonlinear effects in the field enhancement of a plasmonic nanoparticle dimer,” Nano Lett. 12, 1333–1339 (2012).
[Crossref]

J. A. Scholl, A. L. Koh, and J. A. Dionne, “Quantum plasmon resonances of individual metallic nanoparticles,” Nature 483, 421–427 (2012).

R. Esteban, A. G. Borisov, P. Nordlander, and J. Aizpurua, “Bridging quantum and classical plasmonics with a quantum-corrected model,” Nat. Commun. 3, 825 (2012).
[Crossref]

J. C. Prangsma, J. Kern, A. G. Knapp, S. Grossmann, M. Emmerling, M. Kamp, and B. Hecht, “Electrically connected resonant optical antennas,” Nano Lett. 12, 3915–3919 (2012).
[Crossref]

K. J. Savage, M. M. Hawkeye, R. Esteban, A. G. Borisov, J. Aizpurua, and J. J. Baumberg, “Revealing the quantum regime in tunnelling plasmonics,” Nature 491, 574–577 (2012).

2011 (4)

A. L. Koh, A. I. Fernández-Domínguez, D. W. McComb, S. A. Maier, and J. K. Yang, “High-resolution mapping of electron-beam-excited plasmon modes in lithographically defined gold nanostructures,” Nano Lett. 11, 1323–1330 (2011).
[Crossref]

T. Schumacher, K. Kratzer, D. Molnar, M. Hentschel, H. Giessen, and M. Lippitz, “Nanoantenna-enhanced ultrafast nonlinear spectroscopy of a single gold nanoparticle,” Nat. Commun. 2, 333 (2011).
[Crossref]

J. Wang, Y. Chen, X. Chen, J. Hao, M. Yan, and M. Qiu, “Photothermal reshaping of gold nanoparticles in a plasmonic absorber,” Opt. Express 19, 14726–14734 (2011).
[Crossref]

K. Ko, A. Kumar, K. Fung, R. Ambekar, G. Liu, N. Fang, and K. Toussaint, “Nonlinear optical response from arrays of Au bowtie nanoantennas,” Nano Lett. 11, 61–65 (2011).
[Crossref]

2010 (2)

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9, 193–204 (2010).
[Crossref]

K.-P. Chen, V. P. Drachev, J. D. Borneman, A. V. Kildishev, and V. M. Shalaev, “Drude relaxation rate in grained gold nanoantennas,” Nano Lett. 10, 916–922 (2010).
[Crossref]

2009 (3)

T. Hanke, G. Krauss, D. Träutlein, B. Wild, R. Bratschitsch, and A. Leitenstorfer, “Efficient nonlinear light emission of single gold optical antennas driven by few-cycle near-infrared pulses,” Phys. Rev. Lett. 103, 257404 (2009).
[Crossref]

P. Biagioni, M. Celebrano, M. Savoini, G. Grancini, D. Brida, S. Mátéfi-Tempfli, M. Mátéfi-Tempfli, L. Duò, B. Hecht, G. Cerullo, and M. Finazzi, “Dependence of the two-photon photoluminescence yield of gold nanostructures on the laser pulse duration,” Phys. Rev. B 80, 045411 (2009).
[Crossref]

A. L. Koh, K. Bao, I. Khan, W. E. Smith, G. Kothleitner, P. Nordlander, S. A. Maier, and D. W. McComb, “Electron energy-loss spectroscopy (EELS) of surface plasmons in single silver nanoparticles and dimers: influence of beam damage and mapping of dark modes,” ACS Nano 3, 3015–3022 (2009).
[Crossref]

2008 (3)

K. F. MacDonald, Z. L. Sámson, M. I. Stockman, and N. I. Zheludev, “Ultrafast active plasmonics,” Nat. Photonics 3, 55–58 (2008).
[Crossref]

S. Kim, J. Jin, Y. Kim, I. Park, Y. Kim, and S. Kim, “High-harmonic generation by resonant plasmon field enhancement,” Nature 453, 757–760 (2008).

H. Fischer and O. J. Martin, “Engineering the optical response of plasmonic nanoantennas,” Opt. Express 16, 9144–9154 (2008).
[Crossref]

2007 (3)

C. Hubert, L. Billot, P.-M. Adam, R. Bachelot, P. Royer, J. Grand, D. Gindre, K. Dorkenoo, and A. Fort, “Role of surface plasmon in second harmonic generation from gold nanorods,” Appl. Phys. Lett. 90, 181105 (2007).
[Crossref]

M. Danckwerts and L. Novotny, “Optical frequency mixing at coupled gold nanoparticles,” Phys. Rev. Lett. 98, 026104 (2007).
[Crossref]

D. R. Ward, N. K. Grady, C. S. Levin, N. J. Halas, Y. Wu, P. Nordlander, and D. Natelson, “Electromigrated nanoscale gaps for surface-enhanced Raman spectroscopy,” Nano Lett. 7, 1396–1400 (2007).
[Crossref]

2006 (1)

M. McMahon, R. Lopez, R. Haglund, E. Ray, and P. Bunton, “Second-harmonic generation from arrays of symmetric gold nanoparticles,” Phys. Rev. B 73, 041401 (2006).
[Crossref]

2005 (4)

P. Mühlschlegel, H. Eisler, O. Martin, B. Hecht, and D. Pohl, “Resonant optical antennas,” Science 308, 1607–1609 (2005).
[Crossref]

P. Schuck, D. Fromm, A. Sundaramurthy, G. Kino, and W. Moerner, “Improving the mismatch between light and nanoscale objects with gold bowtie nanoantennas,” Phys. Rev. Lett. 94, 017402 (2005).
[Crossref]

A. Bouhelier, R. Bachelot, G. Lerondel, S. Kostcheev, P. Royer, and G. Wiederrecht, “Surface plasmon characteristics of tunable photoluminescence in single gold nanorods,” Phys. Rev. Lett. 95, 267405 (2005).
[Crossref]

A. Sundaramurthy, K. B. Crozier, G. S. Kino, D. P. Fromm, P. J. Schuck, and W. E. Moerner, “Field enhancement and gap-dependent resonance in a system of two opposing tip-to-tip Au nanotriangles,” Phys. Rev. B 72, 1–6 (2005).
[Crossref]

2004 (3)

P. Nordlander, C. Oubre, E. Prodan, K. Li, and I. Stockman, “Plasmon hybridization in nanoparticle dimers,” Nano Lett. 4, 899–903 (2004).
[Crossref]

C. M. Aguirre, C. E. Moran, J. F. Young, and N. J. Halas, “Laser-induced reshaping of metallodielectric nanoshells under femtosecond and nanosecond plasmon resonant illumination,” J. Phys. Chem. B 108, 7040–7045 (2004).
[Crossref]

D. Fromm, A. Sundaramurthy, P. Schuck, G. Kino, and W. E. Moerner, “Gap-dependent optical coupling of single bowtie nanoantennas resonant in the visible,” Nano Lett. 4, 957–961 (2004).
[Crossref]

2003 (1)

M. R. Beversluis, A. Bouhelier, and L. Novotny, “Continuum generation from single gold nanostructures through near-field mediated intraband transitions,” Phys. Rev. B 68, 115433 (2003).
[Crossref]

1999 (1)

H. Park, A. K. L. Lim, A. P. Alivisatos, J. Park, and P. L. McEuen, “Fabrication of metallic electrodes with nanometer separation by electromigration,” Appl. Phys. Lett. 75, 301 (1999).
[Crossref]

1998 (1)

A. Fiore, V. Berger, E. Rosencher, P. Bravetti, and J. Nagle, “Phase matching using an isotropic nonlinear optical material,” Nature 391, 463–466 (1998).

1993 (1)

O. Marti, H. Bielefeldt, B. Hecht, S. Herminghaus, P. Leiderer, and J. Mlynek, “Near-field optical measurement of the surface plasmon field,” Opt. Commun. 96, 225–228 (1993).
[Crossref]

Adam, P.-M.

C. Hubert, L. Billot, P.-M. Adam, R. Bachelot, P. Royer, J. Grand, D. Gindre, K. Dorkenoo, and A. Fort, “Role of surface plasmon in second harmonic generation from gold nanorods,” Appl. Phys. Lett. 90, 181105 (2007).
[Crossref]

Agio, M.

M. Agio and A. Alù, Optical Antennas (Cambridge University, 2013).

Aguirre, C. M.

C. M. Aguirre, C. E. Moran, J. F. Young, and N. J. Halas, “Laser-induced reshaping of metallodielectric nanoshells under femtosecond and nanosecond plasmon resonant illumination,” J. Phys. Chem. B 108, 7040–7045 (2004).
[Crossref]

Aizpurua, J.

D. Marinica, A. Kazansky, P. Nordlander, J. Aizpurua, and A. G. Borisov, “Quantum plasmonics: nonlinear effects in the field enhancement of a plasmonic nanoparticle dimer,” Nano Lett. 12, 1333–1339 (2012).
[Crossref]

R. Esteban, A. G. Borisov, P. Nordlander, and J. Aizpurua, “Bridging quantum and classical plasmonics with a quantum-corrected model,” Nat. Commun. 3, 825 (2012).
[Crossref]

K. J. Savage, M. M. Hawkeye, R. Esteban, A. G. Borisov, J. Aizpurua, and J. J. Baumberg, “Revealing the quantum regime in tunnelling plasmonics,” Nature 491, 574–577 (2012).

Alivisatos, A. P.

H. Park, A. K. L. Lim, A. P. Alivisatos, J. Park, and P. L. McEuen, “Fabrication of metallic electrodes with nanometer separation by electromigration,” Appl. Phys. Lett. 75, 301 (1999).
[Crossref]

Alù, A.

M. Agio and A. Alù, Optical Antennas (Cambridge University, 2013).

Aluì, A.

N. Liu, F. Wen, Y. Zhao, Y. Wang, P. Nordlander, N. J. Halas, and A. Aluì, “Individual nanoantennas loaded with three-dimensional optical nanocircuits,” Nano Lett. 13, 142–147 (2013).
[Crossref]

Ambekar, R.

K. Ko, A. Kumar, K. Fung, R. Ambekar, G. Liu, N. Fang, and K. Toussaint, “Nonlinear optical response from arrays of Au bowtie nanoantennas,” Nano Lett. 11, 61–65 (2011).
[Crossref]

Aouani, H.

H. Aouani, M. Rahmani, M. Navarro-Ca, and S. A. Maier, “Third-harmonic-upconversion enhancement from a single semiconductor nanoparticle coupled to a plasmonic antenna,” Nat. Nanotechnol. 9, 290–294 (2014).
[Crossref]

Bachelot, R.

C. Hubert, L. Billot, P.-M. Adam, R. Bachelot, P. Royer, J. Grand, D. Gindre, K. Dorkenoo, and A. Fort, “Role of surface plasmon in second harmonic generation from gold nanorods,” Appl. Phys. Lett. 90, 181105 (2007).
[Crossref]

A. Bouhelier, R. Bachelot, G. Lerondel, S. Kostcheev, P. Royer, and G. Wiederrecht, “Surface plasmon characteristics of tunable photoluminescence in single gold nanorods,” Phys. Rev. Lett. 95, 267405 (2005).
[Crossref]

Bao, K.

A. L. Koh, K. Bao, I. Khan, W. E. Smith, G. Kothleitner, P. Nordlander, S. A. Maier, and D. W. McComb, “Electron energy-loss spectroscopy (EELS) of surface plasmons in single silver nanoparticles and dimers: influence of beam damage and mapping of dark modes,” ACS Nano 3, 3015–3022 (2009).
[Crossref]

Barnard, E. S.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9, 193–204 (2010).
[Crossref]

Bartl, J.

M. Kaniber, K. Schraml, A. Regler, J. Bartl, G. Glashagen, F. Flassig, J. Wierzbowski, and J. J. Finley, “Surface plasmon resonance spectroscopy of single bowtie nano-antennas using a differential reflectivity method,” Sci. Rep. 6, 23203 (2016).
[Crossref]

K. Schraml, M. Spiegl, M. Kammerlocher, G. Bracher, J. Bartl, T. Campbell, J. Finley, and M. Kaniber, “Optical properties and interparticle coupling of plasmonic bowtie nanoantennas on a semiconducting substrate,” Phys. Rev. B 90, 035435 (2014).
[Crossref]

Baselli, M.

M. Celebrano, X. Wu, M. Baselli, S. Großmann, P. Biagioni, A. Locatelli, C. De Angelis, G. Cerullo, R. Osellame, B. Hecht, L. Duò, F. Ciccacci, and M. Finazzi, “Mode matching in multiresonant plasmonic nanoantennas for enhanced second harmonic generation,” Nat. Nanotechnol. 10, 412–417 (2015).
[Crossref]

Baumberg, J. J.

K. J. Savage, M. M. Hawkeye, R. Esteban, A. G. Borisov, J. Aizpurua, and J. J. Baumberg, “Revealing the quantum regime in tunnelling plasmonics,” Nature 491, 574–577 (2012).

Becker, S. F.

H. Kollmann, X. Piao, M. Esmann, S. F. Becker, D. Hou, C. Huynh, L.-O. Kautschor, G. Bösker, H. Vieker, A. Beyer, A. Gölzhäuser, P. Namkyoo, R. Vogelgesang, M. Silies, and C. Lienau, “Toward plasmonics with nanometer precision: nonlinear optics of helium-ion milled gold nanoantennas,” Nano Lett. 14, 4778–4784 (2014).
[Crossref]

Berger, V.

A. Fiore, V. Berger, E. Rosencher, P. Bravetti, and J. Nagle, “Phase matching using an isotropic nonlinear optical material,” Nature 391, 463–466 (1998).

