Abstract

Experiments in atomic, molecular, and optical (AMO) physics rely on lasers at many different wavelengths and with varying requirements on the spectral linewidth, power, and intensity stability. Vertical external-cavity surface-emitting lasers (VECSELs), when combined with nonlinear frequency conversion, can potentially replace many of the laser systems currently in use. Here, we present and characterize VECSEL systems that can perform all laser-based tasks for quantum information processing experiments with trapped magnesium ions. For the photoionization of neutral magnesium, 570.6 nm light is generated with an intracavity frequency-doubled VECSEL containing a lithium triborate crystal. External frequency doubling produces 285.3 nm light for a resonant interaction with the S01P11 transition of neutral Mg. Using an externally frequency-quadrupled VECSEL, we implement Doppler cooling of Mg25+ on the 279.6 nm S1/22P3/22 cycling transition, repumping on the 280.4 nm S1/22P1/22 transition, coherent state manipulation, and resolved sideband cooling close to the motional ground state. Our systems serve as prototypes for applications in AMO requiring single-frequency, power-scalable laser sources at multiple wavelengths.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Narrow linewidth 1118/559 nm VECSEL based on strain compensated GaInAs/GaAs quantum-wells for laser cooling of Mg-ions

Sanna Ranta, Miki Tavast, Tomi Leinonen, Ryan Epstein, and Mircea Guina
Opt. Mater. Express 2(8) 1011-1019 (2012)

Laser cooling of trapped ytterbium ions with an ultraviolet diode laser

D. Kielpinski, M. Cetina, J. A. Cox, and F. X. Kärtner
Opt. Lett. 31(6) 757-759 (2006)

Laser cooling of trapped ions

Jürgen Eschner, Giovanna Morigi, Ferdinand Schmidt-Kaler, and Rainer Blatt
J. Opt. Soc. Am. B 20(5) 1003-1015 (2003)

References

  • View by:
  • |
  • |
  • |

  1. D. Leibfried, R. Blatt, C. Monroe, and D. J. Wineland, “Quantum dynamics of single trapped ions,” Rev. Mod. Phys. 75, 281–324 (2003).
    [Crossref]
  2. A. Steane, “The ion trap quantum information processor,” Appl. Phys. B 64, 623–643 (1997).
    [Crossref]
  3. D. F. V. James, “Quantum dynamics of cold trapped ions with application to quantum computation,” Appl. Phys. B 66, 181–190 (1998).
    [Crossref]
  4. R. Blatt and D. J. Wineland, “Entangled states of trapped atomic ions,” Nature 453, 1008–1015 (2008).
    [Crossref]
  5. J. W. Britton, B. C. Sawyer, A. C. Keith, C. C. J. Wang, J. K. Freericks, H. Uys, M. J. Biercuk, and J. J. Bollinger, “Engineered two-dimensional Ising interactions in a trapped-ion quantum simulator with hundreds of spins,” Nature 484, 489–492 (2012).
    [Crossref]
  6. R. Blatt and C. F. Roos, “Quantum simulations with trapped ions,” Nat. Phys. 8, 277–284 (2012).
    [Crossref]
  7. C. Monroe, W. C. Campbell, E. E. Edwards, R. Islam, D. Kafri, S. Korenblit, A. Lee, P. Richerme, C. Senko, and J. Smith, “Quantum simulation of spin models with trapped ions,” in Proceedings of the International School of Physics ‘Enrico Fermi,’ Course 189, M. Knoop, I. Marzoli, and G. Morigi, eds. (2015), pp. 169–187.
  8. C. Schneider, D. Porras, and T. Schaetz, “Experimental quantum simulations of many-body physics with trapped ions,” Rep. Prog. Phys. 75, 024401 (2012).
    [Crossref]
  9. T. Rosenband, D. B. Hume, P. O. Schmidt, C. W. Chou, A. Brusch, L. Lorini, W. H. Oskay, R. E. Drullinger, T. M. Fortier, J. E. Stalnaker, S. A. Diddams, W. C. Swann, N. R. Newbury, W. M. Itano, D. J. Wineland, and J. C. Bergquist, “Frequency ratio of Al+ and Hg+ single-ion optical clocks; metrology at the 17th decimal place,” Science 319, 1808–1812 (2008).
    [Crossref]
  10. S. Kotler, N. Akerman, N. Navon, Y. Glickman, and R. Ozeri, “Measurement of the magnetic interaction between two bound electrons of two separate ions,” Nature 510, 376–380 (2014).
    [Crossref]
  11. C. Ospelkaus, U. Warring, Y. Colombe, K. R. Brown, J. M. Amini, D. Leibfried, and D. J. Wineland, “Microwave quantum logic gates for trapped ions,” Nature 476, 181–184 (2011).
    [Crossref]
  12. D. J. Wineland, R. E. Drullinger, and F. L. Walls, “Radiation-pressure cooling of bound resonant absorbers,” Phys. Rev. Lett. 40, 1639–1642 (1978).
    [Crossref]
  13. D. N. Madsen, S. Balslev, M. Drewsen, N. Kjærgaard, Z. Videsen, and J. W. Thomsen, “Measurements on photo-ionization of 3s3p1P1 magnesium atoms,” J. Phys. B 33, 4981–4988 (2000).
    [Crossref]
  14. Y. Wan, F. Gebert, F. Wolf, and P. O. Schmidt, “Efficient sympathetic motional-ground-state cooling of a molecular ion,” Phys. Rev. A 91, 043425 (2015).
    [Crossref]
  15. B. Hemmerling, F. Gebert, Y. Wan, D. Nigg, I. V. Sherstov, and P. O. Schmidt, “A single laser system for ground-state cooling of 25Mg+,” Appl. Phys. B 104, 583–590 (2011).
    [Crossref]
  16. A. Friedenauer, F. Markert, H. Schmitz, L. Petersen, S. Kahra, M. Herrmann, T. Udem, T. W. Hänsch, and T. Schätz, “High power all solid state laser system near 280  nm,” Appl. Phys. B 84, 371–373 (2006).
    [Crossref]
  17. J. Zhang, W. H. Yuan, K. Deng, A. Deng, Z. T. Xu, C. B. Qin, Z. H. Lu, and J. Luo, “A long-term frequency stabilized deep ultraviolet laser for Mg+ ions trapping experiments,” Rev. Sci. Instrum. 84, 123109 (2013).
    [Crossref]
  18. Y. Feng, L. R. Taylor, and D. B. Calia, “150  W highly-efficient Raman fiber laser,” Opt. Express 17, 23678–23683 (2009).
    [Crossref]
  19. S. C. Burd, D. Leibfried, A. C. Wilson, and D. J. Wineland, “Optically pumped semiconductor lasers for atomic and molecular physics,” Proc. SPIE 9349, 93490P (2015).
    [Crossref]
  20. M. Kuznetsov, “VECSEL semiconductor lasers: A path to high-power, quality beam and UV to IR wavelength by design,” in Semiconductor Disk Lasers: Physics and Technology, O. G. Okhotnikov, ed. (Wiley-VCH, 2010), Chap. 1.
  21. F. Zhang, B. Heinen, M. Wichmann, C. Möller, B. Kunert, A. Rahimi-Iman, W. Stolz, and M. Koch, “A 23-watt single-frequency vertical-external-cavity surface-emitting laser,” Opt. Express 22, 12817–12822 (2014).
    [Crossref]
  22. Y. Kaneda, J. M. Yarborough, Y. Merzlyak, A. Yamaguchi, K. Hayashida, N. Ohmae, and H. Katori, “Continuous-wave, single-frequency 229  nm laser source for laser cooling of cadmium atoms,” Opt. Lett. 41, 705–708 (2016).
    [Crossref]
  23. J. Paul, Y. Kaneda, T.-L. Wang, C. Lytle, J. V. Moloney, and R. J. Jones, “Doppler-free spectroscopy of mercury at 253.7  nm using a high-power, frequency-quadrupled, optically pumped external-cavity semiconductor laser,” Opt. Lett. 36, 61–63 (2011).
    [Crossref]
  24. B. Cocquelin, D. Holleville, G. Lucas-Leclin, I. Sagnes, A. Garnache, M. Myara, and P. Georges, “Tunable single-frequency operation of a diode-pumped vertical external-cavity laser at the cesium D2 line,” Appl. Phys. B 95, 315–321 (2009).
    [Crossref]
  25. S. Ranta, T. Hakkarainen, M. Tavast, J. Lindfors, T. Leinonen, and M. Guina, “Strain compensated 1120  nm GaInAs/GaAs vertical external-cavity surface-emitting laser grown by molecular beam epitaxy,” J. Cryst. Growth 335, 4–9 (2011).
    [Crossref]
  26. A. C. Wilson, C. Ospelkaus, A. P. VanDevender, J. A. Mlynek, K. R. Brown, D. Leibfried, and D. J. Wineland, “A 750-mW, continuous-wave, solid-state laser source at 313  nm for cooling and manipulating trapped 9Be+ ions,” Appl. Phys. B 105, 741–748 (2011).
    [Crossref]
  27. D. J. Wineland, C. Monroe, W. M. Itano, D. Leibfried, B. E. King, and D. M. Meekhof, “Experimental issues in coherent quantum-state manipulation of trapped atomic ions,” J. Res. Natl. Inst. Stand. Technol. 103, 259–328 (1998).
    [Crossref]
  28. G. E. Obarski and J. D. Splett, “Transfer standard for the spectral density of relative intensity noise of optical fiber sources near 1550  nm,” J. Opt. Soc. Am. B 18, 750–761 (2001).
    [Crossref]
  29. J. E. Gray and D. W. Allan, “A method for estimating the frequency stability of a single oscillator,” in Proceedings of the 28th Annual Symposium on Frequency Control (1974), pp. 243–246.
  30. J. J. Snyder, R. K. Raj, D. Bloch, and M. Ducloy, “High-sensitivity nonlinear spectroscopy using a frequency-offset pump,” Opt. Lett. 5, 163–165 (1980).
    [Crossref]
  31. A. Castrillo, E. Fasci, G. Galzerano, G. Casa, P. Laporta, and L. Gianfrani, “Offset-frequency locking of extended-cavity diode lasers for precision spectroscopy of water at 1.38  μm,” Opt. Express 18, 21851–21860 (2010).
    [Crossref]
  32. E. Kantola, T. Leinonen, S. Ranta, M. Tavast, and M. Guina, “High-efficiency 20  W yellow VECSEL,” Opt. Express 22, 6372–6380 (2014).
    [Crossref]
  33. T. W. Hänsch and B. Couillaud, “Laser frequency stabilization by polarization spectroscopy of a reflecting reference cavity,” Opt. Commun. 35, 441–444 (1980).
    [Crossref]
  34. Y. Colombe, D. H. Slichter, A. C. Wilson, D. Leibfried, and D. J. Wineland, “Single-mode optical fiber for high-power, low-loss UV transmission,” Opt. Express 22, 19783–19793 (2014).
    [Crossref]
  35. G. Clos, M. Enderlein, U. Warring, T. Schaetz, and D. Leibfried, “Decoherence-assisted spectroscopy of a single Mg+ ion,” Phys. Rev. Lett. 112, 113003 (2014).
    [Crossref]
  36. R. Ozeri, W. M. Itano, R. B. Blakestad, J. Britton, J. Chiaverini, J. D. Jost, C. Langer, D. Leibfried, R. Reichle, S. Seidelin, J. H. Wesenberg, and D. J. Wineland, “Errors in trapped-ion quantum gates due to spontaneous photon scattering,” Phys. Rev. A 75, 042329 (2007).
    [Crossref]

