Abstract

Controlling the stress in glass after laser exposure is of prime importance not only for photonics applications, but also for preserving the mechanical integrity of glass components in general. The sub-surface exposure of fused silica to femtosecond laser pulses can induce a permanent and localized modification to the glass structure. In this work, we present evidence that femtosecond laser exposure can be used to continuously tailor the stress in the material, from a tensile to compressive state, as the laser pulse energy is changed. In addition, we demonstrate that this effect can not only be obtained while transitioning between different laser-induced microstructures, but also at low pulse energy, in the laser exposure regime particularly relevant for fabricating waveguides. These results demonstrate that femtosecond laser exposure is a versatile tool for fully controlling the stress landscape in a volume of silica, opening up new technological opportunities, like for instance, direct write stress-free waveguides, direct-write stress-induced birefringence state or mechanically reinforced parts, by locally preloading it.

Published by The Optical Society under the terms of the Creative Commons Attribution 4.0 License. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.

Full Article  |  PDF Article
OSA Recommended Articles
Scanning thermal microscopy and Raman analysis of bulk fused silica exposed to low-energy femtosecond laser pulses

Y. Bellouard, E. Barthel, A. A. Said, M. Dugan, and P. Bado
Opt. Express 16(24) 19520-19534 (2008)

Stress in femtosecond-laser-written waveguides in fused silica

V. R. Bhardwaj, P. B. Corkum, D. M. Rayner, C. Hnatovsky, E. Simova, and R. S. Taylor
Opt. Lett. 29(12) 1312-1314 (2004)

Direct volume variation measurements in fused silica specimens exposed to femtosecond laser

Audrey Champion and Yves Bellouard
Opt. Mater. Express 2(6) 789-798 (2012)

References

  • View by:
  • |
  • |
  • |

  1. D. Du, X. Liu, G. Korn, J. Squier, and G. Mourou, “Laser‐induced breakdown by impact ionization in SiO2 with pulse widths from 7  ns to 150  fs,” Appl. Phys. Lett. 64, 3071–3073 (1994).
    [Crossref]
  2. B. C. Stuart, M. D. Feit, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Laser-induced damage in dielectrics with nanosecond to subpicosecond pulses,” Phys. Rev. Lett. 74, 2248–2251 (1995).
    [Crossref]
  3. S. S. Mao, F. Quéré, S. Guizard, X. Mao, R. E. Russo, G. Petite, and P. Martin, “Dynamics of femtosecond laser interactions with dielectrics,” Appl. Phys. A 79, 1695–1709 (2004).
    [Crossref]
  4. R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2, 219–225 (2008).
    [Crossref]
  5. K. M. Davis, K. Miura, N. Sugimoto, and K. Hirao, “Writing waveguides in glass with a femtosecond laser,” Opt. Lett. 21, 1729–1731 (1996).
    [Crossref]
  6. Y. Sikorski, A. A. Said, P. Bado, R. Maynard, C. Florea, and K. A. Winick, “Optical waveguide amplifier in Nd-doped glass written with near-IR femtosecond laser pulses,” Electron. Lett. 36, 226–227 (2000).
    [Crossref]
  7. A. M. Streltsov and N. F. Borrelli, “Fabrication and analysis of a directional coupler written in glass by nanojoule femtosecond laser pulses,” Opt. Lett. 26, 42–43 (2001).
    [Crossref]
  8. K. Minoshima, A. M. Kowalevicz, I. Hartl, E. P. Ippen, and J. G. Fujimoto, “Photonic device fabrication in glass by use of nonlinear materials processing with a femtosecond laser oscillator,” Opt. Lett. 26, 1516–1518 (2001).
    [Crossref]
  9. R. R. Thomson, S. Campbell, I. J. Blewett, A. K. Kar, D. T. Reid, S. Shen, and A. Jha, “Active waveguide fabrication in erbium-doped oxyfluoride silicate glass using femtosecond pulses,” Appl. Phys. Lett. 87, 121102 (2005).
    [Crossref]
  10. T. Meany, M. Gräfe, R. Heilmann, A. Perez-Leija, S. Gross, M. J. Steel, M. J. Withford, and A. Szameit, “Laser written circuits for quantum photonics: Laser written quantum circuits,” Laser Photon. Rev. 9, 363–384 (2015).
    [Crossref]
  11. M. Beresna, M. Gecevicius, P. G. Kazansky, and T. Gertus, “Radially polarized optical vortex converter created by femtosecond laser nanostructuring of glass,” Appl. Phys. Lett. 98, 201101 (2011).
    [Crossref]
  12. Y. Cheng, K. Sugioka, K. Midorikawa, M. Masuda, K. Toyoda, M. Kawachi, and K. Shihoyama, “Three-dimensional micro-optical components embedded in photosensitive glass by a femtosecond laser,” Opt. Lett. 28, 1144–1146 (2003).
    [Crossref]
  13. Y. Bellouard, A. Said, M. Dugan, and P. Bado, “Monolithic three-dimensional integration of micro-fluidic channels and optical waveguides in fused silica,” in Proceedings of Materials Research Society (MRS) Symposium (2003), Vol. 782, pp. 63–68.
  14. Y. Cheng, K. Sugioka, and K. Midorikawa, “Microfluidic laser embedded in glass by three-dimensional femtosecond laser microprocessing,” Opt. Lett. 29, 2007–2009 (2004).
    [Crossref]
  15. K. Sugioka, Y. Hanada, and K. Midorikawa, “Three‐dimensional femtosecond laser micromachining of photosensitive glass for biomicrochips,” Laser Photon. Rev. 4, 386–400 (2010).
    [Crossref]
  16. A. Schaap, T. Rohrlack, and Y. Bellouard, “Optical classification of algae species with a glass lab-on-a-chip,” Lab Chip 12, 1527–1532 (2012).
    [Crossref]
  17. F. Madani-Grasset and Y. Bellouard, “Femtosecond laser micromachining of fused silica molds,” Opt. Express 18, 21826–21840 (2010).
    [Crossref]
  18. A. Schaap, Y. Bellouard, and T. Rohrlack, “Optofluidic lab-on-a-chip for rapid algae population screening,” Biomed. Opt. Express 2, 658–664 (2011).
    [Crossref]
  19. Y. Bellouard, A. Said, and P. Bado, “Integrating optics and micro-mechanics in a single substrate: a step toward monolithic integration in fused silica,” Opt. Express 13, 6635–6644 (2005).
    [Crossref]
  20. B. Lenssen and Y. Bellouard, “Optically transparent glass micro-actuator fabricated by femtosecond laser exposure and chemical etching,” Appl. Phys. Lett. 101, 103503 (2012).
    [Crossref]
  21. T. Yang and Y. Bellouard, “Monolithic transparent 3D dielectrophoretic micro-actuator fabricated by femtosecond laser,” J. Micromech. Microeng. 25, 105009 (2015).
    [Crossref]
  22. V. Tielen and Y. Bellouard, “Three-dimensional glass monolithic micro-flexure fabricated by femtosecond laser exposure and chemical etching,” Micromachines 5, 697–710 (2014).
    [Crossref]
  23. C.-E. Athanasiou and Y. Bellouard, “A monolithic micro-tensile tester for investigating silicon dioxide polymorph micromechanics, fabricated and operated using a femtosecond laser,” Micromachines 6, 1365–1386 (2015).
    [Crossref]
  24. G. Li, K. A. Winick, A. A. Said, M. Dugan, and P. Bado, “Waveguide electro-optic modulator in fused silica fabricated by femtosecond laser direct writing and thermal poling,” Opt. Lett. 31, 739–741 (2006).
    [Crossref]
  25. C. B. Schaffer, J. F. García, and E. Mazur, “Bulk heating of transparent materials using a high-repetition-rate femtosecond laser,” Appl. Phys. A 76, 351–354 (2003).
    [Crossref]
  26. K. Miura, J. Qiu, H. Inouye, T. Mitsuyu, and K. Hirao, “Photowritten optical waveguides in various glasses with ultrashort pulse laser,” Appl. Phys. Lett. 71, 3329–3331 (1997).
    [Crossref]
  27. Y. Shimotsuma, P. G. Kazansky, J. Qiu, and K. Hirao, “Self-organized nanogratings in glass irradiated by ultrashort light pulses,” Phys. Rev. Lett. 91, 247405 (2003).
    [Crossref]
  28. V. R. Bhardwaj, E. Simova, P. P. Rajeev, C. Hnatovsky, R. S. Taylor, D. M. Rayner, and P. B. Corkum, “Optically produced arrays of planar nanostructures inside fused silica,” Phys. Rev. Lett. 96, 057404 (2006).
    [Crossref]
  29. F. Liang, Q. Sun, D. Gingras, R. Vallée, and S. L. Chin, “The transition from smooth modification to nanograting in fused silica,” Appl. Phys. Lett. 96, 101903 (2010).
    [Crossref]
  30. Y. Liao, J. Ni, L. Qiao, M. Huang, Y. Bellouard, K. Sugioka, and Y. Cheng, “High-fidelity visualization of formation of volume nanogratings in porous glass by femtosecond laser irradiation,” Optica 2, 329–334 (2015).
    [Crossref]
  31. C. Hnatovsky, R. S. Taylor, P. P. Rajeev, E. Simova, V. R. Bhardwaj, D. M. Rayner, and P. B. Corkum, “Pulse duration dependence of femtosecond-laser-fabricated nanogratings in fused silica,” Appl. Phys. Lett. 87, 014104 (2005).
    [Crossref]
  32. Y. Bellouard, E. Barthel, A. A. Said, M. Dugan, and P. Bado, “Scanning thermal microscopy and Raman analysis of bulk fused silica exposed to low energy femtosecond laser pulses,” Opt. Express 16, 19520–19534 (2008).
    [Crossref]
  33. Y. Bellouard, T. Colomb, C. Depeursinge, M. Dugan, A. A. Said, and P. Bado, “Nanoindentation and birefringence measurements on fused silica specimen exposed to low-energy femtosecond pulses,” Opt. Express 14, 8360–8366 (2006).
    [Crossref]
  34. J. W. Chan, T. Huser, S. Risbud, and D. M. Krol, “Structural changes in fused silica after exposure to focused femtosecond laser pulses,” Opt. Lett. 26, 1726–1728 (2001).
    [Crossref]
  35. A. Champion and Y. Bellouard, “Direct volume variation measurements in fused silica specimens exposed to femtosecond laser,” Opt. Mater. Express 2, 789–798 (2012).
    [Crossref]
  36. J. Canning, M. Lancry, K. Cook, A. Weickman, F. Brisset, and B. Poumellec, “Anatomy of a femtosecond laser processed silica waveguide [Invited],” Opt. Mater. Express 1, 998–1008 (2011).
    [Crossref]
  37. M. Lancry, B. Poumellec, J. Canning, K. Cook, J.-C. Poulin, and F. Brisset, “Ultrafast nanoporous silica formation driven by femtosecond laser irradiation: In the heart of nanogratings,” Laser Photon. Rev. 7, 953–962 (2013).
    [Crossref]
  38. A. Champion, M. Beresna, P. Kazansky, and Y. Bellouard, “Stress distribution around femtosecond laser affected zones: effect of nanogratings orientation,” Opt. Express 21, 24942–24951 (2013).
    [Crossref]
  39. B. McMillen and Y. Bellouard, “On the anisotropy of stress-distribution induced in glasses and crystals by non-ablative femtosecond laser exposure,” Opt. Express 23, 86–100 (2015).
    [Crossref]
  40. C. Hnatovsky, V. Shvedov, W. Krolikowski, and A. Rode, “Revealing local field structure of focused ultrashort pulses,” Phys. Rev. Lett. 106, 123901 (2011).
    [Crossref]
  41. S. Hasegawa and Y. Hayasaki, “Holographic vector wave femtosecond laser processing,” Int. J. Optomechatron. 8, 73–88 (2014).
    [Crossref]
  42. A. Champion, B. W. McMillen, and Y. Bellouard, “Evidence of stress-state inversion induced by non-ablative femtosecond laser pulses in fused silica,” in Bragg Gratings, Photosensitivity, and Poling in Glass Waveguides (Optical Society of America, 2014), paper JM5A–33.
  43. S. Rajesh and Y. Bellouard, “Towards fast femtosecond laser micromachining of fused silica: the effect of deposited energy,” Opt. Express 18, 21490–21497 (2010).
    [Crossref]
  44. Y. Bellouard, A. Said, M. Dugan, and P. Bado, “Fabrication of high-aspect ratio, micro-fluidic channels and tunnels using femtosecond laser pulses and chemical etching,” Opt. Express 12, 2120–2129 (2004).
    [Crossref]
  45. G. G. Stoney, “The tension of metallic films deposited by electrolysis,” Proc. R. Soc. London A 82, 172–175 (1909).
  46. S. Timoshenko, “Analysis of bi-metal thermostats,” J. Opt. Soc. Am. 11, 233–255 (1925).
    [Crossref]
  47. P. Bado, A. A. Said, M. Dugan, and T. Sosnowski, “Dramatic improvements in waveguide manufacturing with femtosecond lasers,” in National Fiber Optic Engineers Conference (NFOEC) (2002), Vol. 2, pp. 1153–1158.
  48. P. Bado, A. A. Said, M. A. Dugan, and T. Sosnowski, “Waveguide fabrication methods and devices,” U.S. patent7,391,947 (June24, 2008).
  49. Y. Nasu, M. Kohtoku, and Y. Hibino, “Low-loss waveguides written with a femtosecond laser for flexible interconnection in a planar light-wave circuit,” Opt. Lett. 30, 723–725 (2005).
    [Crossref]
  50. Y. Okamura, S. Yoshinaka, and S. Yamamoto, “Measuring mode propagation losses of integrated optical waveguides: a simple method,” Appl. Opt. 22, 3892–3894 (1983).
    [Crossref]
  51. C. Fiori and R. A. B. Devine, “Evidence for a wide continuum of polymorphs in a-SiO2,” Phys. Rev. B 33, 2972–2974 (1986).
    [Crossref]
  52. R. E. Schenker and W. G. Oldham, “Ultraviolet-induced densification in fused silica,” J. Appl. Phys. 82, 1065–1071 (1997).
    [Crossref]
  53. H. Kakiuchida, K. Saito, and A. J. Ikushima, “Refractive index, density and polarizability of silica glass with various fictive temperatures,” Jpn. J. Appl. Phys. 43, L743 (2004).
    [Crossref]
  54. H. Sun, S. Juodkazis, and M. Watanabe, “Generation and recombination of defects in vitreous silica induced by irradiation with a near-infrared femtosecond laser,” J. Phys. Chem. B 104, 3450–3455 (2000).
    [Crossref]
  55. R. R. Thomson, T. A. Birks, S. G. Leon-Saval, A. K. Kar, and J. Bland-Hawthorn, “Ultrafast laser inscription of an integrated photonic lantern,” Opt. Express 19, 5698–5705 (2011).
    [Crossref]
  56. G. D. Marshall, A. Politi, J. C. F. Matthews, P. Dekker, M. Ams, M. J. Withford, and J. L. O’Brien, “Laser written waveguide photonic quantum circuits,” Opt. Express 17, 12546–12554 (2009).
    [Crossref]

