Abstract

We present a silicon implementation of a 4 × 4-port universal linear optical circuit. Instead of predefining the exact functionality of a photonic circuit at design time, we demonstrate a simple generic silicon photonic circuit, combined with electronic control and software feedback, that can perform any linear operation between its four input ports and output ports. The circuit consists of a network of thermally tunable symmetric Mach–Zehnder interferometers with phase and amplitude control, in-circuit optical power monitors, and local software controlled feedback loops. The circuit can be configured using a training mechanism, which makes it self-adapt to implement the desired function. We use the circuit to demonstrate an adaptive, universal beam coupler, as well as a switch matrix.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Self-configuring universal linear optical component [Invited]

David A. B. Miller
Photon. Res. 1(1) 1-15 (2013)

Non-invasive monitoring and control in silicon photonics using CMOS integrated electronics

Stefano Grillanda, Marco Carminati, Francesco Morichetti, Pietro Ciccarella, Andrea Annoni, Giorgio Ferrari, Michael Strain, Marc Sorel, Marco Sampietro, and Andrea Melloni
Optica 1(3) 129-136 (2014)

Universal discrete Fourier optics RF photonic integrated circuit architecture

Trevor J. Hall and Mehedi Hasan
Opt. Express 24(7) 7600-7610 (2016)

References

  • View by:
  • |
  • |
  • |

  1. D. A. B. Miller, “Self-configuring universal linear optical component,” Photon. Res. 1, 1–15 (2013).
  2. D. A. B. Miller, “Self-aligning universal beam coupler,” Opt. Express 21, 6360–6370 (2013).
    [Crossref]
  3. J. Carolan, C. Harrold, C. Sparrow, E. Martín-López, N. J. Russell, J. W. Silverstone, P. J. Shadbolt, N. Matsuda, M. Oguma, M. Itoh, G. D. Marshall, M. G. Thompson, J. C. F. Matthews, T. Hashimoto, J. L. O’Brien, and A. Laing, “Universal linear optics,” Science 349, 711–716 (2015).
    [Crossref]
  4. F. Morichetti, A. Annoni, S. Grillanda, N. Peserico, M. Carminati, P. Ciccarella, G. Ferrari, E. Guglielmi, M. Sorel, and A. Melloni, “4-channel all-optical MIMO demultiplexing on a silicon chip,” in Optical Fiber Communication Conference (Optical Society of America, 2016), paper Th3E.7.
  5. M. Reck, A. Zeilinger, H. J. Bernstein, and P. Bertani, “Experimental realization of any discrete unitary operator,” Phys. Rev. Lett. 73, 58–61 (1994).
    [Crossref]
  6. D. A. B. Miller, “Perfect optics with imperfect components,” Optica 2, 747–750 (2015).
    [Crossref]
  7. P. P. Absil, P. Verheyen, P. D. Heyn, M. Pantouvaki, G. Lepage, J. D. Coster, and J. V. Campenhout, “Silicon photonics integrated circuits: a manufacturing platform for high density, low power optical I/O’s,” Opt. Express 23, 9369–9378 (2015).
    [Crossref]
  8. H. Jayatilleka, K. Murray, M. Á. Guillén-Torres, M. Caverley, R. Hu, N. A. F. Jaeger, L. Chrostowski, and S. Shekhar, “Wavelength tuning and stabilization of microring-based filters using silicon in-resonator photoconductive heaters,” Opt. Express 23, 25084–25097 (2015).
    [Crossref]
  9. F. Morichetti, S. Grillanda, M. Carminati, G. Ferrari, M. Sampietro, M. J. Strain, M. Sorel, and A. Melloni, “Noninvasive on-chip light observation by contactless waveguide conductivity monitoring,” IEEE J. Sel. Top. Quantum Electron. 20, 292–301 (2014).
    [Crossref]
  10. W. Bogaerts, M. Fiers, M. Sivilotti, and P. Dumon, “The IPKISS photonic design framework,” in Optical Fiber Communication Conference (Optical Society of America, 2016), paper W1E.1.
  11. L. Lu, S. Zhao, L. Zhou, D. Li, Z. Li, M. Wang, X. Li, and J. Chen, “16 × 16 non-blocking silicon optical switch based on electro-optic Mach-Zehnder interferometers,” Opt. Express 24, 9295–9307 (2016).
    [Crossref]
  12. D. A. B. Miller, “All linear optical devices are mode converters,” Opt. Express 20, 23985–23993 (2012).
    [Crossref]
  13. A. Masood, M. Pantouvaki, G. Lepage, P. Verheyen, J. V. Campenhout, P. Absil, D. V. Thourhout, and W. Bogaerts, “Comparison of heater architectures for thermal control of silicon photonic circuits,” in Proceedings of the 10th International Conference on Group IV Photonics (IEEE, 2013), paper ThC2.
  14. Y. Xing, T. Ako, J. P. George, D. Korn, H. Yu, P. Verheyen, M. Pantouvaki, G. Lepage, P. Absil, A. Ruocco, C. Koos, J. Leuthold, K. Neyts, J. Beeckman, and W. Bogaerts, “Digitally controlled phase shifter using an SOI slot waveguide with liquid crystal infiltration,” IEEE Photon. Technol. Lett. 27, 1269–1272 (2015).
    [Crossref]
  15. M. R. Watts, J. Sun, C. DeRose, and D. C. Trotter, “Adiabatic thermo-optic Mach-Zehnder switch,” Opt. Lett. 38, 733–735 (2013).
    [Crossref]
  16. K. Murray, Z. Lu, H. Jayatilleka, and L. Chrostowski, “Dense dissimilar waveguide routing for highly efficient thermooptic switches on silicon,” Opt. Express 23, 19575–19585 (2015).
    [Crossref]
  17. H. Yu, M. Pantouvaki, J. V. Campenhout, D. Korn, K. Komorowska, P. Dumon, Y. Li, P. Verheyen, P. Absil, L. Alloatti, D. Hillerkuss, J. Leuthold, R. Baets, and W. Bogaerts, “Performance tradeoff between lateral and interdigitated doping patterns for high speed carrier-depletion based silicon modulators,” Opt. Express 20, 12926–12938 (2012).
    [Crossref]