Berthelot, J.

A. Stolz, J. Berthelot, M. M. Mennemanteuil, G. Colas Des Francs, L. Markey, V. Meunier, and A. Bouhelier, “Nonlinear photon-assisted tunneling transport in optical gap antennas,” Nano Lett. 14, 2330–2338 (2014).
[Crossref]

Beversluis, M. R.

M. R. Beversluis, A. Bouhelier, and L. Novotny, “Continuum generation from single gold nanostructures through near-field mediated intraband transitions,” Phys. Rev. B 68, 115433 (2003).
[Crossref]

Beyer, A.

H. Kollmann, X. Piao, M. Esmann, S. F. Becker, D. Hou, C. Huynh, L.-O. Kautschor, G. Bösker, H. Vieker, A. Beyer, A. Gölzhäuser, P. Namkyoo, R. Vogelgesang, M. Silies, and C. Lienau, “Toward plasmonics with nanometer precision: nonlinear optics of helium-ion milled gold nanoantennas,” Nano Lett. 14, 4778–4784 (2014).
[Crossref]

Biagioni, P.

M. Celebrano, X. Wu, M. Baselli, S. Großmann, P. Biagioni, A. Locatelli, C. De Angelis, G. Cerullo, R. Osellame, B. Hecht, L. Duò, F. Ciccacci, and M. Finazzi, “Mode matching in multiresonant plasmonic nanoantennas for enhanced second harmonic generation,” Nat. Nanotechnol. 10, 412–417 (2015).
[Crossref]

P. Biagioni, B. Hecht, and J.-S. Huang, “Nanoantennas for visible and infrared radiation,” Rep. Prog. Phys. 75, 024402 (2012).
[Crossref]

P. Biagioni, D. Brida, J.-S. Huang, J. Kern, L. Duò, B. Hecht, M. Finazzi, and G. Cerullo, “Dynamics of four-photon photoluminescence in gold nanoantennas,” Nano Lett. 12, 2941–2947 (2012).
[Crossref]

P. Biagioni, M. Celebrano, M. Savoini, G. Grancini, D. Brida, S. Mátéfi-Tempfli, M. Mátéfi-Tempfli, L. Duò, B. Hecht, G. Cerullo, and M. Finazzi, “Dependence of the two-photon photoluminescence yield of gold nanostructures on the laser pulse duration,” Phys. Rev. B 80, 045411 (2009).
[Crossref]

Bielefeldt, H.

O. Marti, H. Bielefeldt, B. Hecht, S. Herminghaus, P. Leiderer, and J. Mlynek, “Near-field optical measurement of the surface plasmon field,” Opt. Commun. 96, 225–228 (1993).
[Crossref]

Billot, L.

C. Hubert, L. Billot, P.-M. Adam, R. Bachelot, P. Royer, J. Grand, D. Gindre, K. Dorkenoo, and A. Fort, “Role of surface plasmon in second harmonic generation from gold nanorods,” Appl. Phys. Lett. 90, 181105 (2007).
[Crossref]

Borisov, A. G.

K. J. Savage, M. M. Hawkeye, R. Esteban, A. G. Borisov, J. Aizpurua, and J. J. Baumberg, “Revealing the quantum regime in tunnelling plasmonics,” Nature 491, 574–577 (2012).

R. Esteban, A. G. Borisov, P. Nordlander, and J. Aizpurua, “Bridging quantum and classical plasmonics with a quantum-corrected model,” Nat. Commun. 3, 825 (2012).
[Crossref]

D. Marinica, A. Kazansky, P. Nordlander, J. Aizpurua, and A. G. Borisov, “Quantum plasmonics: nonlinear effects in the field enhancement of a plasmonic nanoparticle dimer,” Nano Lett. 12, 1333–1339 (2012).
[Crossref]

Borneman, J. D.

K.-P. Chen, V. P. Drachev, J. D. Borneman, A. V. Kildishev, and V. M. Shalaev, “Drude relaxation rate in grained gold nanoantennas,” Nano Lett. 10, 916–922 (2010).
[Crossref]

Bösker, G.

H. Kollmann, X. Piao, M. Esmann, S. F. Becker, D. Hou, C. Huynh, L.-O. Kautschor, G. Bösker, H. Vieker, A. Beyer, A. Gölzhäuser, P. Namkyoo, R. Vogelgesang, M. Silies, and C. Lienau, “Toward plasmonics with nanometer precision: nonlinear optics of helium-ion milled gold nanoantennas,” Nano Lett. 14, 4778–4784 (2014).
[Crossref]

Bouhelier, A.

A. Stolz, J. Berthelot, M. M. Mennemanteuil, G. Colas Des Francs, L. Markey, V. Meunier, and A. Bouhelier, “Nonlinear photon-assisted tunneling transport in optical gap antennas,” Nano Lett. 14, 2330–2338 (2014).
[Crossref]

A. Bouhelier, R. Bachelot, G. Lerondel, S. Kostcheev, P. Royer, and G. Wiederrecht, “Surface plasmon characteristics of tunable photoluminescence in single gold nanorods,” Phys. Rev. Lett. 95, 267405 (2005).
[Crossref]

M. R. Beversluis, A. Bouhelier, and L. Novotny, “Continuum generation from single gold nanostructures through near-field mediated intraband transitions,” Phys. Rev. B 68, 115433 (2003).
[Crossref]

Bozhevolnyi, S. I.

D. K. Gramotnev and S. I. Bozhevolnyi, “Nanofocusing of electromagnetic radiation,” Nat. Photonics 8, 13–22 (2013).
[Crossref]

Bracher, G.

K. Schraml, M. Spiegl, M. Kammerlocher, G. Bracher, J. Bartl, T. Campbell, J. Finley, and M. Kaniber, “Optical properties and interparticle coupling of plasmonic bowtie nanoantennas on a semiconducting substrate,” Phys. Rev. B 90, 035435 (2014).
[Crossref]

Bratschitsch, R.

T. Hanke, J. Cesar, V. Knittel, A. Trügler, U. Hohenester, A. Leitenstorfer, and R. Bratschitsch, “Tailoring spatiotemporal light confinement in single plasmonic nanoantennas,” Nano Lett. 12, 992–996 (2012).
[Crossref]

T. Hanke, G. Krauss, D. Träutlein, B. Wild, R. Bratschitsch, and A. Leitenstorfer, “Efficient nonlinear light emission of single gold optical antennas driven by few-cycle near-infrared pulses,” Phys. Rev. Lett. 103, 257404 (2009).
[Crossref]

Bravetti, P.

A. Fiore, V. Berger, E. Rosencher, P. Bravetti, and J. Nagle, “Phase matching using an isotropic nonlinear optical material,” Nature 391, 463–466 (1998).

Brida, D.

V. Knittel, M. Fischer, T. de Roo, S. Mecking, A. Leitenstorfer, and D. Brida, “Nonlinear photoluminescence spectrum of single gold nanostructures,” ACS Nano 9, 894–900 (2015).
[Crossref]

P. Biagioni, D. Brida, J.-S. Huang, J. Kern, L. Duò, B. Hecht, M. Finazzi, and G. Cerullo, “Dynamics of four-photon photoluminescence in gold nanoantennas,” Nano Lett. 12, 2941–2947 (2012).
[Crossref]

P. Biagioni, M. Celebrano, M. Savoini, G. Grancini, D. Brida, S. Mátéfi-Tempfli, M. Mátéfi-Tempfli, L. Duò, B. Hecht, G. Cerullo, and M. Finazzi, “Dependence of the two-photon photoluminescence yield of gold nanostructures on the laser pulse duration,” Phys. Rev. B 80, 045411 (2009).
[Crossref]

Brinks, D.

D. Brinks, M. Castro-Lopez, R. Hildner, and N. F. van Hulst, “Plasmonic antennas as design elements for coherent ultrafast nanophotonics,” Proc. Natl. Acad. Sci. USA 110, 18386–18390 (2013).
[Crossref]

Brongersma, M. L.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9, 193–204 (2010).
[Crossref]

Bunton, P.

M. McMahon, R. Lopez, R. Haglund, E. Ray, and P. Bunton, “Second-harmonic generation from arrays of symmetric gold nanoparticles,” Phys. Rev. B 73, 041401 (2006).
[Crossref]

Cai, W.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9, 193–204 (2010).
[Crossref]

Campbell, T.

K. Schraml, M. Spiegl, M. Kammerlocher, G. Bracher, J. Bartl, T. Campbell, J. Finley, and M. Kaniber, “Optical properties and interparticle coupling of plasmonic bowtie nanoantennas on a semiconducting substrate,” Phys. Rev. B 90, 035435 (2014).
[Crossref]

Castro-Lopez, M.

D. Brinks, M. Castro-Lopez, R. Hildner, and N. F. van Hulst, “Plasmonic antennas as design elements for coherent ultrafast nanophotonics,” Proc. Natl. Acad. Sci. USA 110, 18386–18390 (2013).
[Crossref]

Celebrano, M.

M. Celebrano, X. Wu, M. Baselli, S. Großmann, P. Biagioni, A. Locatelli, C. De Angelis, G. Cerullo, R. Osellame, B. Hecht, L. Duò, F. Ciccacci, and M. Finazzi, “Mode matching in multiresonant plasmonic nanoantennas for enhanced second harmonic generation,” Nat. Nanotechnol. 10, 412–417 (2015).
[Crossref]

P. Biagioni, M. Celebrano, M. Savoini, G. Grancini, D. Brida, S. Mátéfi-Tempfli, M. Mátéfi-Tempfli, L. Duò, B. Hecht, G. Cerullo, and M. Finazzi, “Dependence of the two-photon photoluminescence yield of gold nanostructures on the laser pulse duration,” Phys. Rev. B 80, 045411 (2009).
[Crossref]

Cerullo, G.

M. Celebrano, X. Wu, M. Baselli, S. Großmann, P. Biagioni, A. Locatelli, C. De Angelis, G. Cerullo, R. Osellame, B. Hecht, L. Duò, F. Ciccacci, and M. Finazzi, “Mode matching in multiresonant plasmonic nanoantennas for enhanced second harmonic generation,” Nat. Nanotechnol. 10, 412–417 (2015).
[Crossref]

P. Biagioni, D. Brida, J.-S. Huang, J. Kern, L. Duò, B. Hecht, M. Finazzi, and G. Cerullo, “Dynamics of four-photon photoluminescence in gold nanoantennas,” Nano Lett. 12, 2941–2947 (2012).
[Crossref]

P. Biagioni, M. Celebrano, M. Savoini, G. Grancini, D. Brida, S. Mátéfi-Tempfli, M. Mátéfi-Tempfli, L. Duò, B. Hecht, G. Cerullo, and M. Finazzi, “Dependence of the two-photon photoluminescence yield of gold nanostructures on the laser pulse duration,” Phys. Rev. B 80, 045411 (2009).
[Crossref]

Cesar, J.

T. Hanke, J. Cesar, V. Knittel, A. Trügler, U. Hohenester, A. Leitenstorfer, and R. Bratschitsch, “Tailoring spatiotemporal light confinement in single plasmonic nanoantennas,” Nano Lett. 12, 992–996 (2012).
[Crossref]

Chen, K.-P.

K.-P. Chen, V. P. Drachev, J. D. Borneman, A. V. Kildishev, and V. M. Shalaev, “Drude relaxation rate in grained gold nanoantennas,” Nano Lett. 10, 916–922 (2010).
[Crossref]

Chen, X.

Chen, Y.

Ciccacci, F.

M. Celebrano, X. Wu, M. Baselli, S. Großmann, P. Biagioni, A. Locatelli, C. De Angelis, G. Cerullo, R. Osellame, B. Hecht, L. Duò, F. Ciccacci, and M. Finazzi, “Mode matching in multiresonant plasmonic nanoantennas for enhanced second harmonic generation,” Nat. Nanotechnol. 10, 412–417 (2015).
[Crossref]

Colas Des Francs, G.

A. Stolz, J. Berthelot, M. M. Mennemanteuil, G. Colas Des Francs, L. Markey, V. Meunier, and A. Bouhelier, “Nonlinear photon-assisted tunneling transport in optical gap antennas,” Nano Lett. 14, 2330–2338 (2014).
[Crossref]

Crozier, K. B.

A. Sundaramurthy, K. B. Crozier, G. S. Kino, D. P. Fromm, P. J. Schuck, and W. E. Moerner, “Field enhancement and gap-dependent resonance in a system of two opposing tip-to-tip Au nanotriangles,” Phys. Rev. B 72, 1–6 (2005).
[Crossref]

Danckwerts, M.

M. Danckwerts and L. Novotny, “Optical frequency mixing at coupled gold nanoparticles,” Phys. Rev. Lett. 98, 026104 (2007).
[Crossref]

De Angelis, C.

M. Celebrano, X. Wu, M. Baselli, S. Großmann, P. Biagioni, A. Locatelli, C. De Angelis, G. Cerullo, R. Osellame, B. Hecht, L. Duò, F. Ciccacci, and M. Finazzi, “Mode matching in multiresonant plasmonic nanoantennas for enhanced second harmonic generation,” Nat. Nanotechnol. 10, 412–417 (2015).
[Crossref]

de Roo, T.

V. Knittel, M. Fischer, T. de Roo, S. Mecking, A. Leitenstorfer, and D. Brida, “Nonlinear photoluminescence spectrum of single gold nanostructures,” ACS Nano 9, 894–900 (2015).
[Crossref]

Dionne, J. A.

J. A. Scholl, A. L. Koh, and J. A. Dionne, “Quantum plasmon resonances of individual metallic nanoparticles,” Nature 483, 421–427 (2012).

