Abstract

We present a widely tunable extended cavity ring laser operating at 2 μm that is monolithically integrated on an indium phosphide substrate. The photonic integrated circuit is designed and fabricated within a multiproject wafer run using a generic integration technology platform. The laser features an intracavity tuning mechanism based on nested asymmetric Mach–Zehnder interferometers with voltage controlled electro-refractive modulators. The laser operates in a single-mode regime and is tunable over the recorded wavelength range of 31 nm, spanning from 2011 to 2042 nm. Its capability for high-resolution scanning is demonstrated in a single-line spectroscopy experiment using a carbon dioxide reference cell.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Synchronized 4 × 12 GHz hybrid harmonically mode-locked semiconductor laser based on AWG

S. Liu, D. Lu, R. Zhang, L. Zhao, W. Wang, R. Broeke, and C. Ji
Opt. Express 24(9) 9734-9740 (2016)

Quantum entropy source on an InP photonic integrated circuit for random number generation

Carlos Abellan, Waldimar Amaya, David Domenech, Pascual Muñoz, Jose Capmany, Stefano Longhi, Morgan W. Mitchell, and Valerio Pruneri
Optica 3(9) 989-994 (2016)

Compact GaSb/silicon-on-insulator 2.0x μm widely tunable external cavity lasers

Ruijun Wang, Aditya Malik, Ieva Šimonytė, Augustinas Vizbaras, Kristijonas Vizbaras, and Gunther Roelkens
Opt. Express 24(25) 28977-28986 (2016)

References

  • View by:
  • |
  • |
  • |

  1. M. Smit, X. Leijtens, H. Ambrosius, E. Bente, J. van der Tol, B. Smalbrugge, T. de Vries, E.-J. Geluk, J. Bolk, R. van Veldhoven, L. Augustin, P. Thijs, D. D’Agostino, H. Rabbani, K. Lawniczuk, S. Stopinski, S. Tahvili, A. Corradi, E. Kleijn, D. Dzibrou, M. Felicetti, E. Bitincka, V. Moskalenko, J. Zhao, R. Santos, G. Gilardi, W. Yao, K. Williams, P. Stabile, P. Kuindersma, J. Pello, S. Bhat, Y. Jiao, D. Heiss, G. Roelkens, M. Wale, P. Firth, F. Soares, N. Grote, M. Schell, H. Debregeas, M. Achouche, J.-L. Gentner, A. Bakker, T. Korthorst, D. Gallagher, A. Dabbs, A. Melloni, F. Morichetti, D. Melati, A. Wonfor, R. Penty, R. Broeke, B. Musk, and D. Robbins, “An introduction to InP-based generic integration technology,” Semicond. Sci. Technol. 29, 83001–83041 (2014).
    [Crossref]
  2. J. G. Crowder, S. D. Smith, A. Vass, and J. Keddie, “Infrared methods for gas detection,” in Mid-Infrared Semiconductor Optoelectronics, A. Krier, ed. (Springer, 2006) Vol. 118, pp. 595–613.
  3. Y. Ikeda, G. M. Choi, D. H. Chung, K. Fukuzato, and T. Nakajima, “Sensor development of CO2 gas temperature and concentration using 2  μm DFB semiconductor laser,” in 10th International Symposium on Applications of Laser Techniques to Fluid Mechanics (2000), pp. 483–496.
  4. G. Roelkens, U. Dave, A. Gassenq, N. Hattasan, C. Hu, B. Kuyken, F. Leo, A. Malik, M. Muneeb, E. Ryckeboer, D. Sanchez, S. Uvin, R. Wang, Z. Hens, R. Baets, Y. Shimura, F. Gencarelli, B. Vincent, R. Loo, J. Van Campenhout, L. Cerutti, J.-B. Rodriguez, E. Tournie, X. Chen, M. Nedeljkovic, G. Mashanovich, L. Shen, N. Healy, A. C. Peacock, X. Liu, R. Osgood, and W. M. J. Green, “Silicon-based photonic integration beyond the telecommunication wavelength range,” IEEE J. Sel. Top. Quantum Electron. 20, 394–404 (2014).
    [Crossref]
  5. T. Hosoda, T. Feng, L. Shterengas, G. Kipshidze, and G. Belenky, “High power cascade diode lasers emitting near 2  μm,” Appl. Phys. Lett. 108, 131109 (2016).
    [Crossref]
  6. S. Forouhar, R. M. Briggs, C. Frez, K. J. Franz, and A. Ksendzov, “High-power laterally coupled distributed-feedback GaSb-based diode lasers at 2  μm wavelength,” Appl. Phys. Lett. 100, 031107 (2012).
    [Crossref]
  7. L. Shterengas, G. Kipshidze, T. Hosoda, M. Wang, T. Feng, and G. Belenky, “Cascade type-I quantum well GaSb-based diode lasers,” Photonics 3, 27 (2016).
    [Crossref]
  8. Y. Gu, Y. Zhang, Y. Cao, L. Zhou, X. Chen, H. Li, and S. Xi, “2.4 μm InP-based antimony-free triangular quantum well lasers in continuous-wave operation above room temperature,” Appl. Phys. Express 7, 032701 (2014).
    [Crossref]
  9. Y. Y. Cao, Y. G. Zhang, Y. Gu, X. Y. Chen, L. Zhou, and H. Li, “2.7  μm InAs quantum well lasers on InP-based InAlAs metamorphic buffer layers,” Appl. Phys. Lett. 102, 201111 (2013).
    [Crossref]
  10. S. Sprengel, C. Grasse, P. Wiecha, A. Andrejew, T. Gruendl, G. Boehm, R. Meyer, and M. C. Amann, “InP-based type-II quantum-well lasers and LEDs,” IEEE J. Sel. Top. Quantum Electron. 19, 1900909 (2013).
    [Crossref]
  11. G. Maisons, C. Gilles, L. Orbe, G. Carpintero, J. Abautret, and M. Carras, “Monolithic integration of a widely-tunable mid-infrared source based on DFB QCL array and echelle grating,” in Laser Applications to Chemical, Security and Environmental Analysis 2016, Heidelberg Germany, 25–28 July2016 (Optical Society of America, 2016), paper LTh3E.7.
  12. A. Spott, J. Peters, M. L. Davenport, E. J. Stanton, C. D. Merritt, W. W. Bewley, I. Vurgaftman, C. S. Kim, J. R. Meyer, J. Kirch, L. J. Mawst, D. Botez, and J. E. Bowers, “Quantum cascade laser on silicon,” Optica 3, 545–551 (2016).
    [Crossref]
  13. J. Dong, A. Ubukata, and K. Matsumoto, “Characteristics dependence on confinement structure and single-mode operation in 2-μm compressively strained InGaAs-lnGaAsP quantum-well lasers,” IEEE Photonics Technol. Lett. 10, 513–515 (1998).
    [Crossref]
  14. T. Sato, M. Mitsuhara, T. Watanabe, K. Kasaya, T. Takeshita, and Y. Kondo, “2.1-μm-wavelength InGaAs multiple-Quantum-well distributed feedback lasers grown by MOVPE using Sb surfactant,” IEEE J. Sel. Top. Quantum Electron. 13, 1079–1083 (2007).
    [Crossref]
  15. W. Zeller, M. Legge, A. Somers, W. Kaiser, J. Koeth, and A. Forchel, “Singlemode emission at 2  μm wavelength with InP based quantum dash DFB lasers,” Electron. Lett. 44, 354–356 (2008).
    [Crossref]
  16. B. W. Tilma, Y. Jiao, J. Kotani, B. Smalbrugge, H. P. M. M. Ambrosius, P. J. Thijs, X. J. M. Leijtens, R. Notzel, M. K. Smit, and E. A. J. M. Bente, “Integrated tunable quantum-dot laser for optical coherence tomography in the 1.7  μm wavelength region,” IEEE J. Quantum Electron. 48, 87–98 (2012).
    [Crossref]
  17. S. Latkowski, P. Thijs, P. J. van Veldhoven, H. Rabbani-Haghighi, M. K. Smit, and E. A. J. M. Bente, “Small signal modal gain measurement of ridge waveguide semiconductor optical amplifiers operating at 2  μm suitable for active-passive integration,” in Photonics Conference (IPC) (IEEE, 2013), pp. 258–259.
  18. D. D’Agostino, S. Tahvilli, S. Latkowski, P. J. Veldhoven, H. Rabbani-Haghighi, C. Jin, B. Docter, H. Ambrosius, E. Bente, D. Lenstra, and M. Smit, “Monolithically integrated widely tunable coupled cavity laser source for gas sensing applications around 2.0  μm wavelength,” in Advanced Photonics (Optical Society of America, 2015), paper JT5A.1.
  19. S. Latkowski, D. D’Agostino, P. J. van Veldhoven, H. Rabbani-Haghighi, B. Docter, H. Ambrosius, M. Smit, K. Williams, and E. A. J. M. Bente, “Monolithically integrated tunable laser source operating at 2  μm for gas sensing applications,” in Photonics Conference (IPC) (IEEE, 2015), pp. 535–536.
  20. S. Latkowski and D. Lenstra, “Lasers in InP generic photonic integration technology platforms,” Adv. Opt. Technol. 4, 179–188 (2015).
    [Crossref]
  21. S. Latkowski, M. Smit, and E. A. J. M. Bente, “Integrated tunable semiconductor laser geometry based on asymmetric Mach–Zehnder interferometers for gas sensing applications,” in Proceedings of the 17th Annual Symposium of the IEEE Photonics Society Benelux Chapter (IEEE, 2012).
  22. S. Latkowski, A. Hänsel, N. Bhattacharya, T. de Vries, L. Augustin, K. Williams, M. Smit, and E. Bente, “Novel widely tunable monolithically integrated laser source,” IEEE Photonics J. 7, 1–9 (2015).
    [Crossref]
  23. S. Latkowski, P. J. van Veldhoven, A. Hänsel, D. D’Agostino, H. Rabbani-Haghighi, B. Docter, N. Bhattacharya, P. Thijs, H. Ambrosius, and M. Smit, “Indium phosphide monolithic photonic integrated circuits for gas sensing applications,” in Proceedings of 18th European Conference on Integrated Optics (ECIO) (2016).
  24. S. Hein, A. Somers, W. Kaiser, S. Höfling, J. P. Reithmaier, and A. Forchel, “Singlemode InAs/InP quantum dash distributed feedback lasers emitting in 1.9  μm range,” Electron. Lett. 44, 527–528 (2008).
    [Crossref]
  25. T. Kanai, N. Fujiwara, Y. Ohiso, H. Ishii, M. Shimokozono, and M. Itoh, “2-μm wavelength tunable distributed Bragg reflector laser,” IEICE Electron. Exp. 13, 20160655 (2016).
    [Crossref]
  26. A. Spott, M. Davenport, J. Peters, J. Bovington, M. J. R. Heck, E. J. Stanton, I. Vurgaftman, J. Meyer, and J. Bowers, “Heterogeneously integrated 2.0  μm CW hybrid silicon lasers at room temperature,” Opt. Lett. 40, 1480–1483 (2015).
    [Crossref]
  27. S. Latkowski, P. J. van Veldhoven, D. D’Agostino, H. Rabbani-Haghighi, B. Docter, P. Thijs, H. Ambrosius, K. Williams, E. Bente, and M. Smit, “COBRA long wavelength active-passive monolithic photonic integration technology platform,” in Proceedings of 18th European Conference on Integrated Optics (ECIO) (2016).
  28. T. Sato, M. Mitsuhara, T. Watanabe, and Y. Kondo, “Surfactant-mediated growth of InGaAs multiple-quantum-well lasers emitting at 2.1  μm by metalorganic vapor phase epitaxy,” Appl. Phys. Lett. 87, 211903 (2005).
    [Crossref]
  29. J. D. Thomson, H. D. Summers, P. J. Hulyer, P. M. Smowton, and P. Blood, “Determination of single-pass optical gain and internal loss using a multisection device,” Appl. Phys. Lett. 75, 2527–2529 (1999).
    [Crossref]
  30. L. A. Coldren, S. W. Corzine, and M. L. Mashanovitch, Diode Lasers and Photonic Integrated Circuits (Wiley, 2012), Chapter 3.
  31. S. Latkowski, A. Hänsel, N. Bhattacharya, T. de Vries, L. Augustin, K. Williams, M. Smit, and E. Bente, “Monolithically integrated array of widely tunable laser sources for multispecies gas sensing applications,” in OSA Technical Digest, Optical Fiber Communication Conference (Optical Society of America, 2016), paper W4H.2.
  32. “HITRAN,” https://www.cfa.harvard.edu/hitran/ .
  33. “HITRAN on the Web,” http://hitran.iao.ru/ .

2016 (4)

T. Hosoda, T. Feng, L. Shterengas, G. Kipshidze, and G. Belenky, “High power cascade diode lasers emitting near 2  μm,” Appl. Phys. Lett. 108, 131109 (2016).
[Crossref]

L. Shterengas, G. Kipshidze, T. Hosoda, M. Wang, T. Feng, and G. Belenky, “Cascade type-I quantum well GaSb-based diode lasers,” Photonics 3, 27 (2016).
[Crossref]

A. Spott, J. Peters, M. L. Davenport, E. J. Stanton, C. D. Merritt, W. W. Bewley, I. Vurgaftman, C. S. Kim, J. R. Meyer, J. Kirch, L. J. Mawst, D. Botez, and J. E. Bowers, “Quantum cascade laser on silicon,” Optica 3, 545–551 (2016).
[Crossref]

T. Kanai, N. Fujiwara, Y. Ohiso, H. Ishii, M. Shimokozono, and M. Itoh, “2-μm wavelength tunable distributed Bragg reflector laser,” IEICE Electron. Exp. 13, 20160655 (2016).
[Crossref]

2015 (3)

A. Spott, M. Davenport, J. Peters, J. Bovington, M. J. R. Heck, E. J. Stanton, I. Vurgaftman, J. Meyer, and J. Bowers, “Heterogeneously integrated 2.0  μm CW hybrid silicon lasers at room temperature,” Opt. Lett. 40, 1480–1483 (2015).
[Crossref]

S. Latkowski and D. Lenstra, “Lasers in InP generic photonic integration technology platforms,” Adv. Opt. Technol. 4, 179–188 (2015).
[Crossref]

S. Latkowski, A. Hänsel, N. Bhattacharya, T. de Vries, L. Augustin, K. Williams, M. Smit, and E. Bente, “Novel widely tunable monolithically integrated laser source,” IEEE Photonics J. 7, 1–9 (2015).
[Crossref]

2014 (3)

Y. Gu, Y. Zhang, Y. Cao, L. Zhou, X. Chen, H. Li, and S. Xi, “2.4 μm InP-based antimony-free triangular quantum well lasers in continuous-wave operation above room temperature,” Appl. Phys. Express 7, 032701 (2014).
[Crossref]

M. Smit, X. Leijtens, H. Ambrosius, E. Bente, J. van der Tol, B. Smalbrugge, T. de Vries, E.-J. Geluk, J. Bolk, R. van Veldhoven, L. Augustin, P. Thijs, D. D’Agostino, H. Rabbani, K. Lawniczuk, S. Stopinski, S. Tahvili, A. Corradi, E. Kleijn, D. Dzibrou, M. Felicetti, E. Bitincka, V. Moskalenko, J. Zhao, R. Santos, G. Gilardi, W. Yao, K. Williams, P. Stabile, P. Kuindersma, J. Pello, S. Bhat, Y. Jiao, D. Heiss, G. Roelkens, M. Wale, P. Firth, F. Soares, N. Grote, M. Schell, H. Debregeas, M. Achouche, J.-L. Gentner, A. Bakker, T. Korthorst, D. Gallagher, A. Dabbs, A. Melloni, F. Morichetti, D. Melati, A. Wonfor, R. Penty, R. Broeke, B. Musk, and D. Robbins, “An introduction to InP-based generic integration technology,” Semicond. Sci. Technol. 29, 83001–83041 (2014).
[Crossref]

G. Roelkens, U. Dave, A. Gassenq, N. Hattasan, C. Hu, B. Kuyken, F. Leo, A. Malik, M. Muneeb, E. Ryckeboer, D. Sanchez, S. Uvin, R. Wang, Z. Hens, R. Baets, Y. Shimura, F. Gencarelli, B. Vincent, R. Loo, J. Van Campenhout, L. Cerutti, J.-B. Rodriguez, E. Tournie, X. Chen, M. Nedeljkovic, G. Mashanovich, L. Shen, N. Healy, A. C. Peacock, X. Liu, R. Osgood, and W. M. J. Green, “Silicon-based photonic integration beyond the telecommunication wavelength range,” IEEE J. Sel. Top. Quantum Electron. 20, 394–404 (2014).
[Crossref]

2013 (2)

Y. Y. Cao, Y. G. Zhang, Y. Gu, X. Y. Chen, L. Zhou, and H. Li, “2.7  μm InAs quantum well lasers on InP-based InAlAs metamorphic buffer layers,” Appl. Phys. Lett. 102, 201111 (2013).
[Crossref]

S. Sprengel, C. Grasse, P. Wiecha, A. Andrejew, T. Gruendl, G. Boehm, R. Meyer, and M. C. Amann, “InP-based type-II quantum-well lasers and LEDs,” IEEE J. Sel. Top. Quantum Electron. 19, 1900909 (2013).
[Crossref]

2012 (2)

S. Forouhar, R. M. Briggs, C. Frez, K. J. Franz, and A. Ksendzov, “High-power laterally coupled distributed-feedback GaSb-based diode lasers at 2  μm wavelength,” Appl. Phys. Lett. 100, 031107 (2012).
[Crossref]

B. W. Tilma, Y. Jiao, J. Kotani, B. Smalbrugge, H. P. M. M. Ambrosius, P. J. Thijs, X. J. M. Leijtens, R. Notzel, M. K. Smit, and E. A. J. M. Bente, “Integrated tunable quantum-dot laser for optical coherence tomography in the 1.7  μm wavelength region,” IEEE J. Quantum Electron. 48, 87–98 (2012).
[Crossref]

2008 (2)

S. Hein, A. Somers, W. Kaiser, S. Höfling, J. P. Reithmaier, and A. Forchel, “Singlemode InAs/InP quantum dash distributed feedback lasers emitting in 1.9  μm range,” Electron. Lett. 44, 527–528 (2008).
[Crossref]

W. Zeller, M. Legge, A. Somers, W. Kaiser, J. Koeth, and A. Forchel, “Singlemode emission at 2  μm wavelength with InP based quantum dash DFB lasers,” Electron. Lett. 44, 354–356 (2008).
[Crossref]

2007 (1)

T. Sato, M. Mitsuhara, T. Watanabe, K. Kasaya, T. Takeshita, and Y. Kondo, “2.1-μm-wavelength InGaAs multiple-Quantum-well distributed feedback lasers grown by MOVPE using Sb surfactant,” IEEE J. Sel. Top. Quantum Electron. 13, 1079–1083 (2007).
[Crossref]

2005 (1)

T. Sato, M. Mitsuhara, T. Watanabe, and Y. Kondo, “Surfactant-mediated growth of InGaAs multiple-quantum-well lasers emitting at 2.1  μm by metalorganic vapor phase epitaxy,” Appl. Phys. Lett. 87, 211903 (2005).
[Crossref]

1999 (1)

J. D. Thomson, H. D. Summers, P. J. Hulyer, P. M. Smowton, and P. Blood, “Determination of single-pass optical gain and internal loss using a multisection device,” Appl. Phys. Lett. 75, 2527–2529 (1999).
[Crossref]

1998 (1)

J. Dong, A. Ubukata, and K. Matsumoto, “Characteristics dependence on confinement structure and single-mode operation in 2-μm compressively strained InGaAs-lnGaAsP quantum-well lasers,” IEEE Photonics Technol. Lett. 10, 513–515 (1998).
[Crossref]

Abautret, J.

G. Maisons, C. Gilles, L. Orbe, G. Carpintero, J. Abautret, and M. Carras, “Monolithic integration of a widely-tunable mid-infrared source based on DFB QCL array and echelle grating,” in Laser Applications to Chemical, Security and Environmental Analysis 2016, Heidelberg Germany, 25–28 July2016 (Optical Society of America, 2016), paper LTh3E.7.

Achouche, M.

M. Smit, X. Leijtens, H. Ambrosius, E. Bente, J. van der Tol, B. Smalbrugge, T. de Vries, E.-J. Geluk, J. Bolk, R. van Veldhoven, L. Augustin, P. Thijs, D. D’Agostino, H. Rabbani, K. Lawniczuk, S. Stopinski, S. Tahvili, A. Corradi, E. Kleijn, D. Dzibrou, M. Felicetti, E. Bitincka, V. Moskalenko, J. Zhao, R. Santos, G. Gilardi, W. Yao, K. Williams, P. Stabile, P. Kuindersma, J. Pello, S. Bhat, Y. Jiao, D. Heiss, G. Roelkens, M. Wale, P. Firth, F. Soares, N. Grote, M. Schell, H. Debregeas, M. Achouche, J.-L. Gentner, A. Bakker, T. Korthorst, D. Gallagher, A. Dabbs, A. Melloni, F. Morichetti, D. Melati, A. Wonfor, R. Penty, R. Broeke, B. Musk, and D. Robbins, “An introduction to InP-based generic integration technology,” Semicond. Sci. Technol. 29, 83001–83041 (2014).
[Crossref]

Amann, M. C.

S. Sprengel, C. Grasse, P. Wiecha, A. Andrejew, T. Gruendl, G. Boehm, R. Meyer, and M. C. Amann, “InP-based type-II quantum-well lasers and LEDs,” IEEE J. Sel. Top. Quantum Electron. 19, 1900909 (2013).
[Crossref]

Ambrosius, H.

