Abstract

Current pulsed fiber lasers that are capable of delivering stable sub-100-fs pulses at megahertz repetition rates require intracavity pulse energies in the nanojoule range. Scaling these lasers to gigahertz repetition rates necessitates, therefore, very high average power levels and complex cladding-pumped configurations. Here we report a type of stretched-soliton all-fiber laser that generates broadband, soliton-like pulses at 1.55 μm with intracavity pulse energies of only tens of picojoules. In the laser cavity, strong dispersion management leads to a temporal breathing ratio of 70, while the weak residual anomalous dispersion is perfectly balanced by the low Kerr nonlinearity, resulting in the formation of temporally stretched, hyperbolic-secant pulses. A lumped wavelength-dependent attenuator compensates for the effects of the gain filtering on the pulse spectrum, ensuring intracavity pulse self-consistency. This unique stretched-soliton mechanism, combined with a harmonic mode-locking technique based on intense optoacoustic interactions in solid-core photonic crystal fiber, yields for the first time stable gigahertz-rate, sub-100-fs, dispersive-wave-free pulse trains at moderate pump powers.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Optical spectra beyond the amplifier bandwidth limitation in dispersion-managed mode-locked fiber lasers

Souad Chouli, José M. Soto-Crespo, and Philippe Grelu
Opt. Express 19(4) 2959-2964 (2011)

Dynamics of gain-guided solitons in an all-normal-dispersion fiber laser

L. M. Zhao, D. Y. Tang, H. Zhang, T. H. Cheng, H. Y. Tam, and C. Lu
Opt. Lett. 32(13) 1806-1808 (2007)

Enhanced spectral breathing for sub-25 fs pulse generation in a Yb-fiber laser

Yang Lan, Youjian Song, Minglie Hu, Bowen Liu, Lu Chai, and Chingyue Wang
Opt. Lett. 38(8) 1292-1294 (2013)

References

  • View by:
  • |
  • |
  • |

  1. M. E. Fermann and I. Hartl, “Ultrafast fibre lasers,” Nat. Photonics 7, 868–874 (2013).
    [Crossref]
  2. C. Jauregui, J. Limpert, and A. Tunnermann, “High-power fibre lasers,” Nat. Photonics 7, 861–867 (2013).
    [Crossref]
  3. S. T. Cundiff and A. M. Weiner, “Optical arbitrary waveform generation,” Nat. Photonics 4, 760–766 (2010).
    [Crossref]
  4. T. Udem, R. Holzwarth, and T. W. Hansch, “Optical frequency metrology,” Nature 416, 233–237 (2002).
    [Crossref]
  5. C. Kerse, H. Kalaycıoğlu, P. Elahi, B. Çetin, D. K. Kesim, Ö. Akçaalan, S. Yavaş, M. D. Aşık, B. Öktem, H. Hoogland, R. Holzwarth, and F. Ö. Ilday, “Ablation-cooled material removal with ultrafast bursts of pulses,” Nature 537, 84–88 (2016).
    [Crossref]
  6. I. N. Duling, “All-fiber ring soliton laser mode locked with a nonlinear mirror,” Opt. Lett. 16, 539–541 (1991).
    [Crossref]
  7. I. N. Duling, “Subpicosecond all-fibre erbium laser,” Electron. Lett. 27, 544–545 (1991).
    [Crossref]
  8. K. Tamura, H. A. Haus, and E. P. Ippen, “Self-starting additive pulse mode-locked erbium fibre ring laser,” Electron. Lett. 28, 2226–2228 (1992).
    [Crossref]
  9. M. E. Fermann, “Ultrashort-pulse sources based on single-mode rare-earth-doped fibers,” Appl. Phys. B 58, 197–209 (1994).
    [Crossref]
  10. D. J. Jones, H. A. Haus, and E. P. Ippen, “Subpicosecond solitons in an actively mode-locked fiber laser,” Opt. Lett. 21, 1818–1820 (1996).
    [Crossref]
  11. L. E. Nelson, D. J. Jones, K. Tamura, H. A. Haus, and E. P. Ippen, “Ultrashort-pulse fiber ring lasers,” Appl. Phys. B 65, 277–294 (1997).
    [Crossref]
  12. G. P. Agrawal, Nonlinear Fiber Optics (Academic, 2007).
  13. D. U. Noske, N. Pandit, and J. R. Taylor, “Source of spectral and temporal instability in soliton fiber lasers,” Opt. Lett. 17, 1515–1517 (1992).
    [Crossref]
  14. N. Pandit and J. R. Taylor, “Characterstic instability of fibre loop soliton lasers,” Electron. Lett. 28, 455–457 (1992).
    [Crossref]
  15. K. Tamura, E. P. Ippen, H. A. Haus, and L. E. Nelson, “77-fs pulse generation from a stretched-pulse mode-locked all-fiber ring laser,” Opt. Lett. 18, 1080–1082 (1993).
    [Crossref]
  16. K. Tamura, L. E. Nelson, H. A. Haus, and E. P. Ippen, “Soliton versus nonsoliton operation of fiber ring lasers,” Appl. Phys. Lett. 64, 149–151 (1994).
    [Crossref]
  17. H. A. Haus, K. Tamura, L. E. Nelson, and E. P. Ippen, “Stretched-pulse additive pulse mode-locking in fiber ring lasers: theory and experiment,” IEEE J. Quantum Electron. 31, 591–598 (1995).
    [Crossref]
  18. K. Tamura, E. P. Ippen, and H. A. Haus, “Pulse dynamics in stretched‐pulse fiber lasers,” Appl. Phys. Lett. 67, 158–160 (1995).
    [Crossref]
  19. P. Grelu and N. Akhmediev, “Dissipative solitons for mode-locked lasers,” Nat. Photonics 6, 84–92 (2012).
    [Crossref]
  20. F. W. Wise, A. Chong, and W. H. Renninger, “High-energy femtosecond fiber lasers based on pulse propagation at normal dispersion,” Laser Photon. Rev. 2, 58–73 (2008).
    [Crossref]
  21. F. Ö. Ilday, J. R. Buckley, W. G. Clark, and F. W. Wise, “Self-similar evolution of parabolic pulses in a laser,” Phys. Rev. Lett. 92, 213902 (2004).
    [Crossref]
  22. B. Öktem, C. Ulgudur, and F. Ö. Ilday, “Soliton-similariton fibre laser,” Nat. Photonics 4, 307–311 (2010).
    [Crossref]
  23. M. E. Fermann, M. J. Andrejco, Y. Silberberg, and A. M. Weiner, “Generation of pulses shorter than 200  fs from a passively mode-locked Er fiber laser,” Opt. Lett. 18, 48–50 (1993).
    [Crossref]
  24. C. Li, Y. Ma, X. Gao, F. Niu, T. Jiang, A. Wang, and Z. Zhang, “1  GHz repetition rate femtosecond Yb:fiber laser for direct generation of carrier-envelope offset frequency,” Appl. Opt. 54, 8350–8353 (2015).
    [Crossref]
  25. C. X. Yu, H. A. Haus, E. P. Ippen, W. S. Wong, and A. Sysoliatin, “Gigahertz-repetition-rate mode-locked fiber laser for continuum generation,” Opt. Lett. 25, 1418–1420 (2000).
    [Crossref]
  26. M. Pang, W. He, X. Jiang, and P. St.J. Russell, “All-optical bit storage in a fibre laser by optomechanically bound states of solitons,” Nat. Photonics 10, 454–458 (2016).
    [Crossref]
  27. M. Pang, X. Jiang, W. He, G. K. L. Wong, G. Onishchukov, N. Y. Joly, G. Ahmed, C. R. Menyuk, and P. St.J. Russell, “Stable subpicosecond soliton fiber laser passively mode-locked by gigahertz acoustic resonance in photonic crystal fiber core,” Optica 2, 339–342 (2015).
    [Crossref]
  28. W. He, M. Pang, and P. St.J. Russell, “Wideband-tunable soliton fiber laser mode-locked at 1.88  GHz by optoacoustic interactions in solid-core PCF,” Opt. Express 23, 24945–24954 (2015).
    [Crossref]
  29. K. Tamura, J. Jacobson, E. P. Ippen, H. A. Haus, and J. G. Fujimoto, “Unidirectional ring resonators for self-starting passively mode-locked lasers,” Opt. Lett. 18, 220–222 (1993).
    [Crossref]
  30. M. S. Kang, A. Nazarkin, A. Brenn, and P. St.J. Russell, “Tightly trapped acoustic phonons in photonic crystal fibres as highly nonlinear artificial Raman oscillators,” Nat. Phys. 5, 276–280 (2009).
    [Crossref]
  31. K. Özgören and F. Ö. Ilday, “All-fiber all-normal dispersion laser with a fiber-based Lyot filter,” Opt. Lett. 35, 1296–1298 (2010).
    [Crossref]
  32. C. P. J. Barty, G. Korn, F. Raksi, A. C. Tien, K. R. Wilson, V. V. Yakovlev, C. Rose-Petruck, J. Squier, and K. Yamakawa, “Regenerative pulse shaping and amplification of ultrabroadband optical pulses,” Opt. Lett. 21, 219–221 (1996).
    [Crossref]
  33. J. Seres, A. Müller, E. Seres, K. O’Keeffe, M. Lenner, R. F. Herzog, D. Kaplan, C. Spielmann, and F. Krausz, “Sub-10-fs, terawatt-scale Ti:sapphire laser system,” Opt. Lett. 28, 1832–1834 (2003).
    [Crossref]
  34. J. S. Parker, R. S. Guzzon, E. J. Norberg, A. Bhardwaj, P. R. A. Binetti, and L. A. Coldren, “Theory and design of THz intracavity gain-flattened filters for monolithically integrated mode-locked lasers,” IEEE J. Quantum Electron. 48, 114–122 (2012).
    [Crossref]
  35. L.-J. Chen, M. Y. Sander, and F. X. Kärtner, “Kerr-lens mode locking with minimum nonlinearity using gain-matched output couplers,” Opt. Lett. 35, 2916–2918 (2010).
    [Crossref]
  36. C. Cihan, E. Beyatli, F. Canbaz, L. J. Chen, B. Sumpf, G. Erbert, A. Leitenstorfer, F. X. Kärtner, A. Sennaroglu, and U. Demirbas, “Gain-matched output couplers for efficient Kerr-lens mode-locking of low-cost and high-peak power Cr:LiSAF lasers,” IEEE J. Sel. Top. Quantum Electron. 21, 94–105 (2015).
    [Crossref]
  37. S. K. Turitsyn, B. G. Bale, and M. P. Fedoruk, “Dispersion-managed solitons in fibre systems and lasers,” Phys. Rep. 521, 135–203 (2012).
    [Crossref]
  38. M. L. Dennis and I. N. Duling, “Intracavity dispersion measurement in modelocked fibre laser,” Electron. Lett. 29, 409–411 (1993).
    [Crossref]
  39. R. P. Davey, N. Langford, and A. I. Ferguson, “Interacting solutions in erbium fibre laser,” Electron. Lett. 27, 1257–1259 (1991).
    [Crossref]