2016 (1)

2015 (6)

Y. Xing, T. Ako, J. P. George, D. Korn, H. Yu, P. Verheyen, M. Pantouvaki, G. Lepage, P. Absil, A. Ruocco, C. Koos, J. Leuthold, K. Neyts, J. Beeckman, and W. Bogaerts, “Digitally controlled phase shifter using an SOI slot waveguide with liquid crystal infiltration,” IEEE Photon. Technol. Lett. 27, 1269–1272 (2015).
[Crossref]

K. Murray, Z. Lu, H. Jayatilleka, and L. Chrostowski, “Dense dissimilar waveguide routing for highly efficient thermooptic switches on silicon,” Opt. Express 23, 19575–19585 (2015).
[Crossref]

J. Carolan, C. Harrold, C. Sparrow, E. Martín-López, N. J. Russell, J. W. Silverstone, P. J. Shadbolt, N. Matsuda, M. Oguma, M. Itoh, G. D. Marshall, M. G. Thompson, J. C. F. Matthews, T. Hashimoto, J. L. O’Brien, and A. Laing, “Universal linear optics,” Science 349, 711–716 (2015).
[Crossref]

D. A. B. Miller, “Perfect optics with imperfect components,” Optica 2, 747–750 (2015).
[Crossref]

P. P. Absil, P. Verheyen, P. D. Heyn, M. Pantouvaki, G. Lepage, J. D. Coster, and J. V. Campenhout, “Silicon photonics integrated circuits: a manufacturing platform for high density, low power optical I/O’s,” Opt. Express 23, 9369–9378 (2015).
[Crossref]

H. Jayatilleka, K. Murray, M. Á. Guillén-Torres, M. Caverley, R. Hu, N. A. F. Jaeger, L. Chrostowski, and S. Shekhar, “Wavelength tuning and stabilization of microring-based filters using silicon in-resonator photoconductive heaters,” Opt. Express 23, 25084–25097 (2015).
[Crossref]

2014 (1)

F. Morichetti, S. Grillanda, M. Carminati, G. Ferrari, M. Sampietro, M. J. Strain, M. Sorel, and A. Melloni, “Noninvasive on-chip light observation by contactless waveguide conductivity monitoring,” IEEE J. Sel. Top. Quantum Electron. 20, 292–301 (2014).
[Crossref]

2013 (3)

2012 (2)

1994 (1)

M. Reck, A. Zeilinger, H. J. Bernstein, and P. Bertani, “Experimental realization of any discrete unitary operator,” Phys. Rev. Lett. 73, 58–61 (1994).
[Crossref]

Absil, P.

Y. Xing, T. Ako, J. P. George, D. Korn, H. Yu, P. Verheyen, M. Pantouvaki, G. Lepage, P. Absil, A. Ruocco, C. Koos, J. Leuthold, K. Neyts, J. Beeckman, and W. Bogaerts, “Digitally controlled phase shifter using an SOI slot waveguide with liquid crystal infiltration,” IEEE Photon. Technol. Lett. 27, 1269–1272 (2015).
[Crossref]

H. Yu, M. Pantouvaki, J. V. Campenhout, D. Korn, K. Komorowska, P. Dumon, Y. Li, P. Verheyen, P. Absil, L. Alloatti, D. Hillerkuss, J. Leuthold, R. Baets, and W. Bogaerts, “Performance tradeoff between lateral and interdigitated doping patterns for high speed carrier-depletion based silicon modulators,” Opt. Express 20, 12926–12938 (2012).
[Crossref]

A. Masood, M. Pantouvaki, G. Lepage, P. Verheyen, J. V. Campenhout, P. Absil, D. V. Thourhout, and W. Bogaerts, “Comparison of heater architectures for thermal control of silicon photonic circuits,” in Proceedings of the 10th International Conference on Group IV Photonics (IEEE, 2013), paper ThC2.

Absil, P. P.

Ako, T.

Y. Xing, T. Ako, J. P. George, D. Korn, H. Yu, P. Verheyen, M. Pantouvaki, G. Lepage, P. Absil, A. Ruocco, C. Koos, J. Leuthold, K. Neyts, J. Beeckman, and W. Bogaerts, “Digitally controlled phase shifter using an SOI slot waveguide with liquid crystal infiltration,” IEEE Photon. Technol. Lett. 27, 1269–1272 (2015).
[Crossref]

Alloatti, L.

Annoni, A.

F. Morichetti, A. Annoni, S. Grillanda, N. Peserico, M. Carminati, P. Ciccarella, G. Ferrari, E. Guglielmi, M. Sorel, and A. Melloni, “4-channel all-optical MIMO demultiplexing on a silicon chip,” in Optical Fiber Communication Conference (Optical Society of America, 2016), paper Th3E.7.

Baets, R.

Beeckman, J.

Y. Xing, T. Ako, J. P. George, D. Korn, H. Yu, P. Verheyen, M. Pantouvaki, G. Lepage, P. Absil, A. Ruocco, C. Koos, J. Leuthold, K. Neyts, J. Beeckman, and W. Bogaerts, “Digitally controlled phase shifter using an SOI slot waveguide with liquid crystal infiltration,” IEEE Photon. Technol. Lett. 27, 1269–1272 (2015).
[Crossref]

Bernstein, H. J.