M. Smit, X. Leijtens, H. Ambrosius, E. Bente, J. van der Tol, B. Smalbrugge, T. de Vries, E.-J. Geluk, J. Bolk, R. van Veldhoven, L. Augustin, P. Thijs, D. D’Agostino, H. Rabbani, K. Lawniczuk, S. Stopinski, S. Tahvili, A. Corradi, E. Kleijn, D. Dzibrou, M. Felicetti, E. Bitincka, V. Moskalenko, J. Zhao, R. Santos, G. Gilardi, W. Yao, K. Williams, P. Stabile, P. Kuindersma, J. Pello, S. Bhat, Y. Jiao, D. Heiss, G. Roelkens, M. Wale, P. Firth, F. Soares, N. Grote, M. Schell, H. Debregeas, M. Achouche, J.-L. Gentner, A. Bakker, T. Korthorst, D. Gallagher, A. Dabbs, A. Melloni, F. Morichetti, D. Melati, A. Wonfor, R. Penty, R. Broeke, B. Musk, and D. Robbins, “An introduction to InP-based generic integration technology,” Semicond. Sci. Technol. 29, 83001–83041 (2014).
[Crossref]

D. D’Agostino, S. Tahvilli, S. Latkowski, P. J. Veldhoven, H. Rabbani-Haghighi, C. Jin, B. Docter, H. Ambrosius, E. Bente, D. Lenstra, and M. Smit, “Monolithically integrated widely tunable coupled cavity laser source for gas sensing applications around 2.0  μm wavelength,” in Advanced Photonics (Optical Society of America, 2015), paper JT5A.1.

S. Latkowski, D. D’Agostino, P. J. van Veldhoven, H. Rabbani-Haghighi, B. Docter, H. Ambrosius, M. Smit, K. Williams, and E. A. J. M. Bente, “Monolithically integrated tunable laser source operating at 2  μm for gas sensing applications,” in Photonics Conference (IPC) (IEEE, 2015), pp. 535–536.

S. Latkowski, P. J. van Veldhoven, A. Hänsel, D. D’Agostino, H. Rabbani-Haghighi, B. Docter, N. Bhattacharya, P. Thijs, H. Ambrosius, and M. Smit, “Indium phosphide monolithic photonic integrated circuits for gas sensing applications,” in Proceedings of 18th European Conference on Integrated Optics (ECIO) (2016).

S. Latkowski, P. J. van Veldhoven, D. D’Agostino, H. Rabbani-Haghighi, B. Docter, P. Thijs, H. Ambrosius, K. Williams, E. Bente, and M. Smit, “COBRA long wavelength active-passive monolithic photonic integration technology platform,” in Proceedings of 18th European Conference on Integrated Optics (ECIO) (2016).

Ambrosius, H. P. M. M.

B. W. Tilma, Y. Jiao, J. Kotani, B. Smalbrugge, H. P. M. M. Ambrosius, P. J. Thijs, X. J. M. Leijtens, R. Notzel, M. K. Smit, and E. A. J. M. Bente, “Integrated tunable quantum-dot laser for optical coherence tomography in the 1.7  μm wavelength region,” IEEE J. Quantum Electron. 48, 87–98 (2012).
[Crossref]

Andrejew, A.

S. Sprengel, C. Grasse, P. Wiecha, A. Andrejew, T. Gruendl, G. Boehm, R. Meyer, and M. C. Amann, “InP-based type-II quantum-well lasers and LEDs,” IEEE J. Sel. Top. Quantum Electron. 19, 1900909 (2013).
[Crossref]

Augustin, L.

S. Latkowski, A. Hänsel, N. Bhattacharya, T. de Vries, L. Augustin, K. Williams, M. Smit, and E. Bente, “Novel widely tunable monolithically integrated laser source,” IEEE Photonics J. 7, 1–9 (2015).
[Crossref]

M. Smit, X. Leijtens, H. Ambrosius, E. Bente, J. van der Tol, B. Smalbrugge, T. de Vries, E.-J. Geluk, J. Bolk, R. van Veldhoven, L. Augustin, P. Thijs, D. D’Agostino, H. Rabbani, K. Lawniczuk, S. Stopinski, S. Tahvili, A. Corradi, E. Kleijn, D. Dzibrou, M. Felicetti, E. Bitincka, V. Moskalenko, J. Zhao, R. Santos, G. Gilardi, W. Yao, K. Williams, P. Stabile, P. Kuindersma, J. Pello, S. Bhat, Y. Jiao, D. Heiss, G. Roelkens, M. Wale, P. Firth, F. Soares, N. Grote, M. Schell, H. Debregeas, M. Achouche, J.-L. Gentner, A. Bakker, T. Korthorst, D. Gallagher, A. Dabbs, A. Melloni, F. Morichetti, D. Melati, A. Wonfor, R. Penty, R. Broeke, B. Musk, and D. Robbins, “An introduction to InP-based generic integration technology,” Semicond. Sci. Technol. 29, 83001–83041 (2014).
[Crossref]

S. Latkowski, A. Hänsel, N. Bhattacharya, T. de Vries, L. Augustin, K. Williams, M. Smit, and E. Bente, “Monolithically integrated array of widely tunable laser sources for multispecies gas sensing applications,” in OSA Technical Digest, Optical Fiber Communication Conference (Optical Society of America, 2016), paper W4H.2.

Baets, R.

G. Roelkens, U. Dave, A. Gassenq, N. Hattasan, C. Hu, B. Kuyken, F. Leo, A. Malik, M. Muneeb, E. Ryckeboer, D. Sanchez, S. Uvin, R. Wang, Z. Hens, R. Baets, Y. Shimura, F. Gencarelli, B. Vincent, R. Loo, J. Van Campenhout, L. Cerutti, J.-B. Rodriguez, E. Tournie, X. Chen, M. Nedeljkovic, G. Mashanovich, L. Shen, N. Healy, A. C. Peacock, X. Liu, R. Osgood, and W. M. J. Green, “Silicon-based photonic integration beyond the telecommunication wavelength range,” IEEE J. Sel. Top. Quantum Electron. 20, 394–404 (2014).
[Crossref]

Bakker, A.

M. Smit, X. Leijtens, H. Ambrosius, E. Bente, J. van der Tol, B. Smalbrugge, T. de Vries, E.-J. Geluk, J. Bolk, R. van Veldhoven, L. Augustin, P. Thijs, D. D’Agostino, H. Rabbani, K. Lawniczuk, S. Stopinski, S. Tahvili, A. Corradi, E. Kleijn, D. Dzibrou, M. Felicetti, E. Bitincka, V. Moskalenko, J. Zhao, R. Santos, G. Gilardi, W. Yao, K. Williams, P. Stabile, P. Kuindersma, J. Pello, S. Bhat, Y. Jiao, D. Heiss, G. Roelkens, M. Wale, P. Firth, F. Soares, N. Grote, M. Schell, H. Debregeas, M. Achouche, J.-L. Gentner, A. Bakker, T. Korthorst, D. Gallagher, A. Dabbs, A. Melloni, F. Morichetti, D. Melati, A. Wonfor, R. Penty, R. Broeke, B. Musk, and D. Robbins, “An introduction to InP-based generic integration technology,” Semicond. Sci. Technol. 29, 83001–83041 (2014).
[Crossref]

Belenky, G.

T. Hosoda, T. Feng, L. Shterengas, G. Kipshidze, and G. Belenky, “High power cascade diode lasers emitting near 2  μm,” Appl. Phys. Lett. 108, 131109 (2016).
[Crossref]

L. Shterengas, G. Kipshidze, T. Hosoda, M. Wang, T. Feng, and G. Belenky, “Cascade type-I quantum well GaSb-based diode lasers,” Photonics 3, 27 (2016).
[Crossref]

Bente, E.

S. Latkowski, A. Hänsel, N. Bhattacharya, T. de Vries, L. Augustin, K. Williams, M. Smit, and E. Bente, “Novel widely tunable monolithically integrated laser source,” IEEE Photonics J. 7, 1–9 (2015).
[Crossref]

M. Smit, X. Leijtens, H. Ambrosius, E. Bente, J. van der Tol, B. Smalbrugge, T. de Vries, E.-J. Geluk, J. Bolk, R. van Veldhoven, L. Augustin, P. Thijs, D. D’Agostino, H. Rabbani, K. Lawniczuk, S. Stopinski, S. Tahvili, A. Corradi, E. Kleijn, D. Dzibrou, M. Felicetti, E. Bitincka, V. Moskalenko, J. Zhao, R. Santos, G. Gilardi, W. Yao, K. Williams, P. Stabile, P. Kuindersma, J. Pello, S. Bhat, Y. Jiao, D. Heiss, G. Roelkens, M. Wale, P. Firth, F. Soares, N. Grote, M. Schell, H. Debregeas, M. Achouche, J.-L. Gentner, A. Bakker, T. Korthorst, D. Gallagher, A. Dabbs, A. Melloni, F. Morichetti, D. Melati, A. Wonfor, R. Penty, R. Broeke, B. Musk, and D. Robbins, “An introduction to InP-based generic integration technology,” Semicond. Sci. Technol. 29, 83001–83041 (2014).
[Crossref]

S. Latkowski, A. Hänsel, N. Bhattacharya, T. de Vries, L. Augustin, K. Williams, M. Smit, and E. Bente, “Monolithically integrated array of widely tunable laser sources for multispecies gas sensing applications,” in OSA Technical Digest, Optical Fiber Communication Conference (Optical Society of America, 2016), paper W4H.2.

S. Latkowski, P. J. van Veldhoven, D. D’Agostino, H. Rabbani-Haghighi, B. Docter, P. Thijs, H. Ambrosius, K. Williams, E. Bente, and M. Smit, “COBRA long wavelength active-passive monolithic photonic integration technology platform,” in Proceedings of 18th European Conference on Integrated Optics (ECIO) (2016).

D. D’Agostino, S. Tahvilli, S. Latkowski, P. J. Veldhoven, H. Rabbani-Haghighi, C. Jin, B. Docter, H. Ambrosius, E. Bente, D. Lenstra, and M. Smit, “Monolithically integrated widely tunable coupled cavity laser source for gas sensing applications around 2.0  μm wavelength,” in Advanced Photonics (Optical Society of America, 2015), paper JT5A.1.

Bente, E. A. J. M.

B. W. Tilma, Y. Jiao, J. Kotani, B. Smalbrugge, H. P. M. M. Ambrosius, P. J. Thijs, X. J. M. Leijtens, R. Notzel, M. K. Smit, and E. A. J. M. Bente, “Integrated tunable quantum-dot laser for optical coherence tomography in the 1.7  μm wavelength region,” IEEE J. Quantum Electron. 48, 87–98 (2012).
[Crossref]

S. Latkowski, P. Thijs, P. J. van Veldhoven, H. Rabbani-Haghighi, M. K. Smit, and E. A. J. M. Bente, “Small signal modal gain measurement of ridge waveguide semiconductor optical amplifiers operating at 2  μm suitable for active-passive integration,” in Photonics Conference (IPC) (IEEE, 2013), pp. 258–259.

S. Latkowski, M. Smit, and E. A. J. M. Bente, “Integrated tunable semiconductor laser geometry based on asymmetric Mach–Zehnder interferometers for gas sensing applications,” in Proceedings of the 17th Annual Symposium of the IEEE Photonics Society Benelux Chapter (IEEE, 2012).

S. Latkowski, D. D’Agostino, P. J. van Veldhoven, H. Rabbani-Haghighi, B. Docter, H. Ambrosius, M. Smit, K. Williams, and E. A. J. M. Bente, “Monolithically integrated tunable laser source operating at 2  μm for gas sensing applications,” in Photonics Conference (IPC) (IEEE, 2015), pp. 535–536.

Bewley, W. W.

Bhat, S.

M. Smit, X. Leijtens, H. Ambrosius, E. Bente, J. van der Tol, B. Smalbrugge, T. de Vries, E.-J. Geluk, J. Bolk, R. van Veldhoven, L. Augustin, P. Thijs, D. D’Agostino, H. Rabbani, K. Lawniczuk, S. Stopinski, S. Tahvili, A. Corradi, E. Kleijn, D. Dzibrou, M. Felicetti, E. Bitincka, V. Moskalenko, J. Zhao, R. Santos, G. Gilardi, W. Yao, K. Williams, P. Stabile, P. Kuindersma, J. Pello, S. Bhat, Y. Jiao, D. Heiss, G. Roelkens, M. Wale, P. Firth, F. Soares, N. Grote, M. Schell, H. Debregeas, M. Achouche, J.-L. Gentner, A. Bakker, T. Korthorst, D. Gallagher, A. Dabbs, A. Melloni, F. Morichetti, D. Melati, A. Wonfor, R. Penty, R. Broeke, B. Musk, and D. Robbins, “An introduction to InP-based generic integration technology,” Semicond. Sci. Technol. 29, 83001–83041 (2014).
[Crossref]

Bhattacharya, N.

S. Latkowski, A. Hänsel, N. Bhattacharya, T. de Vries, L. Augustin, K. Williams, M. Smit, and E. Bente, “Novel widely tunable monolithically integrated laser source,” IEEE Photonics J. 7, 1–9 (2015).
[Crossref]

S. Latkowski, A. Hänsel, N. Bhattacharya, T. de Vries, L. Augustin, K. Williams, M. Smit, and E. Bente, “Monolithically integrated array of widely tunable laser sources for multispecies gas sensing applications,” in OSA Technical Digest, Optical Fiber Communication Conference (Optical Society of America, 2016), paper W4H.2.

S. Latkowski, P. J. van Veldhoven, A. Hänsel, D. D’Agostino, H. Rabbani-Haghighi, B. Docter, N. Bhattacharya, P. Thijs, H. Ambrosius, and M. Smit, “Indium phosphide monolithic photonic integrated circuits for gas sensing applications,” in Proceedings of 18th European Conference on Integrated Optics (ECIO) (2016).

Bitincka, E.

M. Smit, X. Leijtens, H. Ambrosius, E. Bente, J. van der Tol, B. Smalbrugge, T. de Vries, E.-J. Geluk, J. Bolk, R. van Veldhoven, L. Augustin, P. Thijs, D. D’Agostino, H. Rabbani, K. Lawniczuk, S. Stopinski, S. Tahvili, A. Corradi, E. Kleijn, D. Dzibrou, M. Felicetti, E. Bitincka, V. Moskalenko, J. Zhao, R. Santos, G. Gilardi, W. Yao, K. Williams, P. Stabile, P. Kuindersma, J. Pello, S. Bhat, Y. Jiao, D. Heiss, G. Roelkens, M. Wale, P. Firth, F. Soares, N. Grote, M. Schell, H. Debregeas, M. Achouche, J.-L. Gentner, A. Bakker, T. Korthorst, D. Gallagher, A. Dabbs, A. Melloni, F. Morichetti, D. Melati, A. Wonfor, R. Penty, R. Broeke, B. Musk, and D. Robbins, “An introduction to InP-based generic integration technology,” Semicond. Sci. Technol. 29, 83001–83041 (2014).
[Crossref]

Blood, P.

J. D. Thomson, H. D. Summers, P. J. Hulyer, P. M. Smowton, and P. Blood, “Determination of single-pass optical gain and internal loss using a multisection device,” Appl. Phys. Lett. 75, 2527–2529 (1999).
[Crossref]

Boehm, G.

S. Sprengel, C. Grasse, P. Wiecha, A. Andrejew, T. Gruendl, G. Boehm, R. Meyer, and M. C. Amann, “InP-based type-II quantum-well lasers and LEDs,” IEEE J. Sel. Top. Quantum Electron. 19, 1900909 (2013).
[Crossref]

Bolk, J.

M. Smit, X. Leijtens, H. Ambrosius, E. Bente, J. van der Tol, B. Smalbrugge, T. de Vries, E.-J. Geluk, J. Bolk, R. van Veldhoven, L. Augustin, P. Thijs, D. D’Agostino, H. Rabbani, K. Lawniczuk, S. Stopinski, S. Tahvili, A. Corradi, E. Kleijn, D. Dzibrou, M. Felicetti, E. Bitincka, V. Moskalenko, J. Zhao, R. Santos, G. Gilardi, W. Yao, K. Williams, P. Stabile, P. Kuindersma, J. Pello, S. Bhat, Y. Jiao, D. Heiss, G. Roelkens, M. Wale, P. Firth, F. Soares, N. Grote, M. Schell, H. Debregeas, M. Achouche, J.-L. Gentner, A. Bakker, T. Korthorst, D. Gallagher, A. Dabbs, A. Melloni, F. Morichetti, D. Melati, A. Wonfor, R. Penty, R. Broeke, B. Musk, and D. Robbins, “An introduction to InP-based generic integration technology,” Semicond. Sci. Technol. 29, 83001–83041 (2014).
[Crossref]

Botez, D.

Bovington, J.

Bowers, J.

Bowers, J. E.

Briggs, R. M.

S. Forouhar, R. M. Briggs, C. Frez, K. J. Franz, and A. Ksendzov, “High-power laterally coupled distributed-feedback GaSb-based diode lasers at 2  μm wavelength,” Appl. Phys. Lett. 100, 031107 (2012).
[Crossref]

Broeke, R.

M. Smit, X. Leijtens, H. Ambrosius, E. Bente, J. van der Tol, B. Smalbrugge, T. de Vries, E.-J. Geluk, J. Bolk, R. van Veldhoven, L. Augustin, P. Thijs, D. D’Agostino, H. Rabbani, K. Lawniczuk, S. Stopinski, S. Tahvili, A. Corradi, E. Kleijn, D. Dzibrou, M. Felicetti, E. Bitincka, V. Moskalenko, J. Zhao, R. Santos, G. Gilardi, W. Yao, K. Williams, P. Stabile, P. Kuindersma, J. Pello, S. Bhat, Y. Jiao, D. Heiss, G. Roelkens, M. Wale, P. Firth, F. Soares, N. Grote, M. Schell, H. Debregeas, M. Achouche, J.-L. Gentner, A. Bakker, T. Korthorst, D. Gallagher, A. Dabbs, A. Melloni, F. Morichetti, D. Melati, A. Wonfor, R. Penty, R. Broeke, B. Musk, and D. Robbins, “An introduction to InP-based generic integration technology,” Semicond. Sci. Technol. 29, 83001–83041 (2014).
[Crossref]

Cao, Y.

Y. Gu, Y. Zhang, Y. Cao, L. Zhou, X. Chen, H. Li, and S. Xi, “2.4 μm InP-based antimony-free triangular quantum well lasers in continuous-wave operation above room temperature,” Appl. Phys. Express 7, 032701 (2014).
[Crossref]

Cao, Y. Y.

Y. Y. Cao, Y. G. Zhang, Y. Gu, X. Y. Chen, L. Zhou, and H. Li, “2.7  μm InAs quantum well lasers on InP-based InAlAs metamorphic buffer layers,” Appl. Phys. Lett. 102, 201111 (2013).
[Crossref]

Carpintero, G.

G. Maisons, C. Gilles, L. Orbe, G. Carpintero, J. Abautret, and M. Carras, “Monolithic integration of a widely-tunable mid-infrared source based on DFB QCL array and echelle grating,” in Laser Applications to Chemical, Security and Environmental Analysis 2016, Heidelberg Germany, 25–28 July2016 (Optical Society of America, 2016), paper LTh3E.7.

Carras, M.

G. Maisons, C. Gilles, L. Orbe, G. Carpintero, J. Abautret, and M. Carras, “Monolithic integration of a widely-tunable mid-infrared source based on DFB QCL array and echelle grating,” in Laser Applications to Chemical, Security and Environmental Analysis 2016, Heidelberg Germany, 25–28 July2016 (Optical Society of America, 2016), paper LTh3E.7.

Cerutti, L.

G. Roelkens, U. Dave, A. Gassenq, N. Hattasan, C. Hu, B. Kuyken, F. Leo, A. Malik, M. Muneeb, E. Ryckeboer, D. Sanchez, S. Uvin, R. Wang, Z. Hens, R. Baets, Y. Shimura, F. Gencarelli, B. Vincent, R. Loo, J. Van Campenhout, L. Cerutti, J.-B. Rodriguez, E. Tournie, X. Chen, M. Nedeljkovic, G. Mashanovich, L. Shen, N. Healy, A. C. Peacock, X. Liu, R. Osgood, and W. M. J. Green, “Silicon-based photonic integration beyond the telecommunication wavelength range,” IEEE J. Sel. Top. Quantum Electron. 20, 394–404 (2014).
[Crossref]

Chen, X.

G. Roelkens, U. Dave, A. Gassenq, N. Hattasan, C. Hu, B. Kuyken, F. Leo, A. Malik, M. Muneeb, E. Ryckeboer, D. Sanchez, S. Uvin, R. Wang, Z. Hens, R. Baets, Y. Shimura, F. Gencarelli, B. Vincent, R. Loo, J. Van Campenhout, L. Cerutti, J.-B. Rodriguez, E. Tournie, X. Chen, M. Nedeljkovic, G. Mashanovich, L. Shen, N. Healy, A. C. Peacock, X. Liu, R. Osgood, and W. M. J. Green, “Silicon-based photonic integration beyond the telecommunication wavelength range,” IEEE J. Sel. Top. Quantum Electron. 20, 394–404 (2014).
[Crossref]

Y. Gu, Y. Zhang, Y. Cao, L. Zhou, X. Chen, H. Li, and S. Xi, “2.4 μm InP-based antimony-free triangular quantum well lasers in continuous-wave operation above room temperature,” Appl. Phys. Express 7, 032701 (2014).
[Crossref]

Chen, X. Y.

Y. Y. Cao, Y. G. Zhang, Y. Gu, X. Y. Chen, L. Zhou, and H. Li, “2.7  μm InAs quantum well lasers on InP-based InAlAs metamorphic buffer layers,” Appl. Phys. Lett. 102, 201111 (2013).
[Crossref]

Choi, G. M.

Y. Ikeda, G. M. Choi, D. H. Chung, K. Fukuzato, and T. Nakajima, “Sensor development of CO2 gas temperature and concentration using 2  μm DFB semiconductor laser,” in 10th International Symposium on Applications of Laser Techniques to Fluid Mechanics (2000), pp. 483–496.

Chung, D. H.

Y. Ikeda, G. M. Choi, D. H. Chung, K. Fukuzato, and T. Nakajima, “Sensor development of CO2 gas temperature and concentration using 2  μm DFB semiconductor laser,” in 10th International Symposium on Applications of Laser Techniques to Fluid Mechanics (2000), pp. 483–496.

Coldren, L. A.

L. A. Coldren, S. W. Corzine, and M. L. Mashanovitch, Diode Lasers and Photonic Integrated Circuits (Wiley, 2012), Chapter 3.