2016 (2)

C. Kerse, H. Kalaycıoğlu, P. Elahi, B. Çetin, D. K. Kesim, Ö. Akçaalan, S. Yavaş, M. D. Aşık, B. Öktem, H. Hoogland, R. Holzwarth, and F. Ö. Ilday, “Ablation-cooled material removal with ultrafast bursts of pulses,” Nature 537, 84–88 (2016).
[Crossref]

M. Pang, W. He, X. Jiang, and P. St.J. Russell, “All-optical bit storage in a fibre laser by optomechanically bound states of solitons,” Nat. Photonics 10, 454–458 (2016).
[Crossref]

2015 (4)

2013 (2)

M. E. Fermann and I. Hartl, “Ultrafast fibre lasers,” Nat. Photonics 7, 868–874 (2013).
[Crossref]

C. Jauregui, J. Limpert, and A. Tunnermann, “High-power fibre lasers,” Nat. Photonics 7, 861–867 (2013).
[Crossref]

2012 (3)

P. Grelu and N. Akhmediev, “Dissipative solitons for mode-locked lasers,” Nat. Photonics 6, 84–92 (2012).
[Crossref]

S. K. Turitsyn, B. G. Bale, and M. P. Fedoruk, “Dispersion-managed solitons in fibre systems and lasers,” Phys. Rep. 521, 135–203 (2012).
[Crossref]

J. S. Parker, R. S. Guzzon, E. J. Norberg, A. Bhardwaj, P. R. A. Binetti, and L. A. Coldren, “Theory and design of THz intracavity gain-flattened filters for monolithically integrated mode-locked lasers,” IEEE J. Quantum Electron. 48, 114–122 (2012).
[Crossref]

2010 (4)

2009 (1)

M. S. Kang, A. Nazarkin, A. Brenn, and P. St.J. Russell, “Tightly trapped acoustic phonons in photonic crystal fibres as highly nonlinear artificial Raman oscillators,” Nat. Phys. 5, 276–280 (2009).
[Crossref]

2008 (1)

F. W. Wise, A. Chong, and W. H. Renninger, “High-energy femtosecond fiber lasers based on pulse propagation at normal dispersion,” Laser Photon. Rev. 2, 58–73 (2008).
[Crossref]

2004 (1)

F. Ö. Ilday, J. R. Buckley, W. G. Clark, and F. W. Wise, “Self-similar evolution of parabolic pulses in a laser,” Phys. Rev. Lett. 92, 213902 (2004).
[Crossref]

2003 (1)

2002 (1)

T. Udem, R. Holzwarth, and T. W. Hansch, “Optical frequency metrology,” Nature 416, 233–237 (2002).
[Crossref]

2000 (1)

1997 (1)

L. E. Nelson, D. J. Jones, K. Tamura, H. A. Haus, and E. P. Ippen, “Ultrashort-pulse fiber ring lasers,” Appl. Phys. B 65, 277–294 (1997).
[Crossref]

1996 (2)

1995 (2)

H. A. Haus, K. Tamura, L. E. Nelson, and E. P. Ippen, “Stretched-pulse additive pulse mode-locking in fiber ring lasers: theory and experiment,” IEEE J. Quantum Electron. 31, 591–598 (1995).
[Crossref]