Dorkenoo, K.

C. Hubert, L. Billot, P.-M. Adam, R. Bachelot, P. Royer, J. Grand, D. Gindre, K. Dorkenoo, and A. Fort, “Role of surface plasmon in second harmonic generation from gold nanorods,” Appl. Phys. Lett. 90, 181105 (2007).
[Crossref]

Drachev, V. P.

K.-P. Chen, V. P. Drachev, J. D. Borneman, A. V. Kildishev, and V. M. Shalaev, “Drude relaxation rate in grained gold nanoantennas,” Nano Lett. 10, 916–922 (2010).
[Crossref]

Duò, L.

M. Celebrano, X. Wu, M. Baselli, S. Großmann, P. Biagioni, A. Locatelli, C. De Angelis, G. Cerullo, R. Osellame, B. Hecht, L. Duò, F. Ciccacci, and M. Finazzi, “Mode matching in multiresonant plasmonic nanoantennas for enhanced second harmonic generation,” Nat. Nanotechnol. 10, 412–417 (2015).
[Crossref]

P. Biagioni, D. Brida, J.-S. Huang, J. Kern, L. Duò, B. Hecht, M. Finazzi, and G. Cerullo, “Dynamics of four-photon photoluminescence in gold nanoantennas,” Nano Lett. 12, 2941–2947 (2012).
[Crossref]

P. Biagioni, M. Celebrano, M. Savoini, G. Grancini, D. Brida, S. Mátéfi-Tempfli, M. Mátéfi-Tempfli, L. Duò, B. Hecht, G. Cerullo, and M. Finazzi, “Dependence of the two-photon photoluminescence yield of gold nanostructures on the laser pulse duration,” Phys. Rev. B 80, 045411 (2009).
[Crossref]

Eisler, H.

P. Mühlschlegel, H. Eisler, O. Martin, B. Hecht, and D. Pohl, “Resonant optical antennas,” Science 308, 1607–1609 (2005).
[Crossref]

Emmerling, M.

J. C. Prangsma, J. Kern, A. G. Knapp, S. Grossmann, M. Emmerling, M. Kamp, and B. Hecht, “Electrically connected resonant optical antennas,” Nano Lett. 12, 3915–3919 (2012).
[Crossref]

Esmann, M.

H. Kollmann, X. Piao, M. Esmann, S. F. Becker, D. Hou, C. Huynh, L.-O. Kautschor, G. Bösker, H. Vieker, A. Beyer, A. Gölzhäuser, P. Namkyoo, R. Vogelgesang, M. Silies, and C. Lienau, “Toward plasmonics with nanometer precision: nonlinear optics of helium-ion milled gold nanoantennas,” Nano Lett. 14, 4778–4784 (2014).
[Crossref]

Esteban, R.

K. J. Savage, M. M. Hawkeye, R. Esteban, A. G. Borisov, J. Aizpurua, and J. J. Baumberg, “Revealing the quantum regime in tunnelling plasmonics,” Nature 491, 574–577 (2012).

R. Esteban, A. G. Borisov, P. Nordlander, and J. Aizpurua, “Bridging quantum and classical plasmonics with a quantum-corrected model,” Nat. Commun. 3, 825 (2012).
[Crossref]

Fang, N.

K. Ko, A. Kumar, K. Fung, R. Ambekar, G. Liu, N. Fang, and K. Toussaint, “Nonlinear optical response from arrays of Au bowtie nanoantennas,” Nano Lett. 11, 61–65 (2011).
[Crossref]

Fernández-Domínguez, A. I.

A. L. Koh, A. I. Fernández-Domínguez, D. W. McComb, S. A. Maier, and J. K. Yang, “High-resolution mapping of electron-beam-excited plasmon modes in lithographically defined gold nanostructures,” Nano Lett. 11, 1323–1330 (2011).
[Crossref]

Ferrari, A. C.

O. M. Maragò, P. H. Jones, P. G. Gucciardi, G. Volpe, and A. C. Ferrari, “Optical trapping and manipulation of nanostructures,” Nat. Nanotechnol. 8, 807–819 (2013).
[Crossref]

Finazzi, M.

M. Celebrano, X. Wu, M. Baselli, S. Großmann, P. Biagioni, A. Locatelli, C. De Angelis, G. Cerullo, R. Osellame, B. Hecht, L. Duò, F. Ciccacci, and M. Finazzi, “Mode matching in multiresonant plasmonic nanoantennas for enhanced second harmonic generation,” Nat. Nanotechnol. 10, 412–417 (2015).
[Crossref]

P. Biagioni, D. Brida, J.-S. Huang, J. Kern, L. Duò, B. Hecht, M. Finazzi, and G. Cerullo, “Dynamics of four-photon photoluminescence in gold nanoantennas,” Nano Lett. 12, 2941–2947 (2012).
[Crossref]

P. Biagioni, M. Celebrano, M. Savoini, G. Grancini, D. Brida, S. Mátéfi-Tempfli, M. Mátéfi-Tempfli, L. Duò, B. Hecht, G. Cerullo, and M. Finazzi, “Dependence of the two-photon photoluminescence yield of gold nanostructures on the laser pulse duration,” Phys. Rev. B 80, 045411 (2009).
[Crossref]

Finley, J.

K. Schraml, M. Spiegl, M. Kammerlocher, G. Bracher, J. Bartl, T. Campbell, J. Finley, and M. Kaniber, “Optical properties and interparticle coupling of plasmonic bowtie nanoantennas on a semiconducting substrate,” Phys. Rev. B 90, 035435 (2014).
[Crossref]

Finley, J. J.

M. Kaniber, K. Schraml, A. Regler, J. Bartl, G. Glashagen, F. Flassig, J. Wierzbowski, and J. J. Finley, “Surface plasmon resonance spectroscopy of single bowtie nano-antennas using a differential reflectivity method,” Sci. Rep. 6, 23203 (2016).
[Crossref]

Fiore, A.

A. Fiore, V. Berger, E. Rosencher, P. Bravetti, and J. Nagle, “Phase matching using an isotropic nonlinear optical material,” Nature 391, 463–466 (1998).

Fischer, H.

Fischer, M.

V. Knittel, M. Fischer, T. de Roo, S. Mecking, A. Leitenstorfer, and D. Brida, “Nonlinear photoluminescence spectrum of single gold nanostructures,” ACS Nano 9, 894–900 (2015).
[Crossref]

Flassig, F.

M. Kaniber, K. Schraml, A. Regler, J. Bartl, G. Glashagen, F. Flassig, J. Wierzbowski, and J. J. Finley, “Surface plasmon resonance spectroscopy of single bowtie nano-antennas using a differential reflectivity method,” Sci. Rep. 6, 23203 (2016).
[Crossref]

Fort, A.

C. Hubert, L. Billot, P.-M. Adam, R. Bachelot, P. Royer, J. Grand, D. Gindre, K. Dorkenoo, and A. Fort, “Role of surface plasmon in second harmonic generation from gold nanorods,” Appl. Phys. Lett. 90, 181105 (2007).
[Crossref]

Fromm, D.

P. Schuck, D. Fromm, A. Sundaramurthy, G. Kino, and W. Moerner, “Improving the mismatch between light and nanoscale objects with gold bowtie nanoantennas,” Phys. Rev. Lett. 94, 017402 (2005).
[Crossref]

D. Fromm, A. Sundaramurthy, P. Schuck, G. Kino, and W. E. Moerner, “Gap-dependent optical coupling of single bowtie nanoantennas resonant in the visible,” Nano Lett. 4, 957–961 (2004).
[Crossref]

Fromm, D. P.

A. Sundaramurthy, K. B. Crozier, G. S. Kino, D. P. Fromm, P. J. Schuck, and W. E. Moerner, “Field enhancement and gap-dependent resonance in a system of two opposing tip-to-tip Au nanotriangles,” Phys. Rev. B 72, 1–6 (2005).
[Crossref]

Fung, K.

K. Ko, A. Kumar, K. Fung, R. Ambekar, G. Liu, N. Fang, and K. Toussaint, “Nonlinear optical response from arrays of Au bowtie nanoantennas,” Nano Lett. 11, 61–65 (2011).
[Crossref]

Giessen, H.

T. Schumacher, K. Kratzer, D. Molnar, M. Hentschel, H. Giessen, and M. Lippitz, “Nanoantenna-enhanced ultrafast nonlinear spectroscopy of a single gold nanoparticle,” Nat. Commun. 2, 333 (2011).
[Crossref]

Gindre, D.

C. Hubert, L. Billot, P.-M. Adam, R. Bachelot, P. Royer, J. Grand, D. Gindre, K. Dorkenoo, and A. Fort, “Role of surface plasmon in second harmonic generation from gold nanorods,” Appl. Phys. Lett. 90, 181105 (2007).
[Crossref]

Glashagen, G.

M. Kaniber, K. Schraml, A. Regler, J. Bartl, G. Glashagen, F. Flassig, J. Wierzbowski, and J. J. Finley, “Surface plasmon resonance spectroscopy of single bowtie nano-antennas using a differential reflectivity method,” Sci. Rep. 6, 23203 (2016).
[Crossref]

Gölzhäuser, A.

H. Kollmann, X. Piao, M. Esmann, S. F. Becker, D. Hou, C. Huynh, L.-O. Kautschor, G. Bösker, H. Vieker, A. Beyer, A. Gölzhäuser, P. Namkyoo, R. Vogelgesang, M. Silies, and C. Lienau, “Toward plasmonics with nanometer precision: nonlinear optics of helium-ion milled gold nanoantennas,” Nano Lett. 14, 4778–4784 (2014).
[Crossref]

Gottheim, S.

F. Wen, Y. Zhang, S. Gottheim, N. S. King, Y. Zhang, P. Nordlander, and N. J. Halas, “Charge transfer plasmons: optical frequency conductances and tunable infrared resonances,” ACS Nano 9, 6428–6435 (2015).
[Crossref]

Grady, N. K.

D. R. Ward, N. K. Grady, C. S. Levin, N. J. Halas, Y. Wu, P. Nordlander, and D. Natelson, “Electromigrated nanoscale gaps for surface-enhanced Raman spectroscopy,” Nano Lett. 7, 1396–1400 (2007).
[Crossref]

Gramotnev, D. K.

D. K. Gramotnev and S. I. Bozhevolnyi, “Nanofocusing of electromagnetic radiation,” Nat. Photonics 8, 13–22 (2013).
[Crossref]

Grancini, G.

P. Biagioni, M. Celebrano, M. Savoini, G. Grancini, D. Brida, S. Mátéfi-Tempfli, M. Mátéfi-Tempfli, L. Duò, B. Hecht, G. Cerullo, and M. Finazzi, “Dependence of the two-photon photoluminescence yield of gold nanostructures on the laser pulse duration,” Phys. Rev. B 80, 045411 (2009).
[Crossref]

Grand, J.

C. Hubert, L. Billot, P.-M. Adam, R. Bachelot, P. Royer, J. Grand, D. Gindre, K. Dorkenoo, and A. Fort, “Role of surface plasmon in second harmonic generation from gold nanorods,” Appl. Phys. Lett. 90, 181105 (2007).
[Crossref]

Großmann, S.

M. Celebrano, X. Wu, M. Baselli, S. Großmann, P. Biagioni, A. Locatelli, C. De Angelis, G. Cerullo, R. Osellame, B. Hecht, L. Duò, F. Ciccacci, and M. Finazzi, “Mode matching in multiresonant plasmonic nanoantennas for enhanced second harmonic generation,” Nat. Nanotechnol. 10, 412–417 (2015).
[Crossref]

Grossmann, S.

J. C. Prangsma, J. Kern, A. G. Knapp, S. Grossmann, M. Emmerling, M. Kamp, and B. Hecht, “Electrically connected resonant optical antennas,” Nano Lett. 12, 3915–3919 (2012).
[Crossref]

Gucciardi, P. G.

O. M. Maragò, P. H. Jones, P. G. Gucciardi, G. Volpe, and A. C. Ferrari, “Optical trapping and manipulation of nanostructures,” Nat. Nanotechnol. 8, 807–819 (2013).
[Crossref]

Haglund, R.

M. McMahon, R. Lopez, R. Haglund, E. Ray, and P. Bunton, “Second-harmonic generation from arrays of symmetric gold nanoparticles,” Phys. Rev. B 73, 041401 (2006).
[Crossref]

Halas, N. J.

F. Wen, Y. Zhang, S. Gottheim, N. S. King, Y. Zhang, P. Nordlander, and N. J. Halas, “Charge transfer plasmons: optical frequency conductances and tunable infrared resonances,” ACS Nano 9, 6428–6435 (2015).
[Crossref]

N. Liu, F. Wen, Y. Zhao, Y. Wang, P. Nordlander, N. J. Halas, and A. Aluì, “Individual nanoantennas loaded with three-dimensional optical nanocircuits,” Nano Lett. 13, 142–147 (2013).
[Crossref]

D. R. Ward, N. K. Grady, C. S. Levin, N. J. Halas, Y. Wu, P. Nordlander, and D. Natelson, “Electromigrated nanoscale gaps for surface-enhanced Raman spectroscopy,” Nano Lett. 7, 1396–1400 (2007).
[Crossref]

C. M. Aguirre, C. E. Moran, J. F. Young, and N. J. Halas, “Laser-induced reshaping of metallodielectric nanoshells under femtosecond and nanosecond plasmon resonant illumination,” J. Phys. Chem. B 108, 7040–7045 (2004).
[Crossref]

Hanke, T.