Corradi, A.

M. Smit, X. Leijtens, H. Ambrosius, E. Bente, J. van der Tol, B. Smalbrugge, T. de Vries, E.-J. Geluk, J. Bolk, R. van Veldhoven, L. Augustin, P. Thijs, D. D’Agostino, H. Rabbani, K. Lawniczuk, S. Stopinski, S. Tahvili, A. Corradi, E. Kleijn, D. Dzibrou, M. Felicetti, E. Bitincka, V. Moskalenko, J. Zhao, R. Santos, G. Gilardi, W. Yao, K. Williams, P. Stabile, P. Kuindersma, J. Pello, S. Bhat, Y. Jiao, D. Heiss, G. Roelkens, M. Wale, P. Firth, F. Soares, N. Grote, M. Schell, H. Debregeas, M. Achouche, J.-L. Gentner, A. Bakker, T. Korthorst, D. Gallagher, A. Dabbs, A. Melloni, F. Morichetti, D. Melati, A. Wonfor, R. Penty, R. Broeke, B. Musk, and D. Robbins, “An introduction to InP-based generic integration technology,” Semicond. Sci. Technol. 29, 83001–83041 (2014).
[Crossref]

Corzine, S. W.

L. A. Coldren, S. W. Corzine, and M. L. Mashanovitch, Diode Lasers and Photonic Integrated Circuits (Wiley, 2012), Chapter 3.

Crowder, J. G.

J. G. Crowder, S. D. Smith, A. Vass, and J. Keddie, “Infrared methods for gas detection,” in Mid-Infrared Semiconductor Optoelectronics, A. Krier, ed. (Springer, 2006) Vol. 118, pp. 595–613.

D’Agostino, D.

M. Smit, X. Leijtens, H. Ambrosius, E. Bente, J. van der Tol, B. Smalbrugge, T. de Vries, E.-J. Geluk, J. Bolk, R. van Veldhoven, L. Augustin, P. Thijs, D. D’Agostino, H. Rabbani, K. Lawniczuk, S. Stopinski, S. Tahvili, A. Corradi, E. Kleijn, D. Dzibrou, M. Felicetti, E. Bitincka, V. Moskalenko, J. Zhao, R. Santos, G. Gilardi, W. Yao, K. Williams, P. Stabile, P. Kuindersma, J. Pello, S. Bhat, Y. Jiao, D. Heiss, G. Roelkens, M. Wale, P. Firth, F. Soares, N. Grote, M. Schell, H. Debregeas, M. Achouche, J.-L. Gentner, A. Bakker, T. Korthorst, D. Gallagher, A. Dabbs, A. Melloni, F. Morichetti, D. Melati, A. Wonfor, R. Penty, R. Broeke, B. Musk, and D. Robbins, “An introduction to InP-based generic integration technology,” Semicond. Sci. Technol. 29, 83001–83041 (2014).
[Crossref]

S. Latkowski, P. J. van Veldhoven, D. D’Agostino, H. Rabbani-Haghighi, B. Docter, P. Thijs, H. Ambrosius, K. Williams, E. Bente, and M. Smit, “COBRA long wavelength active-passive monolithic photonic integration technology platform,” in Proceedings of 18th European Conference on Integrated Optics (ECIO) (2016).

S. Latkowski, P. J. van Veldhoven, A. Hänsel, D. D’Agostino, H. Rabbani-Haghighi, B. Docter, N. Bhattacharya, P. Thijs, H. Ambrosius, and M. Smit, “Indium phosphide monolithic photonic integrated circuits for gas sensing applications,” in Proceedings of 18th European Conference on Integrated Optics (ECIO) (2016).

D. D’Agostino, S. Tahvilli, S. Latkowski, P. J. Veldhoven, H. Rabbani-Haghighi, C. Jin, B. Docter, H. Ambrosius, E. Bente, D. Lenstra, and M. Smit, “Monolithically integrated widely tunable coupled cavity laser source for gas sensing applications around 2.0  μm wavelength,” in Advanced Photonics (Optical Society of America, 2015), paper JT5A.1.

S. Latkowski, D. D’Agostino, P. J. van Veldhoven, H. Rabbani-Haghighi, B. Docter, H. Ambrosius, M. Smit, K. Williams, and E. A. J. M. Bente, “Monolithically integrated tunable laser source operating at 2  μm for gas sensing applications,” in Photonics Conference (IPC) (IEEE, 2015), pp. 535–536.

Dabbs, A.

M. Smit, X. Leijtens, H. Ambrosius, E. Bente, J. van der Tol, B. Smalbrugge, T. de Vries, E.-J. Geluk, J. Bolk, R. van Veldhoven, L. Augustin, P. Thijs, D. D’Agostino, H. Rabbani, K. Lawniczuk, S. Stopinski, S. Tahvili, A. Corradi, E. Kleijn, D. Dzibrou, M. Felicetti, E. Bitincka, V. Moskalenko, J. Zhao, R. Santos, G. Gilardi, W. Yao, K. Williams, P. Stabile, P. Kuindersma, J. Pello, S. Bhat, Y. Jiao, D. Heiss, G. Roelkens, M. Wale, P. Firth, F. Soares, N. Grote, M. Schell, H. Debregeas, M. Achouche, J.-L. Gentner, A. Bakker, T. Korthorst, D. Gallagher, A. Dabbs, A. Melloni, F. Morichetti, D. Melati, A. Wonfor, R. Penty, R. Broeke, B. Musk, and D. Robbins, “An introduction to InP-based generic integration technology,” Semicond. Sci. Technol. 29, 83001–83041 (2014).
[Crossref]

Dave, U.

G. Roelkens, U. Dave, A. Gassenq, N. Hattasan, C. Hu, B. Kuyken, F. Leo, A. Malik, M. Muneeb, E. Ryckeboer, D. Sanchez, S. Uvin, R. Wang, Z. Hens, R. Baets, Y. Shimura, F. Gencarelli, B. Vincent, R. Loo, J. Van Campenhout, L. Cerutti, J.-B. Rodriguez, E. Tournie, X. Chen, M. Nedeljkovic, G. Mashanovich, L. Shen, N. Healy, A. C. Peacock, X. Liu, R. Osgood, and W. M. J. Green, “Silicon-based photonic integration beyond the telecommunication wavelength range,” IEEE J. Sel. Top. Quantum Electron. 20, 394–404 (2014).
[Crossref]

Davenport, M.

Davenport, M. L.

de Vries, T.

S. Latkowski, A. Hänsel, N. Bhattacharya, T. de Vries, L. Augustin, K. Williams, M. Smit, and E. Bente, “Novel widely tunable monolithically integrated laser source,” IEEE Photonics J. 7, 1–9 (2015).
[Crossref]

M. Smit, X. Leijtens, H. Ambrosius, E. Bente, J. van der Tol, B. Smalbrugge, T. de Vries, E.-J. Geluk, J. Bolk, R. van Veldhoven, L. Augustin, P. Thijs, D. D’Agostino, H. Rabbani, K. Lawniczuk, S. Stopinski, S. Tahvili, A. Corradi, E. Kleijn, D. Dzibrou, M. Felicetti, E. Bitincka, V. Moskalenko, J. Zhao, R. Santos, G. Gilardi, W. Yao, K. Williams, P. Stabile, P. Kuindersma, J. Pello, S. Bhat, Y. Jiao, D. Heiss, G. Roelkens, M. Wale, P. Firth, F. Soares, N. Grote, M. Schell, H. Debregeas, M. Achouche, J.-L. Gentner, A. Bakker, T. Korthorst, D. Gallagher, A. Dabbs, A. Melloni, F. Morichetti, D. Melati, A. Wonfor, R. Penty, R. Broeke, B. Musk, and D. Robbins, “An introduction to InP-based generic integration technology,” Semicond. Sci. Technol. 29, 83001–83041 (2014).
[Crossref]

S. Latkowski, A. Hänsel, N. Bhattacharya, T. de Vries, L. Augustin, K. Williams, M. Smit, and E. Bente, “Monolithically integrated array of widely tunable laser sources for multispecies gas sensing applications,” in OSA Technical Digest, Optical Fiber Communication Conference (Optical Society of America, 2016), paper W4H.2.

Debregeas, H.

M. Smit, X. Leijtens, H. Ambrosius, E. Bente, J. van der Tol, B. Smalbrugge, T. de Vries, E.-J. Geluk, J. Bolk, R. van Veldhoven, L. Augustin, P. Thijs, D. D’Agostino, H. Rabbani, K. Lawniczuk, S. Stopinski, S. Tahvili, A. Corradi, E. Kleijn, D. Dzibrou, M. Felicetti, E. Bitincka, V. Moskalenko, J. Zhao, R. Santos, G. Gilardi, W. Yao, K. Williams, P. Stabile, P. Kuindersma, J. Pello, S. Bhat, Y. Jiao, D. Heiss, G. Roelkens, M. Wale, P. Firth, F. Soares, N. Grote, M. Schell, H. Debregeas, M. Achouche, J.-L. Gentner, A. Bakker, T. Korthorst, D. Gallagher, A. Dabbs, A. Melloni, F. Morichetti, D. Melati, A. Wonfor, R. Penty, R. Broeke, B. Musk, and D. Robbins, “An introduction to InP-based generic integration technology,” Semicond. Sci. Technol. 29, 83001–83041 (2014).
[Crossref]

Docter, B.

S. Latkowski, P. J. van Veldhoven, D. D’Agostino, H. Rabbani-Haghighi, B. Docter, P. Thijs, H. Ambrosius, K. Williams, E. Bente, and M. Smit, “COBRA long wavelength active-passive monolithic photonic integration technology platform,” in Proceedings of 18th European Conference on Integrated Optics (ECIO) (2016).

S. Latkowski, P. J. van Veldhoven, A. Hänsel, D. D’Agostino, H. Rabbani-Haghighi, B. Docter, N. Bhattacharya, P. Thijs, H. Ambrosius, and M. Smit, “Indium phosphide monolithic photonic integrated circuits for gas sensing applications,” in Proceedings of 18th European Conference on Integrated Optics (ECIO) (2016).

S. Latkowski, D. D’Agostino, P. J. van Veldhoven, H. Rabbani-Haghighi, B. Docter, H. Ambrosius, M. Smit, K. Williams, and E. A. J. M. Bente, “Monolithically integrated tunable laser source operating at 2  μm for gas sensing applications,” in Photonics Conference (IPC) (IEEE, 2015), pp. 535–536.

D. D’Agostino, S. Tahvilli, S. Latkowski, P. J. Veldhoven, H. Rabbani-Haghighi, C. Jin, B. Docter, H. Ambrosius, E. Bente, D. Lenstra, and M. Smit, “Monolithically integrated widely tunable coupled cavity laser source for gas sensing applications around 2.0  μm wavelength,” in Advanced Photonics (Optical Society of America, 2015), paper JT5A.1.

Dong, J.

J. Dong, A. Ubukata, and K. Matsumoto, “Characteristics dependence on confinement structure and single-mode operation in 2-μm compressively strained InGaAs-lnGaAsP quantum-well lasers,” IEEE Photonics Technol. Lett. 10, 513–515 (1998).
[Crossref]

Dzibrou, D.

M. Smit, X. Leijtens, H. Ambrosius, E. Bente, J. van der Tol, B. Smalbrugge, T. de Vries, E.-J. Geluk, J. Bolk, R. van Veldhoven, L. Augustin, P. Thijs, D. D’Agostino, H. Rabbani, K. Lawniczuk, S. Stopinski, S. Tahvili, A. Corradi, E. Kleijn, D. Dzibrou, M. Felicetti, E. Bitincka, V. Moskalenko, J. Zhao, R. Santos, G. Gilardi, W. Yao, K. Williams, P. Stabile, P. Kuindersma, J. Pello, S. Bhat, Y. Jiao, D. Heiss, G. Roelkens, M. Wale, P. Firth, F. Soares, N. Grote, M. Schell, H. Debregeas, M. Achouche, J.-L. Gentner, A. Bakker, T. Korthorst, D. Gallagher, A. Dabbs, A. Melloni, F. Morichetti, D. Melati, A. Wonfor, R. Penty, R. Broeke, B. Musk, and D. Robbins, “An introduction to InP-based generic integration technology,” Semicond. Sci. Technol. 29, 83001–83041 (2014).
[Crossref]

Felicetti, M.

M. Smit, X. Leijtens, H. Ambrosius, E. Bente, J. van der Tol, B. Smalbrugge, T. de Vries, E.-J. Geluk, J. Bolk, R. van Veldhoven, L. Augustin, P. Thijs, D. D’Agostino, H. Rabbani, K. Lawniczuk, S. Stopinski, S. Tahvili, A. Corradi, E. Kleijn, D. Dzibrou, M. Felicetti, E. Bitincka, V. Moskalenko, J. Zhao, R. Santos, G. Gilardi, W. Yao, K. Williams, P. Stabile, P. Kuindersma, J. Pello, S. Bhat, Y. Jiao, D. Heiss, G. Roelkens, M. Wale, P. Firth, F. Soares, N. Grote, M. Schell, H. Debregeas, M. Achouche, J.-L. Gentner, A. Bakker, T. Korthorst, D. Gallagher, A. Dabbs, A. Melloni, F. Morichetti, D. Melati, A. Wonfor, R. Penty, R. Broeke, B. Musk, and D. Robbins, “An introduction to InP-based generic integration technology,” Semicond. Sci. Technol. 29, 83001–83041 (2014).
[Crossref]

Feng, T.

L. Shterengas, G. Kipshidze, T. Hosoda, M. Wang, T. Feng, and G. Belenky, “Cascade type-I quantum well GaSb-based diode lasers,” Photonics 3, 27 (2016).
[Crossref]

T. Hosoda, T. Feng, L. Shterengas, G. Kipshidze, and G. Belenky, “High power cascade diode lasers emitting near 2  μm,” Appl. Phys. Lett. 108, 131109 (2016).
[Crossref]

Firth, P.

M. Smit, X. Leijtens, H. Ambrosius, E. Bente, J. van der Tol, B. Smalbrugge, T. de Vries, E.-J. Geluk, J. Bolk, R. van Veldhoven, L. Augustin, P. Thijs, D. D’Agostino, H. Rabbani, K. Lawniczuk, S. Stopinski, S. Tahvili, A. Corradi, E. Kleijn, D. Dzibrou, M. Felicetti, E. Bitincka, V. Moskalenko, J. Zhao, R. Santos, G. Gilardi, W. Yao, K. Williams, P. Stabile, P. Kuindersma, J. Pello, S. Bhat, Y. Jiao, D. Heiss, G. Roelkens, M. Wale, P. Firth, F. Soares, N. Grote, M. Schell, H. Debregeas, M. Achouche, J.-L. Gentner, A. Bakker, T. Korthorst, D. Gallagher, A. Dabbs, A. Melloni, F. Morichetti, D. Melati, A. Wonfor, R. Penty, R. Broeke, B. Musk, and D. Robbins, “An introduction to InP-based generic integration technology,” Semicond. Sci. Technol. 29, 83001–83041 (2014).
[Crossref]

Forchel, A.

W. Zeller, M. Legge, A. Somers, W. Kaiser, J. Koeth, and A. Forchel, “Singlemode emission at 2  μm wavelength with InP based quantum dash DFB lasers,” Electron. Lett. 44, 354–356 (2008).
[Crossref]

S. Hein, A. Somers, W. Kaiser, S. Höfling, J. P. Reithmaier, and A. Forchel, “Singlemode InAs/InP quantum dash distributed feedback lasers emitting in 1.9  μm range,” Electron. Lett. 44, 527–528 (2008).
[Crossref]

Forouhar, S.

S. Forouhar, R. M. Briggs, C. Frez, K. J. Franz, and A. Ksendzov, “High-power laterally coupled distributed-feedback GaSb-based diode lasers at 2  μm wavelength,” Appl. Phys. Lett. 100, 031107 (2012).
[Crossref]

Franz, K. J.

S. Forouhar, R. M. Briggs, C. Frez, K. J. Franz, and A. Ksendzov, “High-power laterally coupled distributed-feedback GaSb-based diode lasers at 2  μm wavelength,” Appl. Phys. Lett. 100, 031107 (2012).
[Crossref]

Frez, C.

S. Forouhar, R. M. Briggs, C. Frez, K. J. Franz, and A. Ksendzov, “High-power laterally coupled distributed-feedback GaSb-based diode lasers at 2  μm wavelength,” Appl. Phys. Lett. 100, 031107 (2012).
[Crossref]

Fujiwara, N.

T. Kanai, N. Fujiwara, Y. Ohiso, H. Ishii, M. Shimokozono, and M. Itoh, “2-μm wavelength tunable distributed Bragg reflector laser,” IEICE Electron. Exp. 13, 20160655 (2016).
[Crossref]

Fukuzato, K.

Y. Ikeda, G. M. Choi, D. H. Chung, K. Fukuzato, and T. Nakajima, “Sensor development of CO2 gas temperature and concentration using 2  μm DFB semiconductor laser,” in 10th International Symposium on Applications of Laser Techniques to Fluid Mechanics (2000), pp. 483–496.

Gallagher, D.

M. Smit, X. Leijtens, H. Ambrosius, E. Bente, J. van der Tol, B. Smalbrugge, T. de Vries, E.-J. Geluk, J. Bolk, R. van Veldhoven, L. Augustin, P. Thijs, D. D’Agostino, H. Rabbani, K. Lawniczuk, S. Stopinski, S. Tahvili, A. Corradi, E. Kleijn, D. Dzibrou, M. Felicetti, E. Bitincka, V. Moskalenko, J. Zhao, R. Santos, G. Gilardi, W. Yao, K. Williams, P. Stabile, P. Kuindersma, J. Pello, S. Bhat, Y. Jiao, D. Heiss, G. Roelkens, M. Wale, P. Firth, F. Soares, N. Grote, M. Schell, H. Debregeas, M. Achouche, J.-L. Gentner, A. Bakker, T. Korthorst, D. Gallagher, A. Dabbs, A. Melloni, F. Morichetti, D. Melati, A. Wonfor, R. Penty, R. Broeke, B. Musk, and D. Robbins, “An introduction to InP-based generic integration technology,” Semicond. Sci. Technol. 29, 83001–83041 (2014).
[Crossref]

Gassenq, A.

G. Roelkens, U. Dave, A. Gassenq, N. Hattasan, C. Hu, B. Kuyken, F. Leo, A. Malik, M. Muneeb, E. Ryckeboer, D. Sanchez, S. Uvin, R. Wang, Z. Hens, R. Baets, Y. Shimura, F. Gencarelli, B. Vincent, R. Loo, J. Van Campenhout, L. Cerutti, J.-B. Rodriguez, E. Tournie, X. Chen, M. Nedeljkovic, G. Mashanovich, L. Shen, N. Healy, A. C. Peacock, X. Liu, R. Osgood, and W. M. J. Green, “Silicon-based photonic integration beyond the telecommunication wavelength range,” IEEE J. Sel. Top. Quantum Electron. 20, 394–404 (2014).
[Crossref]

Geluk, E.-J.

M. Smit, X. Leijtens, H. Ambrosius, E. Bente, J. van der Tol, B. Smalbrugge, T. de Vries, E.-J. Geluk, J. Bolk, R. van Veldhoven, L. Augustin, P. Thijs, D. D’Agostino, H. Rabbani, K. Lawniczuk, S. Stopinski, S. Tahvili, A. Corradi, E. Kleijn, D. Dzibrou, M. Felicetti, E. Bitincka, V. Moskalenko, J. Zhao, R. Santos, G. Gilardi, W. Yao, K. Williams, P. Stabile, P. Kuindersma, J. Pello, S. Bhat, Y. Jiao, D. Heiss, G. Roelkens, M. Wale, P. Firth, F. Soares, N. Grote, M. Schell, H. Debregeas, M. Achouche, J.-L. Gentner, A. Bakker, T. Korthorst, D. Gallagher, A. Dabbs, A. Melloni, F. Morichetti, D. Melati, A. Wonfor, R. Penty, R. Broeke, B. Musk, and D. Robbins, “An introduction to InP-based generic integration technology,” Semicond. Sci. Technol. 29, 83001–83041 (2014).
[Crossref]

Gencarelli, F.

G. Roelkens, U. Dave, A. Gassenq, N. Hattasan, C. Hu, B. Kuyken, F. Leo, A. Malik, M. Muneeb, E. Ryckeboer, D. Sanchez, S. Uvin, R. Wang, Z. Hens, R. Baets, Y. Shimura, F. Gencarelli, B. Vincent, R. Loo, J. Van Campenhout, L. Cerutti, J.-B. Rodriguez, E. Tournie, X. Chen, M. Nedeljkovic, G. Mashanovich, L. Shen, N. Healy, A. C. Peacock, X. Liu, R. Osgood, and W. M. J. Green, “Silicon-based photonic integration beyond the telecommunication wavelength range,” IEEE J. Sel. Top. Quantum Electron. 20, 394–404 (2014).
[Crossref]

Gentner, J.-L.

M. Smit, X. Leijtens, H. Ambrosius, E. Bente, J. van der Tol, B. Smalbrugge, T. de Vries, E.-J. Geluk, J. Bolk, R. van Veldhoven, L. Augustin, P. Thijs, D. D’Agostino, H. Rabbani, K. Lawniczuk, S. Stopinski, S. Tahvili, A. Corradi, E. Kleijn, D. Dzibrou, M. Felicetti, E. Bitincka, V. Moskalenko, J. Zhao, R. Santos, G. Gilardi, W. Yao, K. Williams, P. Stabile, P. Kuindersma, J. Pello, S. Bhat, Y. Jiao, D. Heiss, G. Roelkens, M. Wale, P. Firth, F. Soares, N. Grote, M. Schell, H. Debregeas, M. Achouche, J.-L. Gentner, A. Bakker, T. Korthorst, D. Gallagher, A. Dabbs, A. Melloni, F. Morichetti, D. Melati, A. Wonfor, R. Penty, R. Broeke, B. Musk, and D. Robbins, “An introduction to InP-based generic integration technology,” Semicond. Sci. Technol. 29, 83001–83041 (2014).
[Crossref]

Gilardi, G.