K. Tamura, E. P. Ippen, and H. A. Haus, “Pulse dynamics in stretched‐pulse fiber lasers,” Appl. Phys. Lett. 67, 158–160 (1995).
[Crossref]

1994 (2)

M. E. Fermann, “Ultrashort-pulse sources based on single-mode rare-earth-doped fibers,” Appl. Phys. B 58, 197–209 (1994).
[Crossref]

K. Tamura, L. E. Nelson, H. A. Haus, and E. P. Ippen, “Soliton versus nonsoliton operation of fiber ring lasers,” Appl. Phys. Lett. 64, 149–151 (1994).
[Crossref]

1993 (4)

1992 (3)

K. Tamura, H. A. Haus, and E. P. Ippen, “Self-starting additive pulse mode-locked erbium fibre ring laser,” Electron. Lett. 28, 2226–2228 (1992).
[Crossref]

D. U. Noske, N. Pandit, and J. R. Taylor, “Source of spectral and temporal instability in soliton fiber lasers,” Opt. Lett. 17, 1515–1517 (1992).
[Crossref]

N. Pandit and J. R. Taylor, “Characterstic instability of fibre loop soliton lasers,” Electron. Lett. 28, 455–457 (1992).
[Crossref]

1991 (3)

I. N. Duling, “Subpicosecond all-fibre erbium laser,” Electron. Lett. 27, 544–545 (1991).
[Crossref]

I. N. Duling, “All-fiber ring soliton laser mode locked with a nonlinear mirror,” Opt. Lett. 16, 539–541 (1991).
[Crossref]

R. P. Davey, N. Langford, and A. I. Ferguson, “Interacting solutions in erbium fibre laser,” Electron. Lett. 27, 1257–1259 (1991).
[Crossref]

Agrawal, G. P.

G. P. Agrawal, Nonlinear Fiber Optics (Academic, 2007).

Ahmed, G.

Akçaalan, Ö.

C. Kerse, H. Kalaycıoğlu, P. Elahi, B. Çetin, D. K. Kesim, Ö. Akçaalan, S. Yavaş, M. D. Aşık, B. Öktem, H. Hoogland, R. Holzwarth, and F. Ö. Ilday, “Ablation-cooled material removal with ultrafast bursts of pulses,” Nature 537, 84–88 (2016).
[Crossref]

Akhmediev, N.

P. Grelu and N. Akhmediev, “Dissipative solitons for mode-locked lasers,” Nat. Photonics 6, 84–92 (2012).
[Crossref]

Andrejco, M. J.

Asik, M. D.

C. Kerse, H. Kalaycıoğlu, P. Elahi, B. Çetin, D. K. Kesim, Ö. Akçaalan, S. Yavaş, M. D. Aşık, B. Öktem, H. Hoogland, R. Holzwarth, and F. Ö. Ilday, “Ablation-cooled material removal with ultrafast bursts of pulses,” Nature 537, 84–88 (2016).
[Crossref]

Bale, B. G.

S. K. Turitsyn, B. G. Bale, and M. P. Fedoruk, “Dispersion-managed solitons in fibre systems and lasers,” Phys. Rep. 521, 135–203 (2012).
[Crossref]

Barty, C. P. J.

Beyatli, E.

C. Cihan, E. Beyatli, F. Canbaz, L. J. Chen, B. Sumpf, G. Erbert, A. Leitenstorfer, F. X. Kärtner, A. Sennaroglu, and U. Demirbas, “Gain-matched output couplers for efficient Kerr-lens mode-locking of low-cost and high-peak power Cr:LiSAF lasers,” IEEE J. Sel. Top. Quantum Electron. 21, 94–105 (2015).
[Crossref]

Bhardwaj, A.

J. S. Parker, R. S. Guzzon, E. J. Norberg, A. Bhardwaj, P. R. A. Binetti, and L. A. Coldren, “Theory and design of THz intracavity gain-flattened filters for monolithically integrated mode-locked lasers,” IEEE J. Quantum Electron. 48, 114–122 (2012).
[Crossref]

Binetti, P. R. A.

J. S. Parker, R. S. Guzzon, E. J. Norberg, A. Bhardwaj, P. R. A. Binetti, and L. A. Coldren, “Theory and design of THz intracavity gain-flattened filters for monolithically integrated mode-locked lasers,” IEEE J. Quantum Electron. 48, 114–122 (2012).
[Crossref]

Brenn, A.

M. S. Kang, A. Nazarkin, A. Brenn, and P. St.J. Russell, “Tightly trapped acoustic phonons in photonic crystal fibres as highly nonlinear artificial Raman oscillators,” Nat. Phys. 5, 276–280 (2009).
[Crossref]

Buckley, J. R.

F. Ö. Ilday, J. R. Buckley, W. G. Clark, and F. W. Wise, “Self-similar evolution of parabolic pulses in a laser,” Phys. Rev. Lett. 92, 213902 (2004).
[Crossref]

Canbaz, F.

C. Cihan, E. Beyatli, F. Canbaz, L. J. Chen, B. Sumpf, G. Erbert, A. Leitenstorfer, F. X. Kärtner, A. Sennaroglu, and U. Demirbas, “Gain-matched output couplers for efficient Kerr-lens mode-locking of low-cost and high-peak power Cr:LiSAF lasers,” IEEE J. Sel. Top. Quantum Electron. 21, 94–105 (2015).
[Crossref]

Çetin, B.

C. Kerse, H. Kalaycıoğlu, P. Elahi, B. Çetin, D. K. Kesim, Ö. Akçaalan, S. Yavaş, M. D. Aşık, B. Öktem, H. Hoogland, R. Holzwarth, and F. Ö. Ilday, “Ablation-cooled material removal with ultrafast bursts of pulses,” Nature 537, 84–88 (2016).
[Crossref]

Chen, L. J.

C. Cihan, E. Beyatli, F. Canbaz, L. J. Chen, B. Sumpf, G. Erbert, A. Leitenstorfer, F. X. Kärtner, A. Sennaroglu, and U. Demirbas, “Gain-matched output couplers for efficient Kerr-lens mode-locking of low-cost and high-peak power Cr:LiSAF lasers,” IEEE J. Sel. Top. Quantum Electron. 21, 94–105 (2015).
[Crossref]

Chen, L.-J.

Chong, A.

F. W. Wise, A. Chong, and W. H. Renninger, “High-energy femtosecond fiber lasers based on pulse propagation at normal dispersion,” Laser Photon. Rev. 2, 58–73 (2008).
[Crossref]

Cihan, C.

C. Cihan, E. Beyatli, F. Canbaz, L. J. Chen, B. Sumpf, G. Erbert, A. Leitenstorfer, F. X. Kärtner, A. Sennaroglu, and U. Demirbas, “Gain-matched output couplers for efficient Kerr-lens mode-locking of low-cost and high-peak power Cr:LiSAF lasers,” IEEE J. Sel. Top. Quantum Electron. 21, 94–105 (2015).
[Crossref]

Clark, W. G.