2016 (1)

2015 (2)

Y. Wan, F. Gebert, F. Wolf, and P. O. Schmidt, “Efficient sympathetic motional-ground-state cooling of a molecular ion,” Phys. Rev. A 91, 043425 (2015).
[Crossref]

S. C. Burd, D. Leibfried, A. C. Wilson, and D. J. Wineland, “Optically pumped semiconductor lasers for atomic and molecular physics,” Proc. SPIE 9349, 93490P (2015).
[Crossref]

2014 (5)

2013 (1)

J. Zhang, W. H. Yuan, K. Deng, A. Deng, Z. T. Xu, C. B. Qin, Z. H. Lu, and J. Luo, “A long-term frequency stabilized deep ultraviolet laser for Mg+ ions trapping experiments,” Rev. Sci. Instrum. 84, 123109 (2013).
[Crossref]

2012 (3)

J. W. Britton, B. C. Sawyer, A. C. Keith, C. C. J. Wang, J. K. Freericks, H. Uys, M. J. Biercuk, and J. J. Bollinger, “Engineered two-dimensional Ising interactions in a trapped-ion quantum simulator with hundreds of spins,” Nature 484, 489–492 (2012).
[Crossref]

R. Blatt and C. F. Roos, “Quantum simulations with trapped ions,” Nat. Phys. 8, 277–284 (2012).
[Crossref]

C. Schneider, D. Porras, and T. Schaetz, “Experimental quantum simulations of many-body physics with trapped ions,” Rep. Prog. Phys. 75, 024401 (2012).
[Crossref]

2011 (5)

C. Ospelkaus, U. Warring, Y. Colombe, K. R. Brown, J. M. Amini, D. Leibfried, and D. J. Wineland, “Microwave quantum logic gates for trapped ions,” Nature 476, 181–184 (2011).
[Crossref]

B. Hemmerling, F. Gebert, Y. Wan, D. Nigg, I. V. Sherstov, and P. O. Schmidt, “A single laser system for ground-state cooling of 25Mg+,” Appl. Phys. B 104, 583–590 (2011).
[Crossref]

J. Paul, Y. Kaneda, T.-L. Wang, C. Lytle, J. V. Moloney, and R. J. Jones, “Doppler-free spectroscopy of mercury at 253.7  nm using a high-power, frequency-quadrupled, optically pumped external-cavity semiconductor laser,” Opt. Lett. 36, 61–63 (2011).
[Crossref]

S. Ranta, T. Hakkarainen, M. Tavast, J. Lindfors, T. Leinonen, and M. Guina, “Strain compensated 1120  nm GaInAs/GaAs vertical external-cavity surface-emitting laser grown by molecular beam epitaxy,” J. Cryst. Growth 335, 4–9 (2011).
[Crossref]

A. C. Wilson, C. Ospelkaus, A. P. VanDevender, J. A. Mlynek, K. R. Brown, D. Leibfried, and D. J. Wineland, “A 750-mW, continuous-wave, solid-state laser source at 313  nm for cooling and manipulating trapped 9Be+ ions,” Appl. Phys. B 105, 741–748 (2011).
[Crossref]

2010 (1)

2009 (2)

B. Cocquelin, D. Holleville, G. Lucas-Leclin, I. Sagnes, A. Garnache, M. Myara, and P. Georges, “Tunable single-frequency operation of a diode-pumped vertical external-cavity laser at the cesium D2 line,” Appl. Phys. B 95, 315–321 (2009).
[Crossref]

Y. Feng, L. R. Taylor, and D. B. Calia, “150  W highly-efficient Raman fiber laser,” Opt. Express 17, 23678–23683 (2009).
[Crossref]

2008 (2)

T. Rosenband, D. B. Hume, P. O. Schmidt, C. W. Chou, A. Brusch, L. Lorini, W. H. Oskay, R. E. Drullinger, T. M. Fortier, J. E. Stalnaker, S. A. Diddams, W. C. Swann, N. R. Newbury, W. M. Itano, D. J. Wineland, and J. C. Bergquist, “Frequency ratio of Al+ and Hg+ single-ion optical clocks; metrology at the 17th decimal place,” Science 319, 1808–1812 (2008).
[Crossref]

R. Blatt and D. J. Wineland, “Entangled states of trapped atomic ions,” Nature 453, 1008–1015 (2008).
[Crossref]

2007 (1)

R. Ozeri, W. M. Itano, R. B. Blakestad, J. Britton, J. Chiaverini, J. D. Jost, C. Langer, D. Leibfried, R. Reichle, S. Seidelin, J. H. Wesenberg, and D. J. Wineland, “Errors in trapped-ion quantum gates due to spontaneous photon scattering,” Phys. Rev. A 75, 042329 (2007).
[Crossref]

2006 (1)

A. Friedenauer, F. Markert, H. Schmitz, L. Petersen, S. Kahra, M. Herrmann, T. Udem, T. W. Hänsch, and T. Schätz, “High power all solid state laser system near 280  nm,” Appl. Phys. B 84, 371–373 (2006).
[Crossref]

2003 (1)

D. Leibfried, R. Blatt, C. Monroe, and D. J. Wineland, “Quantum dynamics of single trapped ions,” Rev. Mod. Phys. 75, 281–324 (2003).
[Crossref]

2001 (1)

2000 (1)

D. N. Madsen, S. Balslev, M. Drewsen, N. Kjærgaard, Z. Videsen, and J. W. Thomsen, “Measurements on photo-ionization of 3s3p1P1 magnesium atoms,” J. Phys. B 33, 4981–4988 (2000).
[Crossref]

1998 (2)

D. J. Wineland, C. Monroe, W. M. Itano, D. Leibfried, B. E. King, and D. M. Meekhof, “Experimental issues in coherent quantum-state manipulation of trapped atomic ions,” J. Res. Natl. Inst. Stand. Technol. 103, 259–328 (1998).
[Crossref]

D. F. V. James, “Quantum dynamics of cold trapped ions with application to quantum computation,” Appl. Phys. B 66, 181–190 (1998).
[Crossref]

1997 (1)

A. Steane, “The ion trap quantum information processor,” Appl. Phys. B 64, 623–643 (1997).
[Crossref]

1980 (2)

J. J. Snyder, R. K. Raj, D. Bloch, and M. Ducloy, “High-sensitivity nonlinear spectroscopy using a frequency-offset pump,” Opt. Lett. 5, 163–165 (1980).
[Crossref]

T. W. Hänsch and B. Couillaud, “Laser frequency stabilization by polarization spectroscopy of a reflecting reference cavity,” Opt. Commun. 35, 441–444 (1980).
[Crossref]

1978 (1)

D. J. Wineland, R. E. Drullinger, and F. L. Walls, “Radiation-pressure cooling of bound resonant absorbers,” Phys. Rev. Lett. 40, 1639–1642 (1978).
[Crossref]

Akerman, N.

S. Kotler, N. Akerman, N. Navon, Y. Glickman, and R. Ozeri, “Measurement of the magnetic interaction between two bound electrons of two separate ions,” Nature 510, 376–380 (2014).
[Crossref]

Allan, D. W.

J. E. Gray and D. W. Allan, “A method for estimating the frequency stability of a single oscillator,” in Proceedings of the 28th Annual Symposium on Frequency Control (1974), pp. 243–246.

Amini, J. M.

C. Ospelkaus, U. Warring, Y. Colombe, K. R. Brown, J. M. Amini, D. Leibfried, and D. J. Wineland, “Microwave quantum logic gates for trapped ions,” Nature 476, 181–184 (2011).
[Crossref]

Balslev, S.

D. N. Madsen, S. Balslev, M. Drewsen, N. Kjærgaard, Z. Videsen, and J. W. Thomsen, “Measurements on photo-ionization of 3s3p1P1 magnesium atoms,” J. Phys. B 33, 4981–4988 (2000).
[Crossref]

Bergquist, J. C.

T. Rosenband, D. B. Hume, P. O. Schmidt, C. W. Chou, A. Brusch, L. Lorini, W. H. Oskay, R. E. Drullinger, T. M. Fortier, J. E. Stalnaker, S. A. Diddams, W. C. Swann, N. R. Newbury, W. M. Itano, D. J. Wineland, and J. C. Bergquist, “Frequency ratio of Al+ and Hg+ single-ion optical clocks; metrology at the 17th decimal place,” Science 319, 1808–1812 (2008).
[Crossref]

Biercuk, M. J.

