Abstract

The quest for an integrated light source that promises high energy efficiency and a fast modulation for high-performance photonic circuits has led to the development of room-temperature telecom-wavelength nanoscale lasers with a high spontaneous emission factor β. The coherence characterization of this type of laser using the conventional measurement of output light intensity versus input pump intensity is inherently difficult due to the diminishing kink in the measurement curve. We demonstrate that the transition from incoherent to coherent emission of a high-β pulse-pump metallo-dielectric nanolaser can be determined by examining the width of a second-order intensity correlation peak that shrinks below and broadens above the threshold. Our photon fluctuation study, the first ever reported for this type of nanolaser, confirms the validity of this measurement technique. Additionally, we show that the width variation above the threshold results from the delayed threshold phenomenon, providing the first observation of dynamical hysteresis in a nanolaser.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Second-order coherence properties of metallic nanolasers

William E. Hayenga, Hipolito Garcia-Gracia, Hossein Hodaei, Christian Reimer, Roberto Morandotti, Patrick LiKamWa, and Mercedeh Khajavikhan
Optica 3(11) 1187-1193 (2016)

Systematic study of thresholdless oscillation in high-β buried multiple-quantum-well photonic crystal nanocavity lasers

Masato Takiguchi, Hideaki Taniyama, Hisashi Sumikura, Muhammad Danang Birowosuto, Eiichi Kuramochi, Akihiko Shinya, Tomonari Sato, Koji Takeda, Shinji Matsuo, and Masaya Notomi
Opt. Express 24(4) 3441-3450 (2016)

Demonstration of coherent emission from high-β photonic crystal nanolasers at room temperature

R. Hostein, R. Braive, L. Le Gratiet, A. Talneau, G. Beaudoin, I. Robert-Philip, I. Sagnes, and A. Beveratos
Opt. Lett. 35(8) 1154-1156 (2010)

References

  • View by:
  • |
  • |
  • |

  1. D. A. B. Miller, “Are optical transistors the logical next step?” Nat. Photonics 4, 3–5 (2010).
    [Crossref]
  2. G. Shambat, S.-R. Kothapalli, J. Provine, T. Sarmiento, J. Harris, S. S. Gambhir, and J. Vučković, “Single-cell photonic nanocavity probes,” Nano Lett. 13, 4999–5005 (2013).
    [Crossref]
  3. M. Lončar, A. Scherer, and Y. Qiu, “Photonic crystal laser sources for chemical detection,” Appl. Phys. Lett. 82, 4648–4650 (2003).
    [Crossref]
  4. Y. Nakayama, P. J. Pauzauskie, A. Radenovic, R. M. Onorato, R. J. Saykally, J. Liphardt, and P. Yang, “Tunable nanowire nonlinear optical probe,” Nature 447, 1098–1101 (2007).
    [Crossref]
  5. S. Noda, “Seeking the ultimate nanolaser,” Science 314, 260–261 (2006).
    [Crossref]
  6. M. Khajavikhan, A. Simic, M. Katz, J. H. Lee, B. Slutsky, A. Mizrahi, V. Lomakin, and Y. Fainman, “Thresholdless nanoscale coaxial lasers,” Nature 482, 204–207 (2012).
    [Crossref]
  7. I. Prieto, J. M. Llorens, L. E. Muñoz-Camúñez, A. G. Taboada, J. Canet-Ferrer, J. M. Ripalda, C. Robles, G. Muñoz-Matutano, J. P. Martínez-Pastor, and P. A. Postigo, “Near thresholdless laser operation at room temperature,” Optica 2, 66–69 (2015).
    [Crossref]
  8. Y.-S. Choi, M. T. Rakher, K. Hennessy, S. Strauf, A. Badolato, P. M. Petroff, D. Bouwmeester, and E. L. Hu, “Evolution of the onset of coherence in a family of photonic crystal nanolasers,” Appl. Phys. Lett. 91, 031108 (2007).
    [Crossref]
  9. J. M. Gerard and B. Gayral, “Strong Purcell effect for InAs quantum boxes in three-dimensional solid-state microcavities,” J. Lightwave Technol. 17, 2089–2095 (1999).
    [Crossref]
  10. H. Altug, D. Englund, and J. Vučković, “Ultrafast photonic crystal nanocavity laser,” Nat. Phys. 2, 484–488 (2006).
    [Crossref]
  11. S. Strauf, K. Hennessy, M. T. Rakher, Y.-S. Choi, A. Badolato, L. C. Andreani, E. L. Hu, P. M. Petroff, and D. Bouwmeester, “Self-tuned quantum dot gain in photonic crystal lasers,” Phys. Rev. Lett. 96, 127404 (2006).
    [Crossref]
  12. H.-G. Park, S.-H. Kim, S.-H. Kwon, Y.-G. Ju, J.-K. Yang, J.-H. Baek, S.-B. Kim, and Y.-H. Lee, “Electrically driven single-cell photonic crystal laser,” Science 305, 1444–1447 (2004).
    [Crossref]
  13. B. Ellis, M. A. Mayer, G. Shambat, T. Sarmiento, J. Harris, E. E. Haller, and J. Vučković, “Ultralow-threshold electrically pumped quantum-dot photonic-crystal nanocavity laser,” Nat. Photonics 5, 297–300 (2011).
    [Crossref]
  14. R. Hostein, R. Braive, L. Le Gratiet, A. Talneau, G. Beaudoin, I. Robert-Philip, I. Sagnes, and A. Beveratos, “Demonstration of coherent emission from high-β photonic crystal nanolasers at room temperature,” Opt. Lett. 35, 1154–1156 (2010).
    [Crossref]
  15. M. P. Nezhad, A. Simic, O. Bondarenko, B. Slutsky, A. Mizrahi, L. Feng, V. Lomakin, and Y. Fainman, “Room-temperature subwavelength metallo-dielectric lasers,” Nat. Photonics 4, 395–399 (2010).
    [Crossref]
  16. M. T. Hill, Y.-S. Oei, B. Smalbrugge, Y. Zhu, T. de Vries, P. J. van Veldhoven, F. W. M. van Otten, T. J. Eijkemans, J. P. Turkiewicz, H. de Waardt, E. J. Geluk, S.-H. Kwon, Y.-H. Lee, R. Nötzel, and M. K. Smit, “Lasing in metallic-coated nanocavities,” Nat. Photonics 1, 589–594 (2007).
    [Crossref]
  17. R. Chen, T.-T. D. Tran, K. W. Ng, W. S. Ko, L. C. Chuang, F. G. Sedgwick, and C. Chang-Hasnain, “Nanolasers grown on silicon,” Nat. Photonics 5, 170–175 (2011).
    [Crossref]
  18. D. Saxena, S. Mokkapati, P. Parkinson, N. Jiang, Q. Gao, H. H. Tan, and C. Jagadish, “Optically pumped room-temperature GaAs nanowire lasers,” Nat. Photonics 7, 963–968 (2013).
    [Crossref]
  19. D. J. Bergman and M. I. Stockman, “Surface plasmon amplification by stimulated emission of radiation: quantum generation of coherent surface plasmons in nanosystems,” Phys. Rev. Lett. 90, 027402 (2003).
    [Crossref]
  20. M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460, 1110–1112 (2009).
    [Crossref]
  21. R. F. Oulton, V. J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461, 629–632 (2009).
    [Crossref]
  22. R.-M. Ma, R. F. Oulton, V. J. Sorger, and X. Zhang, “Plasmon lasers: coherent light source at molecular scales,” Laser Photon. Rev. 7, 1–21 (2013).
    [Crossref]
  23. Y.-J. Lu, J. Kim, H.-Y. Chen, C. Wu, N. Dabidian, C. E. Sanders, C.-Y. Wang, M.-Y. Lu, B.-H. Li, X. Qiu, W.-H. Chang, L.-J. Chen, G. Shvets, C.-K. Shih, and S. Gwo, “Plasmonic nanolaser using epitaxially grown silver film,” Science 337, 450–453 (2012).
    [Crossref]
  24. I. Rech, A. Ingargiola, R. Spinelli, I. Labanca, S. Marangoni, M. Ghioni, and S. Cova, “Optical crosstalk in single photon avalanche diode arrays: a new complete model,” Opt. Express 16, 8381–8394 (2008).
    [Crossref]
  25. S. Kim, B. Zhang, Z. Wang, J. Fischer, S. Brodbeck, M. Kamp, C. Schneider, S. Höfling, and H. Deng, “Coherent polariton laser,” Phys. Rev. X 6, 011026 (2016).
  26. S. M. Ulrich, C. Gies, S. Ates, J. Wiersig, S. Reitzenstein, C. Hofmann, A. Löffler, A. Forchel, F. Jahnke, and P. Michler, “Photon statistics of semiconductor microcavity lasers,” Phys. Rev. Lett. 98, 043906 (2007).
    [Crossref]
  27. R. Loudon, The Quantum Theory of Light (Oxford University, 2000).
  28. J. M. Smith, G. S. Buller, D. Marshall, A. Miller, and C. C. Button, “Microsecond carrier lifetimes in InGaAsP quantum wells emitting at λ = 1.5  μm,” Appl. Phys. Lett. 80, 1870 (2002).
    [Crossref]
  29. T. Erneux and P. Glorieux, “Slow passage,” in Laser Dynamics (Cambridge University, 2010), pp. 155–171.
  30. J. R. Tredicce, G. L. Lippi, P. Mandel, B. Charasse, A. Chevalier, and B. Picqué, “Critical slowing down at a bifurcation,” Am. J. Phys. 72, 799–809 (2004).
    [Crossref]
  31. W. Scharpf, M. Squicciarini, D. Bromley, C. Green, J. R. Tredicce, and L. M. Narducci, “Experimental observation of a delayed bifurcation at the threshold of an argon laser,” Opt. Commun. 63, 344–348 (1987).
    [Crossref]
  32. F. T. Arecchi, W. Gadomski, R. Meucci, and J. A. Roversi, “Delayed bifurcation at the threshold of a swept gain CO2 laser,” Opt. Commun. 70, 155–160 (1989).
    [Crossref]
  33. A. El Amili, G. Gredat, M. Alouini, I. Sagnes, and F. Bretenaker, “Experimental study of the delayed threshold phenomenon in a class-A VECSEL,” Eur. Phys. J. 58, 10501 (2012).
    [Crossref]
  34. P. P. Baveja, B. Kögel, P. Westbergh, J. S. Gustavsson, Å. Haglund, D. N. Maywar, G. P. Agrawal, and A. Larsson, “Assessment of VCSEL thermal rollover mechanisms from measurements and empirical modeling,” Opt. Express 19, 15490–15505 (2011).
    [Crossref]
  35. Q. Gu, J. S. T. Smalley, J. Shane, O. Bondarenko, and Y. Fainman, “Temperature effects in metal-clad semiconductor nanolasers,” Nanophotonics 4, 26–43 (2015).
    [Crossref]