2015 (5)

T. Meany, M. Gräfe, R. Heilmann, A. Perez-Leija, S. Gross, M. J. Steel, M. J. Withford, and A. Szameit, “Laser written circuits for quantum photonics: Laser written quantum circuits,” Laser Photon. Rev. 9, 363–384 (2015).
[Crossref]

T. Yang and Y. Bellouard, “Monolithic transparent 3D dielectrophoretic micro-actuator fabricated by femtosecond laser,” J. Micromech. Microeng. 25, 105009 (2015).
[Crossref]

C.-E. Athanasiou and Y. Bellouard, “A monolithic micro-tensile tester for investigating silicon dioxide polymorph micromechanics, fabricated and operated using a femtosecond laser,” Micromachines 6, 1365–1386 (2015).
[Crossref]

Y. Liao, J. Ni, L. Qiao, M. Huang, Y. Bellouard, K. Sugioka, and Y. Cheng, “High-fidelity visualization of formation of volume nanogratings in porous glass by femtosecond laser irradiation,” Optica 2, 329–334 (2015).
[Crossref]

B. McMillen and Y. Bellouard, “On the anisotropy of stress-distribution induced in glasses and crystals by non-ablative femtosecond laser exposure,” Opt. Express 23, 86–100 (2015).
[Crossref]

2014 (2)

S. Hasegawa and Y. Hayasaki, “Holographic vector wave femtosecond laser processing,” Int. J. Optomechatron. 8, 73–88 (2014).
[Crossref]

V. Tielen and Y. Bellouard, “Three-dimensional glass monolithic micro-flexure fabricated by femtosecond laser exposure and chemical etching,” Micromachines 5, 697–710 (2014).
[Crossref]

2013 (2)

M. Lancry, B. Poumellec, J. Canning, K. Cook, J.-C. Poulin, and F. Brisset, “Ultrafast nanoporous silica formation driven by femtosecond laser irradiation: In the heart of nanogratings,” Laser Photon. Rev. 7, 953–962 (2013).
[Crossref]

A. Champion, M. Beresna, P. Kazansky, and Y. Bellouard, “Stress distribution around femtosecond laser affected zones: effect of nanogratings orientation,” Opt. Express 21, 24942–24951 (2013).
[Crossref]

2012 (3)

B. Lenssen and Y. Bellouard, “Optically transparent glass micro-actuator fabricated by femtosecond laser exposure and chemical etching,” Appl. Phys. Lett. 101, 103503 (2012).
[Crossref]

A. Champion and Y. Bellouard, “Direct volume variation measurements in fused silica specimens exposed to femtosecond laser,” Opt. Mater. Express 2, 789–798 (2012).
[Crossref]

A. Schaap, T. Rohrlack, and Y. Bellouard, “Optical classification of algae species with a glass lab-on-a-chip,” Lab Chip 12, 1527–1532 (2012).
[Crossref]

2011 (5)

2010 (4)

S. Rajesh and Y. Bellouard, “Towards fast femtosecond laser micromachining of fused silica: the effect of deposited energy,” Opt. Express 18, 21490–21497 (2010).
[Crossref]

F. Liang, Q. Sun, D. Gingras, R. Vallée, and S. L. Chin, “The transition from smooth modification to nanograting in fused silica,” Appl. Phys. Lett. 96, 101903 (2010).
[Crossref]

K. Sugioka, Y. Hanada, and K. Midorikawa, “Three‐dimensional femtosecond laser micromachining of photosensitive glass for biomicrochips,” Laser Photon. Rev. 4, 386–400 (2010).
[Crossref]

F. Madani-Grasset and Y. Bellouard, “Femtosecond laser micromachining of fused silica molds,” Opt. Express 18, 21826–21840 (2010).
[Crossref]

2009 (1)

2008 (2)

2006 (3)

2005 (4)

C. Hnatovsky, R. S. Taylor, P. P. Rajeev, E. Simova, V. R. Bhardwaj, D. M. Rayner, and P. B. Corkum, “Pulse duration dependence of femtosecond-laser-fabricated nanogratings in fused silica,” Appl. Phys. Lett. 87, 014104 (2005).
[Crossref]

Y. Bellouard, A. Said, and P. Bado, “Integrating optics and micro-mechanics in a single substrate: a step toward monolithic integration in fused silica,” Opt. Express 13, 6635–6644 (2005).
[Crossref]

R. R. Thomson, S. Campbell, I. J. Blewett, A. K. Kar, D. T. Reid, S. Shen, and A. Jha, “Active waveguide fabrication in erbium-doped oxyfluoride silicate glass using femtosecond pulses,” Appl. Phys. Lett. 87, 121102 (2005).
[Crossref]

Y. Nasu, M. Kohtoku, and Y. Hibino, “Low-loss waveguides written with a femtosecond laser for flexible interconnection in a planar light-wave circuit,” Opt. Lett. 30, 723–725 (2005).
[Crossref]

2004 (4)

H. Kakiuchida, K. Saito, and A. J. Ikushima, “Refractive index, density and polarizability of silica glass with various fictive temperatures,” Jpn. J. Appl. Phys. 43, L743 (2004).
[Crossref]

Y. Bellouard, A. Said, M. Dugan, and P. Bado, “Fabrication of high-aspect ratio, micro-fluidic channels and tunnels using femtosecond laser pulses and chemical etching,” Opt. Express 12, 2120–2129 (2004).
[Crossref]