J. W. Britton, B. C. Sawyer, A. C. Keith, C. C. J. Wang, J. K. Freericks, H. Uys, M. J. Biercuk, and J. J. Bollinger, “Engineered two-dimensional Ising interactions in a trapped-ion quantum simulator with hundreds of spins,” Nature 484, 489–492 (2012).
[Crossref]

Blakestad, R. B.

R. Ozeri, W. M. Itano, R. B. Blakestad, J. Britton, J. Chiaverini, J. D. Jost, C. Langer, D. Leibfried, R. Reichle, S. Seidelin, J. H. Wesenberg, and D. J. Wineland, “Errors in trapped-ion quantum gates due to spontaneous photon scattering,” Phys. Rev. A 75, 042329 (2007).
[Crossref]

Blatt, R.

R. Blatt and C. F. Roos, “Quantum simulations with trapped ions,” Nat. Phys. 8, 277–284 (2012).
[Crossref]

R. Blatt and D. J. Wineland, “Entangled states of trapped atomic ions,” Nature 453, 1008–1015 (2008).
[Crossref]

D. Leibfried, R. Blatt, C. Monroe, and D. J. Wineland, “Quantum dynamics of single trapped ions,” Rev. Mod. Phys. 75, 281–324 (2003).
[Crossref]

Bloch, D.

Bollinger, J. J.

J. W. Britton, B. C. Sawyer, A. C. Keith, C. C. J. Wang, J. K. Freericks, H. Uys, M. J. Biercuk, and J. J. Bollinger, “Engineered two-dimensional Ising interactions in a trapped-ion quantum simulator with hundreds of spins,” Nature 484, 489–492 (2012).
[Crossref]

Britton, J.

R. Ozeri, W. M. Itano, R. B. Blakestad, J. Britton, J. Chiaverini, J. D. Jost, C. Langer, D. Leibfried, R. Reichle, S. Seidelin, J. H. Wesenberg, and D. J. Wineland, “Errors in trapped-ion quantum gates due to spontaneous photon scattering,” Phys. Rev. A 75, 042329 (2007).
[Crossref]

Britton, J. W.

J. W. Britton, B. C. Sawyer, A. C. Keith, C. C. J. Wang, J. K. Freericks, H. Uys, M. J. Biercuk, and J. J. Bollinger, “Engineered two-dimensional Ising interactions in a trapped-ion quantum simulator with hundreds of spins,” Nature 484, 489–492 (2012).
[Crossref]

Brown, K. R.

C. Ospelkaus, U. Warring, Y. Colombe, K. R. Brown, J. M. Amini, D. Leibfried, and D. J. Wineland, “Microwave quantum logic gates for trapped ions,” Nature 476, 181–184 (2011).
[Crossref]

A. C. Wilson, C. Ospelkaus, A. P. VanDevender, J. A. Mlynek, K. R. Brown, D. Leibfried, and D. J. Wineland, “A 750-mW, continuous-wave, solid-state laser source at 313  nm for cooling and manipulating trapped 9Be+ ions,” Appl. Phys. B 105, 741–748 (2011).
[Crossref]

Brusch, A.

T. Rosenband, D. B. Hume, P. O. Schmidt, C. W. Chou, A. Brusch, L. Lorini, W. H. Oskay, R. E. Drullinger, T. M. Fortier, J. E. Stalnaker, S. A. Diddams, W. C. Swann, N. R. Newbury, W. M. Itano, D. J. Wineland, and J. C. Bergquist, “Frequency ratio of Al+ and Hg+ single-ion optical clocks; metrology at the 17th decimal place,” Science 319, 1808–1812 (2008).
[Crossref]

Burd, S. C.

S. C. Burd, D. Leibfried, A. C. Wilson, and D. J. Wineland, “Optically pumped semiconductor lasers for atomic and molecular physics,” Proc. SPIE 9349, 93490P (2015).
[Crossref]

Calia, D. B.

Campbell, W. C.

C. Monroe, W. C. Campbell, E. E. Edwards, R. Islam, D. Kafri, S. Korenblit, A. Lee, P. Richerme, C. Senko, and J. Smith, “Quantum simulation of spin models with trapped ions,” in Proceedings of the International School of Physics ‘Enrico Fermi,’ Course 189, M. Knoop, I. Marzoli, and G. Morigi, eds. (2015), pp. 169–187.

Casa, G.

Castrillo, A.

Chiaverini, J.

R. Ozeri, W. M. Itano, R. B. Blakestad, J. Britton, J. Chiaverini, J. D. Jost, C. Langer, D. Leibfried, R. Reichle, S. Seidelin, J. H. Wesenberg, and D. J. Wineland, “Errors in trapped-ion quantum gates due to spontaneous photon scattering,” Phys. Rev. A 75, 042329 (2007).
[Crossref]

Chou, C. W.

T. Rosenband, D. B. Hume, P. O. Schmidt, C. W. Chou, A. Brusch, L. Lorini, W. H. Oskay, R. E. Drullinger, T. M. Fortier, J. E. Stalnaker, S. A. Diddams, W. C. Swann, N. R. Newbury, W. M. Itano, D. J. Wineland, and J. C. Bergquist, “Frequency ratio of Al+ and Hg+ single-ion optical clocks; metrology at the 17th decimal place,” Science 319, 1808–1812 (2008).
[Crossref]

Clos, G.

G. Clos, M. Enderlein, U. Warring, T. Schaetz, and D. Leibfried, “Decoherence-assisted spectroscopy of a single Mg+ ion,” Phys. Rev. Lett. 112, 113003 (2014).
[Crossref]

Cocquelin, B.

B. Cocquelin, D. Holleville, G. Lucas-Leclin, I. Sagnes, A. Garnache, M. Myara, and P. Georges, “Tunable single-frequency operation of a diode-pumped vertical external-cavity laser at the cesium D2 line,” Appl. Phys. B 95, 315–321 (2009).
[Crossref]

Colombe, Y.

Y. Colombe, D. H. Slichter, A. C. Wilson, D. Leibfried, and D. J. Wineland, “Single-mode optical fiber for high-power, low-loss UV transmission,” Opt. Express 22, 19783–19793 (2014).
[Crossref]

C. Ospelkaus, U. Warring, Y. Colombe, K. R. Brown, J. M. Amini, D. Leibfried, and D. J. Wineland, “Microwave quantum logic gates for trapped ions,” Nature 476, 181–184 (2011).
[Crossref]

Couillaud, B.

T. W. Hänsch and B. Couillaud, “Laser frequency stabilization by polarization spectroscopy of a reflecting reference cavity,” Opt. Commun. 35, 441–444 (1980).
[Crossref]

Deng, A.

J. Zhang, W. H. Yuan, K. Deng, A. Deng, Z. T. Xu, C. B. Qin, Z. H. Lu, and J. Luo, “A long-term frequency stabilized deep ultraviolet laser for Mg+ ions trapping experiments,” Rev. Sci. Instrum. 84, 123109 (2013).
[Crossref]

Deng, K.

J. Zhang, W. H. Yuan, K. Deng, A. Deng, Z. T. Xu, C. B. Qin, Z. H. Lu, and J. Luo, “A long-term frequency stabilized deep ultraviolet laser for Mg+ ions trapping experiments,” Rev. Sci. Instrum. 84, 123109 (2013).
[Crossref]

Diddams, S. A.

T. Rosenband, D. B. Hume, P. O. Schmidt, C. W. Chou, A. Brusch, L. Lorini, W. H. Oskay, R. E. Drullinger, T. M. Fortier, J. E. Stalnaker, S. A. Diddams, W. C. Swann, N. R. Newbury, W. M. Itano, D. J. Wineland, and J. C. Bergquist, “Frequency ratio of Al+ and Hg+ single-ion optical clocks; metrology at the 17th decimal place,” Science 319, 1808–1812 (2008).
[Crossref]

Drewsen, M.

D. N. Madsen, S. Balslev, M. Drewsen, N. Kjærgaard, Z. Videsen, and J. W. Thomsen, “Measurements on photo-ionization of 3s3p1P1 magnesium atoms,” J. Phys. B 33, 4981–4988 (2000).
[Crossref]

Drullinger, R. E.

T. Rosenband, D. B. Hume, P. O. Schmidt, C. W. Chou, A. Brusch, L. Lorini, W. H. Oskay, R. E. Drullinger, T. M. Fortier, J. E. Stalnaker, S. A. Diddams, W. C. Swann, N. R. Newbury, W. M. Itano, D. J. Wineland, and J. C. Bergquist, “Frequency ratio of Al+ and Hg+ single-ion optical clocks; metrology at the 17th decimal place,” Science 319, 1808–1812 (2008).
[Crossref]

D. J. Wineland, R. E. Drullinger, and F. L. Walls, “Radiation-pressure cooling of bound resonant absorbers,” Phys. Rev. Lett. 40, 1639–1642 (1978).
[Crossref]

Ducloy, M.

Edwards, E. E.

C. Monroe, W. C. Campbell, E. E. Edwards, R. Islam, D. Kafri, S. Korenblit, A. Lee, P. Richerme, C. Senko, and J. Smith, “Quantum simulation of spin models with trapped ions,” in Proceedings of the International School of Physics ‘Enrico Fermi,’ Course 189, M. Knoop, I. Marzoli, and G. Morigi, eds. (2015), pp. 169–187.

Enderlein, M.

G. Clos, M. Enderlein, U. Warring, T. Schaetz, and D. Leibfried, “Decoherence-assisted spectroscopy of a single Mg+ ion,” Phys. Rev. Lett. 112, 113003 (2014).
[Crossref]

Fasci, E.

Feng, Y.

Fortier, T. M.

