Abstract

The recent demonstrations of ultrafast mid-infrared fiber lasers emitting sub-picosecond pulses at 2.8 μm have created an exciting potential for a range of applications including mid-infrared frequency combs and materials processing. So far, this new class of laser has been based on the I11/24-I13/24 transition in erbium-doped fluoride fibers, which lies directly in a region of high water vapor absorption. This absorption has limited the achievable bandwidth, pulse duration, and peak power and poses a serious problem for transmission in free space. In this Letter, we present an ultrafast mid-infrared fiber laser that overcomes these limitations by using holmium as the gain medium. Holmium allows the central emission wavelength to shift to nearly 2.9 μm and avoid the strong water vapor lines. This laser, which represents the longest wavelength mode-locked fiber laser, emits 7.6 nJ pulses at 180 fs duration, with a record peak power of 37 kW. At this power level, the laser surpasses many commercial free-space OPA systems and becomes attractive for laser surgery of human tissue, for industrial materials modification, and for driving broadband coherent supercontinuum in the mid-infrared.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Ultrafast pulses from a mid-infrared fiber laser

Tomonori Hu, Stuart. D. Jackson, and Darren. D. Hudson
Opt. Lett. 40(18) 4226-4228 (2015)

Femtosecond fiber lasers reach the mid-infrared

Simon Duval, Martin Bernier, Vincent Fortin, Jérôme Genest, Michel Piché, and Réal Vallée
Optica 2(7) 623-626 (2015)

Toward all-fiber supercontinuum spanning the mid-infrared

Darren D. Hudson, Sergei Antipov, Lizhu Li, Imtiaz Alamgir, Tomonori Hu, Mohammed El Amraoui, Younes Messaddeq, Martin Rochette, Stuart D. Jackson, and Alexander Fuerbach
Optica 4(10) 1163-1166 (2017)

References

  • View by:
  • |
  • |
  • |

  1. T. Hu, S. Jackson, and D. Hudson, Opt. Lett. 40, 4226 (2015).
    [Crossref]
  2. S. Duval, M. Bernier, V. Fortin, J. Genest, M. Piché, and R. Vallée, Optica 2, 623 (2015).
    [Crossref]
  3. S. Duval, M. Olivier, V. Fortin, M. Bernier, M. Piché, and R. Vallée, Proc. SPIE 9728, 972802 (2016).
    [Crossref]
  4. F. Adler, P. Masłowski, A. Foltynowicz, K. Cossel, T. Briles, I. Hartl, and J. Ye, Opt. Express 18, 21861 (2010).
    [Crossref]
  5. M. Cizmeciyan, H. Cankaya, A. Kurt, and A. Sennaroglu, Opt. Lett. 34, 3056 (2009).
    [Crossref]
  6. A. Griffith, R. Lau, J. Cardenas, Y. Okawachi, A. Mohanty, R. Fain, Y. Lee, M. Yu, C. Phare, C. Poitras, A. Gaeta, and M. Lipson, Nat. Commun. 6, 6299 (2015).
    [Crossref]
  7. C. Wang and P. Sahay, Sensors 9, 8230 (2009).
    [Crossref]
  8. J. Mandon, G. Guelachvili, and N. Picqué, Nat. Photonics 3, 99 (2009).
    [Crossref]
  9. J.-L. Boulnois, Lasers Med. Sci. 1, 47 (1986).
  10. D. Hudson, Opt. Fiber Technol. 20, 631 (2014).
    [Crossref]
  11. T. Hu, D. Hudson, and S. Jackson, Opt. Lett. 39, 2133 (2014).
    [Crossref]
  12. X. Zhu and N. Peyghambarian, Adv. Optoelectron. 2010, 501956 (2010).
  13. P. Golding, S. Jackson, T. King, and M. Pollnau, Phys. Rev. B 62, 856 (2000).
    [Crossref]
  14. H. Zhang, H. Xiao, P. Zhou, X. Wang, and X. Xu, IEEE Photonics J. 5, 1501706 (2013).
  15. S. Jackson, F. Bugge, and G. Erbert, Opt. Lett. 32, 3349 (2007).
    [Crossref]
  16. A. Librantz, S. Jackson, F. Jagosich, L. Gomes, G. Poirier, S. Ribero, and Y. Messaddeq, J. Appl. Phys. 101, 123111 (2007).
    [Crossref]
  17. S. Antipov, M. Ams, R. Williams, E. Magi, M. Withford, and A. Fuerbach, Opt. Express 24, 30 (2016).
    [Crossref]
  18. S. Kelly, K. Smith, K. Blow, and N. Doran, Opt. Lett. 16, 1337 (1991).
    [Crossref]
  19. D. Tang, L. Zhao, B. Zhao, and A. Liu, Phys. Rev. A 72, 043816 (2005).
    [Crossref]
  20. F. Li, P. Wai, and J. N. Kutz, J. Opt. Soc. Am. B 27, 2068 (2010).
    [Crossref]
  21. J. Kutz, B. Collings, K. Bergman, and W. Knox, IEEE J. Quantum Electron. 34, 1749 (1998).
    [Crossref]
  22. E. Desurvire, IEEE Photon. Technol. Lett. 1, 196 (1989).
    [Crossref]