Y. Cheng, K. Sugioka, and K. Midorikawa, “Microfluidic laser embedded in glass by three-dimensional femtosecond laser microprocessing,” Opt. Lett. 29, 2007–2009 (2004).
[Crossref]

S. S. Mao, F. Quéré, S. Guizard, X. Mao, R. E. Russo, G. Petite, and P. Martin, “Dynamics of femtosecond laser interactions with dielectrics,” Appl. Phys. A 79, 1695–1709 (2004).
[Crossref]

2003 (3)

Y. Cheng, K. Sugioka, K. Midorikawa, M. Masuda, K. Toyoda, M. Kawachi, and K. Shihoyama, “Three-dimensional micro-optical components embedded in photosensitive glass by a femtosecond laser,” Opt. Lett. 28, 1144–1146 (2003).
[Crossref]

Y. Shimotsuma, P. G. Kazansky, J. Qiu, and K. Hirao, “Self-organized nanogratings in glass irradiated by ultrashort light pulses,” Phys. Rev. Lett. 91, 247405 (2003).
[Crossref]

C. B. Schaffer, J. F. García, and E. Mazur, “Bulk heating of transparent materials using a high-repetition-rate femtosecond laser,” Appl. Phys. A 76, 351–354 (2003).
[Crossref]

2001 (3)

2000 (2)

Y. Sikorski, A. A. Said, P. Bado, R. Maynard, C. Florea, and K. A. Winick, “Optical waveguide amplifier in Nd-doped glass written with near-IR femtosecond laser pulses,” Electron. Lett. 36, 226–227 (2000).
[Crossref]

H. Sun, S. Juodkazis, and M. Watanabe, “Generation and recombination of defects in vitreous silica induced by irradiation with a near-infrared femtosecond laser,” J. Phys. Chem. B 104, 3450–3455 (2000).
[Crossref]

1997 (2)

R. E. Schenker and W. G. Oldham, “Ultraviolet-induced densification in fused silica,” J. Appl. Phys. 82, 1065–1071 (1997).
[Crossref]

K. Miura, J. Qiu, H. Inouye, T. Mitsuyu, and K. Hirao, “Photowritten optical waveguides in various glasses with ultrashort pulse laser,” Appl. Phys. Lett. 71, 3329–3331 (1997).
[Crossref]

1996 (1)

1995 (1)

B. C. Stuart, M. D. Feit, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Laser-induced damage in dielectrics with nanosecond to subpicosecond pulses,” Phys. Rev. Lett. 74, 2248–2251 (1995).
[Crossref]

1994 (1)

D. Du, X. Liu, G. Korn, J. Squier, and G. Mourou, “Laser‐induced breakdown by impact ionization in SiO2 with pulse widths from 7  ns to 150  fs,” Appl. Phys. Lett. 64, 3071–3073 (1994).
[Crossref]

1986 (1)

C. Fiori and R. A. B. Devine, “Evidence for a wide continuum of polymorphs in a-SiO2,” Phys. Rev. B 33, 2972–2974 (1986).
[Crossref]

1983 (1)

1925 (1)

1909 (1)

G. G. Stoney, “The tension of metallic films deposited by electrolysis,” Proc. R. Soc. London A 82, 172–175 (1909).

Ams, M.

Athanasiou, C.-E.

C.-E. Athanasiou and Y. Bellouard, “A monolithic micro-tensile tester for investigating silicon dioxide polymorph micromechanics, fabricated and operated using a femtosecond laser,” Micromachines 6, 1365–1386 (2015).
[Crossref]

Bado, P.

Y. Bellouard, E. Barthel, A. A. Said, M. Dugan, and P. Bado, “Scanning thermal microscopy and Raman analysis of bulk fused silica exposed to low energy femtosecond laser pulses,” Opt. Express 16, 19520–19534 (2008).
[Crossref]

G. Li, K. A. Winick, A. A. Said, M. Dugan, and P. Bado, “Waveguide electro-optic modulator in fused silica fabricated by femtosecond laser direct writing and thermal poling,” Opt. Lett. 31, 739–741 (2006).
[Crossref]

Y. Bellouard, T. Colomb, C. Depeursinge, M. Dugan, A. A. Said, and P. Bado, “Nanoindentation and birefringence measurements on fused silica specimen exposed to low-energy femtosecond pulses,” Opt. Express 14, 8360–8366 (2006).
[Crossref]

Y. Bellouard, A. Said, and P. Bado, “Integrating optics and micro-mechanics in a single substrate: a step toward monolithic integration in fused silica,” Opt. Express 13, 6635–6644 (2005).
[Crossref]

Y. Bellouard, A. Said, M. Dugan, and P. Bado, “Fabrication of high-aspect ratio, micro-fluidic channels and tunnels using femtosecond laser pulses and chemical etching,” Opt. Express 12, 2120–2129 (2004).
[Crossref]

Y. Sikorski, A. A. Said, P. Bado, R. Maynard, C. Florea, and K. A. Winick, “Optical waveguide amplifier in Nd-doped glass written with near-IR femtosecond laser pulses,” Electron. Lett. 36, 226–227 (2000).
[Crossref]

Y. Bellouard, A. Said, M. Dugan, and P. Bado, “Monolithic three-dimensional integration of micro-fluidic channels and optical waveguides in fused silica,” in Proceedings of Materials Research Society (MRS) Symposium (2003), Vol. 782, pp. 63–68.

P. Bado, A. A. Said, M. Dugan, and T. Sosnowski, “Dramatic improvements in waveguide manufacturing with femtosecond lasers,” in National Fiber Optic Engineers Conference (NFOEC) (2002), Vol. 2, pp. 1153–1158.

P. Bado, A. A. Said, M. A. Dugan, and T. Sosnowski, “Waveguide fabrication methods and devices,” U.S. patent7,391,947 (June24, 2008).

Barthel, E.

Bellouard, Y.

B. McMillen and Y. Bellouard, “On the anisotropy of stress-distribution induced in glasses and crystals by non-ablative femtosecond laser exposure,” Opt. Express 23, 86–100 (2015).
[Crossref]

Y. Liao, J. Ni, L. Qiao, M. Huang, Y. Bellouard, K. Sugioka, and Y. Cheng, “High-fidelity visualization of formation of volume nanogratings in porous glass by femtosecond laser irradiation,” Optica 2, 329–334 (2015).
[Crossref]

C.-E. Athanasiou and Y. Bellouard, “A monolithic micro-tensile tester for investigating silicon dioxide polymorph micromechanics, fabricated and operated using a femtosecond laser,” Micromachines 6, 1365–1386 (2015).
[Crossref]

T. Yang and Y. Bellouard, “Monolithic transparent 3D dielectrophoretic micro-actuator fabricated by femtosecond laser,” J. Micromech. Microeng. 25, 105009 (2015).
[Crossref]

V. Tielen and Y. Bellouard, “Three-dimensional glass monolithic micro-flexure fabricated by femtosecond laser exposure and chemical etching,” Micromachines 5, 697–710 (2014).
[Crossref]

A. Champion, M. Beresna, P. Kazansky, and Y. Bellouard, “Stress distribution around femtosecond laser affected zones: effect of nanogratings orientation,” Opt. Express 21, 24942–24951 (2013).
[Crossref]

A. Champion and Y. Bellouard, “Direct volume variation measurements in fused silica specimens exposed to femtosecond laser,” Opt. Mater. Express 2, 789–798 (2012).
[Crossref]

B. Lenssen and Y. Bellouard, “Optically transparent glass micro-actuator fabricated by femtosecond laser exposure and chemical etching,” Appl. Phys. Lett. 101, 103503 (2012).
[Crossref]

A. Schaap, T. Rohrlack, and Y. Bellouard, “Optical classification of algae species with a glass lab-on-a-chip,” Lab Chip 12, 1527–1532 (2012).
[Crossref]

A. Schaap, Y. Bellouard, and T. Rohrlack, “Optofluidic lab-on-a-chip for rapid algae population screening,” Biomed. Opt. Express 2, 658–664 (2011).
[Crossref]

S. Rajesh and Y. Bellouard, “Towards fast femtosecond laser micromachining of fused silica: the effect of deposited energy,” Opt. Express 18, 21490–21497 (2010).
[Crossref]

F. Madani-Grasset and Y. Bellouard, “Femtosecond laser micromachining of fused silica molds,” Opt. Express 18, 21826–21840 (2010).
[Crossref]

Y. Bellouard, E. Barthel, A. A. Said, M. Dugan, and P. Bado, “Scanning thermal microscopy and Raman analysis of bulk fused silica exposed to low energy femtosecond laser pulses,” Opt. Express 16, 19520–19534 (2008).
[Crossref]

Y. Bellouard, T. Colomb, C. Depeursinge, M. Dugan, A. A. Said, and P. Bado, “Nanoindentation and birefringence measurements on fused silica specimen exposed to low-energy femtosecond pulses,” Opt. Express 14, 8360–8366 (2006).
[Crossref]

Y. Bellouard, A. Said, and P. Bado, “Integrating optics and micro-mechanics in a single substrate: a step toward monolithic integration in fused silica,” Opt. Express 13, 6635–6644 (2005).
[Crossref]

Y. Bellouard, A. Said, M. Dugan, and P. Bado, “Fabrication of high-aspect ratio, micro-fluidic channels and tunnels using femtosecond laser pulses and chemical etching,” Opt. Express 12, 2120–2129 (2004).
[Crossref]

Y. Bellouard, A. Said, M. Dugan, and P. Bado, “Monolithic three-dimensional integration of micro-fluidic channels and optical waveguides in fused silica,” in Proceedings of Materials Research Society (MRS) Symposium (2003), Vol. 782, pp. 63–68.

A. Champion, B. W. McMillen, and Y. Bellouard, “Evidence of stress-state inversion induced by non-ablative femtosecond laser pulses in fused silica,” in Bragg Gratings, Photosensitivity, and Poling in Glass Waveguides (Optical Society of America, 2014), paper JM5A–33.

Beresna, M.

A. Champion, M. Beresna, P. Kazansky, and Y. Bellouard, “Stress distribution around femtosecond laser affected zones: effect of nanogratings orientation,” Opt. Express 21, 24942–24951 (2013).
[Crossref]

M. Beresna, M. Gecevicius, P. G. Kazansky, and T. Gertus, “Radially polarized optical vortex converter created by femtosecond laser nanostructuring of glass,” Appl. Phys. Lett. 98, 201101 (2011).
[Crossref]

Bhardwaj, V. R.