M. Smit, X. Leijtens, H. Ambrosius, E. Bente, J. van der Tol, B. Smalbrugge, T. de Vries, E.-J. Geluk, J. Bolk, R. van Veldhoven, L. Augustin, P. Thijs, D. D’Agostino, H. Rabbani, K. Lawniczuk, S. Stopinski, S. Tahvili, A. Corradi, E. Kleijn, D. Dzibrou, M. Felicetti, E. Bitincka, V. Moskalenko, J. Zhao, R. Santos, G. Gilardi, W. Yao, K. Williams, P. Stabile, P. Kuindersma, J. Pello, S. Bhat, Y. Jiao, D. Heiss, G. Roelkens, M. Wale, P. Firth, F. Soares, N. Grote, M. Schell, H. Debregeas, M. Achouche, J.-L. Gentner, A. Bakker, T. Korthorst, D. Gallagher, A. Dabbs, A. Melloni, F. Morichetti, D. Melati, A. Wonfor, R. Penty, R. Broeke, B. Musk, and D. Robbins, “An introduction to InP-based generic integration technology,” Semicond. Sci. Technol. 29, 83001–83041 (2014).
[Crossref]

Gilles, C.

G. Maisons, C. Gilles, L. Orbe, G. Carpintero, J. Abautret, and M. Carras, “Monolithic integration of a widely-tunable mid-infrared source based on DFB QCL array and echelle grating,” in Laser Applications to Chemical, Security and Environmental Analysis 2016, Heidelberg Germany, 25–28 July2016 (Optical Society of America, 2016), paper LTh3E.7.

Grasse, C.

S. Sprengel, C. Grasse, P. Wiecha, A. Andrejew, T. Gruendl, G. Boehm, R. Meyer, and M. C. Amann, “InP-based type-II quantum-well lasers and LEDs,” IEEE J. Sel. Top. Quantum Electron. 19, 1900909 (2013).
[Crossref]

Green, W. M. J.

G. Roelkens, U. Dave, A. Gassenq, N. Hattasan, C. Hu, B. Kuyken, F. Leo, A. Malik, M. Muneeb, E. Ryckeboer, D. Sanchez, S. Uvin, R. Wang, Z. Hens, R. Baets, Y. Shimura, F. Gencarelli, B. Vincent, R. Loo, J. Van Campenhout, L. Cerutti, J.-B. Rodriguez, E. Tournie, X. Chen, M. Nedeljkovic, G. Mashanovich, L. Shen, N. Healy, A. C. Peacock, X. Liu, R. Osgood, and W. M. J. Green, “Silicon-based photonic integration beyond the telecommunication wavelength range,” IEEE J. Sel. Top. Quantum Electron. 20, 394–404 (2014).
[Crossref]

Grote, N.

M. Smit, X. Leijtens, H. Ambrosius, E. Bente, J. van der Tol, B. Smalbrugge, T. de Vries, E.-J. Geluk, J. Bolk, R. van Veldhoven, L. Augustin, P. Thijs, D. D’Agostino, H. Rabbani, K. Lawniczuk, S. Stopinski, S. Tahvili, A. Corradi, E. Kleijn, D. Dzibrou, M. Felicetti, E. Bitincka, V. Moskalenko, J. Zhao, R. Santos, G. Gilardi, W. Yao, K. Williams, P. Stabile, P. Kuindersma, J. Pello, S. Bhat, Y. Jiao, D. Heiss, G. Roelkens, M. Wale, P. Firth, F. Soares, N. Grote, M. Schell, H. Debregeas, M. Achouche, J.-L. Gentner, A. Bakker, T. Korthorst, D. Gallagher, A. Dabbs, A. Melloni, F. Morichetti, D. Melati, A. Wonfor, R. Penty, R. Broeke, B. Musk, and D. Robbins, “An introduction to InP-based generic integration technology,” Semicond. Sci. Technol. 29, 83001–83041 (2014).
[Crossref]

Gruendl, T.

S. Sprengel, C. Grasse, P. Wiecha, A. Andrejew, T. Gruendl, G. Boehm, R. Meyer, and M. C. Amann, “InP-based type-II quantum-well lasers and LEDs,” IEEE J. Sel. Top. Quantum Electron. 19, 1900909 (2013).
[Crossref]

Gu, Y.

Y. Gu, Y. Zhang, Y. Cao, L. Zhou, X. Chen, H. Li, and S. Xi, “2.4 μm InP-based antimony-free triangular quantum well lasers in continuous-wave operation above room temperature,” Appl. Phys. Express 7, 032701 (2014).
[Crossref]

Y. Y. Cao, Y. G. Zhang, Y. Gu, X. Y. Chen, L. Zhou, and H. Li, “2.7  μm InAs quantum well lasers on InP-based InAlAs metamorphic buffer layers,” Appl. Phys. Lett. 102, 201111 (2013).
[Crossref]

Hänsel, A.

S. Latkowski, A. Hänsel, N. Bhattacharya, T. de Vries, L. Augustin, K. Williams, M. Smit, and E. Bente, “Novel widely tunable monolithically integrated laser source,” IEEE Photonics J. 7, 1–9 (2015).
[Crossref]

S. Latkowski, P. J. van Veldhoven, A. Hänsel, D. D’Agostino, H. Rabbani-Haghighi, B. Docter, N. Bhattacharya, P. Thijs, H. Ambrosius, and M. Smit, “Indium phosphide monolithic photonic integrated circuits for gas sensing applications,” in Proceedings of 18th European Conference on Integrated Optics (ECIO) (2016).

S. Latkowski, A. Hänsel, N. Bhattacharya, T. de Vries, L. Augustin, K. Williams, M. Smit, and E. Bente, “Monolithically integrated array of widely tunable laser sources for multispecies gas sensing applications,” in OSA Technical Digest, Optical Fiber Communication Conference (Optical Society of America, 2016), paper W4H.2.

Hattasan, N.

G. Roelkens, U. Dave, A. Gassenq, N. Hattasan, C. Hu, B. Kuyken, F. Leo, A. Malik, M. Muneeb, E. Ryckeboer, D. Sanchez, S. Uvin, R. Wang, Z. Hens, R. Baets, Y. Shimura, F. Gencarelli, B. Vincent, R. Loo, J. Van Campenhout, L. Cerutti, J.-B. Rodriguez, E. Tournie, X. Chen, M. Nedeljkovic, G. Mashanovich, L. Shen, N. Healy, A. C. Peacock, X. Liu, R. Osgood, and W. M. J. Green, “Silicon-based photonic integration beyond the telecommunication wavelength range,” IEEE J. Sel. Top. Quantum Electron. 20, 394–404 (2014).
[Crossref]

Healy, N.

G. Roelkens, U. Dave, A. Gassenq, N. Hattasan, C. Hu, B. Kuyken, F. Leo, A. Malik, M. Muneeb, E. Ryckeboer, D. Sanchez, S. Uvin, R. Wang, Z. Hens, R. Baets, Y. Shimura, F. Gencarelli, B. Vincent, R. Loo, J. Van Campenhout, L. Cerutti, J.-B. Rodriguez, E. Tournie, X. Chen, M. Nedeljkovic, G. Mashanovich, L. Shen, N. Healy, A. C. Peacock, X. Liu, R. Osgood, and W. M. J. Green, “Silicon-based photonic integration beyond the telecommunication wavelength range,” IEEE J. Sel. Top. Quantum Electron. 20, 394–404 (2014).
[Crossref]

Heck, M. J. R.

Hein, S.

S. Hein, A. Somers, W. Kaiser, S. Höfling, J. P. Reithmaier, and A. Forchel, “Singlemode InAs/InP quantum dash distributed feedback lasers emitting in 1.9  μm range,” Electron. Lett. 44, 527–528 (2008).
[Crossref]

Heiss, D.

M. Smit, X. Leijtens, H. Ambrosius, E. Bente, J. van der Tol, B. Smalbrugge, T. de Vries, E.-J. Geluk, J. Bolk, R. van Veldhoven, L. Augustin, P. Thijs, D. D’Agostino, H. Rabbani, K. Lawniczuk, S. Stopinski, S. Tahvili, A. Corradi, E. Kleijn, D. Dzibrou, M. Felicetti, E. Bitincka, V. Moskalenko, J. Zhao, R. Santos, G. Gilardi, W. Yao, K. Williams, P. Stabile, P. Kuindersma, J. Pello, S. Bhat, Y. Jiao, D. Heiss, G. Roelkens, M. Wale, P. Firth, F. Soares, N. Grote, M. Schell, H. Debregeas, M. Achouche, J.-L. Gentner, A. Bakker, T. Korthorst, D. Gallagher, A. Dabbs, A. Melloni, F. Morichetti, D. Melati, A. Wonfor, R. Penty, R. Broeke, B. Musk, and D. Robbins, “An introduction to InP-based generic integration technology,” Semicond. Sci. Technol. 29, 83001–83041 (2014).
[Crossref]

Hens, Z.

G. Roelkens, U. Dave, A. Gassenq, N. Hattasan, C. Hu, B. Kuyken, F. Leo, A. Malik, M. Muneeb, E. Ryckeboer, D. Sanchez, S. Uvin, R. Wang, Z. Hens, R. Baets, Y. Shimura, F. Gencarelli, B. Vincent, R. Loo, J. Van Campenhout, L. Cerutti, J.-B. Rodriguez, E. Tournie, X. Chen, M. Nedeljkovic, G. Mashanovich, L. Shen, N. Healy, A. C. Peacock, X. Liu, R. Osgood, and W. M. J. Green, “Silicon-based photonic integration beyond the telecommunication wavelength range,” IEEE J. Sel. Top. Quantum Electron. 20, 394–404 (2014).
[Crossref]

Höfling, S.

S. Hein, A. Somers, W. Kaiser, S. Höfling, J. P. Reithmaier, and A. Forchel, “Singlemode InAs/InP quantum dash distributed feedback lasers emitting in 1.9  μm range,” Electron. Lett. 44, 527–528 (2008).
[Crossref]

Hosoda, T.

T. Hosoda, T. Feng, L. Shterengas, G. Kipshidze, and G. Belenky, “High power cascade diode lasers emitting near 2  μm,” Appl. Phys. Lett. 108, 131109 (2016).
[Crossref]

L. Shterengas, G. Kipshidze, T. Hosoda, M. Wang, T. Feng, and G. Belenky, “Cascade type-I quantum well GaSb-based diode lasers,” Photonics 3, 27 (2016).
[Crossref]

Hu, C.

G. Roelkens, U. Dave, A. Gassenq, N. Hattasan, C. Hu, B. Kuyken, F. Leo, A. Malik, M. Muneeb, E. Ryckeboer, D. Sanchez, S. Uvin, R. Wang, Z. Hens, R. Baets, Y. Shimura, F. Gencarelli, B. Vincent, R. Loo, J. Van Campenhout, L. Cerutti, J.-B. Rodriguez, E. Tournie, X. Chen, M. Nedeljkovic, G. Mashanovich, L. Shen, N. Healy, A. C. Peacock, X. Liu, R. Osgood, and W. M. J. Green, “Silicon-based photonic integration beyond the telecommunication wavelength range,” IEEE J. Sel. Top. Quantum Electron. 20, 394–404 (2014).
[Crossref]

Hulyer, P. J.

J. D. Thomson, H. D. Summers, P. J. Hulyer, P. M. Smowton, and P. Blood, “Determination of single-pass optical gain and internal loss using a multisection device,” Appl. Phys. Lett. 75, 2527–2529 (1999).
[Crossref]

Ikeda, Y.

Y. Ikeda, G. M. Choi, D. H. Chung, K. Fukuzato, and T. Nakajima, “Sensor development of CO2 gas temperature and concentration using 2  μm DFB semiconductor laser,” in 10th International Symposium on Applications of Laser Techniques to Fluid Mechanics (2000), pp. 483–496.

Ishii, H.

T. Kanai, N. Fujiwara, Y. Ohiso, H. Ishii, M. Shimokozono, and M. Itoh, “2-μm wavelength tunable distributed Bragg reflector laser,” IEICE Electron. Exp. 13, 20160655 (2016).
[Crossref]

Itoh, M.

T. Kanai, N. Fujiwara, Y. Ohiso, H. Ishii, M. Shimokozono, and M. Itoh, “2-μm wavelength tunable distributed Bragg reflector laser,” IEICE Electron. Exp. 13, 20160655 (2016).
[Crossref]

Jiao, Y.

M. Smit, X. Leijtens, H. Ambrosius, E. Bente, J. van der Tol, B. Smalbrugge, T. de Vries, E.-J. Geluk, J. Bolk, R. van Veldhoven, L. Augustin, P. Thijs, D. D’Agostino, H. Rabbani, K. Lawniczuk, S. Stopinski, S. Tahvili, A. Corradi, E. Kleijn, D. Dzibrou, M. Felicetti, E. Bitincka, V. Moskalenko, J. Zhao, R. Santos, G. Gilardi, W. Yao, K. Williams, P. Stabile, P. Kuindersma, J. Pello, S. Bhat, Y. Jiao, D. Heiss, G. Roelkens, M. Wale, P. Firth, F. Soares, N. Grote, M. Schell, H. Debregeas, M. Achouche, J.-L. Gentner, A. Bakker, T. Korthorst, D. Gallagher, A. Dabbs, A. Melloni, F. Morichetti, D. Melati, A. Wonfor, R. Penty, R. Broeke, B. Musk, and D. Robbins, “An introduction to InP-based generic integration technology,” Semicond. Sci. Technol. 29, 83001–83041 (2014).
[Crossref]

B. W. Tilma, Y. Jiao, J. Kotani, B. Smalbrugge, H. P. M. M. Ambrosius, P. J. Thijs, X. J. M. Leijtens, R. Notzel, M. K. Smit, and E. A. J. M. Bente, “Integrated tunable quantum-dot laser for optical coherence tomography in the 1.7  μm wavelength region,” IEEE J. Quantum Electron. 48, 87–98 (2012).
[Crossref]

Jin, C.

D. D’Agostino, S. Tahvilli, S. Latkowski, P. J. Veldhoven, H. Rabbani-Haghighi, C. Jin, B. Docter, H. Ambrosius, E. Bente, D. Lenstra, and M. Smit, “Monolithically integrated widely tunable coupled cavity laser source for gas sensing applications around 2.0  μm wavelength,” in Advanced Photonics (Optical Society of America, 2015), paper JT5A.1.

Kaiser, W.

W. Zeller, M. Legge, A. Somers, W. Kaiser, J. Koeth, and A. Forchel, “Singlemode emission at 2  μm wavelength with InP based quantum dash DFB lasers,” Electron. Lett. 44, 354–356 (2008).
[Crossref]

S. Hein, A. Somers, W. Kaiser, S. Höfling, J. P. Reithmaier, and A. Forchel, “Singlemode InAs/InP quantum dash distributed feedback lasers emitting in 1.9  μm range,” Electron. Lett. 44, 527–528 (2008).
[Crossref]

Kanai, T.

T. Kanai, N. Fujiwara, Y. Ohiso, H. Ishii, M. Shimokozono, and M. Itoh, “2-μm wavelength tunable distributed Bragg reflector laser,” IEICE Electron. Exp. 13, 20160655 (2016).
[Crossref]

Kasaya, K.

T. Sato, M. Mitsuhara, T. Watanabe, K. Kasaya, T. Takeshita, and Y. Kondo, “2.1-μm-wavelength InGaAs multiple-Quantum-well distributed feedback lasers grown by MOVPE using Sb surfactant,” IEEE J. Sel. Top. Quantum Electron. 13, 1079–1083 (2007).
[Crossref]

Keddie, J.

J. G. Crowder, S. D. Smith, A. Vass, and J. Keddie, “Infrared methods for gas detection,” in Mid-Infrared Semiconductor Optoelectronics, A. Krier, ed. (Springer, 2006) Vol. 118, pp. 595–613.

Kim, C. S.

Kipshidze, G.

T. Hosoda, T. Feng, L. Shterengas, G. Kipshidze, and G. Belenky, “High power cascade diode lasers emitting near 2  μm,” Appl. Phys. Lett. 108, 131109 (2016).
[Crossref]

L. Shterengas, G. Kipshidze, T. Hosoda, M. Wang, T. Feng, and G. Belenky, “Cascade type-I quantum well GaSb-based diode lasers,” Photonics 3, 27 (2016).
[Crossref]

Kirch, J.

Kleijn, E.

M. Smit, X. Leijtens, H. Ambrosius, E. Bente, J. van der Tol, B. Smalbrugge, T. de Vries, E.-J. Geluk, J. Bolk, R. van Veldhoven, L. Augustin, P. Thijs, D. D’Agostino, H. Rabbani, K. Lawniczuk, S. Stopinski, S. Tahvili, A. Corradi, E. Kleijn, D. Dzibrou, M. Felicetti, E. Bitincka, V. Moskalenko, J. Zhao, R. Santos, G. Gilardi, W. Yao, K. Williams, P. Stabile, P. Kuindersma, J. Pello, S. Bhat, Y. Jiao, D. Heiss, G. Roelkens, M. Wale, P. Firth, F. Soares, N. Grote, M. Schell, H. Debregeas, M. Achouche, J.-L. Gentner, A. Bakker, T. Korthorst, D. Gallagher, A. Dabbs, A. Melloni, F. Morichetti, D. Melati, A. Wonfor, R. Penty, R. Broeke, B. Musk, and D. Robbins, “An introduction to InP-based generic integration technology,” Semicond. Sci. Technol. 29, 83001–83041 (2014).
[Crossref]

Koeth, J.

W. Zeller, M. Legge, A. Somers, W. Kaiser, J. Koeth, and A. Forchel, “Singlemode emission at 2  μm wavelength with InP based quantum dash DFB lasers,” Electron. Lett. 44, 354–356 (2008).
[Crossref]

Kondo, Y.

T. Sato, M. Mitsuhara, T. Watanabe, K. Kasaya, T. Takeshita, and Y. Kondo, “2.1-μm-wavelength InGaAs multiple-Quantum-well distributed feedback lasers grown by MOVPE using Sb surfactant,” IEEE J. Sel. Top. Quantum Electron. 13, 1079–1083 (2007).
[Crossref]

T. Sato, M. Mitsuhara, T. Watanabe, and Y. Kondo, “Surfactant-mediated growth of InGaAs multiple-quantum-well lasers emitting at 2.1  μm by metalorganic vapor phase epitaxy,” Appl. Phys. Lett. 87, 211903 (2005).
[Crossref]

Korthorst, T.

M. Smit, X. Leijtens, H. Ambrosius, E. Bente, J. van der Tol, B. Smalbrugge, T. de Vries, E.-J. Geluk, J. Bolk, R. van Veldhoven, L. Augustin, P. Thijs, D. D’Agostino, H. Rabbani, K. Lawniczuk, S. Stopinski, S. Tahvili, A. Corradi, E. Kleijn, D. Dzibrou, M. Felicetti, E. Bitincka, V. Moskalenko, J. Zhao, R. Santos, G. Gilardi, W. Yao, K. Williams, P. Stabile, P. Kuindersma, J. Pello, S. Bhat, Y. Jiao, D. Heiss, G. Roelkens, M. Wale, P. Firth, F. Soares, N. Grote, M. Schell, H. Debregeas, M. Achouche, J.-L. Gentner, A. Bakker, T. Korthorst, D. Gallagher, A. Dabbs, A. Melloni, F. Morichetti, D. Melati, A. Wonfor, R. Penty, R. Broeke, B. Musk, and D. Robbins, “An introduction to InP-based generic integration technology,” Semicond. Sci. Technol. 29, 83001–83041 (2014).
[Crossref]

Kotani, J.

B. W. Tilma, Y. Jiao, J. Kotani, B. Smalbrugge, H. P. M. M. Ambrosius, P. J. Thijs, X. J. M. Leijtens, R. Notzel, M. K. Smit, and E. A. J. M. Bente, “Integrated tunable quantum-dot laser for optical coherence tomography in the 1.7  μm wavelength region,” IEEE J. Quantum Electron. 48, 87–98 (2012).
[Crossref]

Ksendzov, A.

S. Forouhar, R. M. Briggs, C. Frez, K. J. Franz, and A. Ksendzov, “High-power laterally coupled distributed-feedback GaSb-based diode lasers at 2  μm wavelength,” Appl. Phys. Lett. 100, 031107 (2012).
[Crossref]

Kuindersma, P.

M. Smit, X. Leijtens, H. Ambrosius, E. Bente, J. van der Tol, B. Smalbrugge, T. de Vries, E.-J. Geluk, J. Bolk, R. van Veldhoven, L. Augustin, P. Thijs, D. D’Agostino, H. Rabbani, K. Lawniczuk, S. Stopinski, S. Tahvili, A. Corradi, E. Kleijn, D. Dzibrou, M. Felicetti, E. Bitincka, V. Moskalenko, J. Zhao, R. Santos, G. Gilardi, W. Yao, K. Williams, P. Stabile, P. Kuindersma, J. Pello, S. Bhat, Y. Jiao, D. Heiss, G. Roelkens, M. Wale, P. Firth, F. Soares, N. Grote, M. Schell, H. Debregeas, M. Achouche, J.-L. Gentner, A. Bakker, T. Korthorst, D. Gallagher, A. Dabbs, A. Melloni, F. Morichetti, D. Melati, A. Wonfor, R. Penty, R. Broeke, B. Musk, and D. Robbins, “An introduction to InP-based generic integration technology,” Semicond. Sci. Technol. 29, 83001–83041 (2014).
[Crossref]

Kuyken, B.

G. Roelkens, U. Dave, A. Gassenq, N. Hattasan, C. Hu, B. Kuyken, F. Leo, A. Malik, M. Muneeb, E. Ryckeboer, D. Sanchez, S. Uvin, R. Wang, Z. Hens, R. Baets, Y. Shimura, F. Gencarelli, B. Vincent, R. Loo, J. Van Campenhout, L. Cerutti, J.-B. Rodriguez, E. Tournie, X. Chen, M. Nedeljkovic, G. Mashanovich, L. Shen, N. Healy, A. C. Peacock, X. Liu, R. Osgood, and W. M. J. Green, “Silicon-based photonic integration beyond the telecommunication wavelength range,” IEEE J. Sel. Top. Quantum Electron. 20, 394–404 (2014).
[Crossref]

Latkowski, S.