T. Rosenband, D. B. Hume, P. O. Schmidt, C. W. Chou, A. Brusch, L. Lorini, W. H. Oskay, R. E. Drullinger, T. M. Fortier, J. E. Stalnaker, S. A. Diddams, W. C. Swann, N. R. Newbury, W. M. Itano, D. J. Wineland, and J. C. Bergquist, “Frequency ratio of Al+ and Hg+ single-ion optical clocks; metrology at the 17th decimal place,” Science 319, 1808–1812 (2008).
[Crossref]

Freericks, J. K.

J. W. Britton, B. C. Sawyer, A. C. Keith, C. C. J. Wang, J. K. Freericks, H. Uys, M. J. Biercuk, and J. J. Bollinger, “Engineered two-dimensional Ising interactions in a trapped-ion quantum simulator with hundreds of spins,” Nature 484, 489–492 (2012).
[Crossref]

Friedenauer, A.

A. Friedenauer, F. Markert, H. Schmitz, L. Petersen, S. Kahra, M. Herrmann, T. Udem, T. W. Hänsch, and T. Schätz, “High power all solid state laser system near 280  nm,” Appl. Phys. B 84, 371–373 (2006).
[Crossref]

Galzerano, G.

Garnache, A.

B. Cocquelin, D. Holleville, G. Lucas-Leclin, I. Sagnes, A. Garnache, M. Myara, and P. Georges, “Tunable single-frequency operation of a diode-pumped vertical external-cavity laser at the cesium D2 line,” Appl. Phys. B 95, 315–321 (2009).
[Crossref]

Gebert, F.

Y. Wan, F. Gebert, F. Wolf, and P. O. Schmidt, “Efficient sympathetic motional-ground-state cooling of a molecular ion,” Phys. Rev. A 91, 043425 (2015).
[Crossref]

B. Hemmerling, F. Gebert, Y. Wan, D. Nigg, I. V. Sherstov, and P. O. Schmidt, “A single laser system for ground-state cooling of 25Mg+,” Appl. Phys. B 104, 583–590 (2011).
[Crossref]

Georges, P.

B. Cocquelin, D. Holleville, G. Lucas-Leclin, I. Sagnes, A. Garnache, M. Myara, and P. Georges, “Tunable single-frequency operation of a diode-pumped vertical external-cavity laser at the cesium D2 line,” Appl. Phys. B 95, 315–321 (2009).
[Crossref]

Gianfrani, L.

Glickman, Y.

S. Kotler, N. Akerman, N. Navon, Y. Glickman, and R. Ozeri, “Measurement of the magnetic interaction between two bound electrons of two separate ions,” Nature 510, 376–380 (2014).
[Crossref]

Gray, J. E.

J. E. Gray and D. W. Allan, “A method for estimating the frequency stability of a single oscillator,” in Proceedings of the 28th Annual Symposium on Frequency Control (1974), pp. 243–246.

Guina, M.

E. Kantola, T. Leinonen, S. Ranta, M. Tavast, and M. Guina, “High-efficiency 20  W yellow VECSEL,” Opt. Express 22, 6372–6380 (2014).
[Crossref]

S. Ranta, T. Hakkarainen, M. Tavast, J. Lindfors, T. Leinonen, and M. Guina, “Strain compensated 1120  nm GaInAs/GaAs vertical external-cavity surface-emitting laser grown by molecular beam epitaxy,” J. Cryst. Growth 335, 4–9 (2011).
[Crossref]

Hakkarainen, T.

S. Ranta, T. Hakkarainen, M. Tavast, J. Lindfors, T. Leinonen, and M. Guina, “Strain compensated 1120  nm GaInAs/GaAs vertical external-cavity surface-emitting laser grown by molecular beam epitaxy,” J. Cryst. Growth 335, 4–9 (2011).
[Crossref]

Hänsch, T. W.

A. Friedenauer, F. Markert, H. Schmitz, L. Petersen, S. Kahra, M. Herrmann, T. Udem, T. W. Hänsch, and T. Schätz, “High power all solid state laser system near 280  nm,” Appl. Phys. B 84, 371–373 (2006).
[Crossref]

T. W. Hänsch and B. Couillaud, “Laser frequency stabilization by polarization spectroscopy of a reflecting reference cavity,” Opt. Commun. 35, 441–444 (1980).
[Crossref]

Hayashida, K.

Heinen, B.

Hemmerling, B.

B. Hemmerling, F. Gebert, Y. Wan, D. Nigg, I. V. Sherstov, and P. O. Schmidt, “A single laser system for ground-state cooling of 25Mg+,” Appl. Phys. B 104, 583–590 (2011).
[Crossref]

Herrmann, M.

A. Friedenauer, F. Markert, H. Schmitz, L. Petersen, S. Kahra, M. Herrmann, T. Udem, T. W. Hänsch, and T. Schätz, “High power all solid state laser system near 280  nm,” Appl. Phys. B 84, 371–373 (2006).
[Crossref]

Holleville, D.

B. Cocquelin, D. Holleville, G. Lucas-Leclin, I. Sagnes, A. Garnache, M. Myara, and P. Georges, “Tunable single-frequency operation of a diode-pumped vertical external-cavity laser at the cesium D2 line,” Appl. Phys. B 95, 315–321 (2009).
[Crossref]

Hume, D. B.

T. Rosenband, D. B. Hume, P. O. Schmidt, C. W. Chou, A. Brusch, L. Lorini, W. H. Oskay, R. E. Drullinger, T. M. Fortier, J. E. Stalnaker, S. A. Diddams, W. C. Swann, N. R. Newbury, W. M. Itano, D. J. Wineland, and J. C. Bergquist, “Frequency ratio of Al+ and Hg+ single-ion optical clocks; metrology at the 17th decimal place,” Science 319, 1808–1812 (2008).
[Crossref]

Islam, R.

C. Monroe, W. C. Campbell, E. E. Edwards, R. Islam, D. Kafri, S. Korenblit, A. Lee, P. Richerme, C. Senko, and J. Smith, “Quantum simulation of spin models with trapped ions,” in Proceedings of the International School of Physics ‘Enrico Fermi,’ Course 189, M. Knoop, I. Marzoli, and G. Morigi, eds. (2015), pp. 169–187.

Itano, W. M.

T. Rosenband, D. B. Hume, P. O. Schmidt, C. W. Chou, A. Brusch, L. Lorini, W. H. Oskay, R. E. Drullinger, T. M. Fortier, J. E. Stalnaker, S. A. Diddams, W. C. Swann, N. R. Newbury, W. M. Itano, D. J. Wineland, and J. C. Bergquist, “Frequency ratio of Al+ and Hg+ single-ion optical clocks; metrology at the 17th decimal place,” Science 319, 1808–1812 (2008).
[Crossref]

R. Ozeri, W. M. Itano, R. B. Blakestad, J. Britton, J. Chiaverini, J. D. Jost, C. Langer, D. Leibfried, R. Reichle, S. Seidelin, J. H. Wesenberg, and D. J. Wineland, “Errors in trapped-ion quantum gates due to spontaneous photon scattering,” Phys. Rev. A 75, 042329 (2007).
[Crossref]

D. J. Wineland, C. Monroe, W. M. Itano, D. Leibfried, B. E. King, and D. M. Meekhof, “Experimental issues in coherent quantum-state manipulation of trapped atomic ions,” J. Res. Natl. Inst. Stand. Technol. 103, 259–328 (1998).
[Crossref]

James, D. F. V.

D. F. V. James, “Quantum dynamics of cold trapped ions with application to quantum computation,” Appl. Phys. B 66, 181–190 (1998).
[Crossref]

Jones, R. J.

Jost, J. D.

R. Ozeri, W. M. Itano, R. B. Blakestad, J. Britton, J. Chiaverini, J. D. Jost, C. Langer, D. Leibfried, R. Reichle, S. Seidelin, J. H. Wesenberg, and D. J. Wineland, “Errors in trapped-ion quantum gates due to spontaneous photon scattering,” Phys. Rev. A 75, 042329 (2007).
[Crossref]

Kafri, D.

C. Monroe, W. C. Campbell, E. E. Edwards, R. Islam, D. Kafri, S. Korenblit, A. Lee, P. Richerme, C. Senko, and J. Smith, “Quantum simulation of spin models with trapped ions,” in Proceedings of the International School of Physics ‘Enrico Fermi,’ Course 189, M. Knoop, I. Marzoli, and G. Morigi, eds. (2015), pp. 169–187.

Kahra, S.

A. Friedenauer, F. Markert, H. Schmitz, L. Petersen, S. Kahra, M. Herrmann, T. Udem, T. W. Hänsch, and T. Schätz, “High power all solid state laser system near 280  nm,” Appl. Phys. B 84, 371–373 (2006).
[Crossref]

Kaneda, Y.

Kantola, E.

Katori, H.

Keith, A. C.

J. W. Britton, B. C. Sawyer, A. C. Keith, C. C. J. Wang, J. K. Freericks, H. Uys, M. J. Biercuk, and J. J. Bollinger, “Engineered two-dimensional Ising interactions in a trapped-ion quantum simulator with hundreds of spins,” Nature 484, 489–492 (2012).
[Crossref]

King, B. E.

D. J. Wineland, C. Monroe, W. M. Itano, D. Leibfried, B. E. King, and D. M. Meekhof, “Experimental issues in coherent quantum-state manipulation of trapped atomic ions,” J. Res. Natl. Inst. Stand. Technol. 103, 259–328 (1998).
[Crossref]

Kjærgaard, N.

D. N. Madsen, S. Balslev, M. Drewsen, N. Kjærgaard, Z. Videsen, and J. W. Thomsen, “Measurements on photo-ionization of 3s3p1P1 magnesium atoms,” J. Phys. B 33, 4981–4988 (2000).
[Crossref]

Koch, M.

Korenblit, S.

C. Monroe, W. C. Campbell, E. E. Edwards, R. Islam, D. Kafri, S. Korenblit, A. Lee, P. Richerme, C. Senko, and J. Smith, “Quantum simulation of spin models with trapped ions,” in Proceedings of the International School of Physics ‘Enrico Fermi,’ Course 189, M. Knoop, I. Marzoli, and G. Morigi, eds. (2015), pp. 169–187.