V. R. Bhardwaj, E. Simova, P. P. Rajeev, C. Hnatovsky, R. S. Taylor, D. M. Rayner, and P. B. Corkum, “Optically produced arrays of planar nanostructures inside fused silica,” Phys. Rev. Lett. 96, 057404 (2006).
[Crossref]

C. Hnatovsky, R. S. Taylor, P. P. Rajeev, E. Simova, V. R. Bhardwaj, D. M. Rayner, and P. B. Corkum, “Pulse duration dependence of femtosecond-laser-fabricated nanogratings in fused silica,” Appl. Phys. Lett. 87, 014104 (2005).
[Crossref]

Birks, T. A.

Bland-Hawthorn, J.

Blewett, I. J.

R. R. Thomson, S. Campbell, I. J. Blewett, A. K. Kar, D. T. Reid, S. Shen, and A. Jha, “Active waveguide fabrication in erbium-doped oxyfluoride silicate glass using femtosecond pulses,” Appl. Phys. Lett. 87, 121102 (2005).
[Crossref]

Borrelli, N. F.

Brisset, F.

M. Lancry, B. Poumellec, J. Canning, K. Cook, J.-C. Poulin, and F. Brisset, “Ultrafast nanoporous silica formation driven by femtosecond laser irradiation: In the heart of nanogratings,” Laser Photon. Rev. 7, 953–962 (2013).
[Crossref]

J. Canning, M. Lancry, K. Cook, A. Weickman, F. Brisset, and B. Poumellec, “Anatomy of a femtosecond laser processed silica waveguide [Invited],” Opt. Mater. Express 1, 998–1008 (2011).
[Crossref]

Campbell, S.

R. R. Thomson, S. Campbell, I. J. Blewett, A. K. Kar, D. T. Reid, S. Shen, and A. Jha, “Active waveguide fabrication in erbium-doped oxyfluoride silicate glass using femtosecond pulses,” Appl. Phys. Lett. 87, 121102 (2005).
[Crossref]

Canning, J.

M. Lancry, B. Poumellec, J. Canning, K. Cook, J.-C. Poulin, and F. Brisset, “Ultrafast nanoporous silica formation driven by femtosecond laser irradiation: In the heart of nanogratings,” Laser Photon. Rev. 7, 953–962 (2013).
[Crossref]

J. Canning, M. Lancry, K. Cook, A. Weickman, F. Brisset, and B. Poumellec, “Anatomy of a femtosecond laser processed silica waveguide [Invited],” Opt. Mater. Express 1, 998–1008 (2011).
[Crossref]

Champion, A.

A. Champion, M. Beresna, P. Kazansky, and Y. Bellouard, “Stress distribution around femtosecond laser affected zones: effect of nanogratings orientation,” Opt. Express 21, 24942–24951 (2013).
[Crossref]

A. Champion and Y. Bellouard, “Direct volume variation measurements in fused silica specimens exposed to femtosecond laser,” Opt. Mater. Express 2, 789–798 (2012).
[Crossref]

A. Champion, B. W. McMillen, and Y. Bellouard, “Evidence of stress-state inversion induced by non-ablative femtosecond laser pulses in fused silica,” in Bragg Gratings, Photosensitivity, and Poling in Glass Waveguides (Optical Society of America, 2014), paper JM5A–33.

Chan, J. W.

Cheng, Y.

Chin, S. L.

F. Liang, Q. Sun, D. Gingras, R. Vallée, and S. L. Chin, “The transition from smooth modification to nanograting in fused silica,” Appl. Phys. Lett. 96, 101903 (2010).
[Crossref]

Colomb, T.

Cook, K.

M. Lancry, B. Poumellec, J. Canning, K. Cook, J.-C. Poulin, and F. Brisset, “Ultrafast nanoporous silica formation driven by femtosecond laser irradiation: In the heart of nanogratings,” Laser Photon. Rev. 7, 953–962 (2013).
[Crossref]

J. Canning, M. Lancry, K. Cook, A. Weickman, F. Brisset, and B. Poumellec, “Anatomy of a femtosecond laser processed silica waveguide [Invited],” Opt. Mater. Express 1, 998–1008 (2011).
[Crossref]

Corkum, P. B.

V. R. Bhardwaj, E. Simova, P. P. Rajeev, C. Hnatovsky, R. S. Taylor, D. M. Rayner, and P. B. Corkum, “Optically produced arrays of planar nanostructures inside fused silica,” Phys. Rev. Lett. 96, 057404 (2006).
[Crossref]

C. Hnatovsky, R. S. Taylor, P. P. Rajeev, E. Simova, V. R. Bhardwaj, D. M. Rayner, and P. B. Corkum, “Pulse duration dependence of femtosecond-laser-fabricated nanogratings in fused silica,” Appl. Phys. Lett. 87, 014104 (2005).
[Crossref]

Davis, K. M.

Dekker, P.

Depeursinge, C.

Devine, R. A. B.

C. Fiori and R. A. B. Devine, “Evidence for a wide continuum of polymorphs in a-SiO2,” Phys. Rev. B 33, 2972–2974 (1986).
[Crossref]

Du, D.

D. Du, X. Liu, G. Korn, J. Squier, and G. Mourou, “Laser‐induced breakdown by impact ionization in SiO2 with pulse widths from 7  ns to 150  fs,” Appl. Phys. Lett. 64, 3071–3073 (1994).
[Crossref]

Dugan, M.

Dugan, M. A.

P. Bado, A. A. Said, M. A. Dugan, and T. Sosnowski, “Waveguide fabrication methods and devices,” U.S. patent7,391,947 (June24, 2008).

Feit, M. D.

B. C. Stuart, M. D. Feit, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Laser-induced damage in dielectrics with nanosecond to subpicosecond pulses,” Phys. Rev. Lett. 74, 2248–2251 (1995).
[Crossref]

Fiori, C.

C. Fiori and R. A. B. Devine, “Evidence for a wide continuum of polymorphs in a-SiO2,” Phys. Rev. B 33, 2972–2974 (1986).
[Crossref]

Florea, C.

Y. Sikorski, A. A. Said, P. Bado, R. Maynard, C. Florea, and K. A. Winick, “Optical waveguide amplifier in Nd-doped glass written with near-IR femtosecond laser pulses,” Electron. Lett. 36, 226–227 (2000).
[Crossref]

Fujimoto, J. G.

García, J. F.

C. B. Schaffer, J. F. García, and E. Mazur, “Bulk heating of transparent materials using a high-repetition-rate femtosecond laser,” Appl. Phys. A 76, 351–354 (2003).
[Crossref]

Gattass, R. R.

R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2, 219–225 (2008).
[Crossref]

Gecevicius, M.

M. Beresna, M. Gecevicius, P. G. Kazansky, and T. Gertus, “Radially polarized optical vortex converter created by femtosecond laser nanostructuring of glass,” Appl. Phys. Lett. 98, 201101 (2011).
[Crossref]

Gertus, T.

M. Beresna, M. Gecevicius, P. G. Kazansky, and T. Gertus, “Radially polarized optical vortex converter created by femtosecond laser nanostructuring of glass,” Appl. Phys. Lett. 98, 201101 (2011).
[Crossref]

Gingras, D.

F. Liang, Q. Sun, D. Gingras, R. Vallée, and S. L. Chin, “The transition from smooth modification to nanograting in fused silica,” Appl. Phys. Lett. 96, 101903 (2010).
[Crossref]

Gräfe, M.

T. Meany, M. Gräfe, R. Heilmann, A. Perez-Leija, S. Gross, M. J. Steel, M. J. Withford, and A. Szameit, “Laser written circuits for quantum photonics: Laser written quantum circuits,” Laser Photon. Rev. 9, 363–384 (2015).
[Crossref]

Gross, S.

T. Meany, M. Gräfe, R. Heilmann, A. Perez-Leija, S. Gross, M. J. Steel, M. J. Withford, and A. Szameit, “Laser written circuits for quantum photonics: Laser written quantum circuits,” Laser Photon. Rev. 9, 363–384 (2015).
[Crossref]

Guizard, S.

S. S. Mao, F. Quéré, S. Guizard, X. Mao, R. E. Russo, G. Petite, and P. Martin, “Dynamics of femtosecond laser interactions with dielectrics,” Appl. Phys. A 79, 1695–1709 (2004).
[Crossref]

Hanada, Y.

K. Sugioka, Y. Hanada, and K. Midorikawa, “Three‐dimensional femtosecond laser micromachining of photosensitive glass for biomicrochips,” Laser Photon. Rev. 4, 386–400 (2010).
[Crossref]

Hartl, I.

Hasegawa, S.

S. Hasegawa and Y. Hayasaki, “Holographic vector wave femtosecond laser processing,” Int. J. Optomechatron. 8, 73–88 (2014).
[Crossref]

Hayasaki, Y.

S. Hasegawa and Y. Hayasaki, “Holographic vector wave femtosecond laser processing,” Int. J. Optomechatron. 8, 73–88 (2014).
[Crossref]

Heilmann, R.

T. Meany, M. Gräfe, R. Heilmann, A. Perez-Leija, S. Gross, M. J. Steel, M. J. Withford, and A. Szameit, “Laser written circuits for quantum photonics: Laser written quantum circuits,” Laser Photon. Rev. 9, 363–384 (2015).
[Crossref]

Hibino, Y.

Hirao, K.

Y. Shimotsuma, P. G. Kazansky, J. Qiu, and K. Hirao, “Self-organized nanogratings in glass irradiated by ultrashort light pulses,” Phys. Rev. Lett. 91, 247405 (2003).
[Crossref]

K. Miura, J. Qiu, H. Inouye, T. Mitsuyu, and K. Hirao, “Photowritten optical waveguides in various glasses with ultrashort pulse laser,” Appl. Phys. Lett. 71, 3329–3331 (1997).
[Crossref]

K. M. Davis, K. Miura, N. Sugimoto, and K. Hirao, “Writing waveguides in glass with a femtosecond laser,” Opt. Lett. 21, 1729–1731 (1996).
[Crossref]

Hnatovsky, C.