T. Hanke, J. Cesar, V. Knittel, A. Trügler, U. Hohenester, A. Leitenstorfer, and R. Bratschitsch, “Tailoring spatiotemporal light confinement in single plasmonic nanoantennas,” Nano Lett. 12, 992–996 (2012).
[Crossref]

T. Hanke, G. Krauss, D. Träutlein, B. Wild, R. Bratschitsch, and A. Leitenstorfer, “Efficient nonlinear light emission of single gold optical antennas driven by few-cycle near-infrared pulses,” Phys. Rev. Lett. 103, 257404 (2009).
[Crossref]

Hao, J.

Hawkeye, M. M.

K. J. Savage, M. M. Hawkeye, R. Esteban, A. G. Borisov, J. Aizpurua, and J. J. Baumberg, “Revealing the quantum regime in tunnelling plasmonics,” Nature 491, 574–577 (2012).

Hecht, B.

M. Celebrano, X. Wu, M. Baselli, S. Großmann, P. Biagioni, A. Locatelli, C. De Angelis, G. Cerullo, R. Osellame, B. Hecht, L. Duò, F. Ciccacci, and M. Finazzi, “Mode matching in multiresonant plasmonic nanoantennas for enhanced second harmonic generation,” Nat. Nanotechnol. 10, 412–417 (2015).
[Crossref]

P. Biagioni, B. Hecht, and J.-S. Huang, “Nanoantennas for visible and infrared radiation,” Rep. Prog. Phys. 75, 024402 (2012).
[Crossref]

P. Biagioni, D. Brida, J.-S. Huang, J. Kern, L. Duò, B. Hecht, M. Finazzi, and G. Cerullo, “Dynamics of four-photon photoluminescence in gold nanoantennas,” Nano Lett. 12, 2941–2947 (2012).
[Crossref]

J. C. Prangsma, J. Kern, A. G. Knapp, S. Grossmann, M. Emmerling, M. Kamp, and B. Hecht, “Electrically connected resonant optical antennas,” Nano Lett. 12, 3915–3919 (2012).
[Crossref]

P. Biagioni, M. Celebrano, M. Savoini, G. Grancini, D. Brida, S. Mátéfi-Tempfli, M. Mátéfi-Tempfli, L. Duò, B. Hecht, G. Cerullo, and M. Finazzi, “Dependence of the two-photon photoluminescence yield of gold nanostructures on the laser pulse duration,” Phys. Rev. B 80, 045411 (2009).
[Crossref]

P. Mühlschlegel, H. Eisler, O. Martin, B. Hecht, and D. Pohl, “Resonant optical antennas,” Science 308, 1607–1609 (2005).
[Crossref]

O. Marti, H. Bielefeldt, B. Hecht, S. Herminghaus, P. Leiderer, and J. Mlynek, “Near-field optical measurement of the surface plasmon field,” Opt. Commun. 96, 225–228 (1993).
[Crossref]

Hentschel, M.

T. Schumacher, K. Kratzer, D. Molnar, M. Hentschel, H. Giessen, and M. Lippitz, “Nanoantenna-enhanced ultrafast nonlinear spectroscopy of a single gold nanoparticle,” Nat. Commun. 2, 333 (2011).
[Crossref]

Herminghaus, S.

O. Marti, H. Bielefeldt, B. Hecht, S. Herminghaus, P. Leiderer, and J. Mlynek, “Near-field optical measurement of the surface plasmon field,” Opt. Commun. 96, 225–228 (1993).
[Crossref]

Hildner, R.

D. Brinks, M. Castro-Lopez, R. Hildner, and N. F. van Hulst, “Plasmonic antennas as design elements for coherent ultrafast nanophotonics,” Proc. Natl. Acad. Sci. USA 110, 18386–18390 (2013).
[Crossref]

Hohenester, U.

T. Hanke, J. Cesar, V. Knittel, A. Trügler, U. Hohenester, A. Leitenstorfer, and R. Bratschitsch, “Tailoring spatiotemporal light confinement in single plasmonic nanoantennas,” Nano Lett. 12, 992–996 (2012).
[Crossref]

Højlund-Nielsen, E.

X. Zhu, C. Vannahme, E. Højlund-Nielsen, N. A. Mortensen, and A. Kristensen, “Plasmonic colour laser printing,” Nat. Nanotechnol. 11, 325–329 (2015).
[Crossref]

Hou, D.

H. Kollmann, X. Piao, M. Esmann, S. F. Becker, D. Hou, C. Huynh, L.-O. Kautschor, G. Bösker, H. Vieker, A. Beyer, A. Gölzhäuser, P. Namkyoo, R. Vogelgesang, M. Silies, and C. Lienau, “Toward plasmonics with nanometer precision: nonlinear optics of helium-ion milled gold nanoantennas,” Nano Lett. 14, 4778–4784 (2014).
[Crossref]

Huang, J.-S.

P. Biagioni, B. Hecht, and J.-S. Huang, “Nanoantennas for visible and infrared radiation,” Rep. Prog. Phys. 75, 024402 (2012).
[Crossref]

P. Biagioni, D. Brida, J.-S. Huang, J. Kern, L. Duò, B. Hecht, M. Finazzi, and G. Cerullo, “Dynamics of four-photon photoluminescence in gold nanoantennas,” Nano Lett. 12, 2941–2947 (2012).
[Crossref]

Hubert, C.

C. Hubert, L. Billot, P.-M. Adam, R. Bachelot, P. Royer, J. Grand, D. Gindre, K. Dorkenoo, and A. Fort, “Role of surface plasmon in second harmonic generation from gold nanorods,” Appl. Phys. Lett. 90, 181105 (2007).
[Crossref]

Huynh, C.

H. Kollmann, X. Piao, M. Esmann, S. F. Becker, D. Hou, C. Huynh, L.-O. Kautschor, G. Bösker, H. Vieker, A. Beyer, A. Gölzhäuser, P. Namkyoo, R. Vogelgesang, M. Silies, and C. Lienau, “Toward plasmonics with nanometer precision: nonlinear optics of helium-ion milled gold nanoantennas,” Nano Lett. 14, 4778–4784 (2014).
[Crossref]

Jin, J.

S. Kim, J. Jin, Y. Kim, I. Park, Y. Kim, and S. Kim, “High-harmonic generation by resonant plasmon field enhancement,” Nature 453, 757–760 (2008).

Jones, P. H.

O. M. Maragò, P. H. Jones, P. G. Gucciardi, G. Volpe, and A. C. Ferrari, “Optical trapping and manipulation of nanostructures,” Nat. Nanotechnol. 8, 807–819 (2013).
[Crossref]

Jun, Y. C.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9, 193–204 (2010).
[Crossref]

Kammerlocher, M.

K. Schraml, M. Spiegl, M. Kammerlocher, G. Bracher, J. Bartl, T. Campbell, J. Finley, and M. Kaniber, “Optical properties and interparticle coupling of plasmonic bowtie nanoantennas on a semiconducting substrate,” Phys. Rev. B 90, 035435 (2014).
[Crossref]

Kamp, M.

J. C. Prangsma, J. Kern, A. G. Knapp, S. Grossmann, M. Emmerling, M. Kamp, and B. Hecht, “Electrically connected resonant optical antennas,” Nano Lett. 12, 3915–3919 (2012).
[Crossref]

Kaniber, M.

M. Kaniber, K. Schraml, A. Regler, J. Bartl, G. Glashagen, F. Flassig, J. Wierzbowski, and J. J. Finley, “Surface plasmon resonance spectroscopy of single bowtie nano-antennas using a differential reflectivity method,” Sci. Rep. 6, 23203 (2016).
[Crossref]

K. Schraml, M. Spiegl, M. Kammerlocher, G. Bracher, J. Bartl, T. Campbell, J. Finley, and M. Kaniber, “Optical properties and interparticle coupling of plasmonic bowtie nanoantennas on a semiconducting substrate,” Phys. Rev. B 90, 035435 (2014).
[Crossref]

Kauranen, M.

M. Kauranen and A. Zayats, “Nonlinear plasmonics,” Nat. Photonics 6, 737–748 (2012).
[Crossref]

Kautschor, L.-O.

H. Kollmann, X. Piao, M. Esmann, S. F. Becker, D. Hou, C. Huynh, L.-O. Kautschor, G. Bösker, H. Vieker, A. Beyer, A. Gölzhäuser, P. Namkyoo, R. Vogelgesang, M. Silies, and C. Lienau, “Toward plasmonics with nanometer precision: nonlinear optics of helium-ion milled gold nanoantennas,” Nano Lett. 14, 4778–4784 (2014).
[Crossref]

Kazansky, A.

D. Marinica, A. Kazansky, P. Nordlander, J. Aizpurua, and A. G. Borisov, “Quantum plasmonics: nonlinear effects in the field enhancement of a plasmonic nanoparticle dimer,” Nano Lett. 12, 1333–1339 (2012).
[Crossref]

Kern, J.

J. C. Prangsma, J. Kern, A. G. Knapp, S. Grossmann, M. Emmerling, M. Kamp, and B. Hecht, “Electrically connected resonant optical antennas,” Nano Lett. 12, 3915–3919 (2012).
[Crossref]

P. Biagioni, D. Brida, J.-S. Huang, J. Kern, L. Duò, B. Hecht, M. Finazzi, and G. Cerullo, “Dynamics of four-photon photoluminescence in gold nanoantennas,” Nano Lett. 12, 2941–2947 (2012).
[Crossref]

Khan, I.

A. L. Koh, K. Bao, I. Khan, W. E. Smith, G. Kothleitner, P. Nordlander, S. A. Maier, and D. W. McComb, “Electron energy-loss spectroscopy (EELS) of surface plasmons in single silver nanoparticles and dimers: influence of beam damage and mapping of dark modes,” ACS Nano 3, 3015–3022 (2009).
[Crossref]

Kildishev, A. V.

K.-P. Chen, V. P. Drachev, J. D. Borneman, A. V. Kildishev, and V. M. Shalaev, “Drude relaxation rate in grained gold nanoantennas,” Nano Lett. 10, 916–922 (2010).
[Crossref]

Kim, M. S.

M. S. Tame, K. R. McEnery, K. Özdemir, J. Lee, S. A. Maier, and M. S. Kim, “Quantum plasmonics,” Nat. Phys. 9, 329–340 (2013).
[Crossref]

Kim, S.

S. Kim, J. Jin, Y. Kim, I. Park, Y. Kim, and S. Kim, “High-harmonic generation by resonant plasmon field enhancement,” Nature 453, 757–760 (2008).

S. Kim, J. Jin, Y. Kim, I. Park, Y. Kim, and S. Kim, “High-harmonic generation by resonant plasmon field enhancement,” Nature 453, 757–760 (2008).

Kim, Y.

S. Kim, J. Jin, Y. Kim, I. Park, Y. Kim, and S. Kim, “High-harmonic generation by resonant plasmon field enhancement,” Nature 453, 757–760 (2008).

S. Kim, J. Jin, Y. Kim, I. Park, Y. Kim, and S. Kim, “High-harmonic generation by resonant plasmon field enhancement,” Nature 453, 757–760 (2008).

King, N. S.

F. Wen, Y. Zhang, S. Gottheim, N. S. King, Y. Zhang, P. Nordlander, and N. J. Halas, “Charge transfer plasmons: optical frequency conductances and tunable infrared resonances,” ACS Nano 9, 6428–6435 (2015).
[Crossref]

Kino, G.

P. Schuck, D. Fromm, A. Sundaramurthy, G. Kino, and W. Moerner, “Improving the mismatch between light and nanoscale objects with gold bowtie nanoantennas,” Phys. Rev. Lett. 94, 017402 (2005).
[Crossref]

D. Fromm, A. Sundaramurthy, P. Schuck, G. Kino, and W. E. Moerner, “Gap-dependent optical coupling of single bowtie nanoantennas resonant in the visible,” Nano Lett. 4, 957–961 (2004).
[Crossref]

Kino, G. S.

A. Sundaramurthy, K. B. Crozier, G. S. Kino, D. P. Fromm, P. J. Schuck, and W. E. Moerner, “Field enhancement and gap-dependent resonance in a system of two opposing tip-to-tip Au nanotriangles,” Phys. Rev. B 72, 1–6 (2005).
[Crossref]

Knapp, A. G.

J. C. Prangsma, J. Kern, A. G. Knapp, S. Grossmann, M. Emmerling, M. Kamp, and B. Hecht, “Electrically connected resonant optical antennas,” Nano Lett. 12, 3915–3919 (2012).
[Crossref]

Knittel, V.

V. Knittel, M. Fischer, T. de Roo, S. Mecking, A. Leitenstorfer, and D. Brida, “Nonlinear photoluminescence spectrum of single gold nanostructures,” ACS Nano 9, 894–900 (2015).
[Crossref]

T. Hanke, J. Cesar, V. Knittel, A. Trügler, U. Hohenester, A. Leitenstorfer, and R. Bratschitsch, “Tailoring spatiotemporal light confinement in single plasmonic nanoantennas,” Nano Lett. 12, 992–996 (2012).
[Crossref]

Ko, K.

K. Ko, A. Kumar, K. Fung, R. Ambekar, G. Liu, N. Fang, and K. Toussaint, “Nonlinear optical response from arrays of Au bowtie nanoantennas,” Nano Lett. 11, 61–65 (2011).
[Crossref]

Koh, A. L.

J. A. Scholl, A. L. Koh, and J. A. Dionne, “Quantum plasmon resonances of individual metallic nanoparticles,” Nature 483, 421–427 (2012).