Kotler, S.

S. Kotler, N. Akerman, N. Navon, Y. Glickman, and R. Ozeri, “Measurement of the magnetic interaction between two bound electrons of two separate ions,” Nature 510, 376–380 (2014).
[Crossref]

Kunert, B.

Kuznetsov, M.

M. Kuznetsov, “VECSEL semiconductor lasers: A path to high-power, quality beam and UV to IR wavelength by design,” in Semiconductor Disk Lasers: Physics and Technology, O. G. Okhotnikov, ed. (Wiley-VCH, 2010), Chap. 1.

Langer, C.

R. Ozeri, W. M. Itano, R. B. Blakestad, J. Britton, J. Chiaverini, J. D. Jost, C. Langer, D. Leibfried, R. Reichle, S. Seidelin, J. H. Wesenberg, and D. J. Wineland, “Errors in trapped-ion quantum gates due to spontaneous photon scattering,” Phys. Rev. A 75, 042329 (2007).
[Crossref]

Laporta, P.

Lee, A.

C. Monroe, W. C. Campbell, E. E. Edwards, R. Islam, D. Kafri, S. Korenblit, A. Lee, P. Richerme, C. Senko, and J. Smith, “Quantum simulation of spin models with trapped ions,” in Proceedings of the International School of Physics ‘Enrico Fermi,’ Course 189, M. Knoop, I. Marzoli, and G. Morigi, eds. (2015), pp. 169–187.

Leibfried, D.

S. C. Burd, D. Leibfried, A. C. Wilson, and D. J. Wineland, “Optically pumped semiconductor lasers for atomic and molecular physics,” Proc. SPIE 9349, 93490P (2015).
[Crossref]

G. Clos, M. Enderlein, U. Warring, T. Schaetz, and D. Leibfried, “Decoherence-assisted spectroscopy of a single Mg+ ion,” Phys. Rev. Lett. 112, 113003 (2014).
[Crossref]

Y. Colombe, D. H. Slichter, A. C. Wilson, D. Leibfried, and D. J. Wineland, “Single-mode optical fiber for high-power, low-loss UV transmission,” Opt. Express 22, 19783–19793 (2014).
[Crossref]

A. C. Wilson, C. Ospelkaus, A. P. VanDevender, J. A. Mlynek, K. R. Brown, D. Leibfried, and D. J. Wineland, “A 750-mW, continuous-wave, solid-state laser source at 313  nm for cooling and manipulating trapped 9Be+ ions,” Appl. Phys. B 105, 741–748 (2011).
[Crossref]

C. Ospelkaus, U. Warring, Y. Colombe, K. R. Brown, J. M. Amini, D. Leibfried, and D. J. Wineland, “Microwave quantum logic gates for trapped ions,” Nature 476, 181–184 (2011).
[Crossref]

R. Ozeri, W. M. Itano, R. B. Blakestad, J. Britton, J. Chiaverini, J. D. Jost, C. Langer, D. Leibfried, R. Reichle, S. Seidelin, J. H. Wesenberg, and D. J. Wineland, “Errors in trapped-ion quantum gates due to spontaneous photon scattering,” Phys. Rev. A 75, 042329 (2007).
[Crossref]

D. Leibfried, R. Blatt, C. Monroe, and D. J. Wineland, “Quantum dynamics of single trapped ions,” Rev. Mod. Phys. 75, 281–324 (2003).
[Crossref]

D. J. Wineland, C. Monroe, W. M. Itano, D. Leibfried, B. E. King, and D. M. Meekhof, “Experimental issues in coherent quantum-state manipulation of trapped atomic ions,” J. Res. Natl. Inst. Stand. Technol. 103, 259–328 (1998).
[Crossref]

Leinonen, T.

E. Kantola, T. Leinonen, S. Ranta, M. Tavast, and M. Guina, “High-efficiency 20  W yellow VECSEL,” Opt. Express 22, 6372–6380 (2014).
[Crossref]

S. Ranta, T. Hakkarainen, M. Tavast, J. Lindfors, T. Leinonen, and M. Guina, “Strain compensated 1120  nm GaInAs/GaAs vertical external-cavity surface-emitting laser grown by molecular beam epitaxy,” J. Cryst. Growth 335, 4–9 (2011).
[Crossref]

Lindfors, J.

S. Ranta, T. Hakkarainen, M. Tavast, J. Lindfors, T. Leinonen, and M. Guina, “Strain compensated 1120  nm GaInAs/GaAs vertical external-cavity surface-emitting laser grown by molecular beam epitaxy,” J. Cryst. Growth 335, 4–9 (2011).
[Crossref]

Lorini, L.

T. Rosenband, D. B. Hume, P. O. Schmidt, C. W. Chou, A. Brusch, L. Lorini, W. H. Oskay, R. E. Drullinger, T. M. Fortier, J. E. Stalnaker, S. A. Diddams, W. C. Swann, N. R. Newbury, W. M. Itano, D. J. Wineland, and J. C. Bergquist, “Frequency ratio of Al+ and Hg+ single-ion optical clocks; metrology at the 17th decimal place,” Science 319, 1808–1812 (2008).
[Crossref]

Lu, Z. H.

J. Zhang, W. H. Yuan, K. Deng, A. Deng, Z. T. Xu, C. B. Qin, Z. H. Lu, and J. Luo, “A long-term frequency stabilized deep ultraviolet laser for Mg+ ions trapping experiments,” Rev. Sci. Instrum. 84, 123109 (2013).
[Crossref]

Lucas-Leclin, G.

B. Cocquelin, D. Holleville, G. Lucas-Leclin, I. Sagnes, A. Garnache, M. Myara, and P. Georges, “Tunable single-frequency operation of a diode-pumped vertical external-cavity laser at the cesium D2 line,” Appl. Phys. B 95, 315–321 (2009).
[Crossref]

Luo, J.

J. Zhang, W. H. Yuan, K. Deng, A. Deng, Z. T. Xu, C. B. Qin, Z. H. Lu, and J. Luo, “A long-term frequency stabilized deep ultraviolet laser for Mg+ ions trapping experiments,” Rev. Sci. Instrum. 84, 123109 (2013).
[Crossref]

Lytle, C.

Madsen, D. N.

D. N. Madsen, S. Balslev, M. Drewsen, N. Kjærgaard, Z. Videsen, and J. W. Thomsen, “Measurements on photo-ionization of 3s3p1P1 magnesium atoms,” J. Phys. B 33, 4981–4988 (2000).
[Crossref]

Markert, F.

A. Friedenauer, F. Markert, H. Schmitz, L. Petersen, S. Kahra, M. Herrmann, T. Udem, T. W. Hänsch, and T. Schätz, “High power all solid state laser system near 280  nm,” Appl. Phys. B 84, 371–373 (2006).
[Crossref]

Meekhof, D. M.

D. J. Wineland, C. Monroe, W. M. Itano, D. Leibfried, B. E. King, and D. M. Meekhof, “Experimental issues in coherent quantum-state manipulation of trapped atomic ions,” J. Res. Natl. Inst. Stand. Technol. 103, 259–328 (1998).
[Crossref]

Merzlyak, Y.

Mlynek, J. A.

A. C. Wilson, C. Ospelkaus, A. P. VanDevender, J. A. Mlynek, K. R. Brown, D. Leibfried, and D. J. Wineland, “A 750-mW, continuous-wave, solid-state laser source at 313  nm for cooling and manipulating trapped 9Be+ ions,” Appl. Phys. B 105, 741–748 (2011).
[Crossref]

Möller, C.

Moloney, J. V.

Monroe, C.

D. Leibfried, R. Blatt, C. Monroe, and D. J. Wineland, “Quantum dynamics of single trapped ions,” Rev. Mod. Phys. 75, 281–324 (2003).
[Crossref]

D. J. Wineland, C. Monroe, W. M. Itano, D. Leibfried, B. E. King, and D. M. Meekhof, “Experimental issues in coherent quantum-state manipulation of trapped atomic ions,” J. Res. Natl. Inst. Stand. Technol. 103, 259–328 (1998).
[Crossref]

C. Monroe, W. C. Campbell, E. E. Edwards, R. Islam, D. Kafri, S. Korenblit, A. Lee, P. Richerme, C. Senko, and J. Smith, “Quantum simulation of spin models with trapped ions,” in Proceedings of the International School of Physics ‘Enrico Fermi,’ Course 189, M. Knoop, I. Marzoli, and G. Morigi, eds. (2015), pp. 169–187.

Myara, M.

B. Cocquelin, D. Holleville, G. Lucas-Leclin, I. Sagnes, A. Garnache, M. Myara, and P. Georges, “Tunable single-frequency operation of a diode-pumped vertical external-cavity laser at the cesium D2 line,” Appl. Phys. B 95, 315–321 (2009).
[Crossref]

Navon, N.

S. Kotler, N. Akerman, N. Navon, Y. Glickman, and R. Ozeri, “Measurement of the magnetic interaction between two bound electrons of two separate ions,” Nature 510, 376–380 (2014).
[Crossref]

Newbury, N. R.

T. Rosenband, D. B. Hume, P. O. Schmidt, C. W. Chou, A. Brusch, L. Lorini, W. H. Oskay, R. E. Drullinger, T. M. Fortier, J. E. Stalnaker, S. A. Diddams, W. C. Swann, N. R. Newbury, W. M. Itano, D. J. Wineland, and J. C. Bergquist, “Frequency ratio of Al+ and Hg+ single-ion optical clocks; metrology at the 17th decimal place,” Science 319, 1808–1812 (2008).
[Crossref]

Nigg, D.

B. Hemmerling, F. Gebert, Y. Wan, D. Nigg, I. V. Sherstov, and P. O. Schmidt, “A single laser system for ground-state cooling of 25Mg+,” Appl. Phys. B 104, 583–590 (2011).
[Crossref]

Obarski, G. E.