C. Hnatovsky, V. Shvedov, W. Krolikowski, and A. Rode, “Revealing local field structure of focused ultrashort pulses,” Phys. Rev. Lett. 106, 123901 (2011).
[Crossref]

V. R. Bhardwaj, E. Simova, P. P. Rajeev, C. Hnatovsky, R. S. Taylor, D. M. Rayner, and P. B. Corkum, “Optically produced arrays of planar nanostructures inside fused silica,” Phys. Rev. Lett. 96, 057404 (2006).
[Crossref]

C. Hnatovsky, R. S. Taylor, P. P. Rajeev, E. Simova, V. R. Bhardwaj, D. M. Rayner, and P. B. Corkum, “Pulse duration dependence of femtosecond-laser-fabricated nanogratings in fused silica,” Appl. Phys. Lett. 87, 014104 (2005).
[Crossref]

Huang, M.

Huser, T.

Ikushima, A. J.

H. Kakiuchida, K. Saito, and A. J. Ikushima, “Refractive index, density and polarizability of silica glass with various fictive temperatures,” Jpn. J. Appl. Phys. 43, L743 (2004).
[Crossref]

Inouye, H.

K. Miura, J. Qiu, H. Inouye, T. Mitsuyu, and K. Hirao, “Photowritten optical waveguides in various glasses with ultrashort pulse laser,” Appl. Phys. Lett. 71, 3329–3331 (1997).
[Crossref]

Ippen, E. P.

Jha, A.

R. R. Thomson, S. Campbell, I. J. Blewett, A. K. Kar, D. T. Reid, S. Shen, and A. Jha, “Active waveguide fabrication in erbium-doped oxyfluoride silicate glass using femtosecond pulses,” Appl. Phys. Lett. 87, 121102 (2005).
[Crossref]

Juodkazis, S.

H. Sun, S. Juodkazis, and M. Watanabe, “Generation and recombination of defects in vitreous silica induced by irradiation with a near-infrared femtosecond laser,” J. Phys. Chem. B 104, 3450–3455 (2000).
[Crossref]

Kakiuchida, H.

H. Kakiuchida, K. Saito, and A. J. Ikushima, “Refractive index, density and polarizability of silica glass with various fictive temperatures,” Jpn. J. Appl. Phys. 43, L743 (2004).
[Crossref]

Kar, A. K.

R. R. Thomson, T. A. Birks, S. G. Leon-Saval, A. K. Kar, and J. Bland-Hawthorn, “Ultrafast laser inscription of an integrated photonic lantern,” Opt. Express 19, 5698–5705 (2011).
[Crossref]

R. R. Thomson, S. Campbell, I. J. Blewett, A. K. Kar, D. T. Reid, S. Shen, and A. Jha, “Active waveguide fabrication in erbium-doped oxyfluoride silicate glass using femtosecond pulses,” Appl. Phys. Lett. 87, 121102 (2005).
[Crossref]

Kawachi, M.

Kazansky, P.

Kazansky, P. G.

M. Beresna, M. Gecevicius, P. G. Kazansky, and T. Gertus, “Radially polarized optical vortex converter created by femtosecond laser nanostructuring of glass,” Appl. Phys. Lett. 98, 201101 (2011).
[Crossref]

Y. Shimotsuma, P. G. Kazansky, J. Qiu, and K. Hirao, “Self-organized nanogratings in glass irradiated by ultrashort light pulses,” Phys. Rev. Lett. 91, 247405 (2003).
[Crossref]

Kohtoku, M.

Korn, G.

D. Du, X. Liu, G. Korn, J. Squier, and G. Mourou, “Laser‐induced breakdown by impact ionization in SiO2 with pulse widths from 7  ns to 150  fs,” Appl. Phys. Lett. 64, 3071–3073 (1994).
[Crossref]

Kowalevicz, A. M.

Krol, D. M.

Krolikowski, W.

C. Hnatovsky, V. Shvedov, W. Krolikowski, and A. Rode, “Revealing local field structure of focused ultrashort pulses,” Phys. Rev. Lett. 106, 123901 (2011).
[Crossref]

Lancry, M.

M. Lancry, B. Poumellec, J. Canning, K. Cook, J.-C. Poulin, and F. Brisset, “Ultrafast nanoporous silica formation driven by femtosecond laser irradiation: In the heart of nanogratings,” Laser Photon. Rev. 7, 953–962 (2013).
[Crossref]

J. Canning, M. Lancry, K. Cook, A. Weickman, F. Brisset, and B. Poumellec, “Anatomy of a femtosecond laser processed silica waveguide [Invited],” Opt. Mater. Express 1, 998–1008 (2011).
[Crossref]

Lenssen, B.

B. Lenssen and Y. Bellouard, “Optically transparent glass micro-actuator fabricated by femtosecond laser exposure and chemical etching,” Appl. Phys. Lett. 101, 103503 (2012).
[Crossref]

Leon-Saval, S. G.

Li, G.

Liang, F.

F. Liang, Q. Sun, D. Gingras, R. Vallée, and S. L. Chin, “The transition from smooth modification to nanograting in fused silica,” Appl. Phys. Lett. 96, 101903 (2010).
[Crossref]

Liao, Y.

Liu, X.

D. Du, X. Liu, G. Korn, J. Squier, and G. Mourou, “Laser‐induced breakdown by impact ionization in SiO2 with pulse widths from 7  ns to 150  fs,” Appl. Phys. Lett. 64, 3071–3073 (1994).
[Crossref]

Madani-Grasset, F.

Mao, S. S.

S. S. Mao, F. Quéré, S. Guizard, X. Mao, R. E. Russo, G. Petite, and P. Martin, “Dynamics of femtosecond laser interactions with dielectrics,” Appl. Phys. A 79, 1695–1709 (2004).
[Crossref]

Mao, X.

S. S. Mao, F. Quéré, S. Guizard, X. Mao, R. E. Russo, G. Petite, and P. Martin, “Dynamics of femtosecond laser interactions with dielectrics,” Appl. Phys. A 79, 1695–1709 (2004).
[Crossref]

Marshall, G. D.

Martin, P.

S. S. Mao, F. Quéré, S. Guizard, X. Mao, R. E. Russo, G. Petite, and P. Martin, “Dynamics of femtosecond laser interactions with dielectrics,” Appl. Phys. A 79, 1695–1709 (2004).
[Crossref]

Masuda, M.

Matthews, J. C. F.

Maynard, R.

Y. Sikorski, A. A. Said, P. Bado, R. Maynard, C. Florea, and K. A. Winick, “Optical waveguide amplifier in Nd-doped glass written with near-IR femtosecond laser pulses,” Electron. Lett. 36, 226–227 (2000).
[Crossref]

Mazur, E.

R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2, 219–225 (2008).
[Crossref]

C. B. Schaffer, J. F. García, and E. Mazur, “Bulk heating of transparent materials using a high-repetition-rate femtosecond laser,” Appl. Phys. A 76, 351–354 (2003).
[Crossref]

McMillen, B.

McMillen, B. W.

A. Champion, B. W. McMillen, and Y. Bellouard, “Evidence of stress-state inversion induced by non-ablative femtosecond laser pulses in fused silica,” in Bragg Gratings, Photosensitivity, and Poling in Glass Waveguides (Optical Society of America, 2014), paper JM5A–33.

Meany, T.

T. Meany, M. Gräfe, R. Heilmann, A. Perez-Leija, S. Gross, M. J. Steel, M. J. Withford, and A. Szameit, “Laser written circuits for quantum photonics: Laser written quantum circuits,” Laser Photon. Rev. 9, 363–384 (2015).
[Crossref]

Midorikawa, K.

Minoshima, K.

Mitsuyu, T.

K. Miura, J. Qiu, H. Inouye, T. Mitsuyu, and K. Hirao, “Photowritten optical waveguides in various glasses with ultrashort pulse laser,” Appl. Phys. Lett. 71, 3329–3331 (1997).
[Crossref]

Miura, K.

K. Miura, J. Qiu, H. Inouye, T. Mitsuyu, and K. Hirao, “Photowritten optical waveguides in various glasses with ultrashort pulse laser,” Appl. Phys. Lett. 71, 3329–3331 (1997).
[Crossref]

K. M. Davis, K. Miura, N. Sugimoto, and K. Hirao, “Writing waveguides in glass with a femtosecond laser,” Opt. Lett. 21, 1729–1731 (1996).
[Crossref]

Mourou, G.

D. Du, X. Liu, G. Korn, J. Squier, and G. Mourou, “Laser‐induced breakdown by impact ionization in SiO2 with pulse widths from 7  ns to 150  fs,” Appl. Phys. Lett. 64, 3071–3073 (1994).
[Crossref]

Nasu, Y.

Ni, J.

O’Brien, J. L.

Okamura, Y.

Oldham, W. G.

R. E. Schenker and W. G. Oldham, “Ultraviolet-induced densification in fused silica,” J. Appl. Phys. 82, 1065–1071 (1997).
[Crossref]

Perez-Leija, A.

T. Meany, M. Gräfe, R. Heilmann, A. Perez-Leija, S. Gross, M. J. Steel, M. J. Withford, and A. Szameit, “Laser written circuits for quantum photonics: Laser written quantum circuits,” Laser Photon. Rev. 9, 363–384 (2015).
[Crossref]

Perry, M. D.

B. C. Stuart, M. D. Feit, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Laser-induced damage in dielectrics with nanosecond to subpicosecond pulses,” Phys. Rev. Lett. 74, 2248–2251 (1995).
[Crossref]

Petite, G.

S. S. Mao, F. Quéré, S. Guizard, X. Mao, R. E. Russo, G. Petite, and P. Martin, “Dynamics of femtosecond laser interactions with dielectrics,” Appl. Phys. A 79, 1695–1709 (2004).
[Crossref]

Politi, A.

Poulin, J.-C.

M. Lancry, B. Poumellec, J. Canning, K. Cook, J.-C. Poulin, and F. Brisset, “Ultrafast nanoporous silica formation driven by femtosecond laser irradiation: In the heart of nanogratings,” Laser Photon. Rev. 7, 953–962 (2013).
[Crossref]

Poumellec, B.