M. Reck, A. Zeilinger, H. J. Bernstein, and P. Bertani, “Experimental realization of any discrete unitary operator,” Phys. Rev. Lett. 73, 58–61 (1994).
[Crossref]

Bertani, P.

M. Reck, A. Zeilinger, H. J. Bernstein, and P. Bertani, “Experimental realization of any discrete unitary operator,” Phys. Rev. Lett. 73, 58–61 (1994).
[Crossref]

Bogaerts, W.

Y. Xing, T. Ako, J. P. George, D. Korn, H. Yu, P. Verheyen, M. Pantouvaki, G. Lepage, P. Absil, A. Ruocco, C. Koos, J. Leuthold, K. Neyts, J. Beeckman, and W. Bogaerts, “Digitally controlled phase shifter using an SOI slot waveguide with liquid crystal infiltration,” IEEE Photon. Technol. Lett. 27, 1269–1272 (2015).
[Crossref]

H. Yu, M. Pantouvaki, J. V. Campenhout, D. Korn, K. Komorowska, P. Dumon, Y. Li, P. Verheyen, P. Absil, L. Alloatti, D. Hillerkuss, J. Leuthold, R. Baets, and W. Bogaerts, “Performance tradeoff between lateral and interdigitated doping patterns for high speed carrier-depletion based silicon modulators,” Opt. Express 20, 12926–12938 (2012).
[Crossref]

A. Masood, M. Pantouvaki, G. Lepage, P. Verheyen, J. V. Campenhout, P. Absil, D. V. Thourhout, and W. Bogaerts, “Comparison of heater architectures for thermal control of silicon photonic circuits,” in Proceedings of the 10th International Conference on Group IV Photonics (IEEE, 2013), paper ThC2.

W. Bogaerts, M. Fiers, M. Sivilotti, and P. Dumon, “The IPKISS photonic design framework,” in Optical Fiber Communication Conference (Optical Society of America, 2016), paper W1E.1.

Campenhout, J. V.

Carminati, M.

F. Morichetti, S. Grillanda, M. Carminati, G. Ferrari, M. Sampietro, M. J. Strain, M. Sorel, and A. Melloni, “Noninvasive on-chip light observation by contactless waveguide conductivity monitoring,” IEEE J. Sel. Top. Quantum Electron. 20, 292–301 (2014).
[Crossref]

F. Morichetti, A. Annoni, S. Grillanda, N. Peserico, M. Carminati, P. Ciccarella, G. Ferrari, E. Guglielmi, M. Sorel, and A. Melloni, “4-channel all-optical MIMO demultiplexing on a silicon chip,” in Optical Fiber Communication Conference (Optical Society of America, 2016), paper Th3E.7.

Carolan, J.

J. Carolan, C. Harrold, C. Sparrow, E. Martín-López, N. J. Russell, J. W. Silverstone, P. J. Shadbolt, N. Matsuda, M. Oguma, M. Itoh, G. D. Marshall, M. G. Thompson, J. C. F. Matthews, T. Hashimoto, J. L. O’Brien, and A. Laing, “Universal linear optics,” Science 349, 711–716 (2015).
[Crossref]

Caverley, M.

Chen, J.

Chrostowski, L.

Ciccarella, P.

F. Morichetti, A. Annoni, S. Grillanda, N. Peserico, M. Carminati, P. Ciccarella, G. Ferrari, E. Guglielmi, M. Sorel, and A. Melloni, “4-channel all-optical MIMO demultiplexing on a silicon chip,” in Optical Fiber Communication Conference (Optical Society of America, 2016), paper Th3E.7.

Coster, J. D.

DeRose, C.

Dumon, P.

Ferrari, G.

F. Morichetti, S. Grillanda, M. Carminati, G. Ferrari, M. Sampietro, M. J. Strain, M. Sorel, and A. Melloni, “Noninvasive on-chip light observation by contactless waveguide conductivity monitoring,” IEEE J. Sel. Top. Quantum Electron. 20, 292–301 (2014).
[Crossref]

F. Morichetti, A. Annoni, S. Grillanda, N. Peserico, M. Carminati, P. Ciccarella, G. Ferrari, E. Guglielmi, M. Sorel, and A. Melloni, “4-channel all-optical MIMO demultiplexing on a silicon chip,” in Optical Fiber Communication Conference (Optical Society of America, 2016), paper Th3E.7.

Fiers, M.

W. Bogaerts, M. Fiers, M. Sivilotti, and P. Dumon, “The IPKISS photonic design framework,” in Optical Fiber Communication Conference (Optical Society of America, 2016), paper W1E.1.

George, J. P.

Y. Xing, T. Ako, J. P. George, D. Korn, H. Yu, P. Verheyen, M. Pantouvaki, G. Lepage, P. Absil, A. Ruocco, C. Koos, J. Leuthold, K. Neyts, J. Beeckman, and W. Bogaerts, “Digitally controlled phase shifter using an SOI slot waveguide with liquid crystal infiltration,” IEEE Photon. Technol. Lett. 27, 1269–1272 (2015).
[Crossref]

Grillanda, S.

F. Morichetti, S. Grillanda, M. Carminati, G. Ferrari, M. Sampietro, M. J. Strain, M. Sorel, and A. Melloni, “Noninvasive on-chip light observation by contactless waveguide conductivity monitoring,” IEEE J. Sel. Top. Quantum Electron. 20, 292–301 (2014).
[Crossref]

F. Morichetti, A. Annoni, S. Grillanda, N. Peserico, M. Carminati, P. Ciccarella, G. Ferrari, E. Guglielmi, M. Sorel, and A. Melloni, “4-channel all-optical MIMO demultiplexing on a silicon chip,” in Optical Fiber Communication Conference (Optical Society of America, 2016), paper Th3E.7.