2016 (1)

S. Kim, B. Zhang, Z. Wang, J. Fischer, S. Brodbeck, M. Kamp, C. Schneider, S. Höfling, and H. Deng, “Coherent polariton laser,” Phys. Rev. X 6, 011026 (2016).

2015 (2)

2013 (3)

R.-M. Ma, R. F. Oulton, V. J. Sorger, and X. Zhang, “Plasmon lasers: coherent light source at molecular scales,” Laser Photon. Rev. 7, 1–21 (2013).
[Crossref]

G. Shambat, S.-R. Kothapalli, J. Provine, T. Sarmiento, J. Harris, S. S. Gambhir, and J. Vučković, “Single-cell photonic nanocavity probes,” Nano Lett. 13, 4999–5005 (2013).
[Crossref]

D. Saxena, S. Mokkapati, P. Parkinson, N. Jiang, Q. Gao, H. H. Tan, and C. Jagadish, “Optically pumped room-temperature GaAs nanowire lasers,” Nat. Photonics 7, 963–968 (2013).
[Crossref]

2012 (3)

M. Khajavikhan, A. Simic, M. Katz, J. H. Lee, B. Slutsky, A. Mizrahi, V. Lomakin, and Y. Fainman, “Thresholdless nanoscale coaxial lasers,” Nature 482, 204–207 (2012).
[Crossref]

Y.-J. Lu, J. Kim, H.-Y. Chen, C. Wu, N. Dabidian, C. E. Sanders, C.-Y. Wang, M.-Y. Lu, B.-H. Li, X. Qiu, W.-H. Chang, L.-J. Chen, G. Shvets, C.-K. Shih, and S. Gwo, “Plasmonic nanolaser using epitaxially grown silver film,” Science 337, 450–453 (2012).
[Crossref]

A. El Amili, G. Gredat, M. Alouini, I. Sagnes, and F. Bretenaker, “Experimental study of the delayed threshold phenomenon in a class-A VECSEL,” Eur. Phys. J. 58, 10501 (2012).
[Crossref]

2011 (3)

P. P. Baveja, B. Kögel, P. Westbergh, J. S. Gustavsson, Å. Haglund, D. N. Maywar, G. P. Agrawal, and A. Larsson, “Assessment of VCSEL thermal rollover mechanisms from measurements and empirical modeling,” Opt. Express 19, 15490–15505 (2011).
[Crossref]

B. Ellis, M. A. Mayer, G. Shambat, T. Sarmiento, J. Harris, E. E. Haller, and J. Vučković, “Ultralow-threshold electrically pumped quantum-dot photonic-crystal nanocavity laser,” Nat. Photonics 5, 297–300 (2011).
[Crossref]

R. Chen, T.-T. D. Tran, K. W. Ng, W. S. Ko, L. C. Chuang, F. G. Sedgwick, and C. Chang-Hasnain, “Nanolasers grown on silicon,” Nat. Photonics 5, 170–175 (2011).
[Crossref]

2010 (3)

D. A. B. Miller, “Are optical transistors the logical next step?” Nat. Photonics 4, 3–5 (2010).
[Crossref]

M. P. Nezhad, A. Simic, O. Bondarenko, B. Slutsky, A. Mizrahi, L. Feng, V. Lomakin, and Y. Fainman, “Room-temperature subwavelength metallo-dielectric lasers,” Nat. Photonics 4, 395–399 (2010).
[Crossref]

R. Hostein, R. Braive, L. Le Gratiet, A. Talneau, G. Beaudoin, I. Robert-Philip, I. Sagnes, and A. Beveratos, “Demonstration of coherent emission from high-β photonic crystal nanolasers at room temperature,” Opt. Lett. 35, 1154–1156 (2010).
[Crossref]

2009 (2)

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460, 1110–1112 (2009).
[Crossref]

R. F. Oulton, V. J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461, 629–632 (2009).
[Crossref]

2008 (1)

2007 (4)