F. Ö. Ilday, J. R. Buckley, W. G. Clark, and F. W. Wise, “Self-similar evolution of parabolic pulses in a laser,” Phys. Rev. Lett. 92, 213902 (2004).
[Crossref]

Coldren, L. A.

J. S. Parker, R. S. Guzzon, E. J. Norberg, A. Bhardwaj, P. R. A. Binetti, and L. A. Coldren, “Theory and design of THz intracavity gain-flattened filters for monolithically integrated mode-locked lasers,” IEEE J. Quantum Electron. 48, 114–122 (2012).
[Crossref]

Cundiff, S. T.

S. T. Cundiff and A. M. Weiner, “Optical arbitrary waveform generation,” Nat. Photonics 4, 760–766 (2010).
[Crossref]

Davey, R. P.

R. P. Davey, N. Langford, and A. I. Ferguson, “Interacting solutions in erbium fibre laser,” Electron. Lett. 27, 1257–1259 (1991).
[Crossref]

Demirbas, U.

C. Cihan, E. Beyatli, F. Canbaz, L. J. Chen, B. Sumpf, G. Erbert, A. Leitenstorfer, F. X. Kärtner, A. Sennaroglu, and U. Demirbas, “Gain-matched output couplers for efficient Kerr-lens mode-locking of low-cost and high-peak power Cr:LiSAF lasers,” IEEE J. Sel. Top. Quantum Electron. 21, 94–105 (2015).
[Crossref]

Dennis, M. L.

M. L. Dennis and I. N. Duling, “Intracavity dispersion measurement in modelocked fibre laser,” Electron. Lett. 29, 409–411 (1993).
[Crossref]

Duling, I. N.

M. L. Dennis and I. N. Duling, “Intracavity dispersion measurement in modelocked fibre laser,” Electron. Lett. 29, 409–411 (1993).
[Crossref]

I. N. Duling, “All-fiber ring soliton laser mode locked with a nonlinear mirror,” Opt. Lett. 16, 539–541 (1991).
[Crossref]

I. N. Duling, “Subpicosecond all-fibre erbium laser,” Electron. Lett. 27, 544–545 (1991).
[Crossref]

Elahi, P.

C. Kerse, H. Kalaycıoğlu, P. Elahi, B. Çetin, D. K. Kesim, Ö. Akçaalan, S. Yavaş, M. D. Aşık, B. Öktem, H. Hoogland, R. Holzwarth, and F. Ö. Ilday, “Ablation-cooled material removal with ultrafast bursts of pulses,” Nature 537, 84–88 (2016).
[Crossref]

Erbert, G.

C. Cihan, E. Beyatli, F. Canbaz, L. J. Chen, B. Sumpf, G. Erbert, A. Leitenstorfer, F. X. Kärtner, A. Sennaroglu, and U. Demirbas, “Gain-matched output couplers for efficient Kerr-lens mode-locking of low-cost and high-peak power Cr:LiSAF lasers,” IEEE J. Sel. Top. Quantum Electron. 21, 94–105 (2015).
[Crossref]

Fedoruk, M. P.

S. K. Turitsyn, B. G. Bale, and M. P. Fedoruk, “Dispersion-managed solitons in fibre systems and lasers,” Phys. Rep. 521, 135–203 (2012).
[Crossref]

Ferguson, A. I.

R. P. Davey, N. Langford, and A. I. Ferguson, “Interacting solutions in erbium fibre laser,” Electron. Lett. 27, 1257–1259 (1991).
[Crossref]

Fermann, M. E.

M. E. Fermann and I. Hartl, “Ultrafast fibre lasers,” Nat. Photonics 7, 868–874 (2013).
[Crossref]

M. E. Fermann, “Ultrashort-pulse sources based on single-mode rare-earth-doped fibers,” Appl. Phys. B 58, 197–209 (1994).
[Crossref]

M. E. Fermann, M. J. Andrejco, Y. Silberberg, and A. M. Weiner, “Generation of pulses shorter than 200  fs from a passively mode-locked Er fiber laser,” Opt. Lett. 18, 48–50 (1993).
[Crossref]

Fujimoto, J. G.

Gao, X.

Grelu, P.

P. Grelu and N. Akhmediev, “Dissipative solitons for mode-locked lasers,” Nat. Photonics 6, 84–92 (2012).
[Crossref]

Guzzon, R. S.

J. S. Parker, R. S. Guzzon, E. J. Norberg, A. Bhardwaj, P. R. A. Binetti, and L. A. Coldren, “Theory and design of THz intracavity gain-flattened filters for monolithically integrated mode-locked lasers,” IEEE J. Quantum Electron. 48, 114–122 (2012).
[Crossref]

Hansch, T. W.

T. Udem, R. Holzwarth, and T. W. Hansch, “Optical frequency metrology,” Nature 416, 233–237 (2002).
[Crossref]

Hartl, I.

M. E. Fermann and I. Hartl, “Ultrafast fibre lasers,” Nat. Photonics 7, 868–874 (2013).
[Crossref]

Haus, H. A.

C. X. Yu, H. A. Haus, E. P. Ippen, W. S. Wong, and A. Sysoliatin, “Gigahertz-repetition-rate mode-locked fiber laser for continuum generation,” Opt. Lett. 25, 1418–1420 (2000).
[Crossref]

L. E. Nelson, D. J. Jones, K. Tamura, H. A. Haus, and E. P. Ippen, “Ultrashort-pulse fiber ring lasers,” Appl. Phys. B 65, 277–294 (1997).
[Crossref]

D. J. Jones, H. A. Haus, and E. P. Ippen, “Subpicosecond solitons in an actively mode-locked fiber laser,” Opt. Lett. 21, 1818–1820 (1996).
[Crossref]

K. Tamura, E. P. Ippen, and H. A. Haus, “Pulse dynamics in stretched‐pulse fiber lasers,” Appl. Phys. Lett. 67, 158–160 (1995).
[Crossref]

H. A. Haus, K. Tamura, L. E. Nelson, and E. P. Ippen, “Stretched-pulse additive pulse mode-locking in fiber ring lasers: theory and experiment,” IEEE J. Quantum Electron. 31, 591–598 (1995).
[Crossref]

K. Tamura, L. E. Nelson, H. A. Haus, and E. P. Ippen, “Soliton versus nonsoliton operation of fiber ring lasers,” Appl. Phys. Lett. 64, 149–151 (1994).
[Crossref]

K. Tamura, J. Jacobson, E. P. Ippen, H. A. Haus, and J. G. Fujimoto, “Unidirectional ring resonators for self-starting passively mode-locked lasers,” Opt. Lett. 18, 220–222 (1993).
[Crossref]

K. Tamura, E. P. Ippen, H. A. Haus, and L. E. Nelson, “77-fs pulse generation from a stretched-pulse mode-locked all-fiber ring laser,” Opt. Lett. 18, 1080–1082 (1993).
[Crossref]

K. Tamura, H. A. Haus, and E. P. Ippen, “Self-starting additive pulse mode-locked erbium fibre ring laser,” Electron. Lett. 28, 2226–2228 (1992).
[Crossref]

He, W.

Herzog, R. F.

Holzwarth, R.