Guglielmi, E.

F. Morichetti, A. Annoni, S. Grillanda, N. Peserico, M. Carminati, P. Ciccarella, G. Ferrari, E. Guglielmi, M. Sorel, and A. Melloni, “4-channel all-optical MIMO demultiplexing on a silicon chip,” in Optical Fiber Communication Conference (Optical Society of America, 2016), paper Th3E.7.

Guillén-Torres, M. Á.

Harrold, C.

J. Carolan, C. Harrold, C. Sparrow, E. Martín-López, N. J. Russell, J. W. Silverstone, P. J. Shadbolt, N. Matsuda, M. Oguma, M. Itoh, G. D. Marshall, M. G. Thompson, J. C. F. Matthews, T. Hashimoto, J. L. O’Brien, and A. Laing, “Universal linear optics,” Science 349, 711–716 (2015).
[Crossref]

Hashimoto, T.

J. Carolan, C. Harrold, C. Sparrow, E. Martín-López, N. J. Russell, J. W. Silverstone, P. J. Shadbolt, N. Matsuda, M. Oguma, M. Itoh, G. D. Marshall, M. G. Thompson, J. C. F. Matthews, T. Hashimoto, J. L. O’Brien, and A. Laing, “Universal linear optics,” Science 349, 711–716 (2015).
[Crossref]

Heyn, P. D.

Hillerkuss, D.

Hu, R.

Itoh, M.

J. Carolan, C. Harrold, C. Sparrow, E. Martín-López, N. J. Russell, J. W. Silverstone, P. J. Shadbolt, N. Matsuda, M. Oguma, M. Itoh, G. D. Marshall, M. G. Thompson, J. C. F. Matthews, T. Hashimoto, J. L. O’Brien, and A. Laing, “Universal linear optics,” Science 349, 711–716 (2015).
[Crossref]

Jaeger, N. A. F.

Jayatilleka, H.

Komorowska, K.

Koos, C.

Y. Xing, T. Ako, J. P. George, D. Korn, H. Yu, P. Verheyen, M. Pantouvaki, G. Lepage, P. Absil, A. Ruocco, C. Koos, J. Leuthold, K. Neyts, J. Beeckman, and W. Bogaerts, “Digitally controlled phase shifter using an SOI slot waveguide with liquid crystal infiltration,” IEEE Photon. Technol. Lett. 27, 1269–1272 (2015).
[Crossref]

Korn, D.

Y. Xing, T. Ako, J. P. George, D. Korn, H. Yu, P. Verheyen, M. Pantouvaki, G. Lepage, P. Absil, A. Ruocco, C. Koos, J. Leuthold, K. Neyts, J. Beeckman, and W. Bogaerts, “Digitally controlled phase shifter using an SOI slot waveguide with liquid crystal infiltration,” IEEE Photon. Technol. Lett. 27, 1269–1272 (2015).
[Crossref]

H. Yu, M. Pantouvaki, J. V. Campenhout, D. Korn, K. Komorowska, P. Dumon, Y. Li, P. Verheyen, P. Absil, L. Alloatti, D. Hillerkuss, J. Leuthold, R. Baets, and W. Bogaerts, “Performance tradeoff between lateral and interdigitated doping patterns for high speed carrier-depletion based silicon modulators,” Opt. Express 20, 12926–12938 (2012).
[Crossref]

Laing, A.

J. Carolan, C. Harrold, C. Sparrow, E. Martín-López, N. J. Russell, J. W. Silverstone, P. J. Shadbolt, N. Matsuda, M. Oguma, M. Itoh, G. D. Marshall, M. G. Thompson, J. C. F. Matthews, T. Hashimoto, J. L. O’Brien, and A. Laing, “Universal linear optics,” Science 349, 711–716 (2015).
[Crossref]

Lepage, G.

Y. Xing, T. Ako, J. P. George, D. Korn, H. Yu, P. Verheyen, M. Pantouvaki, G. Lepage, P. Absil, A. Ruocco, C. Koos, J. Leuthold, K. Neyts, J. Beeckman, and W. Bogaerts, “Digitally controlled phase shifter using an SOI slot waveguide with liquid crystal infiltration,” IEEE Photon. Technol. Lett. 27, 1269–1272 (2015).
[Crossref]

P. P. Absil, P. Verheyen, P. D. Heyn, M. Pantouvaki, G. Lepage, J. D. Coster, and J. V. Campenhout, “Silicon photonics integrated circuits: a manufacturing platform for high density, low power optical I/O’s,” Opt. Express 23, 9369–9378 (2015).
[Crossref]

A. Masood, M. Pantouvaki, G. Lepage, P. Verheyen, J. V. Campenhout, P. Absil, D. V. Thourhout, and W. Bogaerts, “Comparison of heater architectures for thermal control of silicon photonic circuits,” in Proceedings of the 10th International Conference on Group IV Photonics (IEEE, 2013), paper ThC2.

Leuthold, J.

Y. Xing, T. Ako, J. P. George, D. Korn, H. Yu, P. Verheyen, M. Pantouvaki, G. Lepage, P. Absil, A. Ruocco, C. Koos, J. Leuthold, K. Neyts, J. Beeckman, and W. Bogaerts, “Digitally controlled phase shifter using an SOI slot waveguide with liquid crystal infiltration,” IEEE Photon. Technol. Lett. 27, 1269–1272 (2015).
[Crossref]

H. Yu, M. Pantouvaki, J. V. Campenhout, D. Korn, K. Komorowska, P. Dumon, Y. Li, P. Verheyen, P. Absil, L. Alloatti, D. Hillerkuss, J. Leuthold, R. Baets, and W. Bogaerts, “Performance tradeoff between lateral and interdigitated doping patterns for high speed carrier-depletion based silicon modulators,” Opt. Express 20, 12926–12938 (2012).
[Crossref]

Li, D.