Y.-S. Choi, M. T. Rakher, K. Hennessy, S. Strauf, A. Badolato, P. M. Petroff, D. Bouwmeester, and E. L. Hu, “Evolution of the onset of coherence in a family of photonic crystal nanolasers,” Appl. Phys. Lett. 91, 031108 (2007).
[Crossref]

S. M. Ulrich, C. Gies, S. Ates, J. Wiersig, S. Reitzenstein, C. Hofmann, A. Löffler, A. Forchel, F. Jahnke, and P. Michler, “Photon statistics of semiconductor microcavity lasers,” Phys. Rev. Lett. 98, 043906 (2007).
[Crossref]

M. T. Hill, Y.-S. Oei, B. Smalbrugge, Y. Zhu, T. de Vries, P. J. van Veldhoven, F. W. M. van Otten, T. J. Eijkemans, J. P. Turkiewicz, H. de Waardt, E. J. Geluk, S.-H. Kwon, Y.-H. Lee, R. Nötzel, and M. K. Smit, “Lasing in metallic-coated nanocavities,” Nat. Photonics 1, 589–594 (2007).
[Crossref]

Y. Nakayama, P. J. Pauzauskie, A. Radenovic, R. M. Onorato, R. J. Saykally, J. Liphardt, and P. Yang, “Tunable nanowire nonlinear optical probe,” Nature 447, 1098–1101 (2007).
[Crossref]

2006 (3)

S. Noda, “Seeking the ultimate nanolaser,” Science 314, 260–261 (2006).
[Crossref]

H. Altug, D. Englund, and J. Vučković, “Ultrafast photonic crystal nanocavity laser,” Nat. Phys. 2, 484–488 (2006).
[Crossref]

S. Strauf, K. Hennessy, M. T. Rakher, Y.-S. Choi, A. Badolato, L. C. Andreani, E. L. Hu, P. M. Petroff, and D. Bouwmeester, “Self-tuned quantum dot gain in photonic crystal lasers,” Phys. Rev. Lett. 96, 127404 (2006).
[Crossref]

2004 (2)

H.-G. Park, S.-H. Kim, S.-H. Kwon, Y.-G. Ju, J.-K. Yang, J.-H. Baek, S.-B. Kim, and Y.-H. Lee, “Electrically driven single-cell photonic crystal laser,” Science 305, 1444–1447 (2004).
[Crossref]

J. R. Tredicce, G. L. Lippi, P. Mandel, B. Charasse, A. Chevalier, and B. Picqué, “Critical slowing down at a bifurcation,” Am. J. Phys. 72, 799–809 (2004).
[Crossref]

2003 (2)

M. Lončar, A. Scherer, and Y. Qiu, “Photonic crystal laser sources for chemical detection,” Appl. Phys. Lett. 82, 4648–4650 (2003).
[Crossref]

D. J. Bergman and M. I. Stockman, “Surface plasmon amplification by stimulated emission of radiation: quantum generation of coherent surface plasmons in nanosystems,” Phys. Rev. Lett. 90, 027402 (2003).
[Crossref]

2002 (1)

J. M. Smith, G. S. Buller, D. Marshall, A. Miller, and C. C. Button, “Microsecond carrier lifetimes in InGaAsP quantum wells emitting at λ = 1.5  μm,” Appl. Phys. Lett. 80, 1870 (2002).
[Crossref]

1999 (1)

1989 (1)

F. T. Arecchi, W. Gadomski, R. Meucci, and J. A. Roversi, “Delayed bifurcation at the threshold of a swept gain CO2 laser,” Opt. Commun. 70, 155–160 (1989).
[Crossref]

1987 (1)

W. Scharpf, M. Squicciarini, D. Bromley, C. Green, J. R. Tredicce, and L. M. Narducci, “Experimental observation of a delayed bifurcation at the threshold of an argon laser,” Opt. Commun. 63, 344–348 (1987).
[Crossref]

Agrawal, G. P.

Alouini, M.

A. El Amili, G. Gredat, M. Alouini, I. Sagnes, and F. Bretenaker, “Experimental study of the delayed threshold phenomenon in a class-A VECSEL,” Eur. Phys. J. 58, 10501 (2012).
[Crossref]

Altug, H.

H. Altug, D. Englund, and J. Vučković, “Ultrafast photonic crystal nanocavity laser,” Nat. Phys. 2, 484–488 (2006).
[Crossref]

Andreani, L. C.

S. Strauf, K. Hennessy, M. T. Rakher, Y.-S. Choi, A. Badolato, L. C. Andreani, E. L. Hu, P. M. Petroff, and D. Bouwmeester, “Self-tuned quantum dot gain in photonic crystal lasers,” Phys. Rev. Lett. 96, 127404 (2006).
[Crossref]

Arecchi, F. T.

F. T. Arecchi, W. Gadomski, R. Meucci, and J. A. Roversi, “Delayed bifurcation at the threshold of a swept gain CO2 laser,” Opt. Commun. 70, 155–160 (1989).
[Crossref]

Ates, S.

S. M. Ulrich, C. Gies, S. Ates, J. Wiersig, S. Reitzenstein, C. Hofmann, A. Löffler, A. Forchel, F. Jahnke, and P. Michler, “Photon statistics of semiconductor microcavity lasers,” Phys. Rev. Lett. 98, 043906 (2007).
[Crossref]

Badolato, A.

Y.-S. Choi, M. T. Rakher, K. Hennessy, S. Strauf, A. Badolato, P. M. Petroff, D. Bouwmeester, and E. L. Hu, “Evolution of the onset of coherence in a family of photonic crystal nanolasers,” Appl. Phys. Lett. 91, 031108 (2007).
[Crossref]

S. Strauf, K. Hennessy, M. T. Rakher, Y.-S. Choi, A. Badolato, L. C. Andreani, E. L. Hu, P. M. Petroff, and D. Bouwmeester, “Self-tuned quantum dot gain in photonic crystal lasers,” Phys. Rev. Lett. 96, 127404 (2006).
[Crossref]

Baek, J.-H.

H.-G. Park, S.-H. Kim, S.-H. Kwon, Y.-G. Ju, J.-K. Yang, J.-H. Baek, S.-B. Kim, and Y.-H. Lee, “Electrically driven single-cell photonic crystal laser,” Science 305, 1444–1447 (2004).
[Crossref]

Bakker, R.

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460, 1110–1112 (2009).
[Crossref]

Bartal, G.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461, 629–632 (2009).
[Crossref]

Baveja, P. P.

Beaudoin, G.

Belgrave, A. M.

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460, 1110–1112 (2009).
[Crossref]

Bergman, D. J.

D. J. Bergman and M. I. Stockman, “Surface plasmon amplification by stimulated emission of radiation: quantum generation of coherent surface plasmons in nanosystems,” Phys. Rev. Lett. 90, 027402 (2003).
[Crossref]

Beveratos, A.

Bondarenko, O.

Q. Gu, J. S. T. Smalley, J. Shane, O. Bondarenko, and Y. Fainman, “Temperature effects in metal-clad semiconductor nanolasers,” Nanophotonics 4, 26–43 (2015).
[Crossref]

M. P. Nezhad, A. Simic, O. Bondarenko, B. Slutsky, A. Mizrahi, L. Feng, V. Lomakin, and Y. Fainman, “Room-temperature subwavelength metallo-dielectric lasers,” Nat. Photonics 4, 395–399 (2010).
[Crossref]

Bouwmeester, D.