S. Latkowski, A. Hänsel, N. Bhattacharya, T. de Vries, L. Augustin, K. Williams, M. Smit, and E. Bente, “Novel widely tunable monolithically integrated laser source,” IEEE Photonics J. 7, 1–9 (2015).
[Crossref]

S. Latkowski and D. Lenstra, “Lasers in InP generic photonic integration technology platforms,” Adv. Opt. Technol. 4, 179–188 (2015).
[Crossref]

S. Latkowski, M. Smit, and E. A. J. M. Bente, “Integrated tunable semiconductor laser geometry based on asymmetric Mach–Zehnder interferometers for gas sensing applications,” in Proceedings of the 17th Annual Symposium of the IEEE Photonics Society Benelux Chapter (IEEE, 2012).

S. Latkowski, D. D’Agostino, P. J. van Veldhoven, H. Rabbani-Haghighi, B. Docter, H. Ambrosius, M. Smit, K. Williams, and E. A. J. M. Bente, “Monolithically integrated tunable laser source operating at 2  μm for gas sensing applications,” in Photonics Conference (IPC) (IEEE, 2015), pp. 535–536.

D. D’Agostino, S. Tahvilli, S. Latkowski, P. J. Veldhoven, H. Rabbani-Haghighi, C. Jin, B. Docter, H. Ambrosius, E. Bente, D. Lenstra, and M. Smit, “Monolithically integrated widely tunable coupled cavity laser source for gas sensing applications around 2.0  μm wavelength,” in Advanced Photonics (Optical Society of America, 2015), paper JT5A.1.

S. Latkowski, P. Thijs, P. J. van Veldhoven, H. Rabbani-Haghighi, M. K. Smit, and E. A. J. M. Bente, “Small signal modal gain measurement of ridge waveguide semiconductor optical amplifiers operating at 2  μm suitable for active-passive integration,” in Photonics Conference (IPC) (IEEE, 2013), pp. 258–259.

S. Latkowski, A. Hänsel, N. Bhattacharya, T. de Vries, L. Augustin, K. Williams, M. Smit, and E. Bente, “Monolithically integrated array of widely tunable laser sources for multispecies gas sensing applications,” in OSA Technical Digest, Optical Fiber Communication Conference (Optical Society of America, 2016), paper W4H.2.

S. Latkowski, P. J. van Veldhoven, D. D’Agostino, H. Rabbani-Haghighi, B. Docter, P. Thijs, H. Ambrosius, K. Williams, E. Bente, and M. Smit, “COBRA long wavelength active-passive monolithic photonic integration technology platform,” in Proceedings of 18th European Conference on Integrated Optics (ECIO) (2016).

S. Latkowski, P. J. van Veldhoven, A. Hänsel, D. D’Agostino, H. Rabbani-Haghighi, B. Docter, N. Bhattacharya, P. Thijs, H. Ambrosius, and M. Smit, “Indium phosphide monolithic photonic integrated circuits for gas sensing applications,” in Proceedings of 18th European Conference on Integrated Optics (ECIO) (2016).

Lawniczuk, K.

M. Smit, X. Leijtens, H. Ambrosius, E. Bente, J. van der Tol, B. Smalbrugge, T. de Vries, E.-J. Geluk, J. Bolk, R. van Veldhoven, L. Augustin, P. Thijs, D. D’Agostino, H. Rabbani, K. Lawniczuk, S. Stopinski, S. Tahvili, A. Corradi, E. Kleijn, D. Dzibrou, M. Felicetti, E. Bitincka, V. Moskalenko, J. Zhao, R. Santos, G. Gilardi, W. Yao, K. Williams, P. Stabile, P. Kuindersma, J. Pello, S. Bhat, Y. Jiao, D. Heiss, G. Roelkens, M. Wale, P. Firth, F. Soares, N. Grote, M. Schell, H. Debregeas, M. Achouche, J.-L. Gentner, A. Bakker, T. Korthorst, D. Gallagher, A. Dabbs, A. Melloni, F. Morichetti, D. Melati, A. Wonfor, R. Penty, R. Broeke, B. Musk, and D. Robbins, “An introduction to InP-based generic integration technology,” Semicond. Sci. Technol. 29, 83001–83041 (2014).
[Crossref]

Legge, M.

W. Zeller, M. Legge, A. Somers, W. Kaiser, J. Koeth, and A. Forchel, “Singlemode emission at 2  μm wavelength with InP based quantum dash DFB lasers,” Electron. Lett. 44, 354–356 (2008).
[Crossref]

Leijtens, X.

M. Smit, X. Leijtens, H. Ambrosius, E. Bente, J. van der Tol, B. Smalbrugge, T. de Vries, E.-J. Geluk, J. Bolk, R. van Veldhoven, L. Augustin, P. Thijs, D. D’Agostino, H. Rabbani, K. Lawniczuk, S. Stopinski, S. Tahvili, A. Corradi, E. Kleijn, D. Dzibrou, M. Felicetti, E. Bitincka, V. Moskalenko, J. Zhao, R. Santos, G. Gilardi, W. Yao, K. Williams, P. Stabile, P. Kuindersma, J. Pello, S. Bhat, Y. Jiao, D. Heiss, G. Roelkens, M. Wale, P. Firth, F. Soares, N. Grote, M. Schell, H. Debregeas, M. Achouche, J.-L. Gentner, A. Bakker, T. Korthorst, D. Gallagher, A. Dabbs, A. Melloni, F. Morichetti, D. Melati, A. Wonfor, R. Penty, R. Broeke, B. Musk, and D. Robbins, “An introduction to InP-based generic integration technology,” Semicond. Sci. Technol. 29, 83001–83041 (2014).
[Crossref]

Leijtens, X. J. M.

B. W. Tilma, Y. Jiao, J. Kotani, B. Smalbrugge, H. P. M. M. Ambrosius, P. J. Thijs, X. J. M. Leijtens, R. Notzel, M. K. Smit, and E. A. J. M. Bente, “Integrated tunable quantum-dot laser for optical coherence tomography in the 1.7  μm wavelength region,” IEEE J. Quantum Electron. 48, 87–98 (2012).
[Crossref]

Lenstra, D.

S. Latkowski and D. Lenstra, “Lasers in InP generic photonic integration technology platforms,” Adv. Opt. Technol. 4, 179–188 (2015).
[Crossref]

D. D’Agostino, S. Tahvilli, S. Latkowski, P. J. Veldhoven, H. Rabbani-Haghighi, C. Jin, B. Docter, H. Ambrosius, E. Bente, D. Lenstra, and M. Smit, “Monolithically integrated widely tunable coupled cavity laser source for gas sensing applications around 2.0  μm wavelength,” in Advanced Photonics (Optical Society of America, 2015), paper JT5A.1.

Leo, F.

G. Roelkens, U. Dave, A. Gassenq, N. Hattasan, C. Hu, B. Kuyken, F. Leo, A. Malik, M. Muneeb, E. Ryckeboer, D. Sanchez, S. Uvin, R. Wang, Z. Hens, R. Baets, Y. Shimura, F. Gencarelli, B. Vincent, R. Loo, J. Van Campenhout, L. Cerutti, J.-B. Rodriguez, E. Tournie, X. Chen, M. Nedeljkovic, G. Mashanovich, L. Shen, N. Healy, A. C. Peacock, X. Liu, R. Osgood, and W. M. J. Green, “Silicon-based photonic integration beyond the telecommunication wavelength range,” IEEE J. Sel. Top. Quantum Electron. 20, 394–404 (2014).
[Crossref]

Li, H.

Y. Gu, Y. Zhang, Y. Cao, L. Zhou, X. Chen, H. Li, and S. Xi, “2.4 μm InP-based antimony-free triangular quantum well lasers in continuous-wave operation above room temperature,” Appl. Phys. Express 7, 032701 (2014).
[Crossref]

Y. Y. Cao, Y. G. Zhang, Y. Gu, X. Y. Chen, L. Zhou, and H. Li, “2.7  μm InAs quantum well lasers on InP-based InAlAs metamorphic buffer layers,” Appl. Phys. Lett. 102, 201111 (2013).
[Crossref]

Liu, X.

G. Roelkens, U. Dave, A. Gassenq, N. Hattasan, C. Hu, B. Kuyken, F. Leo, A. Malik, M. Muneeb, E. Ryckeboer, D. Sanchez, S. Uvin, R. Wang, Z. Hens, R. Baets, Y. Shimura, F. Gencarelli, B. Vincent, R. Loo, J. Van Campenhout, L. Cerutti, J.-B. Rodriguez, E. Tournie, X. Chen, M. Nedeljkovic, G. Mashanovich, L. Shen, N. Healy, A. C. Peacock, X. Liu, R. Osgood, and W. M. J. Green, “Silicon-based photonic integration beyond the telecommunication wavelength range,” IEEE J. Sel. Top. Quantum Electron. 20, 394–404 (2014).
[Crossref]

Loo, R.

G. Roelkens, U. Dave, A. Gassenq, N. Hattasan, C. Hu, B. Kuyken, F. Leo, A. Malik, M. Muneeb, E. Ryckeboer, D. Sanchez, S. Uvin, R. Wang, Z. Hens, R. Baets, Y. Shimura, F. Gencarelli, B. Vincent, R. Loo, J. Van Campenhout, L. Cerutti, J.-B. Rodriguez, E. Tournie, X. Chen, M. Nedeljkovic, G. Mashanovich, L. Shen, N. Healy, A. C. Peacock, X. Liu, R. Osgood, and W. M. J. Green, “Silicon-based photonic integration beyond the telecommunication wavelength range,” IEEE J. Sel. Top. Quantum Electron. 20, 394–404 (2014).
[Crossref]

Maisons, G.

G. Maisons, C. Gilles, L. Orbe, G. Carpintero, J. Abautret, and M. Carras, “Monolithic integration of a widely-tunable mid-infrared source based on DFB QCL array and echelle grating,” in Laser Applications to Chemical, Security and Environmental Analysis 2016, Heidelberg Germany, 25–28 July2016 (Optical Society of America, 2016), paper LTh3E.7.

Malik, A.

G. Roelkens, U. Dave, A. Gassenq, N. Hattasan, C. Hu, B. Kuyken, F. Leo, A. Malik, M. Muneeb, E. Ryckeboer, D. Sanchez, S. Uvin, R. Wang, Z. Hens, R. Baets, Y. Shimura, F. Gencarelli, B. Vincent, R. Loo, J. Van Campenhout, L. Cerutti, J.-B. Rodriguez, E. Tournie, X. Chen, M. Nedeljkovic, G. Mashanovich, L. Shen, N. Healy, A. C. Peacock, X. Liu, R. Osgood, and W. M. J. Green, “Silicon-based photonic integration beyond the telecommunication wavelength range,” IEEE J. Sel. Top. Quantum Electron. 20, 394–404 (2014).
[Crossref]

Mashanovich, G.

G. Roelkens, U. Dave, A. Gassenq, N. Hattasan, C. Hu, B. Kuyken, F. Leo, A. Malik, M. Muneeb, E. Ryckeboer, D. Sanchez, S. Uvin, R. Wang, Z. Hens, R. Baets, Y. Shimura, F. Gencarelli, B. Vincent, R. Loo, J. Van Campenhout, L. Cerutti, J.-B. Rodriguez, E. Tournie, X. Chen, M. Nedeljkovic, G. Mashanovich, L. Shen, N. Healy, A. C. Peacock, X. Liu, R. Osgood, and W. M. J. Green, “Silicon-based photonic integration beyond the telecommunication wavelength range,” IEEE J. Sel. Top. Quantum Electron. 20, 394–404 (2014).
[Crossref]

Mashanovitch, M. L.

L. A. Coldren, S. W. Corzine, and M. L. Mashanovitch, Diode Lasers and Photonic Integrated Circuits (Wiley, 2012), Chapter 3.

Matsumoto, K.

J. Dong, A. Ubukata, and K. Matsumoto, “Characteristics dependence on confinement structure and single-mode operation in 2-μm compressively strained InGaAs-lnGaAsP quantum-well lasers,” IEEE Photonics Technol. Lett. 10, 513–515 (1998).
[Crossref]

Mawst, L. J.

Melati, D.

M. Smit, X. Leijtens, H. Ambrosius, E. Bente, J. van der Tol, B. Smalbrugge, T. de Vries, E.-J. Geluk, J. Bolk, R. van Veldhoven, L. Augustin, P. Thijs, D. D’Agostino, H. Rabbani, K. Lawniczuk, S. Stopinski, S. Tahvili, A. Corradi, E. Kleijn, D. Dzibrou, M. Felicetti, E. Bitincka, V. Moskalenko, J. Zhao, R. Santos, G. Gilardi, W. Yao, K. Williams, P. Stabile, P. Kuindersma, J. Pello, S. Bhat, Y. Jiao, D. Heiss, G. Roelkens, M. Wale, P. Firth, F. Soares, N. Grote, M. Schell, H. Debregeas, M. Achouche, J.-L. Gentner, A. Bakker, T. Korthorst, D. Gallagher, A. Dabbs, A. Melloni, F. Morichetti, D. Melati, A. Wonfor, R. Penty, R. Broeke, B. Musk, and D. Robbins, “An introduction to InP-based generic integration technology,” Semicond. Sci. Technol. 29, 83001–83041 (2014).
[Crossref]

Melloni, A.

M. Smit, X. Leijtens, H. Ambrosius, E. Bente, J. van der Tol, B. Smalbrugge, T. de Vries, E.-J. Geluk, J. Bolk, R. van Veldhoven, L. Augustin, P. Thijs, D. D’Agostino, H. Rabbani, K. Lawniczuk, S. Stopinski, S. Tahvili, A. Corradi, E. Kleijn, D. Dzibrou, M. Felicetti, E. Bitincka, V. Moskalenko, J. Zhao, R. Santos, G. Gilardi, W. Yao, K. Williams, P. Stabile, P. Kuindersma, J. Pello, S. Bhat, Y. Jiao, D. Heiss, G. Roelkens, M. Wale, P. Firth, F. Soares, N. Grote, M. Schell, H. Debregeas, M. Achouche, J.-L. Gentner, A. Bakker, T. Korthorst, D. Gallagher, A. Dabbs, A. Melloni, F. Morichetti, D. Melati, A. Wonfor, R. Penty, R. Broeke, B. Musk, and D. Robbins, “An introduction to InP-based generic integration technology,” Semicond. Sci. Technol. 29, 83001–83041 (2014).
[Crossref]

Merritt, C. D.

Meyer, J.

Meyer, J. R.

Meyer, R.

S. Sprengel, C. Grasse, P. Wiecha, A. Andrejew, T. Gruendl, G. Boehm, R. Meyer, and M. C. Amann, “InP-based type-II quantum-well lasers and LEDs,” IEEE J. Sel. Top. Quantum Electron. 19, 1900909 (2013).
[Crossref]

Mitsuhara, M.

T. Sato, M. Mitsuhara, T. Watanabe, K. Kasaya, T. Takeshita, and Y. Kondo, “2.1-μm-wavelength InGaAs multiple-Quantum-well distributed feedback lasers grown by MOVPE using Sb surfactant,” IEEE J. Sel. Top. Quantum Electron. 13, 1079–1083 (2007).
[Crossref]

T. Sato, M. Mitsuhara, T. Watanabe, and Y. Kondo, “Surfactant-mediated growth of InGaAs multiple-quantum-well lasers emitting at 2.1  μm by metalorganic vapor phase epitaxy,” Appl. Phys. Lett. 87, 211903 (2005).
[Crossref]

Morichetti, F.

M. Smit, X. Leijtens, H. Ambrosius, E. Bente, J. van der Tol, B. Smalbrugge, T. de Vries, E.-J. Geluk, J. Bolk, R. van Veldhoven, L. Augustin, P. Thijs, D. D’Agostino, H. Rabbani, K. Lawniczuk, S. Stopinski, S. Tahvili, A. Corradi, E. Kleijn, D. Dzibrou, M. Felicetti, E. Bitincka, V. Moskalenko, J. Zhao, R. Santos, G. Gilardi, W. Yao, K. Williams, P. Stabile, P. Kuindersma, J. Pello, S. Bhat, Y. Jiao, D. Heiss, G. Roelkens, M. Wale, P. Firth, F. Soares, N. Grote, M. Schell, H. Debregeas, M. Achouche, J.-L. Gentner, A. Bakker, T. Korthorst, D. Gallagher, A. Dabbs, A. Melloni, F. Morichetti, D. Melati, A. Wonfor, R. Penty, R. Broeke, B. Musk, and D. Robbins, “An introduction to InP-based generic integration technology,” Semicond. Sci. Technol. 29, 83001–83041 (2014).
[Crossref]

Moskalenko, V.

M. Smit, X. Leijtens, H. Ambrosius, E. Bente, J. van der Tol, B. Smalbrugge, T. de Vries, E.-J. Geluk, J. Bolk, R. van Veldhoven, L. Augustin, P. Thijs, D. D’Agostino, H. Rabbani, K. Lawniczuk, S. Stopinski, S. Tahvili, A. Corradi, E. Kleijn, D. Dzibrou, M. Felicetti, E. Bitincka, V. Moskalenko, J. Zhao, R. Santos, G. Gilardi, W. Yao, K. Williams, P. Stabile, P. Kuindersma, J. Pello, S. Bhat, Y. Jiao, D. Heiss, G. Roelkens, M. Wale, P. Firth, F. Soares, N. Grote, M. Schell, H. Debregeas, M. Achouche, J.-L. Gentner, A. Bakker, T. Korthorst, D. Gallagher, A. Dabbs, A. Melloni, F. Morichetti, D. Melati, A. Wonfor, R. Penty, R. Broeke, B. Musk, and D. Robbins, “An introduction to InP-based generic integration technology,” Semicond. Sci. Technol. 29, 83001–83041 (2014).
[Crossref]

Muneeb, M.

G. Roelkens, U. Dave, A. Gassenq, N. Hattasan, C. Hu, B. Kuyken, F. Leo, A. Malik, M. Muneeb, E. Ryckeboer, D. Sanchez, S. Uvin, R. Wang, Z. Hens, R. Baets, Y. Shimura, F. Gencarelli, B. Vincent, R. Loo, J. Van Campenhout, L. Cerutti, J.-B. Rodriguez, E. Tournie, X. Chen, M. Nedeljkovic, G. Mashanovich, L. Shen, N. Healy, A. C. Peacock, X. Liu, R. Osgood, and W. M. J. Green, “Silicon-based photonic integration beyond the telecommunication wavelength range,” IEEE J. Sel. Top. Quantum Electron. 20, 394–404 (2014).
[Crossref]

Musk, B.

M. Smit, X. Leijtens, H. Ambrosius, E. Bente, J. van der Tol, B. Smalbrugge, T. de Vries, E.-J. Geluk, J. Bolk, R. van Veldhoven, L. Augustin, P. Thijs, D. D’Agostino, H. Rabbani, K. Lawniczuk, S. Stopinski, S. Tahvili, A. Corradi, E. Kleijn, D. Dzibrou, M. Felicetti, E. Bitincka, V. Moskalenko, J. Zhao, R. Santos, G. Gilardi, W. Yao, K. Williams, P. Stabile, P. Kuindersma, J. Pello, S. Bhat, Y. Jiao, D. Heiss, G. Roelkens, M. Wale, P. Firth, F. Soares, N. Grote, M. Schell, H. Debregeas, M. Achouche, J.-L. Gentner, A. Bakker, T. Korthorst, D. Gallagher, A. Dabbs, A. Melloni, F. Morichetti, D. Melati, A. Wonfor, R. Penty, R. Broeke, B. Musk, and D. Robbins, “An introduction to InP-based generic integration technology,” Semicond. Sci. Technol. 29, 83001–83041 (2014).
[Crossref]

Nakajima, T.

Y. Ikeda, G. M. Choi, D. H. Chung, K. Fukuzato, and T. Nakajima, “Sensor development of CO2 gas temperature and concentration using 2  μm DFB semiconductor laser,” in 10th International Symposium on Applications of Laser Techniques to Fluid Mechanics (2000), pp. 483–496.

Nedeljkovic, M.

G. Roelkens, U. Dave, A. Gassenq, N. Hattasan, C. Hu, B. Kuyken, F. Leo, A. Malik, M. Muneeb, E. Ryckeboer, D. Sanchez, S. Uvin, R. Wang, Z. Hens, R. Baets, Y. Shimura, F. Gencarelli, B. Vincent, R. Loo, J. Van Campenhout, L. Cerutti, J.-B. Rodriguez, E. Tournie, X. Chen, M. Nedeljkovic, G. Mashanovich, L. Shen, N. Healy, A. C. Peacock, X. Liu, R. Osgood, and W. M. J. Green, “Silicon-based photonic integration beyond the telecommunication wavelength range,” IEEE J. Sel. Top. Quantum Electron. 20, 394–404 (2014).
[Crossref]

Notzel, R.

B. W. Tilma, Y. Jiao, J. Kotani, B. Smalbrugge, H. P. M. M. Ambrosius, P. J. Thijs, X. J. M. Leijtens, R. Notzel, M. K. Smit, and E. A. J. M. Bente, “Integrated tunable quantum-dot laser for optical coherence tomography in the 1.7  μm wavelength region,” IEEE J. Quantum Electron. 48, 87–98 (2012).
[Crossref]

Ohiso, Y.

T. Kanai, N. Fujiwara, Y. Ohiso, H. Ishii, M. Shimokozono, and M. Itoh, “2-μm wavelength tunable distributed Bragg reflector laser,” IEICE Electron. Exp. 13, 20160655 (2016).
[Crossref]

Orbe, L.

G. Maisons, C. Gilles, L. Orbe, G. Carpintero, J. Abautret, and M. Carras, “Monolithic integration of a widely-tunable mid-infrared source based on DFB QCL array and echelle grating,” in Laser Applications to Chemical, Security and Environmental Analysis 2016, Heidelberg Germany, 25–28 July2016 (Optical Society of America, 2016), paper LTh3E.7.

Osgood, R.