Li, X.

Li, Y.

Li, Z.

Lu, L.

Lu, Z.

Marshall, G. D.

J. Carolan, C. Harrold, C. Sparrow, E. Martín-López, N. J. Russell, J. W. Silverstone, P. J. Shadbolt, N. Matsuda, M. Oguma, M. Itoh, G. D. Marshall, M. G. Thompson, J. C. F. Matthews, T. Hashimoto, J. L. O’Brien, and A. Laing, “Universal linear optics,” Science 349, 711–716 (2015).
[Crossref]

Martín-López, E.

J. Carolan, C. Harrold, C. Sparrow, E. Martín-López, N. J. Russell, J. W. Silverstone, P. J. Shadbolt, N. Matsuda, M. Oguma, M. Itoh, G. D. Marshall, M. G. Thompson, J. C. F. Matthews, T. Hashimoto, J. L. O’Brien, and A. Laing, “Universal linear optics,” Science 349, 711–716 (2015).
[Crossref]

Masood, A.

A. Masood, M. Pantouvaki, G. Lepage, P. Verheyen, J. V. Campenhout, P. Absil, D. V. Thourhout, and W. Bogaerts, “Comparison of heater architectures for thermal control of silicon photonic circuits,” in Proceedings of the 10th International Conference on Group IV Photonics (IEEE, 2013), paper ThC2.

Matsuda, N.

J. Carolan, C. Harrold, C. Sparrow, E. Martín-López, N. J. Russell, J. W. Silverstone, P. J. Shadbolt, N. Matsuda, M. Oguma, M. Itoh, G. D. Marshall, M. G. Thompson, J. C. F. Matthews, T. Hashimoto, J. L. O’Brien, and A. Laing, “Universal linear optics,” Science 349, 711–716 (2015).
[Crossref]

Matthews, J. C. F.

J. Carolan, C. Harrold, C. Sparrow, E. Martín-López, N. J. Russell, J. W. Silverstone, P. J. Shadbolt, N. Matsuda, M. Oguma, M. Itoh, G. D. Marshall, M. G. Thompson, J. C. F. Matthews, T. Hashimoto, J. L. O’Brien, and A. Laing, “Universal linear optics,” Science 349, 711–716 (2015).
[Crossref]

Melloni, A.

F. Morichetti, S. Grillanda, M. Carminati, G. Ferrari, M. Sampietro, M. J. Strain, M. Sorel, and A. Melloni, “Noninvasive on-chip light observation by contactless waveguide conductivity monitoring,” IEEE J. Sel. Top. Quantum Electron. 20, 292–301 (2014).
[Crossref]

F. Morichetti, A. Annoni, S. Grillanda, N. Peserico, M. Carminati, P. Ciccarella, G. Ferrari, E. Guglielmi, M. Sorel, and A. Melloni, “4-channel all-optical MIMO demultiplexing on a silicon chip,” in Optical Fiber Communication Conference (Optical Society of America, 2016), paper Th3E.7.

Miller, D. A. B.

Morichetti, F.

F. Morichetti, S. Grillanda, M. Carminati, G. Ferrari, M. Sampietro, M. J. Strain, M. Sorel, and A. Melloni, “Noninvasive on-chip light observation by contactless waveguide conductivity monitoring,” IEEE J. Sel. Top. Quantum Electron. 20, 292–301 (2014).
[Crossref]

F. Morichetti, A. Annoni, S. Grillanda, N. Peserico, M. Carminati, P. Ciccarella, G. Ferrari, E. Guglielmi, M. Sorel, and A. Melloni, “4-channel all-optical MIMO demultiplexing on a silicon chip,” in Optical Fiber Communication Conference (Optical Society of America, 2016), paper Th3E.7.

Murray, K.

Neyts, K.

Y. Xing, T. Ako, J. P. George, D. Korn, H. Yu, P. Verheyen, M. Pantouvaki, G. Lepage, P. Absil, A. Ruocco, C. Koos, J. Leuthold, K. Neyts, J. Beeckman, and W. Bogaerts, “Digitally controlled phase shifter using an SOI slot waveguide with liquid crystal infiltration,” IEEE Photon. Technol. Lett. 27, 1269–1272 (2015).
[Crossref]

O’Brien, J. L.

J. Carolan, C. Harrold, C. Sparrow, E. Martín-López, N. J. Russell, J. W. Silverstone, P. J. Shadbolt, N. Matsuda, M. Oguma, M. Itoh, G. D. Marshall, M. G. Thompson, J. C. F. Matthews, T. Hashimoto, J. L. O’Brien, and A. Laing, “Universal linear optics,” Science 349, 711–716 (2015).
[Crossref]

Oguma, M.

J. Carolan, C. Harrold, C. Sparrow, E. Martín-López, N. J. Russell, J. W. Silverstone, P. J. Shadbolt, N. Matsuda, M. Oguma, M. Itoh, G. D. Marshall, M. G. Thompson, J. C. F. Matthews, T. Hashimoto, J. L. O’Brien, and A. Laing, “Universal linear optics,” Science 349, 711–716 (2015).
[Crossref]

Pantouvaki, M.