C. Kerse, H. Kalaycıoğlu, P. Elahi, B. Çetin, D. K. Kesim, Ö. Akçaalan, S. Yavaş, M. D. Aşık, B. Öktem, H. Hoogland, R. Holzwarth, and F. Ö. Ilday, “Ablation-cooled material removal with ultrafast bursts of pulses,” Nature 537, 84–88 (2016).
[Crossref]

T. Udem, R. Holzwarth, and T. W. Hansch, “Optical frequency metrology,” Nature 416, 233–237 (2002).
[Crossref]

Hoogland, H.

C. Kerse, H. Kalaycıoğlu, P. Elahi, B. Çetin, D. K. Kesim, Ö. Akçaalan, S. Yavaş, M. D. Aşık, B. Öktem, H. Hoogland, R. Holzwarth, and F. Ö. Ilday, “Ablation-cooled material removal with ultrafast bursts of pulses,” Nature 537, 84–88 (2016).
[Crossref]

Ilday, F. Ö.

C. Kerse, H. Kalaycıoğlu, P. Elahi, B. Çetin, D. K. Kesim, Ö. Akçaalan, S. Yavaş, M. D. Aşık, B. Öktem, H. Hoogland, R. Holzwarth, and F. Ö. Ilday, “Ablation-cooled material removal with ultrafast bursts of pulses,” Nature 537, 84–88 (2016).
[Crossref]

B. Öktem, C. Ulgudur, and F. Ö. Ilday, “Soliton-similariton fibre laser,” Nat. Photonics 4, 307–311 (2010).
[Crossref]

K. Özgören and F. Ö. Ilday, “All-fiber all-normal dispersion laser with a fiber-based Lyot filter,” Opt. Lett. 35, 1296–1298 (2010).
[Crossref]

F. Ö. Ilday, J. R. Buckley, W. G. Clark, and F. W. Wise, “Self-similar evolution of parabolic pulses in a laser,” Phys. Rev. Lett. 92, 213902 (2004).
[Crossref]

Ippen, E. P.

C. X. Yu, H. A. Haus, E. P. Ippen, W. S. Wong, and A. Sysoliatin, “Gigahertz-repetition-rate mode-locked fiber laser for continuum generation,” Opt. Lett. 25, 1418–1420 (2000).
[Crossref]

L. E. Nelson, D. J. Jones, K. Tamura, H. A. Haus, and E. P. Ippen, “Ultrashort-pulse fiber ring lasers,” Appl. Phys. B 65, 277–294 (1997).
[Crossref]

D. J. Jones, H. A. Haus, and E. P. Ippen, “Subpicosecond solitons in an actively mode-locked fiber laser,” Opt. Lett. 21, 1818–1820 (1996).
[Crossref]

H. A. Haus, K. Tamura, L. E. Nelson, and E. P. Ippen, “Stretched-pulse additive pulse mode-locking in fiber ring lasers: theory and experiment,” IEEE J. Quantum Electron. 31, 591–598 (1995).
[Crossref]

K. Tamura, E. P. Ippen, and H. A. Haus, “Pulse dynamics in stretched‐pulse fiber lasers,” Appl. Phys. Lett. 67, 158–160 (1995).
[Crossref]

K. Tamura, L. E. Nelson, H. A. Haus, and E. P. Ippen, “Soliton versus nonsoliton operation of fiber ring lasers,” Appl. Phys. Lett. 64, 149–151 (1994).
[Crossref]

K. Tamura, E. P. Ippen, H. A. Haus, and L. E. Nelson, “77-fs pulse generation from a stretched-pulse mode-locked all-fiber ring laser,” Opt. Lett. 18, 1080–1082 (1993).
[Crossref]

K. Tamura, J. Jacobson, E. P. Ippen, H. A. Haus, and J. G. Fujimoto, “Unidirectional ring resonators for self-starting passively mode-locked lasers,” Opt. Lett. 18, 220–222 (1993).
[Crossref]

K. Tamura, H. A. Haus, and E. P. Ippen, “Self-starting additive pulse mode-locked erbium fibre ring laser,” Electron. Lett. 28, 2226–2228 (1992).
[Crossref]

Jacobson, J.

Jauregui, C.

C. Jauregui, J. Limpert, and A. Tunnermann, “High-power fibre lasers,” Nat. Photonics 7, 861–867 (2013).
[Crossref]

Jiang, T.

Jiang, X.

Joly, N. Y.

Jones, D. J.

L. E. Nelson, D. J. Jones, K. Tamura, H. A. Haus, and E. P. Ippen, “Ultrashort-pulse fiber ring lasers,” Appl. Phys. B 65, 277–294 (1997).
[Crossref]

D. J. Jones, H. A. Haus, and E. P. Ippen, “Subpicosecond solitons in an actively mode-locked fiber laser,” Opt. Lett. 21, 1818–1820 (1996).
[Crossref]

Kalaycioglu, H.

C. Kerse, H. Kalaycıoğlu, P. Elahi, B. Çetin, D. K. Kesim, Ö. Akçaalan, S. Yavaş, M. D. Aşık, B. Öktem, H. Hoogland, R. Holzwarth, and F. Ö. Ilday, “Ablation-cooled material removal with ultrafast bursts of pulses,” Nature 537, 84–88 (2016).
[Crossref]

Kang, M. S.

M. S. Kang, A. Nazarkin, A. Brenn, and P. St.J. Russell, “Tightly trapped acoustic phonons in photonic crystal fibres as highly nonlinear artificial Raman oscillators,” Nat. Phys. 5, 276–280 (2009).
[Crossref]

Kaplan, D.

Kärtner, F. X.

C. Cihan, E. Beyatli, F. Canbaz, L. J. Chen, B. Sumpf, G. Erbert, A. Leitenstorfer, F. X. Kärtner, A. Sennaroglu, and U. Demirbas, “Gain-matched output couplers for efficient Kerr-lens mode-locking of low-cost and high-peak power Cr:LiSAF lasers,” IEEE J. Sel. Top. Quantum Electron. 21, 94–105 (2015).
[Crossref]

L.-J. Chen, M. Y. Sander, and F. X. Kärtner, “Kerr-lens mode locking with minimum nonlinearity using gain-matched output couplers,” Opt. Lett. 35, 2916–2918 (2010).
[Crossref]

Kerse, C.

C. Kerse, H. Kalaycıoğlu, P. Elahi, B. Çetin, D. K. Kesim, Ö. Akçaalan, S. Yavaş, M. D. Aşık, B. Öktem, H. Hoogland, R. Holzwarth, and F. Ö. Ilday, “Ablation-cooled material removal with ultrafast bursts of pulses,” Nature 537, 84–88 (2016).
[Crossref]

Kesim, D. K.

C. Kerse, H. Kalaycıoğlu, P. Elahi, B. Çetin, D. K. Kesim, Ö. Akçaalan, S. Yavaş, M. D. Aşık, B. Öktem, H. Hoogland, R. Holzwarth, and F. Ö. Ilday, “Ablation-cooled material removal with ultrafast bursts of pulses,” Nature 537, 84–88 (2016).
[Crossref]

Korn, G.

Krausz, F.

Langford, N.