Ohmae, N.

Oskay, W. H.

T. Rosenband, D. B. Hume, P. O. Schmidt, C. W. Chou, A. Brusch, L. Lorini, W. H. Oskay, R. E. Drullinger, T. M. Fortier, J. E. Stalnaker, S. A. Diddams, W. C. Swann, N. R. Newbury, W. M. Itano, D. J. Wineland, and J. C. Bergquist, “Frequency ratio of Al+ and Hg+ single-ion optical clocks; metrology at the 17th decimal place,” Science 319, 1808–1812 (2008).
[Crossref]

Ospelkaus, C.

C. Ospelkaus, U. Warring, Y. Colombe, K. R. Brown, J. M. Amini, D. Leibfried, and D. J. Wineland, “Microwave quantum logic gates for trapped ions,” Nature 476, 181–184 (2011).
[Crossref]

A. C. Wilson, C. Ospelkaus, A. P. VanDevender, J. A. Mlynek, K. R. Brown, D. Leibfried, and D. J. Wineland, “A 750-mW, continuous-wave, solid-state laser source at 313  nm for cooling and manipulating trapped 9Be+ ions,” Appl. Phys. B 105, 741–748 (2011).
[Crossref]

Ozeri, R.

S. Kotler, N. Akerman, N. Navon, Y. Glickman, and R. Ozeri, “Measurement of the magnetic interaction between two bound electrons of two separate ions,” Nature 510, 376–380 (2014).
[Crossref]

R. Ozeri, W. M. Itano, R. B. Blakestad, J. Britton, J. Chiaverini, J. D. Jost, C. Langer, D. Leibfried, R. Reichle, S. Seidelin, J. H. Wesenberg, and D. J. Wineland, “Errors in trapped-ion quantum gates due to spontaneous photon scattering,” Phys. Rev. A 75, 042329 (2007).
[Crossref]

Paul, J.

Petersen, L.

A. Friedenauer, F. Markert, H. Schmitz, L. Petersen, S. Kahra, M. Herrmann, T. Udem, T. W. Hänsch, and T. Schätz, “High power all solid state laser system near 280  nm,” Appl. Phys. B 84, 371–373 (2006).
[Crossref]

Porras, D.

C. Schneider, D. Porras, and T. Schaetz, “Experimental quantum simulations of many-body physics with trapped ions,” Rep. Prog. Phys. 75, 024401 (2012).
[Crossref]

Qin, C. B.

J. Zhang, W. H. Yuan, K. Deng, A. Deng, Z. T. Xu, C. B. Qin, Z. H. Lu, and J. Luo, “A long-term frequency stabilized deep ultraviolet laser for Mg+ ions trapping experiments,” Rev. Sci. Instrum. 84, 123109 (2013).
[Crossref]

Rahimi-Iman, A.

Raj, R. K.

Ranta, S.

E. Kantola, T. Leinonen, S. Ranta, M. Tavast, and M. Guina, “High-efficiency 20  W yellow VECSEL,” Opt. Express 22, 6372–6380 (2014).
[Crossref]

S. Ranta, T. Hakkarainen, M. Tavast, J. Lindfors, T. Leinonen, and M. Guina, “Strain compensated 1120  nm GaInAs/GaAs vertical external-cavity surface-emitting laser grown by molecular beam epitaxy,” J. Cryst. Growth 335, 4–9 (2011).
[Crossref]

Reichle, R.

R. Ozeri, W. M. Itano, R. B. Blakestad, J. Britton, J. Chiaverini, J. D. Jost, C. Langer, D. Leibfried, R. Reichle, S. Seidelin, J. H. Wesenberg, and D. J. Wineland, “Errors in trapped-ion quantum gates due to spontaneous photon scattering,” Phys. Rev. A 75, 042329 (2007).
[Crossref]

Richerme, P.

C. Monroe, W. C. Campbell, E. E. Edwards, R. Islam, D. Kafri, S. Korenblit, A. Lee, P. Richerme, C. Senko, and J. Smith, “Quantum simulation of spin models with trapped ions,” in Proceedings of the International School of Physics ‘Enrico Fermi,’ Course 189, M. Knoop, I. Marzoli, and G. Morigi, eds. (2015), pp. 169–187.

Roos, C. F.

R. Blatt and C. F. Roos, “Quantum simulations with trapped ions,” Nat. Phys. 8, 277–284 (2012).
[Crossref]

Rosenband, T.

T. Rosenband, D. B. Hume, P. O. Schmidt, C. W. Chou, A. Brusch, L. Lorini, W. H. Oskay, R. E. Drullinger, T. M. Fortier, J. E. Stalnaker, S. A. Diddams, W. C. Swann, N. R. Newbury, W. M. Itano, D. J. Wineland, and J. C. Bergquist, “Frequency ratio of Al+ and Hg+ single-ion optical clocks; metrology at the 17th decimal place,” Science 319, 1808–1812 (2008).
[Crossref]

Sagnes, I.

B. Cocquelin, D. Holleville, G. Lucas-Leclin, I. Sagnes, A. Garnache, M. Myara, and P. Georges, “Tunable single-frequency operation of a diode-pumped vertical external-cavity laser at the cesium D2 line,” Appl. Phys. B 95, 315–321 (2009).
[Crossref]

Sawyer, B. C.

J. W. Britton, B. C. Sawyer, A. C. Keith, C. C. J. Wang, J. K. Freericks, H. Uys, M. J. Biercuk, and J. J. Bollinger, “Engineered two-dimensional Ising interactions in a trapped-ion quantum simulator with hundreds of spins,” Nature 484, 489–492 (2012).
[Crossref]

Schaetz, T.

G. Clos, M. Enderlein, U. Warring, T. Schaetz, and D. Leibfried, “Decoherence-assisted spectroscopy of a single Mg+ ion,” Phys. Rev. Lett. 112, 113003 (2014).
[Crossref]

C. Schneider, D. Porras, and T. Schaetz, “Experimental quantum simulations of many-body physics with trapped ions,” Rep. Prog. Phys. 75, 024401 (2012).
[Crossref]

Schätz, T.

A. Friedenauer, F. Markert, H. Schmitz, L. Petersen, S. Kahra, M. Herrmann, T. Udem, T. W. Hänsch, and T. Schätz, “High power all solid state laser system near 280  nm,” Appl. Phys. B 84, 371–373 (2006).
[Crossref]

Schmidt, P. O.

Y. Wan, F. Gebert, F. Wolf, and P. O. Schmidt, “Efficient sympathetic motional-ground-state cooling of a molecular ion,” Phys. Rev. A 91, 043425 (2015).
[Crossref]

B. Hemmerling, F. Gebert, Y. Wan, D. Nigg, I. V. Sherstov, and P. O. Schmidt, “A single laser system for ground-state cooling of 25Mg+,” Appl. Phys. B 104, 583–590 (2011).
[Crossref]

T. Rosenband, D. B. Hume, P. O. Schmidt, C. W. Chou, A. Brusch, L. Lorini, W. H. Oskay, R. E. Drullinger, T. M. Fortier, J. E. Stalnaker, S. A. Diddams, W. C. Swann, N. R. Newbury, W. M. Itano, D. J. Wineland, and J. C. Bergquist, “Frequency ratio of Al+ and Hg+ single-ion optical clocks; metrology at the 17th decimal place,” Science 319, 1808–1812 (2008).
[Crossref]

Schmitz, H.

A. Friedenauer, F. Markert, H. Schmitz, L. Petersen, S. Kahra, M. Herrmann, T. Udem, T. W. Hänsch, and T. Schätz, “High power all solid state laser system near 280  nm,” Appl. Phys. B 84, 371–373 (2006).
[Crossref]

Schneider, C.

C. Schneider, D. Porras, and T. Schaetz, “Experimental quantum simulations of many-body physics with trapped ions,” Rep. Prog. Phys. 75, 024401 (2012).
[Crossref]

Seidelin, S.

R. Ozeri, W. M. Itano, R. B. Blakestad, J. Britton, J. Chiaverini, J. D. Jost, C. Langer, D. Leibfried, R. Reichle, S. Seidelin, J. H. Wesenberg, and D. J. Wineland, “Errors in trapped-ion quantum gates due to spontaneous photon scattering,” Phys. Rev. A 75, 042329 (2007).
[Crossref]

Senko, C.

C. Monroe, W. C. Campbell, E. E. Edwards, R. Islam, D. Kafri, S. Korenblit, A. Lee, P. Richerme, C. Senko, and J. Smith, “Quantum simulation of spin models with trapped ions,” in Proceedings of the International School of Physics ‘Enrico Fermi,’ Course 189, M. Knoop, I. Marzoli, and G. Morigi, eds. (2015), pp. 169–187.

Sherstov, I. V.

B. Hemmerling, F. Gebert, Y. Wan, D. Nigg, I. V. Sherstov, and P. O. Schmidt, “A single laser system for ground-state cooling of 25Mg+,” Appl. Phys. B 104, 583–590 (2011).
[Crossref]

Slichter, D. H.

Smith, J.

C. Monroe, W. C. Campbell, E. E. Edwards, R. Islam, D. Kafri, S. Korenblit, A. Lee, P. Richerme, C. Senko, and J. Smith, “Quantum simulation of spin models with trapped ions,” in Proceedings of the International School of Physics ‘Enrico Fermi,’ Course 189, M. Knoop, I. Marzoli, and G. Morigi, eds. (2015), pp. 169–187.

Snyder, J. J.

Splett, J. D.

Stalnaker, J. E.

T. Rosenband, D. B. Hume, P. O. Schmidt, C. W. Chou, A. Brusch, L. Lorini, W. H. Oskay, R. E. Drullinger, T. M. Fortier, J. E. Stalnaker, S. A. Diddams, W. C. Swann, N. R. Newbury, W. M. Itano, D. J. Wineland, and J. C. Bergquist, “Frequency ratio of Al+ and Hg+ single-ion optical clocks; metrology at the 17th decimal place,” Science 319, 1808–1812 (2008).
[Crossref]

Steane, A.