2016 (2)

S. Duval, M. Olivier, V. Fortin, M. Bernier, M. Piché, and R. Vallée, Proc. SPIE 9728, 972802 (2016).
[Crossref]

S. Antipov, M. Ams, R. Williams, E. Magi, M. Withford, and A. Fuerbach, Opt. Express 24, 30 (2016).
[Crossref]

2015 (3)

T. Hu, S. Jackson, and D. Hudson, Opt. Lett. 40, 4226 (2015).
[Crossref]

S. Duval, M. Bernier, V. Fortin, J. Genest, M. Piché, and R. Vallée, Optica 2, 623 (2015).
[Crossref]

A. Griffith, R. Lau, J. Cardenas, Y. Okawachi, A. Mohanty, R. Fain, Y. Lee, M. Yu, C. Phare, C. Poitras, A. Gaeta, and M. Lipson, Nat. Commun. 6, 6299 (2015).
[Crossref]

2014 (2)

2013 (1)

H. Zhang, H. Xiao, P. Zhou, X. Wang, and X. Xu, IEEE Photonics J. 5, 1501706 (2013).

2010 (3)

2009 (3)

M. Cizmeciyan, H. Cankaya, A. Kurt, and A. Sennaroglu, Opt. Lett. 34, 3056 (2009).
[Crossref]

C. Wang and P. Sahay, Sensors 9, 8230 (2009).
[Crossref]

J. Mandon, G. Guelachvili, and N. Picqué, Nat. Photonics 3, 99 (2009).
[Crossref]

2007 (2)

S. Jackson, F. Bugge, and G. Erbert, Opt. Lett. 32, 3349 (2007).
[Crossref]

A. Librantz, S. Jackson, F. Jagosich, L. Gomes, G. Poirier, S. Ribero, and Y. Messaddeq, J. Appl. Phys. 101, 123111 (2007).
[Crossref]

2005 (1)

D. Tang, L. Zhao, B. Zhao, and A. Liu, Phys. Rev. A 72, 043816 (2005).
[Crossref]

2000 (1)

P. Golding, S. Jackson, T. King, and M. Pollnau, Phys. Rev. B 62, 856 (2000).
[Crossref]

1998 (1)

J. Kutz, B. Collings, K. Bergman, and W. Knox, IEEE J. Quantum Electron. 34, 1749 (1998).
[Crossref]

1991 (1)

1989 (1)

E. Desurvire, IEEE Photon. Technol. Lett. 1, 196 (1989).
[Crossref]

1986 (1)

J.-L. Boulnois, Lasers Med. Sci. 1, 47 (1986).

Adler, F.

Ams, M.

Antipov, S.

Bergman, K.

J. Kutz, B. Collings, K. Bergman, and W. Knox, IEEE J. Quantum Electron. 34, 1749 (1998).
[Crossref]

Bernier, M.