Y. Xing, T. Ako, J. P. George, D. Korn, H. Yu, P. Verheyen, M. Pantouvaki, G. Lepage, P. Absil, A. Ruocco, C. Koos, J. Leuthold, K. Neyts, J. Beeckman, and W. Bogaerts, “Digitally controlled phase shifter using an SOI slot waveguide with liquid crystal infiltration,” IEEE Photon. Technol. Lett. 27, 1269–1272 (2015).
[Crossref]

P. P. Absil, P. Verheyen, P. D. Heyn, M. Pantouvaki, G. Lepage, J. D. Coster, and J. V. Campenhout, “Silicon photonics integrated circuits: a manufacturing platform for high density, low power optical I/O’s,” Opt. Express 23, 9369–9378 (2015).
[Crossref]

H. Yu, M. Pantouvaki, J. V. Campenhout, D. Korn, K. Komorowska, P. Dumon, Y. Li, P. Verheyen, P. Absil, L. Alloatti, D. Hillerkuss, J. Leuthold, R. Baets, and W. Bogaerts, “Performance tradeoff between lateral and interdigitated doping patterns for high speed carrier-depletion based silicon modulators,” Opt. Express 20, 12926–12938 (2012).
[Crossref]

A. Masood, M. Pantouvaki, G. Lepage, P. Verheyen, J. V. Campenhout, P. Absil, D. V. Thourhout, and W. Bogaerts, “Comparison of heater architectures for thermal control of silicon photonic circuits,” in Proceedings of the 10th International Conference on Group IV Photonics (IEEE, 2013), paper ThC2.

Peserico, N.

F. Morichetti, A. Annoni, S. Grillanda, N. Peserico, M. Carminati, P. Ciccarella, G. Ferrari, E. Guglielmi, M. Sorel, and A. Melloni, “4-channel all-optical MIMO demultiplexing on a silicon chip,” in Optical Fiber Communication Conference (Optical Society of America, 2016), paper Th3E.7.

Reck, M.

M. Reck, A. Zeilinger, H. J. Bernstein, and P. Bertani, “Experimental realization of any discrete unitary operator,” Phys. Rev. Lett. 73, 58–61 (1994).
[Crossref]

Ruocco, A.

Y. Xing, T. Ako, J. P. George, D. Korn, H. Yu, P. Verheyen, M. Pantouvaki, G. Lepage, P. Absil, A. Ruocco, C. Koos, J. Leuthold, K. Neyts, J. Beeckman, and W. Bogaerts, “Digitally controlled phase shifter using an SOI slot waveguide with liquid crystal infiltration,” IEEE Photon. Technol. Lett. 27, 1269–1272 (2015).
[Crossref]

Russell, N. J.

J. Carolan, C. Harrold, C. Sparrow, E. Martín-López, N. J. Russell, J. W. Silverstone, P. J. Shadbolt, N. Matsuda, M. Oguma, M. Itoh, G. D. Marshall, M. G. Thompson, J. C. F. Matthews, T. Hashimoto, J. L. O’Brien, and A. Laing, “Universal linear optics,” Science 349, 711–716 (2015).
[Crossref]

Sampietro, M.

F. Morichetti, S. Grillanda, M. Carminati, G. Ferrari, M. Sampietro, M. J. Strain, M. Sorel, and A. Melloni, “Noninvasive on-chip light observation by contactless waveguide conductivity monitoring,” IEEE J. Sel. Top. Quantum Electron. 20, 292–301 (2014).
[Crossref]

Shadbolt, P. J.

J. Carolan, C. Harrold, C. Sparrow, E. Martín-López, N. J. Russell, J. W. Silverstone, P. J. Shadbolt, N. Matsuda, M. Oguma, M. Itoh, G. D. Marshall, M. G. Thompson, J. C. F. Matthews, T. Hashimoto, J. L. O’Brien, and A. Laing, “Universal linear optics,” Science 349, 711–716 (2015).
[Crossref]

Shekhar, S.

Silverstone, J. W.

J. Carolan, C. Harrold, C. Sparrow, E. Martín-López, N. J. Russell, J. W. Silverstone, P. J. Shadbolt, N. Matsuda, M. Oguma, M. Itoh, G. D. Marshall, M. G. Thompson, J. C. F. Matthews, T. Hashimoto, J. L. O’Brien, and A. Laing, “Universal linear optics,” Science 349, 711–716 (2015).
[Crossref]

Sivilotti, M.

W. Bogaerts, M. Fiers, M. Sivilotti, and P. Dumon, “The IPKISS photonic design framework,” in Optical Fiber Communication Conference (Optical Society of America, 2016), paper W1E.1.

Sorel, M.

F. Morichetti, S. Grillanda, M. Carminati, G. Ferrari, M. Sampietro, M. J. Strain, M. Sorel, and A. Melloni, “Noninvasive on-chip light observation by contactless waveguide conductivity monitoring,” IEEE J. Sel. Top. Quantum Electron. 20, 292–301 (2014).
[Crossref]

F. Morichetti, A. Annoni, S. Grillanda, N. Peserico, M. Carminati, P. Ciccarella, G. Ferrari, E. Guglielmi, M. Sorel, and A. Melloni, “4-channel all-optical MIMO demultiplexing on a silicon chip,” in Optical Fiber Communication Conference (Optical Society of America, 2016), paper Th3E.7.

Sparrow, C.

J. Carolan, C. Harrold, C. Sparrow, E. Martín-López, N. J. Russell, J. W. Silverstone, P. J. Shadbolt, N. Matsuda, M. Oguma, M. Itoh, G. D. Marshall, M. G. Thompson, J. C. F. Matthews, T. Hashimoto, J. L. O’Brien, and A. Laing, “Universal linear optics,” Science 349, 711–716 (2015).
[Crossref]

Strain, M. J.

F. Morichetti, S. Grillanda, M. Carminati, G. Ferrari, M. Sampietro, M. J. Strain, M. Sorel, and A. Melloni, “Noninvasive on-chip light observation by contactless waveguide conductivity monitoring,” IEEE J. Sel. Top. Quantum Electron. 20, 292–301 (2014).
[Crossref]

Sun, J.

Thompson, M. G.