Y.-S. Choi, M. T. Rakher, K. Hennessy, S. Strauf, A. Badolato, P. M. Petroff, D. Bouwmeester, and E. L. Hu, “Evolution of the onset of coherence in a family of photonic crystal nanolasers,” Appl. Phys. Lett. 91, 031108 (2007).
[Crossref]

S. Strauf, K. Hennessy, M. T. Rakher, Y.-S. Choi, A. Badolato, L. C. Andreani, E. L. Hu, P. M. Petroff, and D. Bouwmeester, “Self-tuned quantum dot gain in photonic crystal lasers,” Phys. Rev. Lett. 96, 127404 (2006).
[Crossref]

Braive, R.

Bretenaker, F.

A. El Amili, G. Gredat, M. Alouini, I. Sagnes, and F. Bretenaker, “Experimental study of the delayed threshold phenomenon in a class-A VECSEL,” Eur. Phys. J. 58, 10501 (2012).
[Crossref]

Brodbeck, S.

S. Kim, B. Zhang, Z. Wang, J. Fischer, S. Brodbeck, M. Kamp, C. Schneider, S. Höfling, and H. Deng, “Coherent polariton laser,” Phys. Rev. X 6, 011026 (2016).

Bromley, D.

W. Scharpf, M. Squicciarini, D. Bromley, C. Green, J. R. Tredicce, and L. M. Narducci, “Experimental observation of a delayed bifurcation at the threshold of an argon laser,” Opt. Commun. 63, 344–348 (1987).
[Crossref]

Buller, G. S.

J. M. Smith, G. S. Buller, D. Marshall, A. Miller, and C. C. Button, “Microsecond carrier lifetimes in InGaAsP quantum wells emitting at λ = 1.5  μm,” Appl. Phys. Lett. 80, 1870 (2002).
[Crossref]

Button, C. C.

J. M. Smith, G. S. Buller, D. Marshall, A. Miller, and C. C. Button, “Microsecond carrier lifetimes in InGaAsP quantum wells emitting at λ = 1.5  μm,” Appl. Phys. Lett. 80, 1870 (2002).
[Crossref]

Canet-Ferrer, J.

Chang, W.-H.

Y.-J. Lu, J. Kim, H.-Y. Chen, C. Wu, N. Dabidian, C. E. Sanders, C.-Y. Wang, M.-Y. Lu, B.-H. Li, X. Qiu, W.-H. Chang, L.-J. Chen, G. Shvets, C.-K. Shih, and S. Gwo, “Plasmonic nanolaser using epitaxially grown silver film,” Science 337, 450–453 (2012).
[Crossref]

Chang-Hasnain, C.

R. Chen, T.-T. D. Tran, K. W. Ng, W. S. Ko, L. C. Chuang, F. G. Sedgwick, and C. Chang-Hasnain, “Nanolasers grown on silicon,” Nat. Photonics 5, 170–175 (2011).
[Crossref]

Charasse, B.

J. R. Tredicce, G. L. Lippi, P. Mandel, B. Charasse, A. Chevalier, and B. Picqué, “Critical slowing down at a bifurcation,” Am. J. Phys. 72, 799–809 (2004).
[Crossref]

Chen, H.-Y.

Y.-J. Lu, J. Kim, H.-Y. Chen, C. Wu, N. Dabidian, C. E. Sanders, C.-Y. Wang, M.-Y. Lu, B.-H. Li, X. Qiu, W.-H. Chang, L.-J. Chen, G. Shvets, C.-K. Shih, and S. Gwo, “Plasmonic nanolaser using epitaxially grown silver film,” Science 337, 450–453 (2012).
[Crossref]

Chen, L.-J.

Y.-J. Lu, J. Kim, H.-Y. Chen, C. Wu, N. Dabidian, C. E. Sanders, C.-Y. Wang, M.-Y. Lu, B.-H. Li, X. Qiu, W.-H. Chang, L.-J. Chen, G. Shvets, C.-K. Shih, and S. Gwo, “Plasmonic nanolaser using epitaxially grown silver film,” Science 337, 450–453 (2012).
[Crossref]

Chen, R.

R. Chen, T.-T. D. Tran, K. W. Ng, W. S. Ko, L. C. Chuang, F. G. Sedgwick, and C. Chang-Hasnain, “Nanolasers grown on silicon,” Nat. Photonics 5, 170–175 (2011).
[Crossref]

Chevalier, A.

J. R. Tredicce, G. L. Lippi, P. Mandel, B. Charasse, A. Chevalier, and B. Picqué, “Critical slowing down at a bifurcation,” Am. J. Phys. 72, 799–809 (2004).
[Crossref]

Choi, Y.-S.

Y.-S. Choi, M. T. Rakher, K. Hennessy, S. Strauf, A. Badolato, P. M. Petroff, D. Bouwmeester, and E. L. Hu, “Evolution of the onset of coherence in a family of photonic crystal nanolasers,” Appl. Phys. Lett. 91, 031108 (2007).
[Crossref]

S. Strauf, K. Hennessy, M. T. Rakher, Y.-S. Choi, A. Badolato, L. C. Andreani, E. L. Hu, P. M. Petroff, and D. Bouwmeester, “Self-tuned quantum dot gain in photonic crystal lasers,” Phys. Rev. Lett. 96, 127404 (2006).
[Crossref]

Chuang, L. C.

R. Chen, T.-T. D. Tran, K. W. Ng, W. S. Ko, L. C. Chuang, F. G. Sedgwick, and C. Chang-Hasnain, “Nanolasers grown on silicon,” Nat. Photonics 5, 170–175 (2011).
[Crossref]

Cova, S.

Dabidian, N.

Y.-J. Lu, J. Kim, H.-Y. Chen, C. Wu, N. Dabidian, C. E. Sanders, C.-Y. Wang, M.-Y. Lu, B.-H. Li, X. Qiu, W.-H. Chang, L.-J. Chen, G. Shvets, C.-K. Shih, and S. Gwo, “Plasmonic nanolaser using epitaxially grown silver film,” Science 337, 450–453 (2012).
[Crossref]

Dai, L.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461, 629–632 (2009).
[Crossref]

de Vries, T.

M. T. Hill, Y.-S. Oei, B. Smalbrugge, Y. Zhu, T. de Vries, P. J. van Veldhoven, F. W. M. van Otten, T. J. Eijkemans, J. P. Turkiewicz, H. de Waardt, E. J. Geluk, S.-H. Kwon, Y.-H. Lee, R. Nötzel, and M. K. Smit, “Lasing in metallic-coated nanocavities,” Nat. Photonics 1, 589–594 (2007).
[Crossref]

de Waardt, H.

M. T. Hill, Y.-S. Oei, B. Smalbrugge, Y. Zhu, T. de Vries, P. J. van Veldhoven, F. W. M. van Otten, T. J. Eijkemans, J. P. Turkiewicz, H. de Waardt, E. J. Geluk, S.-H. Kwon, Y.-H. Lee, R. Nötzel, and M. K. Smit, “Lasing in metallic-coated nanocavities,” Nat. Photonics 1, 589–594 (2007).
[Crossref]

Deng, H.

S. Kim, B. Zhang, Z. Wang, J. Fischer, S. Brodbeck, M. Kamp, C. Schneider, S. Höfling, and H. Deng, “Coherent polariton laser,” Phys. Rev. X 6, 011026 (2016).

Eijkemans, T. J.