A. Steane, “The ion trap quantum information processor,” Appl. Phys. B 64, 623–643 (1997).
[Crossref]

Stolz, W.

Swann, W. C.

T. Rosenband, D. B. Hume, P. O. Schmidt, C. W. Chou, A. Brusch, L. Lorini, W. H. Oskay, R. E. Drullinger, T. M. Fortier, J. E. Stalnaker, S. A. Diddams, W. C. Swann, N. R. Newbury, W. M. Itano, D. J. Wineland, and J. C. Bergquist, “Frequency ratio of Al+ and Hg+ single-ion optical clocks; metrology at the 17th decimal place,” Science 319, 1808–1812 (2008).
[Crossref]

Tavast, M.

E. Kantola, T. Leinonen, S. Ranta, M. Tavast, and M. Guina, “High-efficiency 20  W yellow VECSEL,” Opt. Express 22, 6372–6380 (2014).
[Crossref]

S. Ranta, T. Hakkarainen, M. Tavast, J. Lindfors, T. Leinonen, and M. Guina, “Strain compensated 1120  nm GaInAs/GaAs vertical external-cavity surface-emitting laser grown by molecular beam epitaxy,” J. Cryst. Growth 335, 4–9 (2011).
[Crossref]

Taylor, L. R.

Thomsen, J. W.

D. N. Madsen, S. Balslev, M. Drewsen, N. Kjærgaard, Z. Videsen, and J. W. Thomsen, “Measurements on photo-ionization of 3s3p1P1 magnesium atoms,” J. Phys. B 33, 4981–4988 (2000).
[Crossref]

Udem, T.

A. Friedenauer, F. Markert, H. Schmitz, L. Petersen, S. Kahra, M. Herrmann, T. Udem, T. W. Hänsch, and T. Schätz, “High power all solid state laser system near 280  nm,” Appl. Phys. B 84, 371–373 (2006).
[Crossref]

Uys, H.

J. W. Britton, B. C. Sawyer, A. C. Keith, C. C. J. Wang, J. K. Freericks, H. Uys, M. J. Biercuk, and J. J. Bollinger, “Engineered two-dimensional Ising interactions in a trapped-ion quantum simulator with hundreds of spins,” Nature 484, 489–492 (2012).
[Crossref]

VanDevender, A. P.

A. C. Wilson, C. Ospelkaus, A. P. VanDevender, J. A. Mlynek, K. R. Brown, D. Leibfried, and D. J. Wineland, “A 750-mW, continuous-wave, solid-state laser source at 313  nm for cooling and manipulating trapped 9Be+ ions,” Appl. Phys. B 105, 741–748 (2011).
[Crossref]

Videsen, Z.

D. N. Madsen, S. Balslev, M. Drewsen, N. Kjærgaard, Z. Videsen, and J. W. Thomsen, “Measurements on photo-ionization of 3s3p1P1 magnesium atoms,” J. Phys. B 33, 4981–4988 (2000).
[Crossref]

Walls, F. L.

D. J. Wineland, R. E. Drullinger, and F. L. Walls, “Radiation-pressure cooling of bound resonant absorbers,” Phys. Rev. Lett. 40, 1639–1642 (1978).
[Crossref]

Wan, Y.

Y. Wan, F. Gebert, F. Wolf, and P. O. Schmidt, “Efficient sympathetic motional-ground-state cooling of a molecular ion,” Phys. Rev. A 91, 043425 (2015).
[Crossref]

B. Hemmerling, F. Gebert, Y. Wan, D. Nigg, I. V. Sherstov, and P. O. Schmidt, “A single laser system for ground-state cooling of 25Mg+,” Appl. Phys. B 104, 583–590 (2011).
[Crossref]

Wang, C. C. J.

J. W. Britton, B. C. Sawyer, A. C. Keith, C. C. J. Wang, J. K. Freericks, H. Uys, M. J. Biercuk, and J. J. Bollinger, “Engineered two-dimensional Ising interactions in a trapped-ion quantum simulator with hundreds of spins,” Nature 484, 489–492 (2012).
[Crossref]

Wang, T.-L.

Warring, U.

G. Clos, M. Enderlein, U. Warring, T. Schaetz, and D. Leibfried, “Decoherence-assisted spectroscopy of a single Mg+ ion,” Phys. Rev. Lett. 112, 113003 (2014).
[Crossref]

C. Ospelkaus, U. Warring, Y. Colombe, K. R. Brown, J. M. Amini, D. Leibfried, and D. J. Wineland, “Microwave quantum logic gates for trapped ions,” Nature 476, 181–184 (2011).
[Crossref]

Wesenberg, J. H.

R. Ozeri, W. M. Itano, R. B. Blakestad, J. Britton, J. Chiaverini, J. D. Jost, C. Langer, D. Leibfried, R. Reichle, S. Seidelin, J. H. Wesenberg, and D. J. Wineland, “Errors in trapped-ion quantum gates due to spontaneous photon scattering,” Phys. Rev. A 75, 042329 (2007).
[Crossref]

Wichmann, M.

Wilson, A. C.

S. C. Burd, D. Leibfried, A. C. Wilson, and D. J. Wineland, “Optically pumped semiconductor lasers for atomic and molecular physics,” Proc. SPIE 9349, 93490P (2015).
[Crossref]

Y. Colombe, D. H. Slichter, A. C. Wilson, D. Leibfried, and D. J. Wineland, “Single-mode optical fiber for high-power, low-loss UV transmission,” Opt. Express 22, 19783–19793 (2014).
[Crossref]

A. C. Wilson, C. Ospelkaus, A. P. VanDevender, J. A. Mlynek, K. R. Brown, D. Leibfried, and D. J. Wineland, “A 750-mW, continuous-wave, solid-state laser source at 313  nm for cooling and manipulating trapped 9Be+ ions,” Appl. Phys. B 105, 741–748 (2011).
[Crossref]

Wineland, D. J.

S. C. Burd, D. Leibfried, A. C. Wilson, and D. J. Wineland, “Optically pumped semiconductor lasers for atomic and molecular physics,” Proc. SPIE 9349, 93490P (2015).
[Crossref]

Y. Colombe, D. H. Slichter, A. C. Wilson, D. Leibfried, and D. J. Wineland, “Single-mode optical fiber for high-power, low-loss UV transmission,” Opt. Express 22, 19783–19793 (2014).
[Crossref]

A. C. Wilson, C. Ospelkaus, A. P. VanDevender, J. A. Mlynek, K. R. Brown, D. Leibfried, and D. J. Wineland, “A 750-mW, continuous-wave, solid-state laser source at 313  nm for cooling and manipulating trapped 9Be+ ions,” Appl. Phys. B 105, 741–748 (2011).
[Crossref]

C. Ospelkaus, U. Warring, Y. Colombe, K. R. Brown, J. M. Amini, D. Leibfried, and D. J. Wineland, “Microwave quantum logic gates for trapped ions,” Nature 476, 181–184 (2011).
[Crossref]

T. Rosenband, D. B. Hume, P. O. Schmidt, C. W. Chou, A. Brusch, L. Lorini, W. H. Oskay, R. E. Drullinger, T. M. Fortier, J. E. Stalnaker, S. A. Diddams, W. C. Swann, N. R. Newbury, W. M. Itano, D. J. Wineland, and J. C. Bergquist, “Frequency ratio of Al+ and Hg+ single-ion optical clocks; metrology at the 17th decimal place,” Science 319, 1808–1812 (2008).
[Crossref]

R. Blatt and D. J. Wineland, “Entangled states of trapped atomic ions,” Nature 453, 1008–1015 (2008).
[Crossref]

R. Ozeri, W. M. Itano, R. B. Blakestad, J. Britton, J. Chiaverini, J. D. Jost, C. Langer, D. Leibfried, R. Reichle, S. Seidelin, J. H. Wesenberg, and D. J. Wineland, “Errors in trapped-ion quantum gates due to spontaneous photon scattering,” Phys. Rev. A 75, 042329 (2007).
[Crossref]

D. Leibfried, R. Blatt, C. Monroe, and D. J. Wineland, “Quantum dynamics of single trapped ions,” Rev. Mod. Phys. 75, 281–324 (2003).
[Crossref]

D. J. Wineland, C. Monroe, W. M. Itano, D. Leibfried, B. E. King, and D. M. Meekhof, “Experimental issues in coherent quantum-state manipulation of trapped atomic ions,” J. Res. Natl. Inst. Stand. Technol. 103, 259–328 (1998).
[Crossref]

D. J. Wineland, R. E. Drullinger, and F. L. Walls, “Radiation-pressure cooling of bound resonant absorbers,” Phys. Rev. Lett. 40, 1639–1642 (1978).
[Crossref]

Wolf, F.

Y. Wan, F. Gebert, F. Wolf, and P. O. Schmidt, “Efficient sympathetic motional-ground-state cooling of a molecular ion,” Phys. Rev. A 91, 043425 (2015).
[Crossref]

Xu, Z. T.

J. Zhang, W. H. Yuan, K. Deng, A. Deng, Z. T. Xu, C. B. Qin, Z. H. Lu, and J. Luo, “A long-term frequency stabilized deep ultraviolet laser for Mg+ ions trapping experiments,” Rev. Sci. Instrum. 84, 123109 (2013).
[Crossref]

Yamaguchi, A.

Yarborough, J. M.

Yuan, W. H.

J. Zhang, W. H. Yuan, K. Deng, A. Deng, Z. T. Xu, C. B. Qin, Z. H. Lu, and J. Luo, “A long-term frequency stabilized deep ultraviolet laser for Mg+ ions trapping experiments,” Rev. Sci. Instrum. 84, 123109 (2013).
[Crossref]

Zhang, F.

Zhang, J.