S. Duval, M. Olivier, V. Fortin, M. Bernier, M. Piché, and R. Vallée, Proc. SPIE 9728, 972802 (2016).
[Crossref]

S. Duval, M. Bernier, V. Fortin, J. Genest, M. Piché, and R. Vallée, Optica 2, 623 (2015).
[Crossref]

Blow, K.

Boulnois, J.-L.

J.-L. Boulnois, Lasers Med. Sci. 1, 47 (1986).

Briles, T.

Bugge, F.

Cankaya, H.

Cardenas, J.

A. Griffith, R. Lau, J. Cardenas, Y. Okawachi, A. Mohanty, R. Fain, Y. Lee, M. Yu, C. Phare, C. Poitras, A. Gaeta, and M. Lipson, Nat. Commun. 6, 6299 (2015).
[Crossref]

Cizmeciyan, M.

Collings, B.

J. Kutz, B. Collings, K. Bergman, and W. Knox, IEEE J. Quantum Electron. 34, 1749 (1998).
[Crossref]

Cossel, K.

Desurvire, E.

E. Desurvire, IEEE Photon. Technol. Lett. 1, 196 (1989).
[Crossref]

Doran, N.

Duval, S.

S. Duval, M. Olivier, V. Fortin, M. Bernier, M. Piché, and R. Vallée, Proc. SPIE 9728, 972802 (2016).
[Crossref]

S. Duval, M. Bernier, V. Fortin, J. Genest, M. Piché, and R. Vallée, Optica 2, 623 (2015).
[Crossref]

Erbert, G.

Fain, R.

A. Griffith, R. Lau, J. Cardenas, Y. Okawachi, A. Mohanty, R. Fain, Y. Lee, M. Yu, C. Phare, C. Poitras, A. Gaeta, and M. Lipson, Nat. Commun. 6, 6299 (2015).
[Crossref]

Foltynowicz, A.

Fortin, V.

S. Duval, M. Olivier, V. Fortin, M. Bernier, M. Piché, and R. Vallée, Proc. SPIE 9728, 972802 (2016).
[Crossref]

S. Duval, M. Bernier, V. Fortin, J. Genest, M. Piché, and R. Vallée, Optica 2, 623 (2015).
[Crossref]

Fuerbach, A.

Gaeta, A.

A. Griffith, R. Lau, J. Cardenas, Y. Okawachi, A. Mohanty, R. Fain, Y. Lee, M. Yu, C. Phare, C. Poitras, A. Gaeta, and M. Lipson, Nat. Commun. 6, 6299 (2015).
[Crossref]

Genest, J.

Golding, P.

P. Golding, S. Jackson, T. King, and M. Pollnau, Phys. Rev. B 62, 856 (2000).
[Crossref]

Gomes, L.

A. Librantz, S. Jackson, F. Jagosich, L. Gomes, G. Poirier, S. Ribero, and Y. Messaddeq, J. Appl. Phys. 101, 123111 (2007).
[Crossref]

Griffith, A.

A. Griffith, R. Lau, J. Cardenas, Y. Okawachi, A. Mohanty, R. Fain, Y. Lee, M. Yu, C. Phare, C. Poitras, A. Gaeta, and M. Lipson, Nat. Commun. 6, 6299 (2015).
[Crossref]

Guelachvili, G.

J. Mandon, G. Guelachvili, and N. Picqué, Nat. Photonics 3, 99 (2009).
[Crossref]

Hartl, I.

Hu, T.

Hudson, D.

Jackson, S.

T. Hu, S. Jackson, and D. Hudson, Opt. Lett. 40, 4226 (2015).
[Crossref]

T. Hu, D. Hudson, and S. Jackson, Opt. Lett. 39, 2133 (2014).
[Crossref]

A. Librantz, S. Jackson, F. Jagosich, L. Gomes, G. Poirier, S. Ribero, and Y. Messaddeq, J. Appl. Phys. 101, 123111 (2007).
[Crossref]

S. Jackson, F. Bugge, and G. Erbert, Opt. Lett. 32, 3349 (2007).
[Crossref]

P. Golding, S. Jackson, T. King, and M. Pollnau, Phys. Rev. B 62, 856 (2000).
[Crossref]

Jagosich, F.