M. T. Hill, Y.-S. Oei, B. Smalbrugge, Y. Zhu, T. de Vries, P. J. van Veldhoven, F. W. M. van Otten, T. J. Eijkemans, J. P. Turkiewicz, H. de Waardt, E. J. Geluk, S.-H. Kwon, Y.-H. Lee, R. Nötzel, and M. K. Smit, “Lasing in metallic-coated nanocavities,” Nat. Photonics 1, 589–594 (2007).
[Crossref]

El Amili, A.

A. El Amili, G. Gredat, M. Alouini, I. Sagnes, and F. Bretenaker, “Experimental study of the delayed threshold phenomenon in a class-A VECSEL,” Eur. Phys. J. 58, 10501 (2012).
[Crossref]

Ellis, B.

B. Ellis, M. A. Mayer, G. Shambat, T. Sarmiento, J. Harris, E. E. Haller, and J. Vučković, “Ultralow-threshold electrically pumped quantum-dot photonic-crystal nanocavity laser,” Nat. Photonics 5, 297–300 (2011).
[Crossref]

Englund, D.

H. Altug, D. Englund, and J. Vučković, “Ultrafast photonic crystal nanocavity laser,” Nat. Phys. 2, 484–488 (2006).
[Crossref]

Erneux, T.

T. Erneux and P. Glorieux, “Slow passage,” in Laser Dynamics (Cambridge University, 2010), pp. 155–171.

Fainman, Y.

Q. Gu, J. S. T. Smalley, J. Shane, O. Bondarenko, and Y. Fainman, “Temperature effects in metal-clad semiconductor nanolasers,” Nanophotonics 4, 26–43 (2015).
[Crossref]

M. Khajavikhan, A. Simic, M. Katz, J. H. Lee, B. Slutsky, A. Mizrahi, V. Lomakin, and Y. Fainman, “Thresholdless nanoscale coaxial lasers,” Nature 482, 204–207 (2012).
[Crossref]

M. P. Nezhad, A. Simic, O. Bondarenko, B. Slutsky, A. Mizrahi, L. Feng, V. Lomakin, and Y. Fainman, “Room-temperature subwavelength metallo-dielectric lasers,” Nat. Photonics 4, 395–399 (2010).
[Crossref]

Feng, L.

M. P. Nezhad, A. Simic, O. Bondarenko, B. Slutsky, A. Mizrahi, L. Feng, V. Lomakin, and Y. Fainman, “Room-temperature subwavelength metallo-dielectric lasers,” Nat. Photonics 4, 395–399 (2010).
[Crossref]

Fischer, J.

S. Kim, B. Zhang, Z. Wang, J. Fischer, S. Brodbeck, M. Kamp, C. Schneider, S. Höfling, and H. Deng, “Coherent polariton laser,” Phys. Rev. X 6, 011026 (2016).

Forchel, A.

S. M. Ulrich, C. Gies, S. Ates, J. Wiersig, S. Reitzenstein, C. Hofmann, A. Löffler, A. Forchel, F. Jahnke, and P. Michler, “Photon statistics of semiconductor microcavity lasers,” Phys. Rev. Lett. 98, 043906 (2007).
[Crossref]

Gadomski, W.

F. T. Arecchi, W. Gadomski, R. Meucci, and J. A. Roversi, “Delayed bifurcation at the threshold of a swept gain CO2 laser,” Opt. Commun. 70, 155–160 (1989).
[Crossref]

Gambhir, S. S.

G. Shambat, S.-R. Kothapalli, J. Provine, T. Sarmiento, J. Harris, S. S. Gambhir, and J. Vučković, “Single-cell photonic nanocavity probes,” Nano Lett. 13, 4999–5005 (2013).
[Crossref]

Gao, Q.

D. Saxena, S. Mokkapati, P. Parkinson, N. Jiang, Q. Gao, H. H. Tan, and C. Jagadish, “Optically pumped room-temperature GaAs nanowire lasers,” Nat. Photonics 7, 963–968 (2013).
[Crossref]

Gayral, B.

Geluk, E. J.

M. T. Hill, Y.-S. Oei, B. Smalbrugge, Y. Zhu, T. de Vries, P. J. van Veldhoven, F. W. M. van Otten, T. J. Eijkemans, J. P. Turkiewicz, H. de Waardt, E. J. Geluk, S.-H. Kwon, Y.-H. Lee, R. Nötzel, and M. K. Smit, “Lasing in metallic-coated nanocavities,” Nat. Photonics 1, 589–594 (2007).
[Crossref]

Gerard, J. M.

Ghioni, M.

Gies, C.

S. M. Ulrich, C. Gies, S. Ates, J. Wiersig, S. Reitzenstein, C. Hofmann, A. Löffler, A. Forchel, F. Jahnke, and P. Michler, “Photon statistics of semiconductor microcavity lasers,” Phys. Rev. Lett. 98, 043906 (2007).
[Crossref]

Gladden, C.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461, 629–632 (2009).
[Crossref]

Glorieux, P.

T. Erneux and P. Glorieux, “Slow passage,” in Laser Dynamics (Cambridge University, 2010), pp. 155–171.

Gredat, G.

A. El Amili, G. Gredat, M. Alouini, I. Sagnes, and F. Bretenaker, “Experimental study of the delayed threshold phenomenon in a class-A VECSEL,” Eur. Phys. J. 58, 10501 (2012).
[Crossref]

Green, C.

W. Scharpf, M. Squicciarini, D. Bromley, C. Green, J. R. Tredicce, and L. M. Narducci, “Experimental observation of a delayed bifurcation at the threshold of an argon laser,” Opt. Commun. 63, 344–348 (1987).
[Crossref]

Gu, Q.

Q. Gu, J. S. T. Smalley, J. Shane, O. Bondarenko, and Y. Fainman, “Temperature effects in metal-clad semiconductor nanolasers,” Nanophotonics 4, 26–43 (2015).
[Crossref]

Gustavsson, J. S.

Gwo, S.

Y.-J. Lu, J. Kim, H.-Y. Chen, C. Wu, N. Dabidian, C. E. Sanders, C.-Y. Wang, M.-Y. Lu, B.-H. Li, X. Qiu, W.-H. Chang, L.-J. Chen, G. Shvets, C.-K. Shih, and S. Gwo, “Plasmonic nanolaser using epitaxially grown silver film,” Science 337, 450–453 (2012).
[Crossref]

Haglund, Å.

Haller, E. E.

B. Ellis, M. A. Mayer, G. Shambat, T. Sarmiento, J. Harris, E. E. Haller, and J. Vučković, “Ultralow-threshold electrically pumped quantum-dot photonic-crystal nanocavity laser,” Nat. Photonics 5, 297–300 (2011).
[Crossref]

Harris, J.

G. Shambat, S.-R. Kothapalli, J. Provine, T. Sarmiento, J. Harris, S. S. Gambhir, and J. Vučković, “Single-cell photonic nanocavity probes,” Nano Lett. 13, 4999–5005 (2013).
[Crossref]

B. Ellis, M. A. Mayer, G. Shambat, T. Sarmiento, J. Harris, E. E. Haller, and J. Vučković, “Ultralow-threshold electrically pumped quantum-dot photonic-crystal nanocavity laser,” Nat. Photonics 5, 297–300 (2011).
[Crossref]

Hennessy, K.