M. Lancry, B. Poumellec, J. Canning, K. Cook, J.-C. Poulin, and F. Brisset, “Ultrafast nanoporous silica formation driven by femtosecond laser irradiation: In the heart of nanogratings,” Laser Photon. Rev. 7, 953–962 (2013).
[Crossref]

J. Canning, M. Lancry, K. Cook, A. Weickman, F. Brisset, and B. Poumellec, “Anatomy of a femtosecond laser processed silica waveguide [Invited],” Opt. Mater. Express 1, 998–1008 (2011).
[Crossref]

Qiao, L.

Qiu, J.

Y. Shimotsuma, P. G. Kazansky, J. Qiu, and K. Hirao, “Self-organized nanogratings in glass irradiated by ultrashort light pulses,” Phys. Rev. Lett. 91, 247405 (2003).
[Crossref]

K. Miura, J. Qiu, H. Inouye, T. Mitsuyu, and K. Hirao, “Photowritten optical waveguides in various glasses with ultrashort pulse laser,” Appl. Phys. Lett. 71, 3329–3331 (1997).
[Crossref]

Quéré, F.

S. S. Mao, F. Quéré, S. Guizard, X. Mao, R. E. Russo, G. Petite, and P. Martin, “Dynamics of femtosecond laser interactions with dielectrics,” Appl. Phys. A 79, 1695–1709 (2004).
[Crossref]

Rajeev, P. P.

V. R. Bhardwaj, E. Simova, P. P. Rajeev, C. Hnatovsky, R. S. Taylor, D. M. Rayner, and P. B. Corkum, “Optically produced arrays of planar nanostructures inside fused silica,” Phys. Rev. Lett. 96, 057404 (2006).
[Crossref]

C. Hnatovsky, R. S. Taylor, P. P. Rajeev, E. Simova, V. R. Bhardwaj, D. M. Rayner, and P. B. Corkum, “Pulse duration dependence of femtosecond-laser-fabricated nanogratings in fused silica,” Appl. Phys. Lett. 87, 014104 (2005).
[Crossref]

Rajesh, S.

Rayner, D. M.

V. R. Bhardwaj, E. Simova, P. P. Rajeev, C. Hnatovsky, R. S. Taylor, D. M. Rayner, and P. B. Corkum, “Optically produced arrays of planar nanostructures inside fused silica,” Phys. Rev. Lett. 96, 057404 (2006).
[Crossref]

C. Hnatovsky, R. S. Taylor, P. P. Rajeev, E. Simova, V. R. Bhardwaj, D. M. Rayner, and P. B. Corkum, “Pulse duration dependence of femtosecond-laser-fabricated nanogratings in fused silica,” Appl. Phys. Lett. 87, 014104 (2005).
[Crossref]

Reid, D. T.

R. R. Thomson, S. Campbell, I. J. Blewett, A. K. Kar, D. T. Reid, S. Shen, and A. Jha, “Active waveguide fabrication in erbium-doped oxyfluoride silicate glass using femtosecond pulses,” Appl. Phys. Lett. 87, 121102 (2005).
[Crossref]

Risbud, S.

Rode, A.

C. Hnatovsky, V. Shvedov, W. Krolikowski, and A. Rode, “Revealing local field structure of focused ultrashort pulses,” Phys. Rev. Lett. 106, 123901 (2011).
[Crossref]

Rohrlack, T.

A. Schaap, T. Rohrlack, and Y. Bellouard, “Optical classification of algae species with a glass lab-on-a-chip,” Lab Chip 12, 1527–1532 (2012).
[Crossref]

A. Schaap, Y. Bellouard, and T. Rohrlack, “Optofluidic lab-on-a-chip for rapid algae population screening,” Biomed. Opt. Express 2, 658–664 (2011).
[Crossref]

Rubenchik, A. M.

B. C. Stuart, M. D. Feit, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Laser-induced damage in dielectrics with nanosecond to subpicosecond pulses,” Phys. Rev. Lett. 74, 2248–2251 (1995).
[Crossref]

Russo, R. E.

S. S. Mao, F. Quéré, S. Guizard, X. Mao, R. E. Russo, G. Petite, and P. Martin, “Dynamics of femtosecond laser interactions with dielectrics,” Appl. Phys. A 79, 1695–1709 (2004).
[Crossref]

Said, A.

Said, A. A.

Y. Bellouard, E. Barthel, A. A. Said, M. Dugan, and P. Bado, “Scanning thermal microscopy and Raman analysis of bulk fused silica exposed to low energy femtosecond laser pulses,” Opt. Express 16, 19520–19534 (2008).
[Crossref]

G. Li, K. A. Winick, A. A. Said, M. Dugan, and P. Bado, “Waveguide electro-optic modulator in fused silica fabricated by femtosecond laser direct writing and thermal poling,” Opt. Lett. 31, 739–741 (2006).
[Crossref]

Y. Bellouard, T. Colomb, C. Depeursinge, M. Dugan, A. A. Said, and P. Bado, “Nanoindentation and birefringence measurements on fused silica specimen exposed to low-energy femtosecond pulses,” Opt. Express 14, 8360–8366 (2006).
[Crossref]

Y. Sikorski, A. A. Said, P. Bado, R. Maynard, C. Florea, and K. A. Winick, “Optical waveguide amplifier in Nd-doped glass written with near-IR femtosecond laser pulses,” Electron. Lett. 36, 226–227 (2000).
[Crossref]

P. Bado, A. A. Said, M. A. Dugan, and T. Sosnowski, “Waveguide fabrication methods and devices,” U.S. patent7,391,947 (June24, 2008).

P. Bado, A. A. Said, M. Dugan, and T. Sosnowski, “Dramatic improvements in waveguide manufacturing with femtosecond lasers,” in National Fiber Optic Engineers Conference (NFOEC) (2002), Vol. 2, pp. 1153–1158.

Saito, K.

H. Kakiuchida, K. Saito, and A. J. Ikushima, “Refractive index, density and polarizability of silica glass with various fictive temperatures,” Jpn. J. Appl. Phys. 43, L743 (2004).
[Crossref]

Schaap, A.

A. Schaap, T. Rohrlack, and Y. Bellouard, “Optical classification of algae species with a glass lab-on-a-chip,” Lab Chip 12, 1527–1532 (2012).
[Crossref]

A. Schaap, Y. Bellouard, and T. Rohrlack, “Optofluidic lab-on-a-chip for rapid algae population screening,” Biomed. Opt. Express 2, 658–664 (2011).
[Crossref]

Schaffer, C. B.

C. B. Schaffer, J. F. García, and E. Mazur, “Bulk heating of transparent materials using a high-repetition-rate femtosecond laser,” Appl. Phys. A 76, 351–354 (2003).
[Crossref]

Schenker, R. E.

R. E. Schenker and W. G. Oldham, “Ultraviolet-induced densification in fused silica,” J. Appl. Phys. 82, 1065–1071 (1997).
[Crossref]

Shen, S.

R. R. Thomson, S. Campbell, I. J. Blewett, A. K. Kar, D. T. Reid, S. Shen, and A. Jha, “Active waveguide fabrication in erbium-doped oxyfluoride silicate glass using femtosecond pulses,” Appl. Phys. Lett. 87, 121102 (2005).
[Crossref]

Shihoyama, K.

Shimotsuma, Y.

Y. Shimotsuma, P. G. Kazansky, J. Qiu, and K. Hirao, “Self-organized nanogratings in glass irradiated by ultrashort light pulses,” Phys. Rev. Lett. 91, 247405 (2003).
[Crossref]

Shore, B. W.

B. C. Stuart, M. D. Feit, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Laser-induced damage in dielectrics with nanosecond to subpicosecond pulses,” Phys. Rev. Lett. 74, 2248–2251 (1995).
[Crossref]

Shvedov, V.

C. Hnatovsky, V. Shvedov, W. Krolikowski, and A. Rode, “Revealing local field structure of focused ultrashort pulses,” Phys. Rev. Lett. 106, 123901 (2011).
[Crossref]

Sikorski, Y.

Y. Sikorski, A. A. Said, P. Bado, R. Maynard, C. Florea, and K. A. Winick, “Optical waveguide amplifier in Nd-doped glass written with near-IR femtosecond laser pulses,” Electron. Lett. 36, 226–227 (2000).
[Crossref]

Simova, E.

V. R. Bhardwaj, E. Simova, P. P. Rajeev, C. Hnatovsky, R. S. Taylor, D. M. Rayner, and P. B. Corkum, “Optically produced arrays of planar nanostructures inside fused silica,” Phys. Rev. Lett. 96, 057404 (2006).
[Crossref]

C. Hnatovsky, R. S. Taylor, P. P. Rajeev, E. Simova, V. R. Bhardwaj, D. M. Rayner, and P. B. Corkum, “Pulse duration dependence of femtosecond-laser-fabricated nanogratings in fused silica,” Appl. Phys. Lett. 87, 014104 (2005).
[Crossref]

Sosnowski, T.

P. Bado, A. A. Said, M. A. Dugan, and T. Sosnowski, “Waveguide fabrication methods and devices,” U.S. patent7,391,947 (June24, 2008).

P. Bado, A. A. Said, M. Dugan, and T. Sosnowski, “Dramatic improvements in waveguide manufacturing with femtosecond lasers,” in National Fiber Optic Engineers Conference (NFOEC) (2002), Vol. 2, pp. 1153–1158.

Squier, J.

D. Du, X. Liu, G. Korn, J. Squier, and G. Mourou, “Laser‐induced breakdown by impact ionization in SiO2 with pulse widths from 7  ns to 150  fs,” Appl. Phys. Lett. 64, 3071–3073 (1994).
[Crossref]

Steel, M. J.

T. Meany, M. Gräfe, R. Heilmann, A. Perez-Leija, S. Gross, M. J. Steel, M. J. Withford, and A. Szameit, “Laser written circuits for quantum photonics: Laser written quantum circuits,” Laser Photon. Rev. 9, 363–384 (2015).
[Crossref]

Stoney, G. G.

G. G. Stoney, “The tension of metallic films deposited by electrolysis,” Proc. R. Soc. London A 82, 172–175 (1909).

Streltsov, A. M.

Stuart, B. C.

B. C. Stuart, M. D. Feit, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Laser-induced damage in dielectrics with nanosecond to subpicosecond pulses,” Phys. Rev. Lett. 74, 2248–2251 (1995).
[Crossref]

Sugimoto, N.

Sugioka, K.

Sun, H.