A. L. Koh, A. I. Fernández-Domínguez, D. W. McComb, S. A. Maier, and J. K. Yang, “High-resolution mapping of electron-beam-excited plasmon modes in lithographically defined gold nanostructures,” Nano Lett. 11, 1323–1330 (2011).
[Crossref]

A. L. Koh, K. Bao, I. Khan, W. E. Smith, G. Kothleitner, P. Nordlander, S. A. Maier, and D. W. McComb, “Electron energy-loss spectroscopy (EELS) of surface plasmons in single silver nanoparticles and dimers: influence of beam damage and mapping of dark modes,” ACS Nano 3, 3015–3022 (2009).
[Crossref]

Kollmann, H.

H. Kollmann, X. Piao, M. Esmann, S. F. Becker, D. Hou, C. Huynh, L.-O. Kautschor, G. Bösker, H. Vieker, A. Beyer, A. Gölzhäuser, P. Namkyoo, R. Vogelgesang, M. Silies, and C. Lienau, “Toward plasmonics with nanometer precision: nonlinear optics of helium-ion milled gold nanoantennas,” Nano Lett. 14, 4778–4784 (2014).
[Crossref]

Kostcheev, S.

A. Bouhelier, R. Bachelot, G. Lerondel, S. Kostcheev, P. Royer, and G. Wiederrecht, “Surface plasmon characteristics of tunable photoluminescence in single gold nanorods,” Phys. Rev. Lett. 95, 267405 (2005).
[Crossref]

Kothleitner, G.

A. L. Koh, K. Bao, I. Khan, W. E. Smith, G. Kothleitner, P. Nordlander, S. A. Maier, and D. W. McComb, “Electron energy-loss spectroscopy (EELS) of surface plasmons in single silver nanoparticles and dimers: influence of beam damage and mapping of dark modes,” ACS Nano 3, 3015–3022 (2009).
[Crossref]

Kratzer, K.

T. Schumacher, K. Kratzer, D. Molnar, M. Hentschel, H. Giessen, and M. Lippitz, “Nanoantenna-enhanced ultrafast nonlinear spectroscopy of a single gold nanoparticle,” Nat. Commun. 2, 333 (2011).
[Crossref]

Krauss, G.

T. Hanke, G. Krauss, D. Träutlein, B. Wild, R. Bratschitsch, and A. Leitenstorfer, “Efficient nonlinear light emission of single gold optical antennas driven by few-cycle near-infrared pulses,” Phys. Rev. Lett. 103, 257404 (2009).
[Crossref]

Kristensen, A.

X. Zhu, C. Vannahme, E. Højlund-Nielsen, N. A. Mortensen, and A. Kristensen, “Plasmonic colour laser printing,” Nat. Nanotechnol. 11, 325–329 (2015).
[Crossref]

Kumar, A.

K. Ko, A. Kumar, K. Fung, R. Ambekar, G. Liu, N. Fang, and K. Toussaint, “Nonlinear optical response from arrays of Au bowtie nanoantennas,” Nano Lett. 11, 61–65 (2011).
[Crossref]

Lee, J.

M. S. Tame, K. R. McEnery, K. Özdemir, J. Lee, S. A. Maier, and M. S. Kim, “Quantum plasmonics,” Nat. Phys. 9, 329–340 (2013).
[Crossref]

Leiderer, P.

O. Marti, H. Bielefeldt, B. Hecht, S. Herminghaus, P. Leiderer, and J. Mlynek, “Near-field optical measurement of the surface plasmon field,” Opt. Commun. 96, 225–228 (1993).
[Crossref]

Leitenstorfer, A.

V. Knittel, M. Fischer, T. de Roo, S. Mecking, A. Leitenstorfer, and D. Brida, “Nonlinear photoluminescence spectrum of single gold nanostructures,” ACS Nano 9, 894–900 (2015).
[Crossref]

T. Hanke, J. Cesar, V. Knittel, A. Trügler, U. Hohenester, A. Leitenstorfer, and R. Bratschitsch, “Tailoring spatiotemporal light confinement in single plasmonic nanoantennas,” Nano Lett. 12, 992–996 (2012).
[Crossref]

T. Hanke, G. Krauss, D. Träutlein, B. Wild, R. Bratschitsch, and A. Leitenstorfer, “Efficient nonlinear light emission of single gold optical antennas driven by few-cycle near-infrared pulses,” Phys. Rev. Lett. 103, 257404 (2009).
[Crossref]

Lerondel, G.

A. Bouhelier, R. Bachelot, G. Lerondel, S. Kostcheev, P. Royer, and G. Wiederrecht, “Surface plasmon characteristics of tunable photoluminescence in single gold nanorods,” Phys. Rev. Lett. 95, 267405 (2005).
[Crossref]

Levin, C. S.

D. R. Ward, N. K. Grady, C. S. Levin, N. J. Halas, Y. Wu, P. Nordlander, and D. Natelson, “Electromigrated nanoscale gaps for surface-enhanced Raman spectroscopy,” Nano Lett. 7, 1396–1400 (2007).
[Crossref]

Li, K.

P. Nordlander, C. Oubre, E. Prodan, K. Li, and I. Stockman, “Plasmon hybridization in nanoparticle dimers,” Nano Lett. 4, 899–903 (2004).
[Crossref]

Lienau, C.

H. Kollmann, X. Piao, M. Esmann, S. F. Becker, D. Hou, C. Huynh, L.-O. Kautschor, G. Bösker, H. Vieker, A. Beyer, A. Gölzhäuser, P. Namkyoo, R. Vogelgesang, M. Silies, and C. Lienau, “Toward plasmonics with nanometer precision: nonlinear optics of helium-ion milled gold nanoantennas,” Nano Lett. 14, 4778–4784 (2014).
[Crossref]

Lim, A. K. L.

H. Park, A. K. L. Lim, A. P. Alivisatos, J. Park, and P. L. McEuen, “Fabrication of metallic electrodes with nanometer separation by electromigration,” Appl. Phys. Lett. 75, 301 (1999).
[Crossref]

Lippitz, M.

T. Schumacher, K. Kratzer, D. Molnar, M. Hentschel, H. Giessen, and M. Lippitz, “Nanoantenna-enhanced ultrafast nonlinear spectroscopy of a single gold nanoparticle,” Nat. Commun. 2, 333 (2011).
[Crossref]

Liu, G.

K. Ko, A. Kumar, K. Fung, R. Ambekar, G. Liu, N. Fang, and K. Toussaint, “Nonlinear optical response from arrays of Au bowtie nanoantennas,” Nano Lett. 11, 61–65 (2011).
[Crossref]

Liu, N.

N. Liu, F. Wen, Y. Zhao, Y. Wang, P. Nordlander, N. J. Halas, and A. Aluì, “Individual nanoantennas loaded with three-dimensional optical nanocircuits,” Nano Lett. 13, 142–147 (2013).
[Crossref]

Locatelli, A.

M. Celebrano, X. Wu, M. Baselli, S. Großmann, P. Biagioni, A. Locatelli, C. De Angelis, G. Cerullo, R. Osellame, B. Hecht, L. Duò, F. Ciccacci, and M. Finazzi, “Mode matching in multiresonant plasmonic nanoantennas for enhanced second harmonic generation,” Nat. Nanotechnol. 10, 412–417 (2015).
[Crossref]

Lopez, R.

M. McMahon, R. Lopez, R. Haglund, E. Ray, and P. Bunton, “Second-harmonic generation from arrays of symmetric gold nanoparticles,” Phys. Rev. B 73, 041401 (2006).
[Crossref]

MacDonald, K. F.

K. F. MacDonald, Z. L. Sámson, M. I. Stockman, and N. I. Zheludev, “Ultrafast active plasmonics,” Nat. Photonics 3, 55–58 (2008).
[Crossref]

Maier, S. A.

H. Aouani, M. Rahmani, M. Navarro-Ca, and S. A. Maier, “Third-harmonic-upconversion enhancement from a single semiconductor nanoparticle coupled to a plasmonic antenna,” Nat. Nanotechnol. 9, 290–294 (2014).
[Crossref]

M. S. Tame, K. R. McEnery, K. Özdemir, J. Lee, S. A. Maier, and M. S. Kim, “Quantum plasmonics,” Nat. Phys. 9, 329–340 (2013).
[Crossref]

A. L. Koh, A. I. Fernández-Domínguez, D. W. McComb, S. A. Maier, and J. K. Yang, “High-resolution mapping of electron-beam-excited plasmon modes in lithographically defined gold nanostructures,” Nano Lett. 11, 1323–1330 (2011).
[Crossref]

A. L. Koh, K. Bao, I. Khan, W. E. Smith, G. Kothleitner, P. Nordlander, S. A. Maier, and D. W. McComb, “Electron energy-loss spectroscopy (EELS) of surface plasmons in single silver nanoparticles and dimers: influence of beam damage and mapping of dark modes,” ACS Nano 3, 3015–3022 (2009).
[Crossref]

S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007).

Maragò, O. M.

O. M. Maragò, P. H. Jones, P. G. Gucciardi, G. Volpe, and A. C. Ferrari, “Optical trapping and manipulation of nanostructures,” Nat. Nanotechnol. 8, 807–819 (2013).
[Crossref]

Marinica, D.

D. Marinica, A. Kazansky, P. Nordlander, J. Aizpurua, and A. G. Borisov, “Quantum plasmonics: nonlinear effects in the field enhancement of a plasmonic nanoparticle dimer,” Nano Lett. 12, 1333–1339 (2012).
[Crossref]

Markey, L.

A. Stolz, J. Berthelot, M. M. Mennemanteuil, G. Colas Des Francs, L. Markey, V. Meunier, and A. Bouhelier, “Nonlinear photon-assisted tunneling transport in optical gap antennas,” Nano Lett. 14, 2330–2338 (2014).
[Crossref]

Marti, O.

O. Marti, H. Bielefeldt, B. Hecht, S. Herminghaus, P. Leiderer, and J. Mlynek, “Near-field optical measurement of the surface plasmon field,” Opt. Commun. 96, 225–228 (1993).
[Crossref]

Martin, O.

P. Mühlschlegel, H. Eisler, O. Martin, B. Hecht, and D. Pohl, “Resonant optical antennas,” Science 308, 1607–1609 (2005).
[Crossref]

Martin, O. J.

Mátéfi-Tempfli, M.

P. Biagioni, M. Celebrano, M. Savoini, G. Grancini, D. Brida, S. Mátéfi-Tempfli, M. Mátéfi-Tempfli, L. Duò, B. Hecht, G. Cerullo, and M. Finazzi, “Dependence of the two-photon photoluminescence yield of gold nanostructures on the laser pulse duration,” Phys. Rev. B 80, 045411 (2009).
[Crossref]

Mátéfi-Tempfli, S.

P. Biagioni, M. Celebrano, M. Savoini, G. Grancini, D. Brida, S. Mátéfi-Tempfli, M. Mátéfi-Tempfli, L. Duò, B. Hecht, G. Cerullo, and M. Finazzi, “Dependence of the two-photon photoluminescence yield of gold nanostructures on the laser pulse duration,” Phys. Rev. B 80, 045411 (2009).
[Crossref]

McComb, D. W.

A. L. Koh, A. I. Fernández-Domínguez, D. W. McComb, S. A. Maier, and J. K. Yang, “High-resolution mapping of electron-beam-excited plasmon modes in lithographically defined gold nanostructures,” Nano Lett. 11, 1323–1330 (2011).
[Crossref]

A. L. Koh, K. Bao, I. Khan, W. E. Smith, G. Kothleitner, P. Nordlander, S. A. Maier, and D. W. McComb, “Electron energy-loss spectroscopy (EELS) of surface plasmons in single silver nanoparticles and dimers: influence of beam damage and mapping of dark modes,” ACS Nano 3, 3015–3022 (2009).
[Crossref]

McEnery, K. R.

M. S. Tame, K. R. McEnery, K. Özdemir, J. Lee, S. A. Maier, and M. S. Kim, “Quantum plasmonics,” Nat. Phys. 9, 329–340 (2013).
[Crossref]

McEuen, P. L.

H. Park, A. K. L. Lim, A. P. Alivisatos, J. Park, and P. L. McEuen, “Fabrication of metallic electrodes with nanometer separation by electromigration,” Appl. Phys. Lett. 75, 301 (1999).
[Crossref]

McMahon, M.

M. McMahon, R. Lopez, R. Haglund, E. Ray, and P. Bunton, “Second-harmonic generation from arrays of symmetric gold nanoparticles,” Phys. Rev. B 73, 041401 (2006).
[Crossref]

Mecking, S.

V. Knittel, M. Fischer, T. de Roo, S. Mecking, A. Leitenstorfer, and D. Brida, “Nonlinear photoluminescence spectrum of single gold nanostructures,” ACS Nano 9, 894–900 (2015).
[Crossref]

Mennemanteuil, M. M.

A. Stolz, J. Berthelot, M. M. Mennemanteuil, G. Colas Des Francs, L. Markey, V. Meunier, and A. Bouhelier, “Nonlinear photon-assisted tunneling transport in optical gap antennas,” Nano Lett. 14, 2330–2338 (2014).
[Crossref]

Meunier, V.

A. Stolz, J. Berthelot, M. M. Mennemanteuil, G. Colas Des Francs, L. Markey, V. Meunier, and A. Bouhelier, “Nonlinear photon-assisted tunneling transport in optical gap antennas,” Nano Lett. 14, 2330–2338 (2014).
[Crossref]

Mlynek, J.

O. Marti, H. Bielefeldt, B. Hecht, S. Herminghaus, P. Leiderer, and J. Mlynek, “Near-field optical measurement of the surface plasmon field,” Opt. Commun. 96, 225–228 (1993).
[Crossref]

Moerner, W.