R. P. Davey, N. Langford, and A. I. Ferguson, “Interacting solutions in erbium fibre laser,” Electron. Lett. 27, 1257–1259 (1991).
[Crossref]

Leitenstorfer, A.

C. Cihan, E. Beyatli, F. Canbaz, L. J. Chen, B. Sumpf, G. Erbert, A. Leitenstorfer, F. X. Kärtner, A. Sennaroglu, and U. Demirbas, “Gain-matched output couplers for efficient Kerr-lens mode-locking of low-cost and high-peak power Cr:LiSAF lasers,” IEEE J. Sel. Top. Quantum Electron. 21, 94–105 (2015).
[Crossref]

Lenner, M.

Li, C.

Limpert, J.

C. Jauregui, J. Limpert, and A. Tunnermann, “High-power fibre lasers,” Nat. Photonics 7, 861–867 (2013).
[Crossref]

Ma, Y.

Menyuk, C. R.

Müller, A.

Nazarkin, A.

M. S. Kang, A. Nazarkin, A. Brenn, and P. St.J. Russell, “Tightly trapped acoustic phonons in photonic crystal fibres as highly nonlinear artificial Raman oscillators,” Nat. Phys. 5, 276–280 (2009).
[Crossref]

Nelson, L. E.

L. E. Nelson, D. J. Jones, K. Tamura, H. A. Haus, and E. P. Ippen, “Ultrashort-pulse fiber ring lasers,” Appl. Phys. B 65, 277–294 (1997).
[Crossref]

H. A. Haus, K. Tamura, L. E. Nelson, and E. P. Ippen, “Stretched-pulse additive pulse mode-locking in fiber ring lasers: theory and experiment,” IEEE J. Quantum Electron. 31, 591–598 (1995).
[Crossref]

K. Tamura, L. E. Nelson, H. A. Haus, and E. P. Ippen, “Soliton versus nonsoliton operation of fiber ring lasers,” Appl. Phys. Lett. 64, 149–151 (1994).
[Crossref]

K. Tamura, E. P. Ippen, H. A. Haus, and L. E. Nelson, “77-fs pulse generation from a stretched-pulse mode-locked all-fiber ring laser,” Opt. Lett. 18, 1080–1082 (1993).
[Crossref]

Niu, F.

Norberg, E. J.

J. S. Parker, R. S. Guzzon, E. J. Norberg, A. Bhardwaj, P. R. A. Binetti, and L. A. Coldren, “Theory and design of THz intracavity gain-flattened filters for monolithically integrated mode-locked lasers,” IEEE J. Quantum Electron. 48, 114–122 (2012).
[Crossref]

Noske, D. U.

O’Keeffe, K.

Öktem, B.

C. Kerse, H. Kalaycıoğlu, P. Elahi, B. Çetin, D. K. Kesim, Ö. Akçaalan, S. Yavaş, M. D. Aşık, B. Öktem, H. Hoogland, R. Holzwarth, and F. Ö. Ilday, “Ablation-cooled material removal with ultrafast bursts of pulses,” Nature 537, 84–88 (2016).
[Crossref]

B. Öktem, C. Ulgudur, and F. Ö. Ilday, “Soliton-similariton fibre laser,” Nat. Photonics 4, 307–311 (2010).
[Crossref]

Onishchukov, G.

Özgören, K.

Pandit, N.

D. U. Noske, N. Pandit, and J. R. Taylor, “Source of spectral and temporal instability in soliton fiber lasers,” Opt. Lett. 17, 1515–1517 (1992).
[Crossref]

N. Pandit and J. R. Taylor, “Characterstic instability of fibre loop soliton lasers,” Electron. Lett. 28, 455–457 (1992).
[Crossref]

Pang, M.

Parker, J. S.

J. S. Parker, R. S. Guzzon, E. J. Norberg, A. Bhardwaj, P. R. A. Binetti, and L. A. Coldren, “Theory and design of THz intracavity gain-flattened filters for monolithically integrated mode-locked lasers,” IEEE J. Quantum Electron. 48, 114–122 (2012).
[Crossref]

Raksi, F.

Renninger, W. H.

F. W. Wise, A. Chong, and W. H. Renninger, “High-energy femtosecond fiber lasers based on pulse propagation at normal dispersion,” Laser Photon. Rev. 2, 58–73 (2008).
[Crossref]

Rose-Petruck, C.

Sander, M. Y.

Sennaroglu, A.

C. Cihan, E. Beyatli, F. Canbaz, L. J. Chen, B. Sumpf, G. Erbert, A. Leitenstorfer, F. X. Kärtner, A. Sennaroglu, and U. Demirbas, “Gain-matched output couplers for efficient Kerr-lens mode-locking of low-cost and high-peak power Cr:LiSAF lasers,” IEEE J. Sel. Top. Quantum Electron. 21, 94–105 (2015).
[Crossref]

Seres, E.

Seres, J.

Silberberg, Y.

Spielmann, C.

Squier, J.

St.J. Russell, P.

M. Pang, W. He, X. Jiang, and P. St.J. Russell, “All-optical bit storage in a fibre laser by optomechanically bound states of solitons,” Nat. Photonics 10, 454–458 (2016).
[Crossref]

W. He, M. Pang, and P. St.J. Russell, “Wideband-tunable soliton fiber laser mode-locked at 1.88  GHz by optoacoustic interactions in solid-core PCF,” Opt. Express 23, 24945–24954 (2015).
[Crossref]

M. Pang, X. Jiang, W. He, G. K. L. Wong, G. Onishchukov, N. Y. Joly, G. Ahmed, C. R. Menyuk, and P. St.J. Russell, “Stable subpicosecond soliton fiber laser passively mode-locked by gigahertz acoustic resonance in photonic crystal fiber core,” Optica 2, 339–342 (2015).
[Crossref]

M. S. Kang, A. Nazarkin, A. Brenn, and P. St.J. Russell, “Tightly trapped acoustic phonons in photonic crystal fibres as highly nonlinear artificial Raman oscillators,” Nat. Phys. 5, 276–280 (2009).
[Crossref]

Sumpf, B.

C. Cihan, E. Beyatli, F. Canbaz, L. J. Chen, B. Sumpf, G. Erbert, A. Leitenstorfer, F. X. Kärtner, A. Sennaroglu, and U. Demirbas, “Gain-matched output couplers for efficient Kerr-lens mode-locking of low-cost and high-peak power Cr:LiSAF lasers,” IEEE J. Sel. Top. Quantum Electron. 21, 94–105 (2015).
[Crossref]

Sysoliatin, A.

Tamura, K.