A. Librantz, S. Jackson, F. Jagosich, L. Gomes, G. Poirier, S. Ribero, and Y. Messaddeq, J. Appl. Phys. 101, 123111 (2007).
[Crossref]

Kelly, S.

King, T.

P. Golding, S. Jackson, T. King, and M. Pollnau, Phys. Rev. B 62, 856 (2000).
[Crossref]

Knox, W.

J. Kutz, B. Collings, K. Bergman, and W. Knox, IEEE J. Quantum Electron. 34, 1749 (1998).
[Crossref]

Kurt, A.

Kutz, J.

J. Kutz, B. Collings, K. Bergman, and W. Knox, IEEE J. Quantum Electron. 34, 1749 (1998).
[Crossref]

Kutz, J. N.

Lau, R.

A. Griffith, R. Lau, J. Cardenas, Y. Okawachi, A. Mohanty, R. Fain, Y. Lee, M. Yu, C. Phare, C. Poitras, A. Gaeta, and M. Lipson, Nat. Commun. 6, 6299 (2015).
[Crossref]

Lee, Y.

A. Griffith, R. Lau, J. Cardenas, Y. Okawachi, A. Mohanty, R. Fain, Y. Lee, M. Yu, C. Phare, C. Poitras, A. Gaeta, and M. Lipson, Nat. Commun. 6, 6299 (2015).
[Crossref]

Li, F.

Librantz, A.

A. Librantz, S. Jackson, F. Jagosich, L. Gomes, G. Poirier, S. Ribero, and Y. Messaddeq, J. Appl. Phys. 101, 123111 (2007).
[Crossref]

Lipson, M.

A. Griffith, R. Lau, J. Cardenas, Y. Okawachi, A. Mohanty, R. Fain, Y. Lee, M. Yu, C. Phare, C. Poitras, A. Gaeta, and M. Lipson, Nat. Commun. 6, 6299 (2015).
[Crossref]

Liu, A.

D. Tang, L. Zhao, B. Zhao, and A. Liu, Phys. Rev. A 72, 043816 (2005).
[Crossref]

Magi, E.

Mandon, J.

J. Mandon, G. Guelachvili, and N. Picqué, Nat. Photonics 3, 99 (2009).
[Crossref]

Maslowski, P.

Messaddeq, Y.

A. Librantz, S. Jackson, F. Jagosich, L. Gomes, G. Poirier, S. Ribero, and Y. Messaddeq, J. Appl. Phys. 101, 123111 (2007).
[Crossref]

Mohanty, A.

A. Griffith, R. Lau, J. Cardenas, Y. Okawachi, A. Mohanty, R. Fain, Y. Lee, M. Yu, C. Phare, C. Poitras, A. Gaeta, and M. Lipson, Nat. Commun. 6, 6299 (2015).
[Crossref]

Okawachi, Y.

A. Griffith, R. Lau, J. Cardenas, Y. Okawachi, A. Mohanty, R. Fain, Y. Lee, M. Yu, C. Phare, C. Poitras, A. Gaeta, and M. Lipson, Nat. Commun. 6, 6299 (2015).
[Crossref]

Olivier, M.

S. Duval, M. Olivier, V. Fortin, M. Bernier, M. Piché, and R. Vallée, Proc. SPIE 9728, 972802 (2016).
[Crossref]

Peyghambarian, N.

X. Zhu and N. Peyghambarian, Adv. Optoelectron. 2010, 501956 (2010).

Phare, C.

A. Griffith, R. Lau, J. Cardenas, Y. Okawachi, A. Mohanty, R. Fain, Y. Lee, M. Yu, C. Phare, C. Poitras, A. Gaeta, and M. Lipson, Nat. Commun. 6, 6299 (2015).
[Crossref]

Piché, M.