P. Schuck, D. Fromm, A. Sundaramurthy, G. Kino, and W. Moerner, “Improving the mismatch between light and nanoscale objects with gold bowtie nanoantennas,” Phys. Rev. Lett. 94, 017402 (2005).
[Crossref]

Moerner, W. E.

A. Sundaramurthy, K. B. Crozier, G. S. Kino, D. P. Fromm, P. J. Schuck, and W. E. Moerner, “Field enhancement and gap-dependent resonance in a system of two opposing tip-to-tip Au nanotriangles,” Phys. Rev. B 72, 1–6 (2005).
[Crossref]

D. Fromm, A. Sundaramurthy, P. Schuck, G. Kino, and W. E. Moerner, “Gap-dependent optical coupling of single bowtie nanoantennas resonant in the visible,” Nano Lett. 4, 957–961 (2004).
[Crossref]

Molnar, D.

T. Schumacher, K. Kratzer, D. Molnar, M. Hentschel, H. Giessen, and M. Lippitz, “Nanoantenna-enhanced ultrafast nonlinear spectroscopy of a single gold nanoparticle,” Nat. Commun. 2, 333 (2011).
[Crossref]

Moran, C. E.

C. M. Aguirre, C. E. Moran, J. F. Young, and N. J. Halas, “Laser-induced reshaping of metallodielectric nanoshells under femtosecond and nanosecond plasmon resonant illumination,” J. Phys. Chem. B 108, 7040–7045 (2004).
[Crossref]

Mortensen, N. A.

X. Zhu, C. Vannahme, E. Højlund-Nielsen, N. A. Mortensen, and A. Kristensen, “Plasmonic colour laser printing,” Nat. Nanotechnol. 11, 325–329 (2015).
[Crossref]

Mühlschlegel, P.

P. Mühlschlegel, H. Eisler, O. Martin, B. Hecht, and D. Pohl, “Resonant optical antennas,” Science 308, 1607–1609 (2005).
[Crossref]

Nagle, J.

A. Fiore, V. Berger, E. Rosencher, P. Bravetti, and J. Nagle, “Phase matching using an isotropic nonlinear optical material,” Nature 391, 463–466 (1998).

Namkyoo, P.

H. Kollmann, X. Piao, M. Esmann, S. F. Becker, D. Hou, C. Huynh, L.-O. Kautschor, G. Bösker, H. Vieker, A. Beyer, A. Gölzhäuser, P. Namkyoo, R. Vogelgesang, M. Silies, and C. Lienau, “Toward plasmonics with nanometer precision: nonlinear optics of helium-ion milled gold nanoantennas,” Nano Lett. 14, 4778–4784 (2014).
[Crossref]

Natelson, D.

D. R. Ward, N. K. Grady, C. S. Levin, N. J. Halas, Y. Wu, P. Nordlander, and D. Natelson, “Electromigrated nanoscale gaps for surface-enhanced Raman spectroscopy,” Nano Lett. 7, 1396–1400 (2007).
[Crossref]

Navarro-Ca, M.

H. Aouani, M. Rahmani, M. Navarro-Ca, and S. A. Maier, “Third-harmonic-upconversion enhancement from a single semiconductor nanoparticle coupled to a plasmonic antenna,” Nat. Nanotechnol. 9, 290–294 (2014).
[Crossref]

Nordlander, P.

F. Wen, Y. Zhang, S. Gottheim, N. S. King, Y. Zhang, P. Nordlander, and N. J. Halas, “Charge transfer plasmons: optical frequency conductances and tunable infrared resonances,” ACS Nano 9, 6428–6435 (2015).
[Crossref]

N. Liu, F. Wen, Y. Zhao, Y. Wang, P. Nordlander, N. J. Halas, and A. Aluì, “Individual nanoantennas loaded with three-dimensional optical nanocircuits,” Nano Lett. 13, 142–147 (2013).
[Crossref]

R. Esteban, A. G. Borisov, P. Nordlander, and J. Aizpurua, “Bridging quantum and classical plasmonics with a quantum-corrected model,” Nat. Commun. 3, 825 (2012).
[Crossref]

D. Marinica, A. Kazansky, P. Nordlander, J. Aizpurua, and A. G. Borisov, “Quantum plasmonics: nonlinear effects in the field enhancement of a plasmonic nanoparticle dimer,” Nano Lett. 12, 1333–1339 (2012).
[Crossref]

A. L. Koh, K. Bao, I. Khan, W. E. Smith, G. Kothleitner, P. Nordlander, S. A. Maier, and D. W. McComb, “Electron energy-loss spectroscopy (EELS) of surface plasmons in single silver nanoparticles and dimers: influence of beam damage and mapping of dark modes,” ACS Nano 3, 3015–3022 (2009).
[Crossref]

D. R. Ward, N. K. Grady, C. S. Levin, N. J. Halas, Y. Wu, P. Nordlander, and D. Natelson, “Electromigrated nanoscale gaps for surface-enhanced Raman spectroscopy,” Nano Lett. 7, 1396–1400 (2007).
[Crossref]

P. Nordlander, C. Oubre, E. Prodan, K. Li, and I. Stockman, “Plasmon hybridization in nanoparticle dimers,” Nano Lett. 4, 899–903 (2004).
[Crossref]

Novotny, L.

M. Danckwerts and L. Novotny, “Optical frequency mixing at coupled gold nanoparticles,” Phys. Rev. Lett. 98, 026104 (2007).
[Crossref]

M. R. Beversluis, A. Bouhelier, and L. Novotny, “Continuum generation from single gold nanostructures through near-field mediated intraband transitions,” Phys. Rev. B 68, 115433 (2003).
[Crossref]

Osellame, R.

M. Celebrano, X. Wu, M. Baselli, S. Großmann, P. Biagioni, A. Locatelli, C. De Angelis, G. Cerullo, R. Osellame, B. Hecht, L. Duò, F. Ciccacci, and M. Finazzi, “Mode matching in multiresonant plasmonic nanoantennas for enhanced second harmonic generation,” Nat. Nanotechnol. 10, 412–417 (2015).
[Crossref]

Oubre, C.

P. Nordlander, C. Oubre, E. Prodan, K. Li, and I. Stockman, “Plasmon hybridization in nanoparticle dimers,” Nano Lett. 4, 899–903 (2004).
[Crossref]

Özdemir, K.

M. S. Tame, K. R. McEnery, K. Özdemir, J. Lee, S. A. Maier, and M. S. Kim, “Quantum plasmonics,” Nat. Phys. 9, 329–340 (2013).
[Crossref]

Park, H.

H. Park, A. K. L. Lim, A. P. Alivisatos, J. Park, and P. L. McEuen, “Fabrication of metallic electrodes with nanometer separation by electromigration,” Appl. Phys. Lett. 75, 301 (1999).
[Crossref]

Park, I.

S. Kim, J. Jin, Y. Kim, I. Park, Y. Kim, and S. Kim, “High-harmonic generation by resonant plasmon field enhancement,” Nature 453, 757–760 (2008).

Park, J.

H. Park, A. K. L. Lim, A. P. Alivisatos, J. Park, and P. L. McEuen, “Fabrication of metallic electrodes with nanometer separation by electromigration,” Appl. Phys. Lett. 75, 301 (1999).
[Crossref]

Pedersen, T. G.

M. L. Trolle, G. Seifert, and T. G. Pedersen, “Theory of excitonic second-harmonic generation in monolayer MoS2,” Phys. Rev. B 89, 1–8 (2014).
[Crossref]

Piao, X.

H. Kollmann, X. Piao, M. Esmann, S. F. Becker, D. Hou, C. Huynh, L.-O. Kautschor, G. Bösker, H. Vieker, A. Beyer, A. Gölzhäuser, P. Namkyoo, R. Vogelgesang, M. Silies, and C. Lienau, “Toward plasmonics with nanometer precision: nonlinear optics of helium-ion milled gold nanoantennas,” Nano Lett. 14, 4778–4784 (2014).
[Crossref]

Pohl, D.

P. Mühlschlegel, H. Eisler, O. Martin, B. Hecht, and D. Pohl, “Resonant optical antennas,” Science 308, 1607–1609 (2005).
[Crossref]

Prangsma, J. C.

J. C. Prangsma, J. Kern, A. G. Knapp, S. Grossmann, M. Emmerling, M. Kamp, and B. Hecht, “Electrically connected resonant optical antennas,” Nano Lett. 12, 3915–3919 (2012).
[Crossref]

Pressley, R. J.

R. J. Pressley, Handbook of Lasers (Chemical Rubber, 1971).

Prodan, E.

P. Nordlander, C. Oubre, E. Prodan, K. Li, and I. Stockman, “Plasmon hybridization in nanoparticle dimers,” Nano Lett. 4, 899–903 (2004).
[Crossref]

Qiu, M.

Rahmani, M.

H. Aouani, M. Rahmani, M. Navarro-Ca, and S. A. Maier, “Third-harmonic-upconversion enhancement from a single semiconductor nanoparticle coupled to a plasmonic antenna,” Nat. Nanotechnol. 9, 290–294 (2014).
[Crossref]

Ray, E.

M. McMahon, R. Lopez, R. Haglund, E. Ray, and P. Bunton, “Second-harmonic generation from arrays of symmetric gold nanoparticles,” Phys. Rev. B 73, 041401 (2006).
[Crossref]

Regler, A.

M. Kaniber, K. Schraml, A. Regler, J. Bartl, G. Glashagen, F. Flassig, J. Wierzbowski, and J. J. Finley, “Surface plasmon resonance spectroscopy of single bowtie nano-antennas using a differential reflectivity method,” Sci. Rep. 6, 23203 (2016).
[Crossref]

Rosencher, E.

A. Fiore, V. Berger, E. Rosencher, P. Bravetti, and J. Nagle, “Phase matching using an isotropic nonlinear optical material,” Nature 391, 463–466 (1998).

Royer, P.

C. Hubert, L. Billot, P.-M. Adam, R. Bachelot, P. Royer, J. Grand, D. Gindre, K. Dorkenoo, and A. Fort, “Role of surface plasmon in second harmonic generation from gold nanorods,” Appl. Phys. Lett. 90, 181105 (2007).
[Crossref]

A. Bouhelier, R. Bachelot, G. Lerondel, S. Kostcheev, P. Royer, and G. Wiederrecht, “Surface plasmon characteristics of tunable photoluminescence in single gold nanorods,” Phys. Rev. Lett. 95, 267405 (2005).
[Crossref]

Sámson, Z. L.

K. F. MacDonald, Z. L. Sámson, M. I. Stockman, and N. I. Zheludev, “Ultrafast active plasmonics,” Nat. Photonics 3, 55–58 (2008).
[Crossref]

Savage, K. J.

K. J. Savage, M. M. Hawkeye, R. Esteban, A. G. Borisov, J. Aizpurua, and J. J. Baumberg, “Revealing the quantum regime in tunnelling plasmonics,” Nature 491, 574–577 (2012).

Savoini, M.

P. Biagioni, M. Celebrano, M. Savoini, G. Grancini, D. Brida, S. Mátéfi-Tempfli, M. Mátéfi-Tempfli, L. Duò, B. Hecht, G. Cerullo, and M. Finazzi, “Dependence of the two-photon photoluminescence yield of gold nanostructures on the laser pulse duration,” Phys. Rev. B 80, 045411 (2009).
[Crossref]

Scholl, J. A.

J. A. Scholl, A. L. Koh, and J. A. Dionne, “Quantum plasmon resonances of individual metallic nanoparticles,” Nature 483, 421–427 (2012).

Schraml, K.

M. Kaniber, K. Schraml, A. Regler, J. Bartl, G. Glashagen, F. Flassig, J. Wierzbowski, and J. J. Finley, “Surface plasmon resonance spectroscopy of single bowtie nano-antennas using a differential reflectivity method,” Sci. Rep. 6, 23203 (2016).
[Crossref]

K. Schraml, M. Spiegl, M. Kammerlocher, G. Bracher, J. Bartl, T. Campbell, J. Finley, and M. Kaniber, “Optical properties and interparticle coupling of plasmonic bowtie nanoantennas on a semiconducting substrate,” Phys. Rev. B 90, 035435 (2014).
[Crossref]

Schuck, P.

P. Schuck, D. Fromm, A. Sundaramurthy, G. Kino, and W. Moerner, “Improving the mismatch between light and nanoscale objects with gold bowtie nanoantennas,” Phys. Rev. Lett. 94, 017402 (2005).
[Crossref]

D. Fromm, A. Sundaramurthy, P. Schuck, G. Kino, and W. E. Moerner, “Gap-dependent optical coupling of single bowtie nanoantennas resonant in the visible,” Nano Lett. 4, 957–961 (2004).
[Crossref]

Schuck, P. J.

A. Sundaramurthy, K. B. Crozier, G. S. Kino, D. P. Fromm, P. J. Schuck, and W. E. Moerner, “Field enhancement and gap-dependent resonance in a system of two opposing tip-to-tip Au nanotriangles,” Phys. Rev. B 72, 1–6 (2005).
[Crossref]

Schuller, J. A.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9, 193–204 (2010).
[Crossref]

Schumacher, T.

T. Schumacher, K. Kratzer, D. Molnar, M. Hentschel, H. Giessen, and M. Lippitz, “Nanoantenna-enhanced ultrafast nonlinear spectroscopy of a single gold nanoparticle,” Nat. Commun. 2, 333 (2011).
[Crossref]

Seifert, G.

M. L. Trolle, G. Seifert, and T. G. Pedersen, “Theory of excitonic second-harmonic generation in monolayer MoS2,” Phys. Rev. B 89, 1–8 (2014).
[Crossref]

Shalaev, V. M.