J. Carolan, C. Harrold, C. Sparrow, E. Martín-López, N. J. Russell, J. W. Silverstone, P. J. Shadbolt, N. Matsuda, M. Oguma, M. Itoh, G. D. Marshall, M. G. Thompson, J. C. F. Matthews, T. Hashimoto, J. L. O’Brien, and A. Laing, “Universal linear optics,” Science 349, 711–716 (2015).
[Crossref]

Thourhout, D. V.

A. Masood, M. Pantouvaki, G. Lepage, P. Verheyen, J. V. Campenhout, P. Absil, D. V. Thourhout, and W. Bogaerts, “Comparison of heater architectures for thermal control of silicon photonic circuits,” in Proceedings of the 10th International Conference on Group IV Photonics (IEEE, 2013), paper ThC2.

Trotter, D. C.

Verheyen, P.

P. P. Absil, P. Verheyen, P. D. Heyn, M. Pantouvaki, G. Lepage, J. D. Coster, and J. V. Campenhout, “Silicon photonics integrated circuits: a manufacturing platform for high density, low power optical I/O’s,” Opt. Express 23, 9369–9378 (2015).
[Crossref]

Y. Xing, T. Ako, J. P. George, D. Korn, H. Yu, P. Verheyen, M. Pantouvaki, G. Lepage, P. Absil, A. Ruocco, C. Koos, J. Leuthold, K. Neyts, J. Beeckman, and W. Bogaerts, “Digitally controlled phase shifter using an SOI slot waveguide with liquid crystal infiltration,” IEEE Photon. Technol. Lett. 27, 1269–1272 (2015).
[Crossref]

H. Yu, M. Pantouvaki, J. V. Campenhout, D. Korn, K. Komorowska, P. Dumon, Y. Li, P. Verheyen, P. Absil, L. Alloatti, D. Hillerkuss, J. Leuthold, R. Baets, and W. Bogaerts, “Performance tradeoff between lateral and interdigitated doping patterns for high speed carrier-depletion based silicon modulators,” Opt. Express 20, 12926–12938 (2012).
[Crossref]

A. Masood, M. Pantouvaki, G. Lepage, P. Verheyen, J. V. Campenhout, P. Absil, D. V. Thourhout, and W. Bogaerts, “Comparison of heater architectures for thermal control of silicon photonic circuits,” in Proceedings of the 10th International Conference on Group IV Photonics (IEEE, 2013), paper ThC2.

Wang, M.

Watts, M. R.

Xing, Y.

Y. Xing, T. Ako, J. P. George, D. Korn, H. Yu, P. Verheyen, M. Pantouvaki, G. Lepage, P. Absil, A. Ruocco, C. Koos, J. Leuthold, K. Neyts, J. Beeckman, and W. Bogaerts, “Digitally controlled phase shifter using an SOI slot waveguide with liquid crystal infiltration,” IEEE Photon. Technol. Lett. 27, 1269–1272 (2015).
[Crossref]

Yu, H.

Y. Xing, T. Ako, J. P. George, D. Korn, H. Yu, P. Verheyen, M. Pantouvaki, G. Lepage, P. Absil, A. Ruocco, C. Koos, J. Leuthold, K. Neyts, J. Beeckman, and W. Bogaerts, “Digitally controlled phase shifter using an SOI slot waveguide with liquid crystal infiltration,” IEEE Photon. Technol. Lett. 27, 1269–1272 (2015).
[Crossref]

H. Yu, M. Pantouvaki, J. V. Campenhout, D. Korn, K. Komorowska, P. Dumon, Y. Li, P. Verheyen, P. Absil, L. Alloatti, D. Hillerkuss, J. Leuthold, R. Baets, and W. Bogaerts, “Performance tradeoff between lateral and interdigitated doping patterns for high speed carrier-depletion based silicon modulators,” Opt. Express 20, 12926–12938 (2012).
[Crossref]

Zeilinger, A.

M. Reck, A. Zeilinger, H. J. Bernstein, and P. Bertani, “Experimental realization of any discrete unitary operator,” Phys. Rev. Lett. 73, 58–61 (1994).
[Crossref]

Zhao, S.

Zhou, L.

IEEE J. Sel. Top. Quantum Electron. (1)

F. Morichetti, S. Grillanda, M. Carminati, G. Ferrari, M. Sampietro, M. J. Strain, M. Sorel, and A. Melloni, “Noninvasive on-chip light observation by contactless waveguide conductivity monitoring,” IEEE J. Sel. Top. Quantum Electron. 20, 292–301 (2014).
[Crossref]

IEEE Photon. Technol. Lett. (1)

Y. Xing, T. Ako, J. P. George, D. Korn, H. Yu, P. Verheyen, M. Pantouvaki, G. Lepage, P. Absil, A. Ruocco, C. Koos, J. Leuthold, K. Neyts, J. Beeckman, and W. Bogaerts, “Digitally controlled phase shifter using an SOI slot waveguide with liquid crystal infiltration,” IEEE Photon. Technol. Lett. 27, 1269–1272 (2015).
[Crossref]

Opt. Express (7)

L. Lu, S. Zhao, L. Zhou, D. Li, Z. Li, M. Wang, X. Li, and J. Chen, “16 × 16 non-blocking silicon optical switch based on electro-optic Mach-Zehnder interferometers,” Opt. Express 24, 9295–9307 (2016).
[Crossref]

D. A. B. Miller, “All linear optical devices are mode converters,” Opt. Express 20, 23985–23993 (2012).
[Crossref]

K. Murray, Z. Lu, H. Jayatilleka, and L. Chrostowski, “Dense dissimilar waveguide routing for highly efficient thermooptic switches on silicon,” Opt. Express 23, 19575–19585 (2015).
[Crossref]