S. Duval, M. Olivier, V. Fortin, M. Bernier, M. Piché, and R. Vallée, Proc. SPIE 9728, 972802 (2016).
[Crossref]

S. Duval, M. Bernier, V. Fortin, J. Genest, M. Piché, and R. Vallée, Optica 2, 623 (2015).
[Crossref]

Picqué, N.

J. Mandon, G. Guelachvili, and N. Picqué, Nat. Photonics 3, 99 (2009).
[Crossref]

Poirier, G.

A. Librantz, S. Jackson, F. Jagosich, L. Gomes, G. Poirier, S. Ribero, and Y. Messaddeq, J. Appl. Phys. 101, 123111 (2007).
[Crossref]

Poitras, C.

A. Griffith, R. Lau, J. Cardenas, Y. Okawachi, A. Mohanty, R. Fain, Y. Lee, M. Yu, C. Phare, C. Poitras, A. Gaeta, and M. Lipson, Nat. Commun. 6, 6299 (2015).
[Crossref]

Pollnau, M.

P. Golding, S. Jackson, T. King, and M. Pollnau, Phys. Rev. B 62, 856 (2000).
[Crossref]

Ribero, S.

A. Librantz, S. Jackson, F. Jagosich, L. Gomes, G. Poirier, S. Ribero, and Y. Messaddeq, J. Appl. Phys. 101, 123111 (2007).
[Crossref]

Sahay, P.

C. Wang and P. Sahay, Sensors 9, 8230 (2009).
[Crossref]

Sennaroglu, A.

Smith, K.

Tang, D.

D. Tang, L. Zhao, B. Zhao, and A. Liu, Phys. Rev. A 72, 043816 (2005).
[Crossref]

Vallée, R.

S. Duval, M. Olivier, V. Fortin, M. Bernier, M. Piché, and R. Vallée, Proc. SPIE 9728, 972802 (2016).
[Crossref]

S. Duval, M. Bernier, V. Fortin, J. Genest, M. Piché, and R. Vallée, Optica 2, 623 (2015).
[Crossref]

Wai, P.

Wang, C.

C. Wang and P. Sahay, Sensors 9, 8230 (2009).
[Crossref]

Wang, X.

H. Zhang, H. Xiao, P. Zhou, X. Wang, and X. Xu, IEEE Photonics J. 5, 1501706 (2013).

Williams, R.

Withford, M.

Xiao, H.

H. Zhang, H. Xiao, P. Zhou, X. Wang, and X. Xu, IEEE Photonics J. 5, 1501706 (2013).

Xu, X.

H. Zhang, H. Xiao, P. Zhou, X. Wang, and X. Xu, IEEE Photonics J. 5, 1501706 (2013).

Ye, J.

Yu, M.

A. Griffith, R. Lau, J. Cardenas, Y. Okawachi, A. Mohanty, R. Fain, Y. Lee, M. Yu, C. Phare, C. Poitras, A. Gaeta, and M. Lipson, Nat. Commun. 6, 6299 (2015).
[Crossref]

Zhang, H.

H. Zhang, H. Xiao, P. Zhou, X. Wang, and X. Xu, IEEE Photonics J. 5, 1501706 (2013).

Zhao, B.

D. Tang, L. Zhao, B. Zhao, and A. Liu, Phys. Rev. A 72, 043816 (2005).
[Crossref]

Zhao, L.

D. Tang, L. Zhao, B. Zhao, and A. Liu, Phys. Rev. A 72, 043816 (2005).
[Crossref]

Zhou, P.

H. Zhang, H. Xiao, P. Zhou, X. Wang, and X. Xu, IEEE Photonics J. 5, 1501706 (2013).

Zhu, X.