G. Roelkens, U. Dave, A. Gassenq, N. Hattasan, C. Hu, B. Kuyken, F. Leo, A. Malik, M. Muneeb, E. Ryckeboer, D. Sanchez, S. Uvin, R. Wang, Z. Hens, R. Baets, Y. Shimura, F. Gencarelli, B. Vincent, R. Loo, J. Van Campenhout, L. Cerutti, J.-B. Rodriguez, E. Tournie, X. Chen, M. Nedeljkovic, G. Mashanovich, L. Shen, N. Healy, A. C. Peacock, X. Liu, R. Osgood, and W. M. J. Green, “Silicon-based photonic integration beyond the telecommunication wavelength range,” IEEE J. Sel. Top. Quantum Electron. 20, 394–404 (2014).
[Crossref]

Peacock, A. C.

G. Roelkens, U. Dave, A. Gassenq, N. Hattasan, C. Hu, B. Kuyken, F. Leo, A. Malik, M. Muneeb, E. Ryckeboer, D. Sanchez, S. Uvin, R. Wang, Z. Hens, R. Baets, Y. Shimura, F. Gencarelli, B. Vincent, R. Loo, J. Van Campenhout, L. Cerutti, J.-B. Rodriguez, E. Tournie, X. Chen, M. Nedeljkovic, G. Mashanovich, L. Shen, N. Healy, A. C. Peacock, X. Liu, R. Osgood, and W. M. J. Green, “Silicon-based photonic integration beyond the telecommunication wavelength range,” IEEE J. Sel. Top. Quantum Electron. 20, 394–404 (2014).
[Crossref]

Pello, J.

M. Smit, X. Leijtens, H. Ambrosius, E. Bente, J. van der Tol, B. Smalbrugge, T. de Vries, E.-J. Geluk, J. Bolk, R. van Veldhoven, L. Augustin, P. Thijs, D. D’Agostino, H. Rabbani, K. Lawniczuk, S. Stopinski, S. Tahvili, A. Corradi, E. Kleijn, D. Dzibrou, M. Felicetti, E. Bitincka, V. Moskalenko, J. Zhao, R. Santos, G. Gilardi, W. Yao, K. Williams, P. Stabile, P. Kuindersma, J. Pello, S. Bhat, Y. Jiao, D. Heiss, G. Roelkens, M. Wale, P. Firth, F. Soares, N. Grote, M. Schell, H. Debregeas, M. Achouche, J.-L. Gentner, A. Bakker, T. Korthorst, D. Gallagher, A. Dabbs, A. Melloni, F. Morichetti, D. Melati, A. Wonfor, R. Penty, R. Broeke, B. Musk, and D. Robbins, “An introduction to InP-based generic integration technology,” Semicond. Sci. Technol. 29, 83001–83041 (2014).
[Crossref]

Penty, R.

M. Smit, X. Leijtens, H. Ambrosius, E. Bente, J. van der Tol, B. Smalbrugge, T. de Vries, E.-J. Geluk, J. Bolk, R. van Veldhoven, L. Augustin, P. Thijs, D. D’Agostino, H. Rabbani, K. Lawniczuk, S. Stopinski, S. Tahvili, A. Corradi, E. Kleijn, D. Dzibrou, M. Felicetti, E. Bitincka, V. Moskalenko, J. Zhao, R. Santos, G. Gilardi, W. Yao, K. Williams, P. Stabile, P. Kuindersma, J. Pello, S. Bhat, Y. Jiao, D. Heiss, G. Roelkens, M. Wale, P. Firth, F. Soares, N. Grote, M. Schell, H. Debregeas, M. Achouche, J.-L. Gentner, A. Bakker, T. Korthorst, D. Gallagher, A. Dabbs, A. Melloni, F. Morichetti, D. Melati, A. Wonfor, R. Penty, R. Broeke, B. Musk, and D. Robbins, “An introduction to InP-based generic integration technology,” Semicond. Sci. Technol. 29, 83001–83041 (2014).
[Crossref]

Peters, J.

Rabbani, H.

M. Smit, X. Leijtens, H. Ambrosius, E. Bente, J. van der Tol, B. Smalbrugge, T. de Vries, E.-J. Geluk, J. Bolk, R. van Veldhoven, L. Augustin, P. Thijs, D. D’Agostino, H. Rabbani, K. Lawniczuk, S. Stopinski, S. Tahvili, A. Corradi, E. Kleijn, D. Dzibrou, M. Felicetti, E. Bitincka, V. Moskalenko, J. Zhao, R. Santos, G. Gilardi, W. Yao, K. Williams, P. Stabile, P. Kuindersma, J. Pello, S. Bhat, Y. Jiao, D. Heiss, G. Roelkens, M. Wale, P. Firth, F. Soares, N. Grote, M. Schell, H. Debregeas, M. Achouche, J.-L. Gentner, A. Bakker, T. Korthorst, D. Gallagher, A. Dabbs, A. Melloni, F. Morichetti, D. Melati, A. Wonfor, R. Penty, R. Broeke, B. Musk, and D. Robbins, “An introduction to InP-based generic integration technology,” Semicond. Sci. Technol. 29, 83001–83041 (2014).
[Crossref]

Rabbani-Haghighi, H.

S. Latkowski, P. J. van Veldhoven, A. Hänsel, D. D’Agostino, H. Rabbani-Haghighi, B. Docter, N. Bhattacharya, P. Thijs, H. Ambrosius, and M. Smit, “Indium phosphide monolithic photonic integrated circuits for gas sensing applications,” in Proceedings of 18th European Conference on Integrated Optics (ECIO) (2016).

S. Latkowski, P. J. van Veldhoven, D. D’Agostino, H. Rabbani-Haghighi, B. Docter, P. Thijs, H. Ambrosius, K. Williams, E. Bente, and M. Smit, “COBRA long wavelength active-passive monolithic photonic integration technology platform,” in Proceedings of 18th European Conference on Integrated Optics (ECIO) (2016).

D. D’Agostino, S. Tahvilli, S. Latkowski, P. J. Veldhoven, H. Rabbani-Haghighi, C. Jin, B. Docter, H. Ambrosius, E. Bente, D. Lenstra, and M. Smit, “Monolithically integrated widely tunable coupled cavity laser source for gas sensing applications around 2.0  μm wavelength,” in Advanced Photonics (Optical Society of America, 2015), paper JT5A.1.

S. Latkowski, P. Thijs, P. J. van Veldhoven, H. Rabbani-Haghighi, M. K. Smit, and E. A. J. M. Bente, “Small signal modal gain measurement of ridge waveguide semiconductor optical amplifiers operating at 2  μm suitable for active-passive integration,” in Photonics Conference (IPC) (IEEE, 2013), pp. 258–259.

S. Latkowski, D. D’Agostino, P. J. van Veldhoven, H. Rabbani-Haghighi, B. Docter, H. Ambrosius, M. Smit, K. Williams, and E. A. J. M. Bente, “Monolithically integrated tunable laser source operating at 2  μm for gas sensing applications,” in Photonics Conference (IPC) (IEEE, 2015), pp. 535–536.

Reithmaier, J. P.

S. Hein, A. Somers, W. Kaiser, S. Höfling, J. P. Reithmaier, and A. Forchel, “Singlemode InAs/InP quantum dash distributed feedback lasers emitting in 1.9  μm range,” Electron. Lett. 44, 527–528 (2008).
[Crossref]

Robbins, D.

M. Smit, X. Leijtens, H. Ambrosius, E. Bente, J. van der Tol, B. Smalbrugge, T. de Vries, E.-J. Geluk, J. Bolk, R. van Veldhoven, L. Augustin, P. Thijs, D. D’Agostino, H. Rabbani, K. Lawniczuk, S. Stopinski, S. Tahvili, A. Corradi, E. Kleijn, D. Dzibrou, M. Felicetti, E. Bitincka, V. Moskalenko, J. Zhao, R. Santos, G. Gilardi, W. Yao, K. Williams, P. Stabile, P. Kuindersma, J. Pello, S. Bhat, Y. Jiao, D. Heiss, G. Roelkens, M. Wale, P. Firth, F. Soares, N. Grote, M. Schell, H. Debregeas, M. Achouche, J.-L. Gentner, A. Bakker, T. Korthorst, D. Gallagher, A. Dabbs, A. Melloni, F. Morichetti, D. Melati, A. Wonfor, R. Penty, R. Broeke, B. Musk, and D. Robbins, “An introduction to InP-based generic integration technology,” Semicond. Sci. Technol. 29, 83001–83041 (2014).
[Crossref]

Rodriguez, J.-B.

G. Roelkens, U. Dave, A. Gassenq, N. Hattasan, C. Hu, B. Kuyken, F. Leo, A. Malik, M. Muneeb, E. Ryckeboer, D. Sanchez, S. Uvin, R. Wang, Z. Hens, R. Baets, Y. Shimura, F. Gencarelli, B. Vincent, R. Loo, J. Van Campenhout, L. Cerutti, J.-B. Rodriguez, E. Tournie, X. Chen, M. Nedeljkovic, G. Mashanovich, L. Shen, N. Healy, A. C. Peacock, X. Liu, R. Osgood, and W. M. J. Green, “Silicon-based photonic integration beyond the telecommunication wavelength range,” IEEE J. Sel. Top. Quantum Electron. 20, 394–404 (2014).
[Crossref]

Roelkens, G.

G. Roelkens, U. Dave, A. Gassenq, N. Hattasan, C. Hu, B. Kuyken, F. Leo, A. Malik, M. Muneeb, E. Ryckeboer, D. Sanchez, S. Uvin, R. Wang, Z. Hens, R. Baets, Y. Shimura, F. Gencarelli, B. Vincent, R. Loo, J. Van Campenhout, L. Cerutti, J.-B. Rodriguez, E. Tournie, X. Chen, M. Nedeljkovic, G. Mashanovich, L. Shen, N. Healy, A. C. Peacock, X. Liu, R. Osgood, and W. M. J. Green, “Silicon-based photonic integration beyond the telecommunication wavelength range,” IEEE J. Sel. Top. Quantum Electron. 20, 394–404 (2014).
[Crossref]

M. Smit, X. Leijtens, H. Ambrosius, E. Bente, J. van der Tol, B. Smalbrugge, T. de Vries, E.-J. Geluk, J. Bolk, R. van Veldhoven, L. Augustin, P. Thijs, D. D’Agostino, H. Rabbani, K. Lawniczuk, S. Stopinski, S. Tahvili, A. Corradi, E. Kleijn, D. Dzibrou, M. Felicetti, E. Bitincka, V. Moskalenko, J. Zhao, R. Santos, G. Gilardi, W. Yao, K. Williams, P. Stabile, P. Kuindersma, J. Pello, S. Bhat, Y. Jiao, D. Heiss, G. Roelkens, M. Wale, P. Firth, F. Soares, N. Grote, M. Schell, H. Debregeas, M. Achouche, J.-L. Gentner, A. Bakker, T. Korthorst, D. Gallagher, A. Dabbs, A. Melloni, F. Morichetti, D. Melati, A. Wonfor, R. Penty, R. Broeke, B. Musk, and D. Robbins, “An introduction to InP-based generic integration technology,” Semicond. Sci. Technol. 29, 83001–83041 (2014).
[Crossref]

Ryckeboer, E.

G. Roelkens, U. Dave, A. Gassenq, N. Hattasan, C. Hu, B. Kuyken, F. Leo, A. Malik, M. Muneeb, E. Ryckeboer, D. Sanchez, S. Uvin, R. Wang, Z. Hens, R. Baets, Y. Shimura, F. Gencarelli, B. Vincent, R. Loo, J. Van Campenhout, L. Cerutti, J.-B. Rodriguez, E. Tournie, X. Chen, M. Nedeljkovic, G. Mashanovich, L. Shen, N. Healy, A. C. Peacock, X. Liu, R. Osgood, and W. M. J. Green, “Silicon-based photonic integration beyond the telecommunication wavelength range,” IEEE J. Sel. Top. Quantum Electron. 20, 394–404 (2014).
[Crossref]

Sanchez, D.

G. Roelkens, U. Dave, A. Gassenq, N. Hattasan, C. Hu, B. Kuyken, F. Leo, A. Malik, M. Muneeb, E. Ryckeboer, D. Sanchez, S. Uvin, R. Wang, Z. Hens, R. Baets, Y. Shimura, F. Gencarelli, B. Vincent, R. Loo, J. Van Campenhout, L. Cerutti, J.-B. Rodriguez, E. Tournie, X. Chen, M. Nedeljkovic, G. Mashanovich, L. Shen, N. Healy, A. C. Peacock, X. Liu, R. Osgood, and W. M. J. Green, “Silicon-based photonic integration beyond the telecommunication wavelength range,” IEEE J. Sel. Top. Quantum Electron. 20, 394–404 (2014).
[Crossref]

Santos, R.

M. Smit, X. Leijtens, H. Ambrosius, E. Bente, J. van der Tol, B. Smalbrugge, T. de Vries, E.-J. Geluk, J. Bolk, R. van Veldhoven, L. Augustin, P. Thijs, D. D’Agostino, H. Rabbani, K. Lawniczuk, S. Stopinski, S. Tahvili, A. Corradi, E. Kleijn, D. Dzibrou, M. Felicetti, E. Bitincka, V. Moskalenko, J. Zhao, R. Santos, G. Gilardi, W. Yao, K. Williams, P. Stabile, P. Kuindersma, J. Pello, S. Bhat, Y. Jiao, D. Heiss, G. Roelkens, M. Wale, P. Firth, F. Soares, N. Grote, M. Schell, H. Debregeas, M. Achouche, J.-L. Gentner, A. Bakker, T. Korthorst, D. Gallagher, A. Dabbs, A. Melloni, F. Morichetti, D. Melati, A. Wonfor, R. Penty, R. Broeke, B. Musk, and D. Robbins, “An introduction to InP-based generic integration technology,” Semicond. Sci. Technol. 29, 83001–83041 (2014).
[Crossref]

Sato, T.

T. Sato, M. Mitsuhara, T. Watanabe, K. Kasaya, T. Takeshita, and Y. Kondo, “2.1-μm-wavelength InGaAs multiple-Quantum-well distributed feedback lasers grown by MOVPE using Sb surfactant,” IEEE J. Sel. Top. Quantum Electron. 13, 1079–1083 (2007).
[Crossref]

T. Sato, M. Mitsuhara, T. Watanabe, and Y. Kondo, “Surfactant-mediated growth of InGaAs multiple-quantum-well lasers emitting at 2.1  μm by metalorganic vapor phase epitaxy,” Appl. Phys. Lett. 87, 211903 (2005).
[Crossref]

Schell, M.

M. Smit, X. Leijtens, H. Ambrosius, E. Bente, J. van der Tol, B. Smalbrugge, T. de Vries, E.-J. Geluk, J. Bolk, R. van Veldhoven, L. Augustin, P. Thijs, D. D’Agostino, H. Rabbani, K. Lawniczuk, S. Stopinski, S. Tahvili, A. Corradi, E. Kleijn, D. Dzibrou, M. Felicetti, E. Bitincka, V. Moskalenko, J. Zhao, R. Santos, G. Gilardi, W. Yao, K. Williams, P. Stabile, P. Kuindersma, J. Pello, S. Bhat, Y. Jiao, D. Heiss, G. Roelkens, M. Wale, P. Firth, F. Soares, N. Grote, M. Schell, H. Debregeas, M. Achouche, J.-L. Gentner, A. Bakker, T. Korthorst, D. Gallagher, A. Dabbs, A. Melloni, F. Morichetti, D. Melati, A. Wonfor, R. Penty, R. Broeke, B. Musk, and D. Robbins, “An introduction to InP-based generic integration technology,” Semicond. Sci. Technol. 29, 83001–83041 (2014).
[Crossref]

Shen, L.

G. Roelkens, U. Dave, A. Gassenq, N. Hattasan, C. Hu, B. Kuyken, F. Leo, A. Malik, M. Muneeb, E. Ryckeboer, D. Sanchez, S. Uvin, R. Wang, Z. Hens, R. Baets, Y. Shimura, F. Gencarelli, B. Vincent, R. Loo, J. Van Campenhout, L. Cerutti, J.-B. Rodriguez, E. Tournie, X. Chen, M. Nedeljkovic, G. Mashanovich, L. Shen, N. Healy, A. C. Peacock, X. Liu, R. Osgood, and W. M. J. Green, “Silicon-based photonic integration beyond the telecommunication wavelength range,” IEEE J. Sel. Top. Quantum Electron. 20, 394–404 (2014).
[Crossref]

Shimokozono, M.

T. Kanai, N. Fujiwara, Y. Ohiso, H. Ishii, M. Shimokozono, and M. Itoh, “2-μm wavelength tunable distributed Bragg reflector laser,” IEICE Electron. Exp. 13, 20160655 (2016).
[Crossref]

Shimura, Y.

G. Roelkens, U. Dave, A. Gassenq, N. Hattasan, C. Hu, B. Kuyken, F. Leo, A. Malik, M. Muneeb, E. Ryckeboer, D. Sanchez, S. Uvin, R. Wang, Z. Hens, R. Baets, Y. Shimura, F. Gencarelli, B. Vincent, R. Loo, J. Van Campenhout, L. Cerutti, J.-B. Rodriguez, E. Tournie, X. Chen, M. Nedeljkovic, G. Mashanovich, L. Shen, N. Healy, A. C. Peacock, X. Liu, R. Osgood, and W. M. J. Green, “Silicon-based photonic integration beyond the telecommunication wavelength range,” IEEE J. Sel. Top. Quantum Electron. 20, 394–404 (2014).
[Crossref]

Shterengas, L.

T. Hosoda, T. Feng, L. Shterengas, G. Kipshidze, and G. Belenky, “High power cascade diode lasers emitting near 2  μm,” Appl. Phys. Lett. 108, 131109 (2016).
[Crossref]

L. Shterengas, G. Kipshidze, T. Hosoda, M. Wang, T. Feng, and G. Belenky, “Cascade type-I quantum well GaSb-based diode lasers,” Photonics 3, 27 (2016).
[Crossref]

Smalbrugge, B.

M. Smit, X. Leijtens, H. Ambrosius, E. Bente, J. van der Tol, B. Smalbrugge, T. de Vries, E.-J. Geluk, J. Bolk, R. van Veldhoven, L. Augustin, P. Thijs, D. D’Agostino, H. Rabbani, K. Lawniczuk, S. Stopinski, S. Tahvili, A. Corradi, E. Kleijn, D. Dzibrou, M. Felicetti, E. Bitincka, V. Moskalenko, J. Zhao, R. Santos, G. Gilardi, W. Yao, K. Williams, P. Stabile, P. Kuindersma, J. Pello, S. Bhat, Y. Jiao, D. Heiss, G. Roelkens, M. Wale, P. Firth, F. Soares, N. Grote, M. Schell, H. Debregeas, M. Achouche, J.-L. Gentner, A. Bakker, T. Korthorst, D. Gallagher, A. Dabbs, A. Melloni, F. Morichetti, D. Melati, A. Wonfor, R. Penty, R. Broeke, B. Musk, and D. Robbins, “An introduction to InP-based generic integration technology,” Semicond. Sci. Technol. 29, 83001–83041 (2014).
[Crossref]

B. W. Tilma, Y. Jiao, J. Kotani, B. Smalbrugge, H. P. M. M. Ambrosius, P. J. Thijs, X. J. M. Leijtens, R. Notzel, M. K. Smit, and E. A. J. M. Bente, “Integrated tunable quantum-dot laser for optical coherence tomography in the 1.7  μm wavelength region,” IEEE J. Quantum Electron. 48, 87–98 (2012).
[Crossref]

Smit, M.

S. Latkowski, A. Hänsel, N. Bhattacharya, T. de Vries, L. Augustin, K. Williams, M. Smit, and E. Bente, “Novel widely tunable monolithically integrated laser source,” IEEE Photonics J. 7, 1–9 (2015).
[Crossref]

M. Smit, X. Leijtens, H. Ambrosius, E. Bente, J. van der Tol, B. Smalbrugge, T. de Vries, E.-J. Geluk, J. Bolk, R. van Veldhoven, L. Augustin, P. Thijs, D. D’Agostino, H. Rabbani, K. Lawniczuk, S. Stopinski, S. Tahvili, A. Corradi, E. Kleijn, D. Dzibrou, M. Felicetti, E. Bitincka, V. Moskalenko, J. Zhao, R. Santos, G. Gilardi, W. Yao, K. Williams, P. Stabile, P. Kuindersma, J. Pello, S. Bhat, Y. Jiao, D. Heiss, G. Roelkens, M. Wale, P. Firth, F. Soares, N. Grote, M. Schell, H. Debregeas, M. Achouche, J.-L. Gentner, A. Bakker, T. Korthorst, D. Gallagher, A. Dabbs, A. Melloni, F. Morichetti, D. Melati, A. Wonfor, R. Penty, R. Broeke, B. Musk, and D. Robbins, “An introduction to InP-based generic integration technology,” Semicond. Sci. Technol. 29, 83001–83041 (2014).
[Crossref]

S. Latkowski, P. J. van Veldhoven, A. Hänsel, D. D’Agostino, H. Rabbani-Haghighi, B. Docter, N. Bhattacharya, P. Thijs, H. Ambrosius, and M. Smit, “Indium phosphide monolithic photonic integrated circuits for gas sensing applications,” in Proceedings of 18th European Conference on Integrated Optics (ECIO) (2016).

S. Latkowski, P. J. van Veldhoven, D. D’Agostino, H. Rabbani-Haghighi, B. Docter, P. Thijs, H. Ambrosius, K. Williams, E. Bente, and M. Smit, “COBRA long wavelength active-passive monolithic photonic integration technology platform,” in Proceedings of 18th European Conference on Integrated Optics (ECIO) (2016).

S. Latkowski, A. Hänsel, N. Bhattacharya, T. de Vries, L. Augustin, K. Williams, M. Smit, and E. Bente, “Monolithically integrated array of widely tunable laser sources for multispecies gas sensing applications,” in OSA Technical Digest, Optical Fiber Communication Conference (Optical Society of America, 2016), paper W4H.2.

S. Latkowski, D. D’Agostino, P. J. van Veldhoven, H. Rabbani-Haghighi, B. Docter, H. Ambrosius, M. Smit, K. Williams, and E. A. J. M. Bente, “Monolithically integrated tunable laser source operating at 2  μm for gas sensing applications,” in Photonics Conference (IPC) (IEEE, 2015), pp. 535–536.