H. Yu, M. Pantouvaki, J. V. Campenhout, D. Korn, K. Komorowska, P. Dumon, Y. Li, P. Verheyen, P. Absil, L. Alloatti, D. Hillerkuss, J. Leuthold, R. Baets, and W. Bogaerts, “Performance tradeoff between lateral and interdigitated doping patterns for high speed carrier-depletion based silicon modulators,” Opt. Express 20, 12926–12938 (2012).
[Crossref]

P. P. Absil, P. Verheyen, P. D. Heyn, M. Pantouvaki, G. Lepage, J. D. Coster, and J. V. Campenhout, “Silicon photonics integrated circuits: a manufacturing platform for high density, low power optical I/O’s,” Opt. Express 23, 9369–9378 (2015).
[Crossref]

H. Jayatilleka, K. Murray, M. Á. Guillén-Torres, M. Caverley, R. Hu, N. A. F. Jaeger, L. Chrostowski, and S. Shekhar, “Wavelength tuning and stabilization of microring-based filters using silicon in-resonator photoconductive heaters,” Opt. Express 23, 25084–25097 (2015).
[Crossref]

D. A. B. Miller, “Self-aligning universal beam coupler,” Opt. Express 21, 6360–6370 (2013).
[Crossref]

Opt. Lett. (1)

Optica (1)

Photon. Res. (1)

Phys. Rev. Lett. (1)

M. Reck, A. Zeilinger, H. J. Bernstein, and P. Bertani, “Experimental realization of any discrete unitary operator,” Phys. Rev. Lett. 73, 58–61 (1994).
[Crossref]

Science (1)

J. Carolan, C. Harrold, C. Sparrow, E. Martín-López, N. J. Russell, J. W. Silverstone, P. J. Shadbolt, N. Matsuda, M. Oguma, M. Itoh, G. D. Marshall, M. G. Thompson, J. C. F. Matthews, T. Hashimoto, J. L. O’Brien, and A. Laing, “Universal linear optics,” Science 349, 711–716 (2015).
[Crossref]

Other (3)

F. Morichetti, A. Annoni, S. Grillanda, N. Peserico, M. Carminati, P. Ciccarella, G. Ferrari, E. Guglielmi, M. Sorel, and A. Melloni, “4-channel all-optical MIMO demultiplexing on a silicon chip,” in Optical Fiber Communication Conference (Optical Society of America, 2016), paper Th3E.7.

W. Bogaerts, M. Fiers, M. Sivilotti, and P. Dumon, “The IPKISS photonic design framework,” in Optical Fiber Communication Conference (Optical Society of America, 2016), paper W1E.1.

A. Masood, M. Pantouvaki, G. Lepage, P. Verheyen, J. V. Campenhout, P. Absil, D. V. Thourhout, and W. Bogaerts, “Comparison of heater architectures for thermal control of silicon photonic circuits,” in Proceedings of the 10th International Conference on Group IV Photonics (IEEE, 2013), paper ThC2.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1.
Fig. 1. (a) Representation of an individual cell of the circuit with two inputs (A and B) and two outputs (C and D). The green rectangle is a tunable phase shifter and the red rectangle is a semi-transparent mirror with tunable reflectivity. The orange rectangle is a “transparent” photodetector. (b) Mach–Zehnder implementation of the unit cell. (c) A discrete representation of the proposed device from cascaded discrete unit cells.
Fig. 2.
Fig. 2. (a) Schematic of the integrated implementation of the circuit using MZIs. The optical input and the output are done using grating couplers. Detectors D1 to D5 are implemented using optical taps connected to a grating coupler, for monitoring using an IR camera. The same approach was used with output monitors M1 to M4, which are used to monitor the optical power at the output of the circuit. (b) Microscope image of the fabricated device.
Fig. 3.
Fig. 3. (a) Schematic diagram of the experimental setup. (b) Picture of the setup.
Fig. 4.
Fig. 4. (a) Optical power at the detectors D1, D2, and D3 during the optimization of MZI 3. (b) Evolution of the output power at Out 1 during the optimization of the first stage. The optical power was recorded from the monitor M1, which taps the light from Out 1.
Fig. 5.
Fig. 5. Transmission spectrum for input at (a) In 1, (b) In 2, (c) In 3, and (d) In 4. The measurement was done using an IR camera to read monitors M1 to M4 simultaneously.
Fig. 6.
Fig. 6. Evolution of the optical power at D2 and D3 during the common-mode driving of MZI 3. The detector D3 is used as a reference monitor during the common-mode driving of the MZI. The algorithm monitors the power at D3 to make sure that it remains constant during the common-mode driving, which guarantees that no change in balance was induced in MZI during the common-mode driving. Detector D2 shows a decrease in power as long as the algorithm operates the common-mode driving at MZI 3. The pure phase shift introduced by the common-mode driving changes the interference at MZI 2, which gives us the change in power at D2.
Fig. 7.
Fig. 7. Power level at the detectors D1, D2, and D3 during the optimization of MZI 4 to MZI 1.
Fig. 8.
Fig. 8. Optical power at monitor M1, placed at Out 1. The blue region represents steps where a common-mode optimization step happened, while the white regions are refer to differential optimization steps.
Fig. 9.
Fig. 9. Optical power at monitor M1, placed at Out 1 after the optimization process. The measurement was done using an optical fiber vertically coupled to the grating coupler at M1.
Fig. 10.
Fig. 10. Normalized optical power at the output of the circuit showing the stability of the circuit over time. The optical power was measured over a time span of 60 min while the temperature of the circuit was gradually incremented from 20°C to 30°C. The plot shows that the circuit, when operating using the feedback loops, can maintain stability of operation over a long period of time and with temperature change.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

t(AD)=t(BC)=cos(φ)eiθ.

Metrics