X. Zhu and N. Peyghambarian, Adv. Optoelectron. 2010, 501956 (2010).

Adv. Optoelectron. (1)

X. Zhu and N. Peyghambarian, Adv. Optoelectron. 2010, 501956 (2010).

IEEE J. Quantum Electron. (1)

J. Kutz, B. Collings, K. Bergman, and W. Knox, IEEE J. Quantum Electron. 34, 1749 (1998).
[Crossref]

IEEE Photon. Technol. Lett. (1)

E. Desurvire, IEEE Photon. Technol. Lett. 1, 196 (1989).
[Crossref]

IEEE Photonics J. (1)

H. Zhang, H. Xiao, P. Zhou, X. Wang, and X. Xu, IEEE Photonics J. 5, 1501706 (2013).

J. Appl. Phys. (1)

A. Librantz, S. Jackson, F. Jagosich, L. Gomes, G. Poirier, S. Ribero, and Y. Messaddeq, J. Appl. Phys. 101, 123111 (2007).
[Crossref]

J. Opt. Soc. Am. B (1)

Lasers Med. Sci. (1)

J.-L. Boulnois, Lasers Med. Sci. 1, 47 (1986).

Nat. Commun. (1)

A. Griffith, R. Lau, J. Cardenas, Y. Okawachi, A. Mohanty, R. Fain, Y. Lee, M. Yu, C. Phare, C. Poitras, A. Gaeta, and M. Lipson, Nat. Commun. 6, 6299 (2015).
[Crossref]

Nat. Photonics (1)

J. Mandon, G. Guelachvili, and N. Picqué, Nat. Photonics 3, 99 (2009).
[Crossref]

Opt. Express (2)

Opt. Fiber Technol. (1)

D. Hudson, Opt. Fiber Technol. 20, 631 (2014).
[Crossref]

Opt. Lett. (5)

Optica (1)

Phys. Rev. A (1)

D. Tang, L. Zhao, B. Zhao, and A. Liu, Phys. Rev. A 72, 043816 (2005).
[Crossref]

Phys. Rev. B (1)

P. Golding, S. Jackson, T. King, and M. Pollnau, Phys. Rev. B 62, 856 (2000).
[Crossref]

Proc. SPIE (1)

S. Duval, M. Olivier, V. Fortin, M. Bernier, M. Piché, and R. Vallée, Proc. SPIE 9728, 972802 (2016).
[Crossref]

Sensors (1)

C. Wang and P. Sahay, Sensors 9, 8230 (2009).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1. Water vapor absorption lines (blue) overlaid with the amplified spontaneous emission (ASE) spectra of erbium-doped ZBLAN (orange) and holmium-doped ZBLAN (green). The effect of water absorption is drastically reduced despite the fact that the central emission wavelength from Ho3+ is only 100  nm longer than Er3+.
Fig. 2.
Fig. 2. Layout of the fiber laser cavity in which the NPR technique is used as the mode-locking mechanism. The output coupler (OC) had a transmission of 43%. The cavity consists of 3.5 m of fiber and 1.6 m of free space. The detection setup characterized the RF spectrum, optical spectrum, and pulse duration.
Fig. 3.
Fig. 3. Radio frequency spectrum from the fast photodiode. The fundamental repetition frequency of the laser is 43.1 MHz. The fundamental beat has a high SNR, indicating stable mode locking. The harmonic beats show a reduced intensity profile due to the finite photodetector bandwidth.
Fig. 4.
Fig. 4. (a) Optical spectrum of the mode-locked laser. The spectral centroid is 2876 nm, and the rms bandwidth is calculated to be 60 nm. The liquid water absorption (dashed line) peak is less than 70 nm away from the laser’s spectral center. (b) Interferometric autocorrelation of the pulses. Assuming a sech2 pulse shape, the actual pulsewidth is 180 fs. The time-bandwidth product calculated from these two measurements is 0.39, which is 1.2 times the bandwidth limit.
Fig. 5.
Fig. 5. Long time-base, background-free autocorrelation of the laser as a function of pump power. At high pump power, many solitons are supported. Reducing the pump power systematically eliminates solitons until only the fundamental soliton remains. Due to the symmetry of the autocorrelation, the trailing pulses are also mirrored on the leading side.

Metrics