L. E. Nelson, D. J. Jones, K. Tamura, H. A. Haus, and E. P. Ippen, “Ultrashort-pulse fiber ring lasers,” Appl. Phys. B 65, 277–294 (1997).
[Crossref]

K. Tamura, E. P. Ippen, and H. A. Haus, “Pulse dynamics in stretched‐pulse fiber lasers,” Appl. Phys. Lett. 67, 158–160 (1995).
[Crossref]

H. A. Haus, K. Tamura, L. E. Nelson, and E. P. Ippen, “Stretched-pulse additive pulse mode-locking in fiber ring lasers: theory and experiment,” IEEE J. Quantum Electron. 31, 591–598 (1995).
[Crossref]

K. Tamura, L. E. Nelson, H. A. Haus, and E. P. Ippen, “Soliton versus nonsoliton operation of fiber ring lasers,” Appl. Phys. Lett. 64, 149–151 (1994).
[Crossref]

K. Tamura, J. Jacobson, E. P. Ippen, H. A. Haus, and J. G. Fujimoto, “Unidirectional ring resonators for self-starting passively mode-locked lasers,” Opt. Lett. 18, 220–222 (1993).
[Crossref]

K. Tamura, E. P. Ippen, H. A. Haus, and L. E. Nelson, “77-fs pulse generation from a stretched-pulse mode-locked all-fiber ring laser,” Opt. Lett. 18, 1080–1082 (1993).
[Crossref]

K. Tamura, H. A. Haus, and E. P. Ippen, “Self-starting additive pulse mode-locked erbium fibre ring laser,” Electron. Lett. 28, 2226–2228 (1992).
[Crossref]

Taylor, J. R.

N. Pandit and J. R. Taylor, “Characterstic instability of fibre loop soliton lasers,” Electron. Lett. 28, 455–457 (1992).
[Crossref]

D. U. Noske, N. Pandit, and J. R. Taylor, “Source of spectral and temporal instability in soliton fiber lasers,” Opt. Lett. 17, 1515–1517 (1992).
[Crossref]

Tien, A. C.

Tunnermann, A.

C. Jauregui, J. Limpert, and A. Tunnermann, “High-power fibre lasers,” Nat. Photonics 7, 861–867 (2013).
[Crossref]

Turitsyn, S. K.

S. K. Turitsyn, B. G. Bale, and M. P. Fedoruk, “Dispersion-managed solitons in fibre systems and lasers,” Phys. Rep. 521, 135–203 (2012).
[Crossref]

Udem, T.

T. Udem, R. Holzwarth, and T. W. Hansch, “Optical frequency metrology,” Nature 416, 233–237 (2002).
[Crossref]

Ulgudur, C.

B. Öktem, C. Ulgudur, and F. Ö. Ilday, “Soliton-similariton fibre laser,” Nat. Photonics 4, 307–311 (2010).
[Crossref]

Wang, A.

Weiner, A. M.

Wilson, K. R.

Wise, F. W.

F. W. Wise, A. Chong, and W. H. Renninger, “High-energy femtosecond fiber lasers based on pulse propagation at normal dispersion,” Laser Photon. Rev. 2, 58–73 (2008).
[Crossref]

F. Ö. Ilday, J. R. Buckley, W. G. Clark, and F. W. Wise, “Self-similar evolution of parabolic pulses in a laser,” Phys. Rev. Lett. 92, 213902 (2004).
[Crossref]

Wong, G. K. L.

Wong, W. S.

Yakovlev, V. V.

Yamakawa, K.

Yavas, S.

C. Kerse, H. Kalaycıoğlu, P. Elahi, B. Çetin, D. K. Kesim, Ö. Akçaalan, S. Yavaş, M. D. Aşık, B. Öktem, H. Hoogland, R. Holzwarth, and F. Ö. Ilday, “Ablation-cooled material removal with ultrafast bursts of pulses,” Nature 537, 84–88 (2016).
[Crossref]

Yu, C. X.

Zhang, Z.

Appl. Opt. (1)

Appl. Phys. B (2)

M. E. Fermann, “Ultrashort-pulse sources based on single-mode rare-earth-doped fibers,” Appl. Phys. B 58, 197–209 (1994).
[Crossref]

L. E. Nelson, D. J. Jones, K. Tamura, H. A. Haus, and E. P. Ippen, “Ultrashort-pulse fiber ring lasers,” Appl. Phys. B 65, 277–294 (1997).
[Crossref]

Appl. Phys. Lett. (2)

K. Tamura, E. P. Ippen, and H. A. Haus, “Pulse dynamics in stretched‐pulse fiber lasers,” Appl. Phys. Lett. 67, 158–160 (1995).
[Crossref]

K. Tamura, L. E. Nelson, H. A. Haus, and E. P. Ippen, “Soliton versus nonsoliton operation of fiber ring lasers,” Appl. Phys. Lett. 64, 149–151 (1994).
[Crossref]

Electron. Lett. (5)

I. N. Duling, “Subpicosecond all-fibre erbium laser,” Electron. Lett. 27, 544–545 (1991).
[Crossref]

K. Tamura, H. A. Haus, and E. P. Ippen, “Self-starting additive pulse mode-locked erbium fibre ring laser,” Electron. Lett. 28, 2226–2228 (1992).
[Crossref]

N. Pandit and J. R. Taylor, “Characterstic instability of fibre loop soliton lasers,” Electron. Lett. 28, 455–457 (1992).
[Crossref]

M. L. Dennis and I. N. Duling, “Intracavity dispersion measurement in modelocked fibre laser,” Electron. Lett. 29, 409–411 (1993).
[Crossref]

R. P. Davey, N. Langford, and A. I. Ferguson, “Interacting solutions in erbium fibre laser,” Electron. Lett. 27, 1257–1259 (1991).
[Crossref]

IEEE J. Quantum Electron. (2)

J. S. Parker, R. S. Guzzon, E. J. Norberg, A. Bhardwaj, P. R. A. Binetti, and L. A. Coldren, “Theory and design of THz intracavity gain-flattened filters for monolithically integrated mode-locked lasers,” IEEE J. Quantum Electron. 48, 114–122 (2012).
[Crossref]

H. A. Haus, K. Tamura, L. E. Nelson, and E. P. Ippen, “Stretched-pulse additive pulse mode-locking in fiber ring lasers: theory and experiment,” IEEE J. Quantum Electron. 31, 591–598 (1995).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

C. Cihan, E. Beyatli, F. Canbaz, L. J. Chen, B. Sumpf, G. Erbert, A. Leitenstorfer, F. X. Kärtner, A. Sennaroglu, and U. Demirbas, “Gain-matched output couplers for efficient Kerr-lens mode-locking of low-cost and high-peak power Cr:LiSAF lasers,” IEEE J. Sel. Top. Quantum Electron. 21, 94–105 (2015).
[Crossref]

Laser Photon. Rev. (1)

F. W. Wise, A. Chong, and W. H. Renninger, “High-energy femtosecond fiber lasers based on pulse propagation at normal dispersion,” Laser Photon. Rev. 2, 58–73 (2008).
[Crossref]

Nat. Photonics (6)

P. Grelu and N. Akhmediev, “Dissipative solitons for mode-locked lasers,” Nat. Photonics 6, 84–92 (2012).
[Crossref]

M. Pang, W. He, X. Jiang, and P. St.J. Russell, “All-optical bit storage in a fibre laser by optomechanically bound states of solitons,” Nat. Photonics 10, 454–458 (2016).
[Crossref]