K.-P. Chen, V. P. Drachev, J. D. Borneman, A. V. Kildishev, and V. M. Shalaev, “Drude relaxation rate in grained gold nanoantennas,” Nano Lett. 10, 916–922 (2010).
[Crossref]

Silies, M.

H. Kollmann, X. Piao, M. Esmann, S. F. Becker, D. Hou, C. Huynh, L.-O. Kautschor, G. Bösker, H. Vieker, A. Beyer, A. Gölzhäuser, P. Namkyoo, R. Vogelgesang, M. Silies, and C. Lienau, “Toward plasmonics with nanometer precision: nonlinear optics of helium-ion milled gold nanoantennas,” Nano Lett. 14, 4778–4784 (2014).
[Crossref]

Smith, W. E.

A. L. Koh, K. Bao, I. Khan, W. E. Smith, G. Kothleitner, P. Nordlander, S. A. Maier, and D. W. McComb, “Electron energy-loss spectroscopy (EELS) of surface plasmons in single silver nanoparticles and dimers: influence of beam damage and mapping of dark modes,” ACS Nano 3, 3015–3022 (2009).
[Crossref]

Spiegl, M.

K. Schraml, M. Spiegl, M. Kammerlocher, G. Bracher, J. Bartl, T. Campbell, J. Finley, and M. Kaniber, “Optical properties and interparticle coupling of plasmonic bowtie nanoantennas on a semiconducting substrate,” Phys. Rev. B 90, 035435 (2014).
[Crossref]

Stockman, I.

P. Nordlander, C. Oubre, E. Prodan, K. Li, and I. Stockman, “Plasmon hybridization in nanoparticle dimers,” Nano Lett. 4, 899–903 (2004).
[Crossref]

Stockman, M. I.

K. F. MacDonald, Z. L. Sámson, M. I. Stockman, and N. I. Zheludev, “Ultrafast active plasmonics,” Nat. Photonics 3, 55–58 (2008).
[Crossref]

Stolz, A.

A. Stolz, J. Berthelot, M. M. Mennemanteuil, G. Colas Des Francs, L. Markey, V. Meunier, and A. Bouhelier, “Nonlinear photon-assisted tunneling transport in optical gap antennas,” Nano Lett. 14, 2330–2338 (2014).
[Crossref]

Sundaramurthy, A.

A. Sundaramurthy, K. B. Crozier, G. S. Kino, D. P. Fromm, P. J. Schuck, and W. E. Moerner, “Field enhancement and gap-dependent resonance in a system of two opposing tip-to-tip Au nanotriangles,” Phys. Rev. B 72, 1–6 (2005).
[Crossref]

P. Schuck, D. Fromm, A. Sundaramurthy, G. Kino, and W. Moerner, “Improving the mismatch between light and nanoscale objects with gold bowtie nanoantennas,” Phys. Rev. Lett. 94, 017402 (2005).
[Crossref]

D. Fromm, A. Sundaramurthy, P. Schuck, G. Kino, and W. E. Moerner, “Gap-dependent optical coupling of single bowtie nanoantennas resonant in the visible,” Nano Lett. 4, 957–961 (2004).
[Crossref]

Tame, M. S.

M. S. Tame, K. R. McEnery, K. Özdemir, J. Lee, S. A. Maier, and M. S. Kim, “Quantum plasmonics,” Nat. Phys. 9, 329–340 (2013).
[Crossref]

Toussaint, K.

K. Ko, A. Kumar, K. Fung, R. Ambekar, G. Liu, N. Fang, and K. Toussaint, “Nonlinear optical response from arrays of Au bowtie nanoantennas,” Nano Lett. 11, 61–65 (2011).
[Crossref]

Träutlein, D.

T. Hanke, G. Krauss, D. Träutlein, B. Wild, R. Bratschitsch, and A. Leitenstorfer, “Efficient nonlinear light emission of single gold optical antennas driven by few-cycle near-infrared pulses,” Phys. Rev. Lett. 103, 257404 (2009).
[Crossref]

Trolle, M. L.

M. L. Trolle, G. Seifert, and T. G. Pedersen, “Theory of excitonic second-harmonic generation in monolayer MoS2,” Phys. Rev. B 89, 1–8 (2014).
[Crossref]

Trügler, A.

T. Hanke, J. Cesar, V. Knittel, A. Trügler, U. Hohenester, A. Leitenstorfer, and R. Bratschitsch, “Tailoring spatiotemporal light confinement in single plasmonic nanoantennas,” Nano Lett. 12, 992–996 (2012).
[Crossref]

van Hulst, N. F.

D. Brinks, M. Castro-Lopez, R. Hildner, and N. F. van Hulst, “Plasmonic antennas as design elements for coherent ultrafast nanophotonics,” Proc. Natl. Acad. Sci. USA 110, 18386–18390 (2013).
[Crossref]

Vannahme, C.

X. Zhu, C. Vannahme, E. Højlund-Nielsen, N. A. Mortensen, and A. Kristensen, “Plasmonic colour laser printing,” Nat. Nanotechnol. 11, 325–329 (2015).
[Crossref]

Vieker, H.

H. Kollmann, X. Piao, M. Esmann, S. F. Becker, D. Hou, C. Huynh, L.-O. Kautschor, G. Bösker, H. Vieker, A. Beyer, A. Gölzhäuser, P. Namkyoo, R. Vogelgesang, M. Silies, and C. Lienau, “Toward plasmonics with nanometer precision: nonlinear optics of helium-ion milled gold nanoantennas,” Nano Lett. 14, 4778–4784 (2014).
[Crossref]

Vogelgesang, R.

H. Kollmann, X. Piao, M. Esmann, S. F. Becker, D. Hou, C. Huynh, L.-O. Kautschor, G. Bösker, H. Vieker, A. Beyer, A. Gölzhäuser, P. Namkyoo, R. Vogelgesang, M. Silies, and C. Lienau, “Toward plasmonics with nanometer precision: nonlinear optics of helium-ion milled gold nanoantennas,” Nano Lett. 14, 4778–4784 (2014).
[Crossref]

Volpe, G.

O. M. Maragò, P. H. Jones, P. G. Gucciardi, G. Volpe, and A. C. Ferrari, “Optical trapping and manipulation of nanostructures,” Nat. Nanotechnol. 8, 807–819 (2013).
[Crossref]

Wang, J.

Wang, Y.

N. Liu, F. Wen, Y. Zhao, Y. Wang, P. Nordlander, N. J. Halas, and A. Aluì, “Individual nanoantennas loaded with three-dimensional optical nanocircuits,” Nano Lett. 13, 142–147 (2013).
[Crossref]

Ward, D. R.

D. R. Ward, N. K. Grady, C. S. Levin, N. J. Halas, Y. Wu, P. Nordlander, and D. Natelson, “Electromigrated nanoscale gaps for surface-enhanced Raman spectroscopy,” Nano Lett. 7, 1396–1400 (2007).
[Crossref]

Wen, F.

F. Wen, Y. Zhang, S. Gottheim, N. S. King, Y. Zhang, P. Nordlander, and N. J. Halas, “Charge transfer plasmons: optical frequency conductances and tunable infrared resonances,” ACS Nano 9, 6428–6435 (2015).
[Crossref]

N. Liu, F. Wen, Y. Zhao, Y. Wang, P. Nordlander, N. J. Halas, and A. Aluì, “Individual nanoantennas loaded with three-dimensional optical nanocircuits,” Nano Lett. 13, 142–147 (2013).
[Crossref]

White, J. S.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9, 193–204 (2010).
[Crossref]

Wiederrecht, G.

A. Bouhelier, R. Bachelot, G. Lerondel, S. Kostcheev, P. Royer, and G. Wiederrecht, “Surface plasmon characteristics of tunable photoluminescence in single gold nanorods,” Phys. Rev. Lett. 95, 267405 (2005).
[Crossref]

Wierzbowski, J.

M. Kaniber, K. Schraml, A. Regler, J. Bartl, G. Glashagen, F. Flassig, J. Wierzbowski, and J. J. Finley, “Surface plasmon resonance spectroscopy of single bowtie nano-antennas using a differential reflectivity method,” Sci. Rep. 6, 23203 (2016).
[Crossref]

Wild, B.

T. Hanke, G. Krauss, D. Träutlein, B. Wild, R. Bratschitsch, and A. Leitenstorfer, “Efficient nonlinear light emission of single gold optical antennas driven by few-cycle near-infrared pulses,” Phys. Rev. Lett. 103, 257404 (2009).
[Crossref]

Wu, X.

M. Celebrano, X. Wu, M. Baselli, S. Großmann, P. Biagioni, A. Locatelli, C. De Angelis, G. Cerullo, R. Osellame, B. Hecht, L. Duò, F. Ciccacci, and M. Finazzi, “Mode matching in multiresonant plasmonic nanoantennas for enhanced second harmonic generation,” Nat. Nanotechnol. 10, 412–417 (2015).
[Crossref]

Wu, Y.

D. R. Ward, N. K. Grady, C. S. Levin, N. J. Halas, Y. Wu, P. Nordlander, and D. Natelson, “Electromigrated nanoscale gaps for surface-enhanced Raman spectroscopy,” Nano Lett. 7, 1396–1400 (2007).
[Crossref]

Yan, M.

Yang, J. K.

A. L. Koh, A. I. Fernández-Domínguez, D. W. McComb, S. A. Maier, and J. K. Yang, “High-resolution mapping of electron-beam-excited plasmon modes in lithographically defined gold nanostructures,” Nano Lett. 11, 1323–1330 (2011).
[Crossref]

Young, J. F.

C. M. Aguirre, C. E. Moran, J. F. Young, and N. J. Halas, “Laser-induced reshaping of metallodielectric nanoshells under femtosecond and nanosecond plasmon resonant illumination,” J. Phys. Chem. B 108, 7040–7045 (2004).
[Crossref]

Zayats, A.

M. Kauranen and A. Zayats, “Nonlinear plasmonics,” Nat. Photonics 6, 737–748 (2012).
[Crossref]

Zhang, Y.

F. Wen, Y. Zhang, S. Gottheim, N. S. King, Y. Zhang, P. Nordlander, and N. J. Halas, “Charge transfer plasmons: optical frequency conductances and tunable infrared resonances,” ACS Nano 9, 6428–6435 (2015).
[Crossref]

F. Wen, Y. Zhang, S. Gottheim, N. S. King, Y. Zhang, P. Nordlander, and N. J. Halas, “Charge transfer plasmons: optical frequency conductances and tunable infrared resonances,” ACS Nano 9, 6428–6435 (2015).
[Crossref]

Zhao, Y.

N. Liu, F. Wen, Y. Zhao, Y. Wang, P. Nordlander, N. J. Halas, and A. Aluì, “Individual nanoantennas loaded with three-dimensional optical nanocircuits,” Nano Lett. 13, 142–147 (2013).
[Crossref]

Zheludev, N. I.

K. F. MacDonald, Z. L. Sámson, M. I. Stockman, and N. I. Zheludev, “Ultrafast active plasmonics,” Nat. Photonics 3, 55–58 (2008).
[Crossref]

Zhu, X.

X. Zhu, C. Vannahme, E. Højlund-Nielsen, N. A. Mortensen, and A. Kristensen, “Plasmonic colour laser printing,” Nat. Nanotechnol. 11, 325–329 (2015).
[Crossref]

ACS Nano (3)

V. Knittel, M. Fischer, T. de Roo, S. Mecking, A. Leitenstorfer, and D. Brida, “Nonlinear photoluminescence spectrum of single gold nanostructures,” ACS Nano 9, 894–900 (2015).
[Crossref]

F. Wen, Y. Zhang, S. Gottheim, N. S. King, Y. Zhang, P. Nordlander, and N. J. Halas, “Charge transfer plasmons: optical frequency conductances and tunable infrared resonances,” ACS Nano 9, 6428–6435 (2015).
[Crossref]

A. L. Koh, K. Bao, I. Khan, W. E. Smith, G. Kothleitner, P. Nordlander, S. A. Maier, and D. W. McComb, “Electron energy-loss spectroscopy (EELS) of surface plasmons in single silver nanoparticles and dimers: influence of beam damage and mapping of dark modes,” ACS Nano 3, 3015–3022 (2009).
[Crossref]

Appl. Phys. Lett. (2)

H. Park, A. K. L. Lim, A. P. Alivisatos, J. Park, and P. L. McEuen, “Fabrication of metallic electrodes with nanometer separation by electromigration,” Appl. Phys. Lett. 75, 301 (1999).
[Crossref]

C. Hubert, L. Billot, P.-M. Adam, R. Bachelot, P. Royer, J. Grand, D. Gindre, K. Dorkenoo, and A. Fort, “Role of surface plasmon in second harmonic generation from gold nanorods,” Appl. Phys. Lett. 90, 181105 (2007).
[Crossref]

J. Phys. Chem. B (1)

C. M. Aguirre, C. E. Moran, J. F. Young, and N. J. Halas, “Laser-induced reshaping of metallodielectric nanoshells under femtosecond and nanosecond plasmon resonant illumination,” J. Phys. Chem. B 108, 7040–7045 (2004).
[Crossref]

Nano Lett. (13)

D. Fromm, A. Sundaramurthy, P. Schuck, G. Kino, and W. E. Moerner, “Gap-dependent optical coupling of single bowtie nanoantennas resonant in the visible,” Nano Lett. 4, 957–961 (2004).
[Crossref]

T. Hanke, J. Cesar, V. Knittel, A. Trügler, U. Hohenester, A. Leitenstorfer, and R. Bratschitsch, “Tailoring spatiotemporal light confinement in single plasmonic nanoantennas,” Nano Lett. 12, 992–996 (2012).
[Crossref]