S. Latkowski, M. Smit, and E. A. J. M. Bente, “Integrated tunable semiconductor laser geometry based on asymmetric Mach–Zehnder interferometers for gas sensing applications,” in Proceedings of the 17th Annual Symposium of the IEEE Photonics Society Benelux Chapter (IEEE, 2012).

D. D’Agostino, S. Tahvilli, S. Latkowski, P. J. Veldhoven, H. Rabbani-Haghighi, C. Jin, B. Docter, H. Ambrosius, E. Bente, D. Lenstra, and M. Smit, “Monolithically integrated widely tunable coupled cavity laser source for gas sensing applications around 2.0  μm wavelength,” in Advanced Photonics (Optical Society of America, 2015), paper JT5A.1.

Smit, M. K.

B. W. Tilma, Y. Jiao, J. Kotani, B. Smalbrugge, H. P. M. M. Ambrosius, P. J. Thijs, X. J. M. Leijtens, R. Notzel, M. K. Smit, and E. A. J. M. Bente, “Integrated tunable quantum-dot laser for optical coherence tomography in the 1.7  μm wavelength region,” IEEE J. Quantum Electron. 48, 87–98 (2012).
[Crossref]

S. Latkowski, P. Thijs, P. J. van Veldhoven, H. Rabbani-Haghighi, M. K. Smit, and E. A. J. M. Bente, “Small signal modal gain measurement of ridge waveguide semiconductor optical amplifiers operating at 2  μm suitable for active-passive integration,” in Photonics Conference (IPC) (IEEE, 2013), pp. 258–259.

Smith, S. D.

J. G. Crowder, S. D. Smith, A. Vass, and J. Keddie, “Infrared methods for gas detection,” in Mid-Infrared Semiconductor Optoelectronics, A. Krier, ed. (Springer, 2006) Vol. 118, pp. 595–613.

Smowton, P. M.

J. D. Thomson, H. D. Summers, P. J. Hulyer, P. M. Smowton, and P. Blood, “Determination of single-pass optical gain and internal loss using a multisection device,” Appl. Phys. Lett. 75, 2527–2529 (1999).
[Crossref]

Soares, F.

M. Smit, X. Leijtens, H. Ambrosius, E. Bente, J. van der Tol, B. Smalbrugge, T. de Vries, E.-J. Geluk, J. Bolk, R. van Veldhoven, L. Augustin, P. Thijs, D. D’Agostino, H. Rabbani, K. Lawniczuk, S. Stopinski, S. Tahvili, A. Corradi, E. Kleijn, D. Dzibrou, M. Felicetti, E. Bitincka, V. Moskalenko, J. Zhao, R. Santos, G. Gilardi, W. Yao, K. Williams, P. Stabile, P. Kuindersma, J. Pello, S. Bhat, Y. Jiao, D. Heiss, G. Roelkens, M. Wale, P. Firth, F. Soares, N. Grote, M. Schell, H. Debregeas, M. Achouche, J.-L. Gentner, A. Bakker, T. Korthorst, D. Gallagher, A. Dabbs, A. Melloni, F. Morichetti, D. Melati, A. Wonfor, R. Penty, R. Broeke, B. Musk, and D. Robbins, “An introduction to InP-based generic integration technology,” Semicond. Sci. Technol. 29, 83001–83041 (2014).
[Crossref]

Somers, A.

S. Hein, A. Somers, W. Kaiser, S. Höfling, J. P. Reithmaier, and A. Forchel, “Singlemode InAs/InP quantum dash distributed feedback lasers emitting in 1.9  μm range,” Electron. Lett. 44, 527–528 (2008).
[Crossref]

W. Zeller, M. Legge, A. Somers, W. Kaiser, J. Koeth, and A. Forchel, “Singlemode emission at 2  μm wavelength with InP based quantum dash DFB lasers,” Electron. Lett. 44, 354–356 (2008).
[Crossref]

Spott, A.

Sprengel, S.

S. Sprengel, C. Grasse, P. Wiecha, A. Andrejew, T. Gruendl, G. Boehm, R. Meyer, and M. C. Amann, “InP-based type-II quantum-well lasers and LEDs,” IEEE J. Sel. Top. Quantum Electron. 19, 1900909 (2013).
[Crossref]

Stabile, P.

M. Smit, X. Leijtens, H. Ambrosius, E. Bente, J. van der Tol, B. Smalbrugge, T. de Vries, E.-J. Geluk, J. Bolk, R. van Veldhoven, L. Augustin, P. Thijs, D. D’Agostino, H. Rabbani, K. Lawniczuk, S. Stopinski, S. Tahvili, A. Corradi, E. Kleijn, D. Dzibrou, M. Felicetti, E. Bitincka, V. Moskalenko, J. Zhao, R. Santos, G. Gilardi, W. Yao, K. Williams, P. Stabile, P. Kuindersma, J. Pello, S. Bhat, Y. Jiao, D. Heiss, G. Roelkens, M. Wale, P. Firth, F. Soares, N. Grote, M. Schell, H. Debregeas, M. Achouche, J.-L. Gentner, A. Bakker, T. Korthorst, D. Gallagher, A. Dabbs, A. Melloni, F. Morichetti, D. Melati, A. Wonfor, R. Penty, R. Broeke, B. Musk, and D. Robbins, “An introduction to InP-based generic integration technology,” Semicond. Sci. Technol. 29, 83001–83041 (2014).
[Crossref]

Stanton, E. J.

Stopinski, S.

M. Smit, X. Leijtens, H. Ambrosius, E. Bente, J. van der Tol, B. Smalbrugge, T. de Vries, E.-J. Geluk, J. Bolk, R. van Veldhoven, L. Augustin, P. Thijs, D. D’Agostino, H. Rabbani, K. Lawniczuk, S. Stopinski, S. Tahvili, A. Corradi, E. Kleijn, D. Dzibrou, M. Felicetti, E. Bitincka, V. Moskalenko, J. Zhao, R. Santos, G. Gilardi, W. Yao, K. Williams, P. Stabile, P. Kuindersma, J. Pello, S. Bhat, Y. Jiao, D. Heiss, G. Roelkens, M. Wale, P. Firth, F. Soares, N. Grote, M. Schell, H. Debregeas, M. Achouche, J.-L. Gentner, A. Bakker, T. Korthorst, D. Gallagher, A. Dabbs, A. Melloni, F. Morichetti, D. Melati, A. Wonfor, R. Penty, R. Broeke, B. Musk, and D. Robbins, “An introduction to InP-based generic integration technology,” Semicond. Sci. Technol. 29, 83001–83041 (2014).
[Crossref]

Summers, H. D.

J. D. Thomson, H. D. Summers, P. J. Hulyer, P. M. Smowton, and P. Blood, “Determination of single-pass optical gain and internal loss using a multisection device,” Appl. Phys. Lett. 75, 2527–2529 (1999).
[Crossref]

Tahvili, S.

M. Smit, X. Leijtens, H. Ambrosius, E. Bente, J. van der Tol, B. Smalbrugge, T. de Vries, E.-J. Geluk, J. Bolk, R. van Veldhoven, L. Augustin, P. Thijs, D. D’Agostino, H. Rabbani, K. Lawniczuk, S. Stopinski, S. Tahvili, A. Corradi, E. Kleijn, D. Dzibrou, M. Felicetti, E. Bitincka, V. Moskalenko, J. Zhao, R. Santos, G. Gilardi, W. Yao, K. Williams, P. Stabile, P. Kuindersma, J. Pello, S. Bhat, Y. Jiao, D. Heiss, G. Roelkens, M. Wale, P. Firth, F. Soares, N. Grote, M. Schell, H. Debregeas, M. Achouche, J.-L. Gentner, A. Bakker, T. Korthorst, D. Gallagher, A. Dabbs, A. Melloni, F. Morichetti, D. Melati, A. Wonfor, R. Penty, R. Broeke, B. Musk, and D. Robbins, “An introduction to InP-based generic integration technology,” Semicond. Sci. Technol. 29, 83001–83041 (2014).
[Crossref]

Tahvilli, S.

D. D’Agostino, S. Tahvilli, S. Latkowski, P. J. Veldhoven, H. Rabbani-Haghighi, C. Jin, B. Docter, H. Ambrosius, E. Bente, D. Lenstra, and M. Smit, “Monolithically integrated widely tunable coupled cavity laser source for gas sensing applications around 2.0  μm wavelength,” in Advanced Photonics (Optical Society of America, 2015), paper JT5A.1.

Takeshita, T.

T. Sato, M. Mitsuhara, T. Watanabe, K. Kasaya, T. Takeshita, and Y. Kondo, “2.1-μm-wavelength InGaAs multiple-Quantum-well distributed feedback lasers grown by MOVPE using Sb surfactant,” IEEE J. Sel. Top. Quantum Electron. 13, 1079–1083 (2007).
[Crossref]

Thijs, P.

M. Smit, X. Leijtens, H. Ambrosius, E. Bente, J. van der Tol, B. Smalbrugge, T. de Vries, E.-J. Geluk, J. Bolk, R. van Veldhoven, L. Augustin, P. Thijs, D. D’Agostino, H. Rabbani, K. Lawniczuk, S. Stopinski, S. Tahvili, A. Corradi, E. Kleijn, D. Dzibrou, M. Felicetti, E. Bitincka, V. Moskalenko, J. Zhao, R. Santos, G. Gilardi, W. Yao, K. Williams, P. Stabile, P. Kuindersma, J. Pello, S. Bhat, Y. Jiao, D. Heiss, G. Roelkens, M. Wale, P. Firth, F. Soares, N. Grote, M. Schell, H. Debregeas, M. Achouche, J.-L. Gentner, A. Bakker, T. Korthorst, D. Gallagher, A. Dabbs, A. Melloni, F. Morichetti, D. Melati, A. Wonfor, R. Penty, R. Broeke, B. Musk, and D. Robbins, “An introduction to InP-based generic integration technology,” Semicond. Sci. Technol. 29, 83001–83041 (2014).
[Crossref]

S. Latkowski, P. Thijs, P. J. van Veldhoven, H. Rabbani-Haghighi, M. K. Smit, and E. A. J. M. Bente, “Small signal modal gain measurement of ridge waveguide semiconductor optical amplifiers operating at 2  μm suitable for active-passive integration,” in Photonics Conference (IPC) (IEEE, 2013), pp. 258–259.

S. Latkowski, P. J. van Veldhoven, D. D’Agostino, H. Rabbani-Haghighi, B. Docter, P. Thijs, H. Ambrosius, K. Williams, E. Bente, and M. Smit, “COBRA long wavelength active-passive monolithic photonic integration technology platform,” in Proceedings of 18th European Conference on Integrated Optics (ECIO) (2016).

S. Latkowski, P. J. van Veldhoven, A. Hänsel, D. D’Agostino, H. Rabbani-Haghighi, B. Docter, N. Bhattacharya, P. Thijs, H. Ambrosius, and M. Smit, “Indium phosphide monolithic photonic integrated circuits for gas sensing applications,” in Proceedings of 18th European Conference on Integrated Optics (ECIO) (2016).

Thijs, P. J.

B. W. Tilma, Y. Jiao, J. Kotani, B. Smalbrugge, H. P. M. M. Ambrosius, P. J. Thijs, X. J. M. Leijtens, R. Notzel, M. K. Smit, and E. A. J. M. Bente, “Integrated tunable quantum-dot laser for optical coherence tomography in the 1.7  μm wavelength region,” IEEE J. Quantum Electron. 48, 87–98 (2012).
[Crossref]

Thomson, J. D.

J. D. Thomson, H. D. Summers, P. J. Hulyer, P. M. Smowton, and P. Blood, “Determination of single-pass optical gain and internal loss using a multisection device,” Appl. Phys. Lett. 75, 2527–2529 (1999).
[Crossref]

Tilma, B. W.

B. W. Tilma, Y. Jiao, J. Kotani, B. Smalbrugge, H. P. M. M. Ambrosius, P. J. Thijs, X. J. M. Leijtens, R. Notzel, M. K. Smit, and E. A. J. M. Bente, “Integrated tunable quantum-dot laser for optical coherence tomography in the 1.7  μm wavelength region,” IEEE J. Quantum Electron. 48, 87–98 (2012).
[Crossref]

Tournie, E.

G. Roelkens, U. Dave, A. Gassenq, N. Hattasan, C. Hu, B. Kuyken, F. Leo, A. Malik, M. Muneeb, E. Ryckeboer, D. Sanchez, S. Uvin, R. Wang, Z. Hens, R. Baets, Y. Shimura, F. Gencarelli, B. Vincent, R. Loo, J. Van Campenhout, L. Cerutti, J.-B. Rodriguez, E. Tournie, X. Chen, M. Nedeljkovic, G. Mashanovich, L. Shen, N. Healy, A. C. Peacock, X. Liu, R. Osgood, and W. M. J. Green, “Silicon-based photonic integration beyond the telecommunication wavelength range,” IEEE J. Sel. Top. Quantum Electron. 20, 394–404 (2014).
[Crossref]

Ubukata, A.

J. Dong, A. Ubukata, and K. Matsumoto, “Characteristics dependence on confinement structure and single-mode operation in 2-μm compressively strained InGaAs-lnGaAsP quantum-well lasers,” IEEE Photonics Technol. Lett. 10, 513–515 (1998).
[Crossref]

Uvin, S.

G. Roelkens, U. Dave, A. Gassenq, N. Hattasan, C. Hu, B. Kuyken, F. Leo, A. Malik, M. Muneeb, E. Ryckeboer, D. Sanchez, S. Uvin, R. Wang, Z. Hens, R. Baets, Y. Shimura, F. Gencarelli, B. Vincent, R. Loo, J. Van Campenhout, L. Cerutti, J.-B. Rodriguez, E. Tournie, X. Chen, M. Nedeljkovic, G. Mashanovich, L. Shen, N. Healy, A. C. Peacock, X. Liu, R. Osgood, and W. M. J. Green, “Silicon-based photonic integration beyond the telecommunication wavelength range,” IEEE J. Sel. Top. Quantum Electron. 20, 394–404 (2014).
[Crossref]

Van Campenhout, J.

G. Roelkens, U. Dave, A. Gassenq, N. Hattasan, C. Hu, B. Kuyken, F. Leo, A. Malik, M. Muneeb, E. Ryckeboer, D. Sanchez, S. Uvin, R. Wang, Z. Hens, R. Baets, Y. Shimura, F. Gencarelli, B. Vincent, R. Loo, J. Van Campenhout, L. Cerutti, J.-B. Rodriguez, E. Tournie, X. Chen, M. Nedeljkovic, G. Mashanovich, L. Shen, N. Healy, A. C. Peacock, X. Liu, R. Osgood, and W. M. J. Green, “Silicon-based photonic integration beyond the telecommunication wavelength range,” IEEE J. Sel. Top. Quantum Electron. 20, 394–404 (2014).
[Crossref]

van der Tol, J.

M. Smit, X. Leijtens, H. Ambrosius, E. Bente, J. van der Tol, B. Smalbrugge, T. de Vries, E.-J. Geluk, J. Bolk, R. van Veldhoven, L. Augustin, P. Thijs, D. D’Agostino, H. Rabbani, K. Lawniczuk, S. Stopinski, S. Tahvili, A. Corradi, E. Kleijn, D. Dzibrou, M. Felicetti, E. Bitincka, V. Moskalenko, J. Zhao, R. Santos, G. Gilardi, W. Yao, K. Williams, P. Stabile, P. Kuindersma, J. Pello, S. Bhat, Y. Jiao, D. Heiss, G. Roelkens, M. Wale, P. Firth, F. Soares, N. Grote, M. Schell, H. Debregeas, M. Achouche, J.-L. Gentner, A. Bakker, T. Korthorst, D. Gallagher, A. Dabbs, A. Melloni, F. Morichetti, D. Melati, A. Wonfor, R. Penty, R. Broeke, B. Musk, and D. Robbins, “An introduction to InP-based generic integration technology,” Semicond. Sci. Technol. 29, 83001–83041 (2014).
[Crossref]

van Veldhoven, P. J.

S. Latkowski, P. Thijs, P. J. van Veldhoven, H. Rabbani-Haghighi, M. K. Smit, and E. A. J. M. Bente, “Small signal modal gain measurement of ridge waveguide semiconductor optical amplifiers operating at 2  μm suitable for active-passive integration,” in Photonics Conference (IPC) (IEEE, 2013), pp. 258–259.

S. Latkowski, D. D’Agostino, P. J. van Veldhoven, H. Rabbani-Haghighi, B. Docter, H. Ambrosius, M. Smit, K. Williams, and E. A. J. M. Bente, “Monolithically integrated tunable laser source operating at 2  μm for gas sensing applications,” in Photonics Conference (IPC) (IEEE, 2015), pp. 535–536.

S. Latkowski, P. J. van Veldhoven, A. Hänsel, D. D’Agostino, H. Rabbani-Haghighi, B. Docter, N. Bhattacharya, P. Thijs, H. Ambrosius, and M. Smit, “Indium phosphide monolithic photonic integrated circuits for gas sensing applications,” in Proceedings of 18th European Conference on Integrated Optics (ECIO) (2016).

S. Latkowski, P. J. van Veldhoven, D. D’Agostino, H. Rabbani-Haghighi, B. Docter, P. Thijs, H. Ambrosius, K. Williams, E. Bente, and M. Smit, “COBRA long wavelength active-passive monolithic photonic integration technology platform,” in Proceedings of 18th European Conference on Integrated Optics (ECIO) (2016).

van Veldhoven, R.

M. Smit, X. Leijtens, H. Ambrosius, E. Bente, J. van der Tol, B. Smalbrugge, T. de Vries, E.-J. Geluk, J. Bolk, R. van Veldhoven, L. Augustin, P. Thijs, D. D’Agostino, H. Rabbani, K. Lawniczuk, S. Stopinski, S. Tahvili, A. Corradi, E. Kleijn, D. Dzibrou, M. Felicetti, E. Bitincka, V. Moskalenko, J. Zhao, R. Santos, G. Gilardi, W. Yao, K. Williams, P. Stabile, P. Kuindersma, J. Pello, S. Bhat, Y. Jiao, D. Heiss, G. Roelkens, M. Wale, P. Firth, F. Soares, N. Grote, M. Schell, H. Debregeas, M. Achouche, J.-L. Gentner, A. Bakker, T. Korthorst, D. Gallagher, A. Dabbs, A. Melloni, F. Morichetti, D. Melati, A. Wonfor, R. Penty, R. Broeke, B. Musk, and D. Robbins, “An introduction to InP-based generic integration technology,” Semicond. Sci. Technol. 29, 83001–83041 (2014).
[Crossref]

Vass, A.

J. G. Crowder, S. D. Smith, A. Vass, and J. Keddie, “Infrared methods for gas detection,” in Mid-Infrared Semiconductor Optoelectronics, A. Krier, ed. (Springer, 2006) Vol. 118, pp. 595–613.

Veldhoven, P. J.

D. D’Agostino, S. Tahvilli, S. Latkowski, P. J. Veldhoven, H. Rabbani-Haghighi, C. Jin, B. Docter, H. Ambrosius, E. Bente, D. Lenstra, and M. Smit, “Monolithically integrated widely tunable coupled cavity laser source for gas sensing applications around 2.0  μm wavelength,” in Advanced Photonics (Optical Society of America, 2015), paper JT5A.1.

Vincent, B.

G. Roelkens, U. Dave, A. Gassenq, N. Hattasan, C. Hu, B. Kuyken, F. Leo, A. Malik, M. Muneeb, E. Ryckeboer, D. Sanchez, S. Uvin, R. Wang, Z. Hens, R. Baets, Y. Shimura, F. Gencarelli, B. Vincent, R. Loo, J. Van Campenhout, L. Cerutti, J.-B. Rodriguez, E. Tournie, X. Chen, M. Nedeljkovic, G. Mashanovich, L. Shen, N. Healy, A. C. Peacock, X. Liu, R. Osgood, and W. M. J. Green, “Silicon-based photonic integration beyond the telecommunication wavelength range,” IEEE J. Sel. Top. Quantum Electron. 20, 394–404 (2014).
[Crossref]

Vurgaftman, I.

Wale, M.

M. Smit, X. Leijtens, H. Ambrosius, E. Bente, J. van der Tol, B. Smalbrugge, T. de Vries, E.-J. Geluk, J. Bolk, R. van Veldhoven, L. Augustin, P. Thijs, D. D’Agostino, H. Rabbani, K. Lawniczuk, S. Stopinski, S. Tahvili, A. Corradi, E. Kleijn, D. Dzibrou, M. Felicetti, E. Bitincka, V. Moskalenko, J. Zhao, R. Santos, G. Gilardi, W. Yao, K. Williams, P. Stabile, P. Kuindersma, J. Pello, S. Bhat, Y. Jiao, D. Heiss, G. Roelkens, M. Wale, P. Firth, F. Soares, N. Grote, M. Schell, H. Debregeas, M. Achouche, J.-L. Gentner, A. Bakker, T. Korthorst, D. Gallagher, A. Dabbs, A. Melloni, F. Morichetti, D. Melati, A. Wonfor, R. Penty, R. Broeke, B. Musk, and D. Robbins, “An introduction to InP-based generic integration technology,” Semicond. Sci. Technol. 29, 83001–83041 (2014).
[Crossref]

Wang, M.

L. Shterengas, G. Kipshidze, T. Hosoda, M. Wang, T. Feng, and G. Belenky, “Cascade type-I quantum well GaSb-based diode lasers,” Photonics 3, 27 (2016).
[Crossref]

Wang, R.

G. Roelkens, U. Dave, A. Gassenq, N. Hattasan, C. Hu, B. Kuyken, F. Leo, A. Malik, M. Muneeb, E. Ryckeboer, D. Sanchez, S. Uvin, R. Wang, Z. Hens, R. Baets, Y. Shimura, F. Gencarelli, B. Vincent, R. Loo, J. Van Campenhout, L. Cerutti, J.-B. Rodriguez, E. Tournie, X. Chen, M. Nedeljkovic, G. Mashanovich, L. Shen, N. Healy, A. C. Peacock, X. Liu, R. Osgood, and W. M. J. Green, “Silicon-based photonic integration beyond the telecommunication wavelength range,” IEEE J. Sel. Top. Quantum Electron. 20, 394–404 (2014).
[Crossref]

Watanabe, T.