J. Zhang, W. H. Yuan, K. Deng, A. Deng, Z. T. Xu, C. B. Qin, Z. H. Lu, and J. Luo, “A long-term frequency stabilized deep ultraviolet laser for Mg+ ions trapping experiments,” Rev. Sci. Instrum. 84, 123109 (2013).
[Crossref]

Appl. Phys. B (6)

A. Steane, “The ion trap quantum information processor,” Appl. Phys. B 64, 623–643 (1997).
[Crossref]

D. F. V. James, “Quantum dynamics of cold trapped ions with application to quantum computation,” Appl. Phys. B 66, 181–190 (1998).
[Crossref]

B. Hemmerling, F. Gebert, Y. Wan, D. Nigg, I. V. Sherstov, and P. O. Schmidt, “A single laser system for ground-state cooling of 25Mg+,” Appl. Phys. B 104, 583–590 (2011).
[Crossref]

A. Friedenauer, F. Markert, H. Schmitz, L. Petersen, S. Kahra, M. Herrmann, T. Udem, T. W. Hänsch, and T. Schätz, “High power all solid state laser system near 280  nm,” Appl. Phys. B 84, 371–373 (2006).
[Crossref]

B. Cocquelin, D. Holleville, G. Lucas-Leclin, I. Sagnes, A. Garnache, M. Myara, and P. Georges, “Tunable single-frequency operation of a diode-pumped vertical external-cavity laser at the cesium D2 line,” Appl. Phys. B 95, 315–321 (2009).
[Crossref]

A. C. Wilson, C. Ospelkaus, A. P. VanDevender, J. A. Mlynek, K. R. Brown, D. Leibfried, and D. J. Wineland, “A 750-mW, continuous-wave, solid-state laser source at 313  nm for cooling and manipulating trapped 9Be+ ions,” Appl. Phys. B 105, 741–748 (2011).
[Crossref]

J. Cryst. Growth (1)

S. Ranta, T. Hakkarainen, M. Tavast, J. Lindfors, T. Leinonen, and M. Guina, “Strain compensated 1120  nm GaInAs/GaAs vertical external-cavity surface-emitting laser grown by molecular beam epitaxy,” J. Cryst. Growth 335, 4–9 (2011).
[Crossref]

J. Opt. Soc. Am. B (1)

J. Phys. B (1)

D. N. Madsen, S. Balslev, M. Drewsen, N. Kjærgaard, Z. Videsen, and J. W. Thomsen, “Measurements on photo-ionization of 3s3p1P1 magnesium atoms,” J. Phys. B 33, 4981–4988 (2000).
[Crossref]

J. Res. Natl. Inst. Stand. Technol. (1)

D. J. Wineland, C. Monroe, W. M. Itano, D. Leibfried, B. E. King, and D. M. Meekhof, “Experimental issues in coherent quantum-state manipulation of trapped atomic ions,” J. Res. Natl. Inst. Stand. Technol. 103, 259–328 (1998).
[Crossref]

Nat. Phys. (1)

R. Blatt and C. F. Roos, “Quantum simulations with trapped ions,” Nat. Phys. 8, 277–284 (2012).
[Crossref]

Nature (4)

R. Blatt and D. J. Wineland, “Entangled states of trapped atomic ions,” Nature 453, 1008–1015 (2008).
[Crossref]

J. W. Britton, B. C. Sawyer, A. C. Keith, C. C. J. Wang, J. K. Freericks, H. Uys, M. J. Biercuk, and J. J. Bollinger, “Engineered two-dimensional Ising interactions in a trapped-ion quantum simulator with hundreds of spins,” Nature 484, 489–492 (2012).
[Crossref]

S. Kotler, N. Akerman, N. Navon, Y. Glickman, and R. Ozeri, “Measurement of the magnetic interaction between two bound electrons of two separate ions,” Nature 510, 376–380 (2014).
[Crossref]

C. Ospelkaus, U. Warring, Y. Colombe, K. R. Brown, J. M. Amini, D. Leibfried, and D. J. Wineland, “Microwave quantum logic gates for trapped ions,” Nature 476, 181–184 (2011).
[Crossref]

Opt. Commun. (1)

T. W. Hänsch and B. Couillaud, “Laser frequency stabilization by polarization spectroscopy of a reflecting reference cavity,” Opt. Commun. 35, 441–444 (1980).
[Crossref]

Opt. Express (5)

Opt. Lett. (3)

Phys. Rev. A (2)

R. Ozeri, W. M. Itano, R. B. Blakestad, J. Britton, J. Chiaverini, J. D. Jost, C. Langer, D. Leibfried, R. Reichle, S. Seidelin, J. H. Wesenberg, and D. J. Wineland, “Errors in trapped-ion quantum gates due to spontaneous photon scattering,” Phys. Rev. A 75, 042329 (2007).
[Crossref]

Y. Wan, F. Gebert, F. Wolf, and P. O. Schmidt, “Efficient sympathetic motional-ground-state cooling of a molecular ion,” Phys. Rev. A 91, 043425 (2015).
[Crossref]

Phys. Rev. Lett. (2)

D. J. Wineland, R. E. Drullinger, and F. L. Walls, “Radiation-pressure cooling of bound resonant absorbers,” Phys. Rev. Lett. 40, 1639–1642 (1978).
[Crossref]

G. Clos, M. Enderlein, U. Warring, T. Schaetz, and D. Leibfried, “Decoherence-assisted spectroscopy of a single Mg+ ion,” Phys. Rev. Lett. 112, 113003 (2014).
[Crossref]

Proc. SPIE (1)

S. C. Burd, D. Leibfried, A. C. Wilson, and D. J. Wineland, “Optically pumped semiconductor lasers for atomic and molecular physics,” Proc. SPIE 9349, 93490P (2015).
[Crossref]

Rep. Prog. Phys. (1)

C. Schneider, D. Porras, and T. Schaetz, “Experimental quantum simulations of many-body physics with trapped ions,” Rep. Prog. Phys. 75, 024401 (2012).
[Crossref]

Rev. Mod. Phys. (1)

D. Leibfried, R. Blatt, C. Monroe, and D. J. Wineland, “Quantum dynamics of single trapped ions,” Rev. Mod. Phys. 75, 281–324 (2003).
[Crossref]

Rev. Sci. Instrum. (1)

J. Zhang, W. H. Yuan, K. Deng, A. Deng, Z. T. Xu, C. B. Qin, Z. H. Lu, and J. Luo, “A long-term frequency stabilized deep ultraviolet laser for Mg+ ions trapping experiments,” Rev. Sci. Instrum. 84, 123109 (2013).
[Crossref]

Science (1)

T. Rosenband, D. B. Hume, P. O. Schmidt, C. W. Chou, A. Brusch, L. Lorini, W. H. Oskay, R. E. Drullinger, T. M. Fortier, J. E. Stalnaker, S. A. Diddams, W. C. Swann, N. R. Newbury, W. M. Itano, D. J. Wineland, and J. C. Bergquist, “Frequency ratio of Al+ and Hg+ single-ion optical clocks; metrology at the 17th decimal place,” Science 319, 1808–1812 (2008).
[Crossref]

Other (3)

C. Monroe, W. C. Campbell, E. E. Edwards, R. Islam, D. Kafri, S. Korenblit, A. Lee, P. Richerme, C. Senko, and J. Smith, “Quantum simulation of spin models with trapped ions,” in Proceedings of the International School of Physics ‘Enrico Fermi,’ Course 189, M. Knoop, I. Marzoli, and G. Morigi, eds. (2015), pp. 169–187.

M. Kuznetsov, “VECSEL semiconductor lasers: A path to high-power, quality beam and UV to IR wavelength by design,” in Semiconductor Disk Lasers: Physics and Technology, O. G. Okhotnikov, ed. (Wiley-VCH, 2010), Chap. 1.

J. E. Gray and D. W. Allan, “A method for estimating the frequency stability of a single oscillator,” in Proceedings of the 28th Annual Symposium on Frequency Control (1974), pp. 243–246.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1. Energy levels of (a) neutral magnesium relevant for photoionization and (b)  Mg 25 + relevant for Doppler cooling, repumping, and stimulated Raman transitions.
Fig. 2.
Fig. 2. VECSEL systems. (a) Externally quadrupled, I-cavity VECSEL system (IC system) used for Doppler cooling, repumping, and performing stimulated Raman transitions. (b) V-cavity, intracavity frequency-doubled system (VC system) for photoionization. PZT, piezo transducer; OC, output coupler; BRF, birefringent filter; LBO, lithium triborate; SHG, second harmonic generation.
Fig. 3.
Fig. 3. 280 nm RIN spectrum. The noise floor is the spectrum obtained with the laser blocked and all other experimental parameters the same.
Fig. 4.
Fig. 4. Three-cornered hat frequency deviation (square root of the frequency variance) comparing the IC VECSEL system (blue diamonds) with a fiber laser (red stars) and an external-cavity diode laser (black circles).
Fig. 5.
Fig. 5. Doppler-free scan of iodine lines relative to 525.4050 THz using the intracavity-doubled VC system.
Fig. 6.
Fig. 6. Spectroscopy of the S 1 / 2 2 P 1 / 2 2 and S 1 / 2 2 P 3 / 2 2 transitions of a single trapped Mg 25 + ion. The zero detuning points of the transitions from the S 1 / 2 2 to the P 1 / 2 2 and P 3 / 2 2 levels are relative to 1069.34 and 1072.08 THz, respectively [35]. The fine-structure separation is approximately 2.74 THz. Each spectrum is independently normalized.
Fig. 7.
Fig. 7. The | state population of the first radial motional mode red and blue sidebands after ground-state cooling, from which we extract an average motional state occupation number n = 0.008 0.008 + 0.013 .
Fig. 8.
Fig. 8. Rabi flopping on the | | carrier transition for a ground-state-cooled Mg 25 + ion. The solid line is a exponentially decaying sinusoid, fitted to the data to give a Rabi frequency of 191.1 ± 0.1    kHz and a 1 / e decay time of 77 ± 3    μs .

Metrics