P. Biagioni, D. Brida, J.-S. Huang, J. Kern, L. Duò, B. Hecht, M. Finazzi, and G. Cerullo, “Dynamics of four-photon photoluminescence in gold nanoantennas,” Nano Lett. 12, 2941–2947 (2012).
[Crossref]

H. Kollmann, X. Piao, M. Esmann, S. F. Becker, D. Hou, C. Huynh, L.-O. Kautschor, G. Bösker, H. Vieker, A. Beyer, A. Gölzhäuser, P. Namkyoo, R. Vogelgesang, M. Silies, and C. Lienau, “Toward plasmonics with nanometer precision: nonlinear optics of helium-ion milled gold nanoantennas,” Nano Lett. 14, 4778–4784 (2014).
[Crossref]

K. Ko, A. Kumar, K. Fung, R. Ambekar, G. Liu, N. Fang, and K. Toussaint, “Nonlinear optical response from arrays of Au bowtie nanoantennas,” Nano Lett. 11, 61–65 (2011).
[Crossref]

A. L. Koh, A. I. Fernández-Domínguez, D. W. McComb, S. A. Maier, and J. K. Yang, “High-resolution mapping of electron-beam-excited plasmon modes in lithographically defined gold nanostructures,” Nano Lett. 11, 1323–1330 (2011).
[Crossref]

P. Nordlander, C. Oubre, E. Prodan, K. Li, and I. Stockman, “Plasmon hybridization in nanoparticle dimers,” Nano Lett. 4, 899–903 (2004).
[Crossref]

D. Marinica, A. Kazansky, P. Nordlander, J. Aizpurua, and A. G. Borisov, “Quantum plasmonics: nonlinear effects in the field enhancement of a plasmonic nanoparticle dimer,” Nano Lett. 12, 1333–1339 (2012).
[Crossref]

K.-P. Chen, V. P. Drachev, J. D. Borneman, A. V. Kildishev, and V. M. Shalaev, “Drude relaxation rate in grained gold nanoantennas,” Nano Lett. 10, 916–922 (2010).
[Crossref]

N. Liu, F. Wen, Y. Zhao, Y. Wang, P. Nordlander, N. J. Halas, and A. Aluì, “Individual nanoantennas loaded with three-dimensional optical nanocircuits,” Nano Lett. 13, 142–147 (2013).
[Crossref]

J. C. Prangsma, J. Kern, A. G. Knapp, S. Grossmann, M. Emmerling, M. Kamp, and B. Hecht, “Electrically connected resonant optical antennas,” Nano Lett. 12, 3915–3919 (2012).
[Crossref]

D. R. Ward, N. K. Grady, C. S. Levin, N. J. Halas, Y. Wu, P. Nordlander, and D. Natelson, “Electromigrated nanoscale gaps for surface-enhanced Raman spectroscopy,” Nano Lett. 7, 1396–1400 (2007).
[Crossref]

A. Stolz, J. Berthelot, M. M. Mennemanteuil, G. Colas Des Francs, L. Markey, V. Meunier, and A. Bouhelier, “Nonlinear photon-assisted tunneling transport in optical gap antennas,” Nano Lett. 14, 2330–2338 (2014).
[Crossref]

Nat. Commun. (2)

T. Schumacher, K. Kratzer, D. Molnar, M. Hentschel, H. Giessen, and M. Lippitz, “Nanoantenna-enhanced ultrafast nonlinear spectroscopy of a single gold nanoparticle,” Nat. Commun. 2, 333 (2011).
[Crossref]

R. Esteban, A. G. Borisov, P. Nordlander, and J. Aizpurua, “Bridging quantum and classical plasmonics with a quantum-corrected model,” Nat. Commun. 3, 825 (2012).
[Crossref]

Nat. Mater. (1)

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9, 193–204 (2010).
[Crossref]

Nat. Nanotechnol. (4)

M. Celebrano, X. Wu, M. Baselli, S. Großmann, P. Biagioni, A. Locatelli, C. De Angelis, G. Cerullo, R. Osellame, B. Hecht, L. Duò, F. Ciccacci, and M. Finazzi, “Mode matching in multiresonant plasmonic nanoantennas for enhanced second harmonic generation,” Nat. Nanotechnol. 10, 412–417 (2015).
[Crossref]

H. Aouani, M. Rahmani, M. Navarro-Ca, and S. A. Maier, “Third-harmonic-upconversion enhancement from a single semiconductor nanoparticle coupled to a plasmonic antenna,” Nat. Nanotechnol. 9, 290–294 (2014).
[Crossref]

X. Zhu, C. Vannahme, E. Højlund-Nielsen, N. A. Mortensen, and A. Kristensen, “Plasmonic colour laser printing,” Nat. Nanotechnol. 11, 325–329 (2015).
[Crossref]

O. M. Maragò, P. H. Jones, P. G. Gucciardi, G. Volpe, and A. C. Ferrari, “Optical trapping and manipulation of nanostructures,” Nat. Nanotechnol. 8, 807–819 (2013).
[Crossref]

Nat. Photonics (3)

K. F. MacDonald, Z. L. Sámson, M. I. Stockman, and N. I. Zheludev, “Ultrafast active plasmonics,” Nat. Photonics 3, 55–58 (2008).
[Crossref]

M. Kauranen and A. Zayats, “Nonlinear plasmonics,” Nat. Photonics 6, 737–748 (2012).
[Crossref]

D. K. Gramotnev and S. I. Bozhevolnyi, “Nanofocusing of electromagnetic radiation,” Nat. Photonics 8, 13–22 (2013).
[Crossref]

Nat. Phys. (1)

M. S. Tame, K. R. McEnery, K. Özdemir, J. Lee, S. A. Maier, and M. S. Kim, “Quantum plasmonics,” Nat. Phys. 9, 329–340 (2013).
[Crossref]

Nature (4)

K. J. Savage, M. M. Hawkeye, R. Esteban, A. G. Borisov, J. Aizpurua, and J. J. Baumberg, “Revealing the quantum regime in tunnelling plasmonics,” Nature 491, 574–577 (2012).

A. Fiore, V. Berger, E. Rosencher, P. Bravetti, and J. Nagle, “Phase matching using an isotropic nonlinear optical material,” Nature 391, 463–466 (1998).

J. A. Scholl, A. L. Koh, and J. A. Dionne, “Quantum plasmon resonances of individual metallic nanoparticles,” Nature 483, 421–427 (2012).

S. Kim, J. Jin, Y. Kim, I. Park, Y. Kim, and S. Kim, “High-harmonic generation by resonant plasmon field enhancement,” Nature 453, 757–760 (2008).

Opt. Commun. (1)

O. Marti, H. Bielefeldt, B. Hecht, S. Herminghaus, P. Leiderer, and J. Mlynek, “Near-field optical measurement of the surface plasmon field,” Opt. Commun. 96, 225–228 (1993).
[Crossref]

Opt. Express (2)

Phys. Rev. B (6)

M. McMahon, R. Lopez, R. Haglund, E. Ray, and P. Bunton, “Second-harmonic generation from arrays of symmetric gold nanoparticles,” Phys. Rev. B 73, 041401 (2006).
[Crossref]

A. Sundaramurthy, K. B. Crozier, G. S. Kino, D. P. Fromm, P. J. Schuck, and W. E. Moerner, “Field enhancement and gap-dependent resonance in a system of two opposing tip-to-tip Au nanotriangles,” Phys. Rev. B 72, 1–6 (2005).
[Crossref]

K. Schraml, M. Spiegl, M. Kammerlocher, G. Bracher, J. Bartl, T. Campbell, J. Finley, and M. Kaniber, “Optical properties and interparticle coupling of plasmonic bowtie nanoantennas on a semiconducting substrate,” Phys. Rev. B 90, 035435 (2014).
[Crossref]

M. R. Beversluis, A. Bouhelier, and L. Novotny, “Continuum generation from single gold nanostructures through near-field mediated intraband transitions,” Phys. Rev. B 68, 115433 (2003).
[Crossref]

P. Biagioni, M. Celebrano, M. Savoini, G. Grancini, D. Brida, S. Mátéfi-Tempfli, M. Mátéfi-Tempfli, L. Duò, B. Hecht, G. Cerullo, and M. Finazzi, “Dependence of the two-photon photoluminescence yield of gold nanostructures on the laser pulse duration,” Phys. Rev. B 80, 045411 (2009).
[Crossref]

M. L. Trolle, G. Seifert, and T. G. Pedersen, “Theory of excitonic second-harmonic generation in monolayer MoS2,” Phys. Rev. B 89, 1–8 (2014).
[Crossref]

Phys. Rev. Lett. (4)

A. Bouhelier, R. Bachelot, G. Lerondel, S. Kostcheev, P. Royer, and G. Wiederrecht, “Surface plasmon characteristics of tunable photoluminescence in single gold nanorods,” Phys. Rev. Lett. 95, 267405 (2005).
[Crossref]

M. Danckwerts and L. Novotny, “Optical frequency mixing at coupled gold nanoparticles,” Phys. Rev. Lett. 98, 026104 (2007).
[Crossref]

P. Schuck, D. Fromm, A. Sundaramurthy, G. Kino, and W. Moerner, “Improving the mismatch between light and nanoscale objects with gold bowtie nanoantennas,” Phys. Rev. Lett. 94, 017402 (2005).
[Crossref]

T. Hanke, G. Krauss, D. Träutlein, B. Wild, R. Bratschitsch, and A. Leitenstorfer, “Efficient nonlinear light emission of single gold optical antennas driven by few-cycle near-infrared pulses,” Phys. Rev. Lett. 103, 257404 (2009).
[Crossref]

Proc. Natl. Acad. Sci. USA (1)

D. Brinks, M. Castro-Lopez, R. Hildner, and N. F. van Hulst, “Plasmonic antennas as design elements for coherent ultrafast nanophotonics,” Proc. Natl. Acad. Sci. USA 110, 18386–18390 (2013).
[Crossref]

Rep. Prog. Phys. (1)

P. Biagioni, B. Hecht, and J.-S. Huang, “Nanoantennas for visible and infrared radiation,” Rep. Prog. Phys. 75, 024402 (2012).
[Crossref]

Sci. Rep. (1)

M. Kaniber, K. Schraml, A. Regler, J. Bartl, G. Glashagen, F. Flassig, J. Wierzbowski, and J. J. Finley, “Surface plasmon resonance spectroscopy of single bowtie nano-antennas using a differential reflectivity method,” Sci. Rep. 6, 23203 (2016).
[Crossref]

Science (1)

P. Mühlschlegel, H. Eisler, O. Martin, B. Hecht, and D. Pohl, “Resonant optical antennas,” Science 308, 1607–1609 (2005).
[Crossref]

Other (4)

S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007).

M. Agio and A. Alù, Optical Antennas (Cambridge University, 2013).

Lumerical Solutions, Inc., 2013, http://www.lumerical.com/tcad-products/fdtd/ .

R. J. Pressley, Handbook of Lasers (Chemical Rubber, 1971).

Supplementary Material (1)

NameDescription
» Supplement 1: PDF (3286 KB)      Supplemental Document 1

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1. (a) Normalized differential reflectivity spectra and corresponding simulated scattering cross sections of pristine bowtie nanoantennas with s=140  nm and g=6  nm, g=14  nm, and g=30  nm in black, red, and blue, respectively. Inset: SEM image of pristine bowtie (scale bar=50  nm). (b) Spectrally integrated nonlinear intensity of pristine bowties as a function of peak power density upon 1, first; 2, second; and 3, third illumination with fs laser light. Inset: schematic illustration of the experimental setup, where (1) and (2) denote a linear polarizer and short-pass filter, respectively. (c) SEM images of bowties before (top) and after (bottom) fs-illumination (scale bar=50  nm).
Fig. 2.
Fig. 2. (a) Simulated scattering cross sections for pristine bowtie, fs-illuminated, and intentionally connected antenna in blue, red, and green, respectively. Insets: (i, ii) SEM images of fs-illuminated antennas modeled with continuous film and spatially separated nanoparticles, respectively. Scale bar=50  nm. (iii, iv) Simulated charge carrier distributions of the low and high energy mode of connected nanoantennas, respectively. (b) Differential reflectivity spectra for pristine, fs-illuminated, and intentionally connected antennas in blue, red, and green, respectively. Insets (i)–(iii) SEM images of the feedgap for pristine, fs-illuminated, and intentionally connected antennas, respectively. Scale bar=50  nm. (c) Histogram of energy shifts ΔE=EresErespristine for fs-illuminated and intentionally connected antennas in red and green, respectively.
Fig. 3.
Fig. 3. (a) Temporal evolution of the spectrally integrated nonlinear intensity INL of five nominally identical bowtie nanoantennas. (b) Two-photon photoluminescence spectra of fs-illuminated antennas for different excitation power densities. (c) Spectrally integrated nonlinear intensity as a function of peak power density for a fs-illuminated antenna and a planar Au film in blue and red, respectively. Dashed lines represent quadratic fits. (d) Spectrally integrated nonlinear intensity as a function of excitation polarization direction.
Fig. 4.
Fig. 4. (a) Measured saturation intensity INLsat as a function of feedgap size g in black. Simulated additional intensity enhancements due to nanotriangle tips and nanoparticles in the feedgap are shown as squares and circles, respectively. (b, c) Simulation of the intensity enhancement η for a pristine bowtie and a fs-illuminated antenna, respectively. (d) Ratio of intensity enhancements ηfs-ill/ηpristine of a fs-illuminated antenna with respect to a pristine antenna..

Metrics