T. Sato, M. Mitsuhara, T. Watanabe, K. Kasaya, T. Takeshita, and Y. Kondo, “2.1-μm-wavelength InGaAs multiple-Quantum-well distributed feedback lasers grown by MOVPE using Sb surfactant,” IEEE J. Sel. Top. Quantum Electron. 13, 1079–1083 (2007).
[Crossref]

T. Sato, M. Mitsuhara, T. Watanabe, and Y. Kondo, “Surfactant-mediated growth of InGaAs multiple-quantum-well lasers emitting at 2.1  μm by metalorganic vapor phase epitaxy,” Appl. Phys. Lett. 87, 211903 (2005).
[Crossref]

Wiecha, P.

S. Sprengel, C. Grasse, P. Wiecha, A. Andrejew, T. Gruendl, G. Boehm, R. Meyer, and M. C. Amann, “InP-based type-II quantum-well lasers and LEDs,” IEEE J. Sel. Top. Quantum Electron. 19, 1900909 (2013).
[Crossref]

Williams, K.

S. Latkowski, A. Hänsel, N. Bhattacharya, T. de Vries, L. Augustin, K. Williams, M. Smit, and E. Bente, “Novel widely tunable monolithically integrated laser source,” IEEE Photonics J. 7, 1–9 (2015).
[Crossref]

M. Smit, X. Leijtens, H. Ambrosius, E. Bente, J. van der Tol, B. Smalbrugge, T. de Vries, E.-J. Geluk, J. Bolk, R. van Veldhoven, L. Augustin, P. Thijs, D. D’Agostino, H. Rabbani, K. Lawniczuk, S. Stopinski, S. Tahvili, A. Corradi, E. Kleijn, D. Dzibrou, M. Felicetti, E. Bitincka, V. Moskalenko, J. Zhao, R. Santos, G. Gilardi, W. Yao, K. Williams, P. Stabile, P. Kuindersma, J. Pello, S. Bhat, Y. Jiao, D. Heiss, G. Roelkens, M. Wale, P. Firth, F. Soares, N. Grote, M. Schell, H. Debregeas, M. Achouche, J.-L. Gentner, A. Bakker, T. Korthorst, D. Gallagher, A. Dabbs, A. Melloni, F. Morichetti, D. Melati, A. Wonfor, R. Penty, R. Broeke, B. Musk, and D. Robbins, “An introduction to InP-based generic integration technology,” Semicond. Sci. Technol. 29, 83001–83041 (2014).
[Crossref]

S. Latkowski, D. D’Agostino, P. J. van Veldhoven, H. Rabbani-Haghighi, B. Docter, H. Ambrosius, M. Smit, K. Williams, and E. A. J. M. Bente, “Monolithically integrated tunable laser source operating at 2  μm for gas sensing applications,” in Photonics Conference (IPC) (IEEE, 2015), pp. 535–536.

S. Latkowski, P. J. van Veldhoven, D. D’Agostino, H. Rabbani-Haghighi, B. Docter, P. Thijs, H. Ambrosius, K. Williams, E. Bente, and M. Smit, “COBRA long wavelength active-passive monolithic photonic integration technology platform,” in Proceedings of 18th European Conference on Integrated Optics (ECIO) (2016).

S. Latkowski, A. Hänsel, N. Bhattacharya, T. de Vries, L. Augustin, K. Williams, M. Smit, and E. Bente, “Monolithically integrated array of widely tunable laser sources for multispecies gas sensing applications,” in OSA Technical Digest, Optical Fiber Communication Conference (Optical Society of America, 2016), paper W4H.2.

Wonfor, A.

M. Smit, X. Leijtens, H. Ambrosius, E. Bente, J. van der Tol, B. Smalbrugge, T. de Vries, E.-J. Geluk, J. Bolk, R. van Veldhoven, L. Augustin, P. Thijs, D. D’Agostino, H. Rabbani, K. Lawniczuk, S. Stopinski, S. Tahvili, A. Corradi, E. Kleijn, D. Dzibrou, M. Felicetti, E. Bitincka, V. Moskalenko, J. Zhao, R. Santos, G. Gilardi, W. Yao, K. Williams, P. Stabile, P. Kuindersma, J. Pello, S. Bhat, Y. Jiao, D. Heiss, G. Roelkens, M. Wale, P. Firth, F. Soares, N. Grote, M. Schell, H. Debregeas, M. Achouche, J.-L. Gentner, A. Bakker, T. Korthorst, D. Gallagher, A. Dabbs, A. Melloni, F. Morichetti, D. Melati, A. Wonfor, R. Penty, R. Broeke, B. Musk, and D. Robbins, “An introduction to InP-based generic integration technology,” Semicond. Sci. Technol. 29, 83001–83041 (2014).
[Crossref]

Xi, S.

Y. Gu, Y. Zhang, Y. Cao, L. Zhou, X. Chen, H. Li, and S. Xi, “2.4 μm InP-based antimony-free triangular quantum well lasers in continuous-wave operation above room temperature,” Appl. Phys. Express 7, 032701 (2014).
[Crossref]

Yao, W.

M. Smit, X. Leijtens, H. Ambrosius, E. Bente, J. van der Tol, B. Smalbrugge, T. de Vries, E.-J. Geluk, J. Bolk, R. van Veldhoven, L. Augustin, P. Thijs, D. D’Agostino, H. Rabbani, K. Lawniczuk, S. Stopinski, S. Tahvili, A. Corradi, E. Kleijn, D. Dzibrou, M. Felicetti, E. Bitincka, V. Moskalenko, J. Zhao, R. Santos, G. Gilardi, W. Yao, K. Williams, P. Stabile, P. Kuindersma, J. Pello, S. Bhat, Y. Jiao, D. Heiss, G. Roelkens, M. Wale, P. Firth, F. Soares, N. Grote, M. Schell, H. Debregeas, M. Achouche, J.-L. Gentner, A. Bakker, T. Korthorst, D. Gallagher, A. Dabbs, A. Melloni, F. Morichetti, D. Melati, A. Wonfor, R. Penty, R. Broeke, B. Musk, and D. Robbins, “An introduction to InP-based generic integration technology,” Semicond. Sci. Technol. 29, 83001–83041 (2014).
[Crossref]

Zeller, W.

W. Zeller, M. Legge, A. Somers, W. Kaiser, J. Koeth, and A. Forchel, “Singlemode emission at 2  μm wavelength with InP based quantum dash DFB lasers,” Electron. Lett. 44, 354–356 (2008).
[Crossref]

Zhang, Y.

Y. Gu, Y. Zhang, Y. Cao, L. Zhou, X. Chen, H. Li, and S. Xi, “2.4 μm InP-based antimony-free triangular quantum well lasers in continuous-wave operation above room temperature,” Appl. Phys. Express 7, 032701 (2014).
[Crossref]

Zhang, Y. G.

Y. Y. Cao, Y. G. Zhang, Y. Gu, X. Y. Chen, L. Zhou, and H. Li, “2.7  μm InAs quantum well lasers on InP-based InAlAs metamorphic buffer layers,” Appl. Phys. Lett. 102, 201111 (2013).
[Crossref]

Zhao, J.

M. Smit, X. Leijtens, H. Ambrosius, E. Bente, J. van der Tol, B. Smalbrugge, T. de Vries, E.-J. Geluk, J. Bolk, R. van Veldhoven, L. Augustin, P. Thijs, D. D’Agostino, H. Rabbani, K. Lawniczuk, S. Stopinski, S. Tahvili, A. Corradi, E. Kleijn, D. Dzibrou, M. Felicetti, E. Bitincka, V. Moskalenko, J. Zhao, R. Santos, G. Gilardi, W. Yao, K. Williams, P. Stabile, P. Kuindersma, J. Pello, S. Bhat, Y. Jiao, D. Heiss, G. Roelkens, M. Wale, P. Firth, F. Soares, N. Grote, M. Schell, H. Debregeas, M. Achouche, J.-L. Gentner, A. Bakker, T. Korthorst, D. Gallagher, A. Dabbs, A. Melloni, F. Morichetti, D. Melati, A. Wonfor, R. Penty, R. Broeke, B. Musk, and D. Robbins, “An introduction to InP-based generic integration technology,” Semicond. Sci. Technol. 29, 83001–83041 (2014).
[Crossref]

Zhou, L.

Y. Gu, Y. Zhang, Y. Cao, L. Zhou, X. Chen, H. Li, and S. Xi, “2.4 μm InP-based antimony-free triangular quantum well lasers in continuous-wave operation above room temperature,” Appl. Phys. Express 7, 032701 (2014).
[Crossref]

Y. Y. Cao, Y. G. Zhang, Y. Gu, X. Y. Chen, L. Zhou, and H. Li, “2.7  μm InAs quantum well lasers on InP-based InAlAs metamorphic buffer layers,” Appl. Phys. Lett. 102, 201111 (2013).
[Crossref]

Adv. Opt. Technol. (1)

S. Latkowski and D. Lenstra, “Lasers in InP generic photonic integration technology platforms,” Adv. Opt. Technol. 4, 179–188 (2015).
[Crossref]

Appl. Phys. Express (1)

Y. Gu, Y. Zhang, Y. Cao, L. Zhou, X. Chen, H. Li, and S. Xi, “2.4 μm InP-based antimony-free triangular quantum well lasers in continuous-wave operation above room temperature,” Appl. Phys. Express 7, 032701 (2014).
[Crossref]

Appl. Phys. Lett. (5)

Y. Y. Cao, Y. G. Zhang, Y. Gu, X. Y. Chen, L. Zhou, and H. Li, “2.7  μm InAs quantum well lasers on InP-based InAlAs metamorphic buffer layers,” Appl. Phys. Lett. 102, 201111 (2013).
[Crossref]

T. Hosoda, T. Feng, L. Shterengas, G. Kipshidze, and G. Belenky, “High power cascade diode lasers emitting near 2  μm,” Appl. Phys. Lett. 108, 131109 (2016).
[Crossref]

S. Forouhar, R. M. Briggs, C. Frez, K. J. Franz, and A. Ksendzov, “High-power laterally coupled distributed-feedback GaSb-based diode lasers at 2  μm wavelength,” Appl. Phys. Lett. 100, 031107 (2012).
[Crossref]

T. Sato, M. Mitsuhara, T. Watanabe, and Y. Kondo, “Surfactant-mediated growth of InGaAs multiple-quantum-well lasers emitting at 2.1  μm by metalorganic vapor phase epitaxy,” Appl. Phys. Lett. 87, 211903 (2005).
[Crossref]

J. D. Thomson, H. D. Summers, P. J. Hulyer, P. M. Smowton, and P. Blood, “Determination of single-pass optical gain and internal loss using a multisection device,” Appl. Phys. Lett. 75, 2527–2529 (1999).
[Crossref]

Electron. Lett. (2)

S. Hein, A. Somers, W. Kaiser, S. Höfling, J. P. Reithmaier, and A. Forchel, “Singlemode InAs/InP quantum dash distributed feedback lasers emitting in 1.9  μm range,” Electron. Lett. 44, 527–528 (2008).
[Crossref]

W. Zeller, M. Legge, A. Somers, W. Kaiser, J. Koeth, and A. Forchel, “Singlemode emission at 2  μm wavelength with InP based quantum dash DFB lasers,” Electron. Lett. 44, 354–356 (2008).
[Crossref]

IEEE J. Quantum Electron. (1)

B. W. Tilma, Y. Jiao, J. Kotani, B. Smalbrugge, H. P. M. M. Ambrosius, P. J. Thijs, X. J. M. Leijtens, R. Notzel, M. K. Smit, and E. A. J. M. Bente, “Integrated tunable quantum-dot laser for optical coherence tomography in the 1.7  μm wavelength region,” IEEE J. Quantum Electron. 48, 87–98 (2012).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (3)

G. Roelkens, U. Dave, A. Gassenq, N. Hattasan, C. Hu, B. Kuyken, F. Leo, A. Malik, M. Muneeb, E. Ryckeboer, D. Sanchez, S. Uvin, R. Wang, Z. Hens, R. Baets, Y. Shimura, F. Gencarelli, B. Vincent, R. Loo, J. Van Campenhout, L. Cerutti, J.-B. Rodriguez, E. Tournie, X. Chen, M. Nedeljkovic, G. Mashanovich, L. Shen, N. Healy, A. C. Peacock, X. Liu, R. Osgood, and W. M. J. Green, “Silicon-based photonic integration beyond the telecommunication wavelength range,” IEEE J. Sel. Top. Quantum Electron. 20, 394–404 (2014).
[Crossref]

S. Sprengel, C. Grasse, P. Wiecha, A. Andrejew, T. Gruendl, G. Boehm, R. Meyer, and M. C. Amann, “InP-based type-II quantum-well lasers and LEDs,” IEEE J. Sel. Top. Quantum Electron. 19, 1900909 (2013).
[Crossref]

T. Sato, M. Mitsuhara, T. Watanabe, K. Kasaya, T. Takeshita, and Y. Kondo, “2.1-μm-wavelength InGaAs multiple-Quantum-well distributed feedback lasers grown by MOVPE using Sb surfactant,” IEEE J. Sel. Top. Quantum Electron. 13, 1079–1083 (2007).
[Crossref]

IEEE Photonics J. (1)

S. Latkowski, A. Hänsel, N. Bhattacharya, T. de Vries, L. Augustin, K. Williams, M. Smit, and E. Bente, “Novel widely tunable monolithically integrated laser source,” IEEE Photonics J. 7, 1–9 (2015).
[Crossref]

IEEE Photonics Technol. Lett. (1)

J. Dong, A. Ubukata, and K. Matsumoto, “Characteristics dependence on confinement structure and single-mode operation in 2-μm compressively strained InGaAs-lnGaAsP quantum-well lasers,” IEEE Photonics Technol. Lett. 10, 513–515 (1998).
[Crossref]

IEICE Electron. Exp. (1)

T. Kanai, N. Fujiwara, Y. Ohiso, H. Ishii, M. Shimokozono, and M. Itoh, “2-μm wavelength tunable distributed Bragg reflector laser,” IEICE Electron. Exp. 13, 20160655 (2016).
[Crossref]

Opt. Lett. (1)

Optica (1)

Photonics (1)

L. Shterengas, G. Kipshidze, T. Hosoda, M. Wang, T. Feng, and G. Belenky, “Cascade type-I quantum well GaSb-based diode lasers,” Photonics 3, 27 (2016).
[Crossref]

Semicond. Sci. Technol. (1)

M. Smit, X. Leijtens, H. Ambrosius, E. Bente, J. van der Tol, B. Smalbrugge, T. de Vries, E.-J. Geluk, J. Bolk, R. van Veldhoven, L. Augustin, P. Thijs, D. D’Agostino, H. Rabbani, K. Lawniczuk, S. Stopinski, S. Tahvili, A. Corradi, E. Kleijn, D. Dzibrou, M. Felicetti, E. Bitincka, V. Moskalenko, J. Zhao, R. Santos, G. Gilardi, W. Yao, K. Williams, P. Stabile, P. Kuindersma, J. Pello, S. Bhat, Y. Jiao, D. Heiss, G. Roelkens, M. Wale, P. Firth, F. Soares, N. Grote, M. Schell, H. Debregeas, M. Achouche, J.-L. Gentner, A. Bakker, T. Korthorst, D. Gallagher, A. Dabbs, A. Melloni, F. Morichetti, D. Melati, A. Wonfor, R. Penty, R. Broeke, B. Musk, and D. Robbins, “An introduction to InP-based generic integration technology,” Semicond. Sci. Technol. 29, 83001–83041 (2014).
[Crossref]

Other (13)

J. G. Crowder, S. D. Smith, A. Vass, and J. Keddie, “Infrared methods for gas detection,” in Mid-Infrared Semiconductor Optoelectronics, A. Krier, ed. (Springer, 2006) Vol. 118, pp. 595–613.

Y. Ikeda, G. M. Choi, D. H. Chung, K. Fukuzato, and T. Nakajima, “Sensor development of CO2 gas temperature and concentration using 2  μm DFB semiconductor laser,” in 10th International Symposium on Applications of Laser Techniques to Fluid Mechanics (2000), pp. 483–496.

G. Maisons, C. Gilles, L. Orbe, G. Carpintero, J. Abautret, and M. Carras, “Monolithic integration of a widely-tunable mid-infrared source based on DFB QCL array and echelle grating,” in Laser Applications to Chemical, Security and Environmental Analysis 2016, Heidelberg Germany, 25–28 July2016 (Optical Society of America, 2016), paper LTh3E.7.

S. Latkowski, M. Smit, and E. A. J. M. Bente, “Integrated tunable semiconductor laser geometry based on asymmetric Mach–Zehnder interferometers for gas sensing applications,” in Proceedings of the 17th Annual Symposium of the IEEE Photonics Society Benelux Chapter (IEEE, 2012).

S. Latkowski, P. Thijs, P. J. van Veldhoven, H. Rabbani-Haghighi, M. K. Smit, and E. A. J. M. Bente, “Small signal modal gain measurement of ridge waveguide semiconductor optical amplifiers operating at 2  μm suitable for active-passive integration,” in Photonics Conference (IPC) (IEEE, 2013), pp. 258–259.

D. D’Agostino, S. Tahvilli, S. Latkowski, P. J. Veldhoven, H. Rabbani-Haghighi, C. Jin, B. Docter, H. Ambrosius, E. Bente, D. Lenstra, and M. Smit, “Monolithically integrated widely tunable coupled cavity laser source for gas sensing applications around 2.0  μm wavelength,” in Advanced Photonics (Optical Society of America, 2015), paper JT5A.1.

S. Latkowski, D. D’Agostino, P. J. van Veldhoven, H. Rabbani-Haghighi, B. Docter, H. Ambrosius, M. Smit, K. Williams, and E. A. J. M. Bente, “Monolithically integrated tunable laser source operating at 2  μm for gas sensing applications,” in Photonics Conference (IPC) (IEEE, 2015), pp. 535–536.

S. Latkowski, P. J. van Veldhoven, D. D’Agostino, H. Rabbani-Haghighi, B. Docter, P. Thijs, H. Ambrosius, K. Williams, E. Bente, and M. Smit, “COBRA long wavelength active-passive monolithic photonic integration technology platform,” in Proceedings of 18th European Conference on Integrated Optics (ECIO) (2016).

S. Latkowski, P. J. van Veldhoven, A. Hänsel, D. D’Agostino, H. Rabbani-Haghighi, B. Docter, N. Bhattacharya, P. Thijs, H. Ambrosius, and M. Smit, “Indium phosphide monolithic photonic integrated circuits for gas sensing applications,” in Proceedings of 18th European Conference on Integrated Optics (ECIO) (2016).

L. A. Coldren, S. W. Corzine, and M. L. Mashanovitch, Diode Lasers and Photonic Integrated Circuits (Wiley, 2012), Chapter 3.

S. Latkowski, A. Hänsel, N. Bhattacharya, T. de Vries, L. Augustin, K. Williams, M. Smit, and E. Bente, “Monolithically integrated array of widely tunable laser sources for multispecies gas sensing applications,” in OSA Technical Digest, Optical Fiber Communication Conference (Optical Society of America, 2016), paper W4H.2.

“HITRAN,” https://www.cfa.harvard.edu/hitran/ .

“HITRAN on the Web,” http://hitran.iao.ru/ .

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1. Schematic diagram of the PIC-based tunable ring laser with an intracavity wavelength-tunable filter (in a dashed box) based on a nested asymmetric Mach–Zehnder interferometer. The PIC consists of the following building blocks connected by passive waveguides (in blue): SOA, a semiconductor optical amplifier; MMI, multimode interference couplers; ERM, electro-refractive modulators; and PD, photodiodes. The light is coupled out from the laser cavity with two MMIs.
Fig. 2.
Fig. 2. Net modal gain of a long wavelength ridge waveguide semiconductor optical amplifier, based on the strained multiple quantum well material, measured using the segmented contact method at current density J=3.6  kA/cm2 and a temperature of 17°C.
Fig. 3.
Fig. 3. Mask layout of the ring laser with a nested AMZI intracavity filter. The laser features a 4 mm long SOA and a four branch AMZI filter with 1.8 mm long ERMs for wavelength tuning. The multimode interference couplers (MMI) and deep etched passive waveguides are used to form the AMZI filter and couple the light out of the cavity. The ring cavity is closed by deep etched passive waveguides. The output waveguides are angled with respect to the chip facets (7° to the normal) in order to reduce reflections. The laser occupies an area of 3.4  mm2.
Fig. 4.
Fig. 4. Microscope image of a 19  mm2 ASPIC. The chip was fabricated in a MPW run using COBRA long wavelength active-passive integration technology. The ASPIC includes four widely tunable lasers (blue dashed boxes) and occupies a single standard MPW cell.
Fig. 5.
Fig. 5. LVI characteristics. The fiber-coupled average optical power as a function of the SOA current (in red) shows a threshold current ITH=360  mA (current density JTH=3.6  kA/cm2), and a maximum power of 97 μW, which corresponds to 0.3 mW of ex-facet power (assuming a chip to fiber coupling loss of 5 dB). The voltage drop across the SOA against the injected current (in blue) indicates a slope resistance of 5.4  Ω or a contact resistance of 5.4·108  Ω·m2.
Fig. 6.
Fig. 6. Optical spectra recorded using an optical spectrum analyzer for different sets of reverse bias voltages applied to the ERM sections while both the injection current into the SOA section and the temperature were kept constant at ISOA=450  mA and THS=18°C, respectively. At such tuning conditions the laser covers a record tuning range of 31 nm.
Fig. 7.
Fig. 7. Absorption line of CO2 measured (blue circles) with the AMZI integrated tunable laser source and overlapped with the absorption profile simulated (solid red line) with the HITRAN software using parameters of the reference gas cell used for the experiment. The inset presents the measured absorption spectra of four more CO2 transitions.

Tables (1)

Tables Icon

Table 1. Epitaxial Layer Stack and Top Metallization Layers of Active and Passive Waveguides

Metrics