Y.-S. Choi, M. T. Rakher, K. Hennessy, S. Strauf, A. Badolato, P. M. Petroff, D. Bouwmeester, and E. L. Hu, “Evolution of the onset of coherence in a family of photonic crystal nanolasers,” Appl. Phys. Lett. 91, 031108 (2007).
[Crossref]

S. Strauf, K. Hennessy, M. T. Rakher, Y.-S. Choi, A. Badolato, L. C. Andreani, E. L. Hu, P. M. Petroff, and D. Bouwmeester, “Self-tuned quantum dot gain in photonic crystal lasers,” Phys. Rev. Lett. 96, 127404 (2006).
[Crossref]

Herz, E.

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460, 1110–1112 (2009).
[Crossref]

Hill, M. T.

M. T. Hill, Y.-S. Oei, B. Smalbrugge, Y. Zhu, T. de Vries, P. J. van Veldhoven, F. W. M. van Otten, T. J. Eijkemans, J. P. Turkiewicz, H. de Waardt, E. J. Geluk, S.-H. Kwon, Y.-H. Lee, R. Nötzel, and M. K. Smit, “Lasing in metallic-coated nanocavities,” Nat. Photonics 1, 589–594 (2007).
[Crossref]

Höfling, S.

S. Kim, B. Zhang, Z. Wang, J. Fischer, S. Brodbeck, M. Kamp, C. Schneider, S. Höfling, and H. Deng, “Coherent polariton laser,” Phys. Rev. X 6, 011026 (2016).

Hofmann, C.

S. M. Ulrich, C. Gies, S. Ates, J. Wiersig, S. Reitzenstein, C. Hofmann, A. Löffler, A. Forchel, F. Jahnke, and P. Michler, “Photon statistics of semiconductor microcavity lasers,” Phys. Rev. Lett. 98, 043906 (2007).
[Crossref]

Hostein, R.

Hu, E. L.

Y.-S. Choi, M. T. Rakher, K. Hennessy, S. Strauf, A. Badolato, P. M. Petroff, D. Bouwmeester, and E. L. Hu, “Evolution of the onset of coherence in a family of photonic crystal nanolasers,” Appl. Phys. Lett. 91, 031108 (2007).
[Crossref]

S. Strauf, K. Hennessy, M. T. Rakher, Y.-S. Choi, A. Badolato, L. C. Andreani, E. L. Hu, P. M. Petroff, and D. Bouwmeester, “Self-tuned quantum dot gain in photonic crystal lasers,” Phys. Rev. Lett. 96, 127404 (2006).
[Crossref]

Ingargiola, A.

Jagadish, C.

D. Saxena, S. Mokkapati, P. Parkinson, N. Jiang, Q. Gao, H. H. Tan, and C. Jagadish, “Optically pumped room-temperature GaAs nanowire lasers,” Nat. Photonics 7, 963–968 (2013).
[Crossref]

Jahnke, F.

S. M. Ulrich, C. Gies, S. Ates, J. Wiersig, S. Reitzenstein, C. Hofmann, A. Löffler, A. Forchel, F. Jahnke, and P. Michler, “Photon statistics of semiconductor microcavity lasers,” Phys. Rev. Lett. 98, 043906 (2007).
[Crossref]

Jiang, N.

D. Saxena, S. Mokkapati, P. Parkinson, N. Jiang, Q. Gao, H. H. Tan, and C. Jagadish, “Optically pumped room-temperature GaAs nanowire lasers,” Nat. Photonics 7, 963–968 (2013).
[Crossref]

Ju, Y.-G.

H.-G. Park, S.-H. Kim, S.-H. Kwon, Y.-G. Ju, J.-K. Yang, J.-H. Baek, S.-B. Kim, and Y.-H. Lee, “Electrically driven single-cell photonic crystal laser,” Science 305, 1444–1447 (2004).
[Crossref]

Kamp, M.

S. Kim, B. Zhang, Z. Wang, J. Fischer, S. Brodbeck, M. Kamp, C. Schneider, S. Höfling, and H. Deng, “Coherent polariton laser,” Phys. Rev. X 6, 011026 (2016).

Katz, M.

M. Khajavikhan, A. Simic, M. Katz, J. H. Lee, B. Slutsky, A. Mizrahi, V. Lomakin, and Y. Fainman, “Thresholdless nanoscale coaxial lasers,” Nature 482, 204–207 (2012).
[Crossref]

Khajavikhan, M.

M. Khajavikhan, A. Simic, M. Katz, J. H. Lee, B. Slutsky, A. Mizrahi, V. Lomakin, and Y. Fainman, “Thresholdless nanoscale coaxial lasers,” Nature 482, 204–207 (2012).
[Crossref]

Kim, J.

Y.-J. Lu, J. Kim, H.-Y. Chen, C. Wu, N. Dabidian, C. E. Sanders, C.-Y. Wang, M.-Y. Lu, B.-H. Li, X. Qiu, W.-H. Chang, L.-J. Chen, G. Shvets, C.-K. Shih, and S. Gwo, “Plasmonic nanolaser using epitaxially grown silver film,” Science 337, 450–453 (2012).
[Crossref]

Kim, S.

S. Kim, B. Zhang, Z. Wang, J. Fischer, S. Brodbeck, M. Kamp, C. Schneider, S. Höfling, and H. Deng, “Coherent polariton laser,” Phys. Rev. X 6, 011026 (2016).

Kim, S.-B.

H.-G. Park, S.-H. Kim, S.-H. Kwon, Y.-G. Ju, J.-K. Yang, J.-H. Baek, S.-B. Kim, and Y.-H. Lee, “Electrically driven single-cell photonic crystal laser,” Science 305, 1444–1447 (2004).
[Crossref]

Kim, S.-H.

H.-G. Park, S.-H. Kim, S.-H. Kwon, Y.-G. Ju, J.-K. Yang, J.-H. Baek, S.-B. Kim, and Y.-H. Lee, “Electrically driven single-cell photonic crystal laser,” Science 305, 1444–1447 (2004).
[Crossref]

Ko, W. S.

R. Chen, T.-T. D. Tran, K. W. Ng, W. S. Ko, L. C. Chuang, F. G. Sedgwick, and C. Chang-Hasnain, “Nanolasers grown on silicon,” Nat. Photonics 5, 170–175 (2011).
[Crossref]

Kögel, B.

Kothapalli, S.-R.

G. Shambat, S.-R. Kothapalli, J. Provine, T. Sarmiento, J. Harris, S. S. Gambhir, and J. Vučković, “Single-cell photonic nanocavity probes,” Nano Lett. 13, 4999–5005 (2013).
[Crossref]

Kwon, S.-H.

M. T. Hill, Y.-S. Oei, B. Smalbrugge, Y. Zhu, T. de Vries, P. J. van Veldhoven, F. W. M. van Otten, T. J. Eijkemans, J. P. Turkiewicz, H. de Waardt, E. J. Geluk, S.-H. Kwon, Y.-H. Lee, R. Nötzel, and M. K. Smit, “Lasing in metallic-coated nanocavities,” Nat. Photonics 1, 589–594 (2007).
[Crossref]

H.-G. Park, S.-H. Kim, S.-H. Kwon, Y.-G. Ju, J.-K. Yang, J.-H. Baek, S.-B. Kim, and Y.-H. Lee, “Electrically driven single-cell photonic crystal laser,” Science 305, 1444–1447 (2004).
[Crossref]

Labanca, I.

Larsson, A.

Le Gratiet, L.

Lee, J. H.

M. Khajavikhan, A. Simic, M. Katz, J. H. Lee, B. Slutsky, A. Mizrahi, V. Lomakin, and Y. Fainman, “Thresholdless nanoscale coaxial lasers,” Nature 482, 204–207 (2012).
[Crossref]

Lee, Y.-H.