H. Sun, S. Juodkazis, and M. Watanabe, “Generation and recombination of defects in vitreous silica induced by irradiation with a near-infrared femtosecond laser,” J. Phys. Chem. B 104, 3450–3455 (2000).
[Crossref]

Sun, Q.

F. Liang, Q. Sun, D. Gingras, R. Vallée, and S. L. Chin, “The transition from smooth modification to nanograting in fused silica,” Appl. Phys. Lett. 96, 101903 (2010).
[Crossref]

Szameit, A.

T. Meany, M. Gräfe, R. Heilmann, A. Perez-Leija, S. Gross, M. J. Steel, M. J. Withford, and A. Szameit, “Laser written circuits for quantum photonics: Laser written quantum circuits,” Laser Photon. Rev. 9, 363–384 (2015).
[Crossref]

Taylor, R. S.

V. R. Bhardwaj, E. Simova, P. P. Rajeev, C. Hnatovsky, R. S. Taylor, D. M. Rayner, and P. B. Corkum, “Optically produced arrays of planar nanostructures inside fused silica,” Phys. Rev. Lett. 96, 057404 (2006).
[Crossref]

C. Hnatovsky, R. S. Taylor, P. P. Rajeev, E. Simova, V. R. Bhardwaj, D. M. Rayner, and P. B. Corkum, “Pulse duration dependence of femtosecond-laser-fabricated nanogratings in fused silica,” Appl. Phys. Lett. 87, 014104 (2005).
[Crossref]

Thomson, R. R.

R. R. Thomson, T. A. Birks, S. G. Leon-Saval, A. K. Kar, and J. Bland-Hawthorn, “Ultrafast laser inscription of an integrated photonic lantern,” Opt. Express 19, 5698–5705 (2011).
[Crossref]

R. R. Thomson, S. Campbell, I. J. Blewett, A. K. Kar, D. T. Reid, S. Shen, and A. Jha, “Active waveguide fabrication in erbium-doped oxyfluoride silicate glass using femtosecond pulses,” Appl. Phys. Lett. 87, 121102 (2005).
[Crossref]

Tielen, V.

V. Tielen and Y. Bellouard, “Three-dimensional glass monolithic micro-flexure fabricated by femtosecond laser exposure and chemical etching,” Micromachines 5, 697–710 (2014).
[Crossref]

Timoshenko, S.

Toyoda, K.

Vallée, R.

F. Liang, Q. Sun, D. Gingras, R. Vallée, and S. L. Chin, “The transition from smooth modification to nanograting in fused silica,” Appl. Phys. Lett. 96, 101903 (2010).
[Crossref]

Watanabe, M.

H. Sun, S. Juodkazis, and M. Watanabe, “Generation and recombination of defects in vitreous silica induced by irradiation with a near-infrared femtosecond laser,” J. Phys. Chem. B 104, 3450–3455 (2000).
[Crossref]

Weickman, A.

Winick, K. A.

G. Li, K. A. Winick, A. A. Said, M. Dugan, and P. Bado, “Waveguide electro-optic modulator in fused silica fabricated by femtosecond laser direct writing and thermal poling,” Opt. Lett. 31, 739–741 (2006).
[Crossref]

Y. Sikorski, A. A. Said, P. Bado, R. Maynard, C. Florea, and K. A. Winick, “Optical waveguide amplifier in Nd-doped glass written with near-IR femtosecond laser pulses,” Electron. Lett. 36, 226–227 (2000).
[Crossref]

Withford, M. J.

T. Meany, M. Gräfe, R. Heilmann, A. Perez-Leija, S. Gross, M. J. Steel, M. J. Withford, and A. Szameit, “Laser written circuits for quantum photonics: Laser written quantum circuits,” Laser Photon. Rev. 9, 363–384 (2015).
[Crossref]

G. D. Marshall, A. Politi, J. C. F. Matthews, P. Dekker, M. Ams, M. J. Withford, and J. L. O’Brien, “Laser written waveguide photonic quantum circuits,” Opt. Express 17, 12546–12554 (2009).
[Crossref]

Yamamoto, S.

Yang, T.

T. Yang and Y. Bellouard, “Monolithic transparent 3D dielectrophoretic micro-actuator fabricated by femtosecond laser,” J. Micromech. Microeng. 25, 105009 (2015).
[Crossref]

Yoshinaka, S.

Appl. Opt. (1)

Appl. Phys. A (2)

S. S. Mao, F. Quéré, S. Guizard, X. Mao, R. E. Russo, G. Petite, and P. Martin, “Dynamics of femtosecond laser interactions with dielectrics,” Appl. Phys. A 79, 1695–1709 (2004).
[Crossref]

C. B. Schaffer, J. F. García, and E. Mazur, “Bulk heating of transparent materials using a high-repetition-rate femtosecond laser,” Appl. Phys. A 76, 351–354 (2003).
[Crossref]

Appl. Phys. Lett. (7)

K. Miura, J. Qiu, H. Inouye, T. Mitsuyu, and K. Hirao, “Photowritten optical waveguides in various glasses with ultrashort pulse laser,” Appl. Phys. Lett. 71, 3329–3331 (1997).
[Crossref]

B. Lenssen and Y. Bellouard, “Optically transparent glass micro-actuator fabricated by femtosecond laser exposure and chemical etching,” Appl. Phys. Lett. 101, 103503 (2012).
[Crossref]

D. Du, X. Liu, G. Korn, J. Squier, and G. Mourou, “Laser‐induced breakdown by impact ionization in SiO2 with pulse widths from 7  ns to 150  fs,” Appl. Phys. Lett. 64, 3071–3073 (1994).
[Crossref]

R. R. Thomson, S. Campbell, I. J. Blewett, A. K. Kar, D. T. Reid, S. Shen, and A. Jha, “Active waveguide fabrication in erbium-doped oxyfluoride silicate glass using femtosecond pulses,” Appl. Phys. Lett. 87, 121102 (2005).
[Crossref]

M. Beresna, M. Gecevicius, P. G. Kazansky, and T. Gertus, “Radially polarized optical vortex converter created by femtosecond laser nanostructuring of glass,” Appl. Phys. Lett. 98, 201101 (2011).
[Crossref]

F. Liang, Q. Sun, D. Gingras, R. Vallée, and S. L. Chin, “The transition from smooth modification to nanograting in fused silica,” Appl. Phys. Lett. 96, 101903 (2010).
[Crossref]

C. Hnatovsky, R. S. Taylor, P. P. Rajeev, E. Simova, V. R. Bhardwaj, D. M. Rayner, and P. B. Corkum, “Pulse duration dependence of femtosecond-laser-fabricated nanogratings in fused silica,” Appl. Phys. Lett. 87, 014104 (2005).
[Crossref]

Biomed. Opt. Express (1)

Electron. Lett. (1)

Y. Sikorski, A. A. Said, P. Bado, R. Maynard, C. Florea, and K. A. Winick, “Optical waveguide amplifier in Nd-doped glass written with near-IR femtosecond laser pulses,” Electron. Lett. 36, 226–227 (2000).
[Crossref]

Int. J. Optomechatron. (1)

S. Hasegawa and Y. Hayasaki, “Holographic vector wave femtosecond laser processing,” Int. J. Optomechatron. 8, 73–88 (2014).
[Crossref]

J. Appl. Phys. (1)

R. E. Schenker and W. G. Oldham, “Ultraviolet-induced densification in fused silica,” J. Appl. Phys. 82, 1065–1071 (1997).
[Crossref]

J. Micromech. Microeng. (1)

T. Yang and Y. Bellouard, “Monolithic transparent 3D dielectrophoretic micro-actuator fabricated by femtosecond laser,” J. Micromech. Microeng. 25, 105009 (2015).
[Crossref]

J. Opt. Soc. Am. (1)

J. Phys. Chem. B (1)

H. Sun, S. Juodkazis, and M. Watanabe, “Generation and recombination of defects in vitreous silica induced by irradiation with a near-infrared femtosecond laser,” J. Phys. Chem. B 104, 3450–3455 (2000).
[Crossref]

Jpn. J. Appl. Phys. (1)

H. Kakiuchida, K. Saito, and A. J. Ikushima, “Refractive index, density and polarizability of silica glass with various fictive temperatures,” Jpn. J. Appl. Phys. 43, L743 (2004).
[Crossref]

Lab Chip (1)

A. Schaap, T. Rohrlack, and Y. Bellouard, “Optical classification of algae species with a glass lab-on-a-chip,” Lab Chip 12, 1527–1532 (2012).
[Crossref]

Laser Photon. Rev. (3)

K. Sugioka, Y. Hanada, and K. Midorikawa, “Three‐dimensional femtosecond laser micromachining of photosensitive glass for biomicrochips,” Laser Photon. Rev. 4, 386–400 (2010).
[Crossref]

M. Lancry, B. Poumellec, J. Canning, K. Cook, J.-C. Poulin, and F. Brisset, “Ultrafast nanoporous silica formation driven by femtosecond laser irradiation: In the heart of nanogratings,” Laser Photon. Rev. 7, 953–962 (2013).
[Crossref]

T. Meany, M. Gräfe, R. Heilmann, A. Perez-Leija, S. Gross, M. J. Steel, M. J. Withford, and A. Szameit, “Laser written circuits for quantum photonics: Laser written quantum circuits,” Laser Photon. Rev. 9, 363–384 (2015).
[Crossref]

Micromachines (2)

V. Tielen and Y. Bellouard, “Three-dimensional glass monolithic micro-flexure fabricated by femtosecond laser exposure and chemical etching,” Micromachines 5, 697–710 (2014).
[Crossref]

C.-E. Athanasiou and Y. Bellouard, “A monolithic micro-tensile tester for investigating silicon dioxide polymorph micromechanics, fabricated and operated using a femtosecond laser,” Micromachines 6, 1365–1386 (2015).
[Crossref]

Nat. Photonics (1)

R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2, 219–225 (2008).
[Crossref]

Opt. Express (10)

Y. Bellouard, A. Said, M. Dugan, and P. Bado, “Fabrication of high-aspect ratio, micro-fluidic channels and tunnels using femtosecond laser pulses and chemical etching,” Opt. Express 12, 2120–2129 (2004).
[Crossref]

Y. Bellouard, A. Said, and P. Bado, “Integrating optics and micro-mechanics in a single substrate: a step toward monolithic integration in fused silica,” Opt. Express 13, 6635–6644 (2005).
[Crossref]