M. E. Fermann and I. Hartl, “Ultrafast fibre lasers,” Nat. Photonics 7, 868–874 (2013).
[Crossref]

C. Jauregui, J. Limpert, and A. Tunnermann, “High-power fibre lasers,” Nat. Photonics 7, 861–867 (2013).
[Crossref]

S. T. Cundiff and A. M. Weiner, “Optical arbitrary waveform generation,” Nat. Photonics 4, 760–766 (2010).
[Crossref]

B. Öktem, C. Ulgudur, and F. Ö. Ilday, “Soliton-similariton fibre laser,” Nat. Photonics 4, 307–311 (2010).
[Crossref]

Nat. Phys. (1)

M. S. Kang, A. Nazarkin, A. Brenn, and P. St.J. Russell, “Tightly trapped acoustic phonons in photonic crystal fibres as highly nonlinear artificial Raman oscillators,” Nat. Phys. 5, 276–280 (2009).
[Crossref]

Nature (2)

T. Udem, R. Holzwarth, and T. W. Hansch, “Optical frequency metrology,” Nature 416, 233–237 (2002).
[Crossref]

C. Kerse, H. Kalaycıoğlu, P. Elahi, B. Çetin, D. K. Kesim, Ö. Akçaalan, S. Yavaş, M. D. Aşık, B. Öktem, H. Hoogland, R. Holzwarth, and F. Ö. Ilday, “Ablation-cooled material removal with ultrafast bursts of pulses,” Nature 537, 84–88 (2016).
[Crossref]

Opt. Express (1)

Opt. Lett. (11)

I. N. Duling, “All-fiber ring soliton laser mode locked with a nonlinear mirror,” Opt. Lett. 16, 539–541 (1991).
[Crossref]

D. U. Noske, N. Pandit, and J. R. Taylor, “Source of spectral and temporal instability in soliton fiber lasers,” Opt. Lett. 17, 1515–1517 (1992).
[Crossref]

M. E. Fermann, M. J. Andrejco, Y. Silberberg, and A. M. Weiner, “Generation of pulses shorter than 200  fs from a passively mode-locked Er fiber laser,” Opt. Lett. 18, 48–50 (1993).
[Crossref]

K. Tamura, J. Jacobson, E. P. Ippen, H. A. Haus, and J. G. Fujimoto, “Unidirectional ring resonators for self-starting passively mode-locked lasers,” Opt. Lett. 18, 220–222 (1993).
[Crossref]

K. Tamura, E. P. Ippen, H. A. Haus, and L. E. Nelson, “77-fs pulse generation from a stretched-pulse mode-locked all-fiber ring laser,” Opt. Lett. 18, 1080–1082 (1993).
[Crossref]

C. P. J. Barty, G. Korn, F. Raksi, A. C. Tien, K. R. Wilson, V. V. Yakovlev, C. Rose-Petruck, J. Squier, and K. Yamakawa, “Regenerative pulse shaping and amplification of ultrabroadband optical pulses,” Opt. Lett. 21, 219–221 (1996).
[Crossref]

D. J. Jones, H. A. Haus, and E. P. Ippen, “Subpicosecond solitons in an actively mode-locked fiber laser,” Opt. Lett. 21, 1818–1820 (1996).
[Crossref]

C. X. Yu, H. A. Haus, E. P. Ippen, W. S. Wong, and A. Sysoliatin, “Gigahertz-repetition-rate mode-locked fiber laser for continuum generation,” Opt. Lett. 25, 1418–1420 (2000).
[Crossref]

J. Seres, A. Müller, E. Seres, K. O’Keeffe, M. Lenner, R. F. Herzog, D. Kaplan, C. Spielmann, and F. Krausz, “Sub-10-fs, terawatt-scale Ti:sapphire laser system,” Opt. Lett. 28, 1832–1834 (2003).
[Crossref]

K. Özgören and F. Ö. Ilday, “All-fiber all-normal dispersion laser with a fiber-based Lyot filter,” Opt. Lett. 35, 1296–1298 (2010).
[Crossref]

L.-J. Chen, M. Y. Sander, and F. X. Kärtner, “Kerr-lens mode locking with minimum nonlinearity using gain-matched output couplers,” Opt. Lett. 35, 2916–2918 (2010).
[Crossref]

Optica (1)

Phys. Rep. (1)

S. K. Turitsyn, B. G. Bale, and M. P. Fedoruk, “Dispersion-managed solitons in fibre systems and lasers,” Phys. Rep. 521, 135–203 (2012).
[Crossref]

Phys. Rev. Lett. (1)

F. Ö. Ilday, J. R. Buckley, W. G. Clark, and F. W. Wise, “Self-similar evolution of parabolic pulses in a laser,” Phys. Rev. Lett. 92, 213902 (2004).
[Crossref]

Other (1)

G. P. Agrawal, Nonlinear Fiber Optics (Academic, 2007).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

Experimental setup (see text for details). The SEM shows the PCF microstructure. WDM, wavelength-division multiplexer.

Fig. 2.
Fig. 2.

(a) Output pulse train recorded over 300 h by an oscilloscope in persistence mode, (b) RF spectrum of the pulse train, (c) zoomed-in plot of the RF spectrum (blue curve) in the vicinity of 1.873 GHz. The optoacoustic gain band of the R01 acoustic resonance in the PCF core is plotted as the gray curve [27]. (d) Long-term recording of the laser output power.

Fig. 3.
Fig. 3.

(a) Optical spectrum measured at output port 1 and port 2, (b) chirp compensation of laser pulses for different DCF-2 lengths (via the cutback method). The widths of the pulse autocorrelation (AC) traces are plotted. (c), (d) Autocorrelation traces at port 1 and port 2 with fitting curves, assuming a sech2 pulse shape.

Fig. 4.
Fig. 4.

(a) Laser loop and dispersion map used in the simulations; (b) pulse energy evolution around the laser cavity; (c), (d) evolution of pulse shape and pulse FWHM duration; (e), (f) evolution of pulse spectrum and 3 dB bandwidth.

Fig. 5.
Fig. 5.

(a) Pulse autocorrelation traces and (b) optical spectra measured at different positions in the laser cavity.

Fig. 6.
Fig. 6.

(a) Measured and (b) simulated pulse spectra before and after the intracavity polarizer, (c) transmission profiles of the intracavity WDA, calculated using experimental data (solid curve) and those used in the simulations (dashed curve), (d) measured gain spectrum in the EDF.

Fig. 7.
Fig. 7.

Calculated phase shifts of laser pulses over a single cavity round trip due to cavity dispersion (blue solid curve) and nonlinearity (red solid curve). The stimulated spectrum of laser pulses is also plotted as a gray dashed curve.

Fig. 8.
Fig. 8.

(a) Fundamentally mode-locked pulse train at a 12.1 MHz repetition rate, obtained at a low pump power, (b) optical spectrum of the pulse train (red solid curve), showing considerable ASE noise. The measured ASE noise spectrum is also plotted as the gray dashed curve. (c) Measured autocorrelation trace of the 12.1 MHz pulse train with a fitting curve assuming a sech2-shaped pulse.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

φ˜GVD,total(ω)=12ω20Lβ2(z)dz,
ANL(t,z+dz)=A(t,z)exp(iγ(z)|A(t,z)|2)dz,
dφ˜NL(ω,z)=arg[A˜NL(ω,z+dz)A˜(ω,z)],
φ˜NL,total(ω)=0Ldφ˜NL(z,ω).

Metrics