M. T. Hill, Y.-S. Oei, B. Smalbrugge, Y. Zhu, T. de Vries, P. J. van Veldhoven, F. W. M. van Otten, T. J. Eijkemans, J. P. Turkiewicz, H. de Waardt, E. J. Geluk, S.-H. Kwon, Y.-H. Lee, R. Nötzel, and M. K. Smit, “Lasing in metallic-coated nanocavities,” Nat. Photonics 1, 589–594 (2007).
[Crossref]

H.-G. Park, S.-H. Kim, S.-H. Kwon, Y.-G. Ju, J.-K. Yang, J.-H. Baek, S.-B. Kim, and Y.-H. Lee, “Electrically driven single-cell photonic crystal laser,” Science 305, 1444–1447 (2004).
[Crossref]

Li, B.-H.

Y.-J. Lu, J. Kim, H.-Y. Chen, C. Wu, N. Dabidian, C. E. Sanders, C.-Y. Wang, M.-Y. Lu, B.-H. Li, X. Qiu, W.-H. Chang, L.-J. Chen, G. Shvets, C.-K. Shih, and S. Gwo, “Plasmonic nanolaser using epitaxially grown silver film,” Science 337, 450–453 (2012).
[Crossref]

Liphardt, J.

Y. Nakayama, P. J. Pauzauskie, A. Radenovic, R. M. Onorato, R. J. Saykally, J. Liphardt, and P. Yang, “Tunable nanowire nonlinear optical probe,” Nature 447, 1098–1101 (2007).
[Crossref]

Lippi, G. L.

J. R. Tredicce, G. L. Lippi, P. Mandel, B. Charasse, A. Chevalier, and B. Picqué, “Critical slowing down at a bifurcation,” Am. J. Phys. 72, 799–809 (2004).
[Crossref]

Llorens, J. M.

Löffler, A.

S. M. Ulrich, C. Gies, S. Ates, J. Wiersig, S. Reitzenstein, C. Hofmann, A. Löffler, A. Forchel, F. Jahnke, and P. Michler, “Photon statistics of semiconductor microcavity lasers,” Phys. Rev. Lett. 98, 043906 (2007).
[Crossref]

Lomakin, V.

M. Khajavikhan, A. Simic, M. Katz, J. H. Lee, B. Slutsky, A. Mizrahi, V. Lomakin, and Y. Fainman, “Thresholdless nanoscale coaxial lasers,” Nature 482, 204–207 (2012).
[Crossref]

M. P. Nezhad, A. Simic, O. Bondarenko, B. Slutsky, A. Mizrahi, L. Feng, V. Lomakin, and Y. Fainman, “Room-temperature subwavelength metallo-dielectric lasers,” Nat. Photonics 4, 395–399 (2010).
[Crossref]

Loncar, M.

M. Lončar, A. Scherer, and Y. Qiu, “Photonic crystal laser sources for chemical detection,” Appl. Phys. Lett. 82, 4648–4650 (2003).
[Crossref]

Loudon, R.

R. Loudon, The Quantum Theory of Light (Oxford University, 2000).

Lu, M.-Y.

Y.-J. Lu, J. Kim, H.-Y. Chen, C. Wu, N. Dabidian, C. E. Sanders, C.-Y. Wang, M.-Y. Lu, B.-H. Li, X. Qiu, W.-H. Chang, L.-J. Chen, G. Shvets, C.-K. Shih, and S. Gwo, “Plasmonic nanolaser using epitaxially grown silver film,” Science 337, 450–453 (2012).
[Crossref]

Lu, Y.-J.

Y.-J. Lu, J. Kim, H.-Y. Chen, C. Wu, N. Dabidian, C. E. Sanders, C.-Y. Wang, M.-Y. Lu, B.-H. Li, X. Qiu, W.-H. Chang, L.-J. Chen, G. Shvets, C.-K. Shih, and S. Gwo, “Plasmonic nanolaser using epitaxially grown silver film,” Science 337, 450–453 (2012).
[Crossref]

Ma, R.-M.

R.-M. Ma, R. F. Oulton, V. J. Sorger, and X. Zhang, “Plasmon lasers: coherent light source at molecular scales,” Laser Photon. Rev. 7, 1–21 (2013).
[Crossref]

R. F. Oulton, V. J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461, 629–632 (2009).
[Crossref]

Mandel, P.

J. R. Tredicce, G. L. Lippi, P. Mandel, B. Charasse, A. Chevalier, and B. Picqué, “Critical slowing down at a bifurcation,” Am. J. Phys. 72, 799–809 (2004).
[Crossref]

Marangoni, S.

Marshall, D.

J. M. Smith, G. S. Buller, D. Marshall, A. Miller, and C. C. Button, “Microsecond carrier lifetimes in InGaAsP quantum wells emitting at λ = 1.5  μm,” Appl. Phys. Lett. 80, 1870 (2002).
[Crossref]

Martínez-Pastor, J. P.

Mayer, M. A.

B. Ellis, M. A. Mayer, G. Shambat, T. Sarmiento, J. Harris, E. E. Haller, and J. Vučković, “Ultralow-threshold electrically pumped quantum-dot photonic-crystal nanocavity laser,” Nat. Photonics 5, 297–300 (2011).
[Crossref]

Maywar, D. N.

Meucci, R.

F. T. Arecchi, W. Gadomski, R. Meucci, and J. A. Roversi, “Delayed bifurcation at the threshold of a swept gain CO2 laser,” Opt. Commun. 70, 155–160 (1989).
[Crossref]

Michler, P.

S. M. Ulrich, C. Gies, S. Ates, J. Wiersig, S. Reitzenstein, C. Hofmann, A. Löffler, A. Forchel, F. Jahnke, and P. Michler, “Photon statistics of semiconductor microcavity lasers,” Phys. Rev. Lett. 98, 043906 (2007).
[Crossref]

Miller, A.

J. M. Smith, G. S. Buller, D. Marshall, A. Miller, and C. C. Button, “Microsecond carrier lifetimes in InGaAsP quantum wells emitting at λ = 1.5  μm,” Appl. Phys. Lett. 80, 1870 (2002).
[Crossref]

Miller, D. A. B.

D. A. B. Miller, “Are optical transistors the logical next step?” Nat. Photonics 4, 3–5 (2010).
[Crossref]

Mizrahi, A.

M. Khajavikhan, A. Simic, M. Katz, J. H. Lee, B. Slutsky, A. Mizrahi, V. Lomakin, and Y. Fainman, “Thresholdless nanoscale coaxial lasers,” Nature 482, 204–207 (2012).
[Crossref]

M. P. Nezhad, A. Simic, O. Bondarenko, B. Slutsky, A. Mizrahi, L. Feng, V. Lomakin, and Y. Fainman, “Room-temperature subwavelength metallo-dielectric lasers,” Nat. Photonics 4, 395–399 (2010).
[Crossref]

Mokkapati, S.

D. Saxena, S. Mokkapati, P. Parkinson, N. Jiang, Q. Gao, H. H. Tan, and C. Jagadish, “Optically pumped room-temperature GaAs nanowire lasers,” Nat. Photonics 7, 963–968 (2013).
[Crossref]

Muñoz-Camúñez, L. E.

Muñoz-Matutano, G.

Nakayama, Y.