R. R. Thomson, T. A. Birks, S. G. Leon-Saval, A. K. Kar, and J. Bland-Hawthorn, “Ultrafast laser inscription of an integrated photonic lantern,” Opt. Express 19, 5698–5705 (2011).
[Crossref]

Y. Bellouard, T. Colomb, C. Depeursinge, M. Dugan, A. A. Said, and P. Bado, “Nanoindentation and birefringence measurements on fused silica specimen exposed to low-energy femtosecond pulses,” Opt. Express 14, 8360–8366 (2006).
[Crossref]

Y. Bellouard, E. Barthel, A. A. Said, M. Dugan, and P. Bado, “Scanning thermal microscopy and Raman analysis of bulk fused silica exposed to low energy femtosecond laser pulses,” Opt. Express 16, 19520–19534 (2008).
[Crossref]

G. D. Marshall, A. Politi, J. C. F. Matthews, P. Dekker, M. Ams, M. J. Withford, and J. L. O’Brien, “Laser written waveguide photonic quantum circuits,” Opt. Express 17, 12546–12554 (2009).
[Crossref]

S. Rajesh and Y. Bellouard, “Towards fast femtosecond laser micromachining of fused silica: the effect of deposited energy,” Opt. Express 18, 21490–21497 (2010).
[Crossref]

F. Madani-Grasset and Y. Bellouard, “Femtosecond laser micromachining of fused silica molds,” Opt. Express 18, 21826–21840 (2010).
[Crossref]

A. Champion, M. Beresna, P. Kazansky, and Y. Bellouard, “Stress distribution around femtosecond laser affected zones: effect of nanogratings orientation,” Opt. Express 21, 24942–24951 (2013).
[Crossref]

B. McMillen and Y. Bellouard, “On the anisotropy of stress-distribution induced in glasses and crystals by non-ablative femtosecond laser exposure,” Opt. Express 23, 86–100 (2015).
[Crossref]

Opt. Lett. (8)

G. Li, K. A. Winick, A. A. Said, M. Dugan, and P. Bado, “Waveguide electro-optic modulator in fused silica fabricated by femtosecond laser direct writing and thermal poling,” Opt. Lett. 31, 739–741 (2006).
[Crossref]

Y. Cheng, K. Sugioka, and K. Midorikawa, “Microfluidic laser embedded in glass by three-dimensional femtosecond laser microprocessing,” Opt. Lett. 29, 2007–2009 (2004).
[Crossref]

Y. Nasu, M. Kohtoku, and Y. Hibino, “Low-loss waveguides written with a femtosecond laser for flexible interconnection in a planar light-wave circuit,” Opt. Lett. 30, 723–725 (2005).
[Crossref]

A. M. Streltsov and N. F. Borrelli, “Fabrication and analysis of a directional coupler written in glass by nanojoule femtosecond laser pulses,” Opt. Lett. 26, 42–43 (2001).
[Crossref]

K. Minoshima, A. M. Kowalevicz, I. Hartl, E. P. Ippen, and J. G. Fujimoto, “Photonic device fabrication in glass by use of nonlinear materials processing with a femtosecond laser oscillator,” Opt. Lett. 26, 1516–1518 (2001).
[Crossref]

J. W. Chan, T. Huser, S. Risbud, and D. M. Krol, “Structural changes in fused silica after exposure to focused femtosecond laser pulses,” Opt. Lett. 26, 1726–1728 (2001).
[Crossref]

Y. Cheng, K. Sugioka, K. Midorikawa, M. Masuda, K. Toyoda, M. Kawachi, and K. Shihoyama, “Three-dimensional micro-optical components embedded in photosensitive glass by a femtosecond laser,” Opt. Lett. 28, 1144–1146 (2003).
[Crossref]

K. M. Davis, K. Miura, N. Sugimoto, and K. Hirao, “Writing waveguides in glass with a femtosecond laser,” Opt. Lett. 21, 1729–1731 (1996).
[Crossref]

Opt. Mater. Express (2)

Optica (1)

Phys. Rev. B (1)

C. Fiori and R. A. B. Devine, “Evidence for a wide continuum of polymorphs in a-SiO2,” Phys. Rev. B 33, 2972–2974 (1986).
[Crossref]

Phys. Rev. Lett. (4)

C. Hnatovsky, V. Shvedov, W. Krolikowski, and A. Rode, “Revealing local field structure of focused ultrashort pulses,” Phys. Rev. Lett. 106, 123901 (2011).
[Crossref]

B. C. Stuart, M. D. Feit, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Laser-induced damage in dielectrics with nanosecond to subpicosecond pulses,” Phys. Rev. Lett. 74, 2248–2251 (1995).
[Crossref]

Y. Shimotsuma, P. G. Kazansky, J. Qiu, and K. Hirao, “Self-organized nanogratings in glass irradiated by ultrashort light pulses,” Phys. Rev. Lett. 91, 247405 (2003).
[Crossref]

V. R. Bhardwaj, E. Simova, P. P. Rajeev, C. Hnatovsky, R. S. Taylor, D. M. Rayner, and P. B. Corkum, “Optically produced arrays of planar nanostructures inside fused silica,” Phys. Rev. Lett. 96, 057404 (2006).
[Crossref]

Proc. R. Soc. London A (1)

G. G. Stoney, “The tension of metallic films deposited by electrolysis,” Proc. R. Soc. London A 82, 172–175 (1909).

Other (4)

P. Bado, A. A. Said, M. Dugan, and T. Sosnowski, “Dramatic improvements in waveguide manufacturing with femtosecond lasers,” in National Fiber Optic Engineers Conference (NFOEC) (2002), Vol. 2, pp. 1153–1158.

P. Bado, A. A. Said, M. A. Dugan, and T. Sosnowski, “Waveguide fabrication methods and devices,” U.S. patent7,391,947 (June24, 2008).

A. Champion, B. W. McMillen, and Y. Bellouard, “Evidence of stress-state inversion induced by non-ablative femtosecond laser pulses in fused silica,” in Bragg Gratings, Photosensitivity, and Poling in Glass Waveguides (Optical Society of America, 2014), paper JM5A–33.

Y. Bellouard, A. Said, M. Dugan, and P. Bado, “Monolithic three-dimensional integration of micro-fluidic channels and optical waveguides in fused silica,” in Proceedings of Materials Research Society (MRS) Symposium (2003), Vol. 782, pp. 63–68.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1. Illustration of the cantilever-based methodology used to accurately measure volume variations induced by femtosecond laser exposure. The cantilever devices are exposed to a focused femtosecond beam near the top surface (approximatively at a depth of 15 μm), using a series of closely spaced (2  μm spacing) parallel lines.
Fig. 2.
Fig. 2. Schematic of the cross section of a cantilever with laser-affected zones (shown in the case of a volume expansion). The laser-affected layer consists of a series of lines, each spaced by a distance s from its neighbor and written parallel to one another across the width of the cantilever. Considering the moderate numerical aperture used in these experiments, the cross section of the laser-affected zone has the shape of an elongated ellipse, with X0 and Y0 as short and long axes, respectively.
Fig. 3.
Fig. 3. Measurements of cantilever deflection after exposure to 150 fs laser pulses for increasing energy per pulse for both polarizations. The writing speed was fixed at 4.8 mm/s (repetition rate of 100 kHz). The estimated relative error on the calculated strain from the measurement is in the range of 10%. The measurement error on the pulse energy measurement is ±5  nJ.
Fig. 4.
Fig. 4. Evolution of the morphology of individual laser-modified zones with increasing pulse energy (writing speed was set to 4.8 mm/s, repetition rate is 100 kHz). These SEM images were obtained by observing the cross section of a polished silica substrate containing laser-written lines.
Fig. 5.
Fig. 5. Raman of the laser-affected zone at high pulse energy (in the nanograting regime) compared to a Raman spectra (dark gray) of the same glass in the region where it was not exposed to the laser. We note the presence of two new peaks at 1549 and 1556  cm1, corresponding, respectively, to dissolves O2 in the silica network and to molecular O2. Raman spectra are normalized using the band ω4.
Fig. 6.
Fig. 6. Morphology of the laser-affected zone as a function of the deposited energy. Pulse energy was fixed at 250 nJ (delivered at 100 kHz), corresponding to a regime in which nanogratings are formed.
Fig. 7.
Fig. 7. Results of the cantilever bending experiment performed in the regime where no nanogratings are found. Here, the pulse energy was fixed at 160 nJ while gradually increasing the deposited energy by reducing the writing speed. Similar to the case of increasing pulse energy (see Fig. 2), an inversion of stress state is observed; however, in this case, there is no observable correlation with the formation of nanogratings. (Note: the trend is provided as a visual guide and does not represent a predictive model.) The laser polarization was perpendicular to the substrate translation direction.
Fig. 8.
Fig. 8. Waveguide written in the first regime according the design from Bado et al. [47] Top: SEM cross section of a waveguide written at 10 mm/s. The inset shows the Gaussian guided mode at 632 nm. In this inset, the SEM picture is overlaid in transparency for reference. Bottom: waveguide propagation losses (measured according the method described in [50]) as a function of deposited energy and writing velocities. The various marks (diamonds, triangles, etc.) correspond to different measurements.
Fig. 9.
Fig. 9. Proposed phenomenological model to account for the stress-state inversion observed while increasing the energy deposited in the first regime.

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

εavg(δ)(tsub2wlaz)δL,σxx(δ)[Etsub26wlaz(1ν2)tlaz]δL,
z0(I)=2(πnw02λ)(I0I1),x0(I)=2w022log(II0),
εlaz=(wlaznlinesX0)εavg.
Δnλ=[(nλ21)(nλ2+2)6nλ](Δρρ)(1+Ω)with  Ω=(Δαα)Δρρ.
(Δρρ)(31+2ν)εlaz.
Δn=0.000121±0.000006,Δn=0.000069±0.000003.
neff2=(1x)nd2+x,
(1x)ρdensified+xρpores=ρ0,
{x=A(ρporesρ0)AA=(31+2ν)εlazεLAZ=(tsubnlinesX0)δ2L.
I(r,z)=I0[w0w(z)]2e2r2w(z)2.
I(r,z)It,
Z0=2(πnλw02λ)(I0It1)andX0=2[w022log(I0It)].

Metrics