Y. Nakayama, P. J. Pauzauskie, A. Radenovic, R. M. Onorato, R. J. Saykally, J. Liphardt, and P. Yang, “Tunable nanowire nonlinear optical probe,” Nature 447, 1098–1101 (2007).
[Crossref]

Narducci, L. M.

W. Scharpf, M. Squicciarini, D. Bromley, C. Green, J. R. Tredicce, and L. M. Narducci, “Experimental observation of a delayed bifurcation at the threshold of an argon laser,” Opt. Commun. 63, 344–348 (1987).
[Crossref]

Narimanov, E. E.

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460, 1110–1112 (2009).
[Crossref]

Nezhad, M. P.

M. P. Nezhad, A. Simic, O. Bondarenko, B. Slutsky, A. Mizrahi, L. Feng, V. Lomakin, and Y. Fainman, “Room-temperature subwavelength metallo-dielectric lasers,” Nat. Photonics 4, 395–399 (2010).
[Crossref]

Ng, K. W.

R. Chen, T.-T. D. Tran, K. W. Ng, W. S. Ko, L. C. Chuang, F. G. Sedgwick, and C. Chang-Hasnain, “Nanolasers grown on silicon,” Nat. Photonics 5, 170–175 (2011).
[Crossref]

Noda, S.

S. Noda, “Seeking the ultimate nanolaser,” Science 314, 260–261 (2006).
[Crossref]

Noginov, M. A.

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460, 1110–1112 (2009).
[Crossref]

Nötzel, R.

M. T. Hill, Y.-S. Oei, B. Smalbrugge, Y. Zhu, T. de Vries, P. J. van Veldhoven, F. W. M. van Otten, T. J. Eijkemans, J. P. Turkiewicz, H. de Waardt, E. J. Geluk, S.-H. Kwon, Y.-H. Lee, R. Nötzel, and M. K. Smit, “Lasing in metallic-coated nanocavities,” Nat. Photonics 1, 589–594 (2007).
[Crossref]

Oei, Y.-S.

M. T. Hill, Y.-S. Oei, B. Smalbrugge, Y. Zhu, T. de Vries, P. J. van Veldhoven, F. W. M. van Otten, T. J. Eijkemans, J. P. Turkiewicz, H. de Waardt, E. J. Geluk, S.-H. Kwon, Y.-H. Lee, R. Nötzel, and M. K. Smit, “Lasing in metallic-coated nanocavities,” Nat. Photonics 1, 589–594 (2007).
[Crossref]

Onorato, R. M.

Y. Nakayama, P. J. Pauzauskie, A. Radenovic, R. M. Onorato, R. J. Saykally, J. Liphardt, and P. Yang, “Tunable nanowire nonlinear optical probe,” Nature 447, 1098–1101 (2007).
[Crossref]

Oulton, R. F.

R.-M. Ma, R. F. Oulton, V. J. Sorger, and X. Zhang, “Plasmon lasers: coherent light source at molecular scales,” Laser Photon. Rev. 7, 1–21 (2013).
[Crossref]

R. F. Oulton, V. J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461, 629–632 (2009).
[Crossref]

Park, H.-G.

H.-G. Park, S.-H. Kim, S.-H. Kwon, Y.-G. Ju, J.-K. Yang, J.-H. Baek, S.-B. Kim, and Y.-H. Lee, “Electrically driven single-cell photonic crystal laser,” Science 305, 1444–1447 (2004).
[Crossref]

Parkinson, P.

D. Saxena, S. Mokkapati, P. Parkinson, N. Jiang, Q. Gao, H. H. Tan, and C. Jagadish, “Optically pumped room-temperature GaAs nanowire lasers,” Nat. Photonics 7, 963–968 (2013).
[Crossref]

Pauzauskie, P. J.

Y. Nakayama, P. J. Pauzauskie, A. Radenovic, R. M. Onorato, R. J. Saykally, J. Liphardt, and P. Yang, “Tunable nanowire nonlinear optical probe,” Nature 447, 1098–1101 (2007).
[Crossref]

Petroff, P. M.

Y.-S. Choi, M. T. Rakher, K. Hennessy, S. Strauf, A. Badolato, P. M. Petroff, D. Bouwmeester, and E. L. Hu, “Evolution of the onset of coherence in a family of photonic crystal nanolasers,” Appl. Phys. Lett. 91, 031108 (2007).
[Crossref]

S. Strauf, K. Hennessy, M. T. Rakher, Y.-S. Choi, A. Badolato, L. C. Andreani, E. L. Hu, P. M. Petroff, and D. Bouwmeester, “Self-tuned quantum dot gain in photonic crystal lasers,” Phys. Rev. Lett. 96, 127404 (2006).
[Crossref]

Picqué, B.

J. R. Tredicce, G. L. Lippi, P. Mandel, B. Charasse, A. Chevalier, and B. Picqué, “Critical slowing down at a bifurcation,” Am. J. Phys. 72, 799–809 (2004).
[Crossref]

Postigo, P. A.

Prieto, I.

Provine, J.

G. Shambat, S.-R. Kothapalli, J. Provine, T. Sarmiento, J. Harris, S. S. Gambhir, and J. Vučković, “Single-cell photonic nanocavity probes,” Nano Lett. 13, 4999–5005 (2013).
[Crossref]

Qiu, X.

Y.-J. Lu, J. Kim, H.-Y. Chen, C. Wu, N. Dabidian, C. E. Sanders, C.-Y. Wang, M.-Y. Lu, B.-H. Li, X. Qiu, W.-H. Chang, L.-J. Chen, G. Shvets, C.-K. Shih, and S. Gwo, “Plasmonic nanolaser using epitaxially grown silver film,” Science 337, 450–453 (2012).
[Crossref]

Qiu, Y.

M. Lončar, A. Scherer, and Y. Qiu, “Photonic crystal laser sources for chemical detection,” Appl. Phys. Lett. 82, 4648–4650 (2003).
[Crossref]

Radenovic, A.

Y. Nakayama, P. J. Pauzauskie, A. Radenovic, R. M. Onorato, R. J. Saykally, J. Liphardt, and P. Yang, “Tunable nanowire nonlinear optical probe,” Nature 447, 1098–1101 (2007).
[Crossref]

Rakher, M. T.

Y.-S. Choi, M. T. Rakher, K. Hennessy, S. Strauf, A. Badolato, P. M. Petroff, D. Bouwmeester, and E. L. Hu, “Evolution of the onset of coherence in a family of photonic crystal nanolasers,” Appl. Phys. Lett. 91, 031108 (2007).
[Crossref]

S. Strauf, K. Hennessy, M. T. Rakher, Y.-S. Choi, A. Badolato, L. C. Andreani, E. L. Hu, P. M. Petroff, and D. Bouwmeester, “Self-tuned quantum dot gain in photonic crystal lasers,” Phys. Rev. Lett. 96, 127404 (2006).
[Crossref]

Rech, I.

Reitzenstein, S.

S. M. Ulrich, C. Gies, S. Ates, J. Wiersig, S. Reitzenstein, C. Hofmann, A. Löffler, A. Forchel, F. Jahnke, and P. Michler, “Photon statistics of semiconductor microcavity lasers,” Phys. Rev. Lett. 98, 043906 (2007).
[Crossref]

Ripalda, J. M.

Robert-Philip, I.

Robles, C.

Roversi, J. A.

F. T. Arecchi, W. Gadomski, R. Meucci, and J. A. Roversi, “Delayed bifurcation at the threshold of a swept gain CO2 laser,” Opt. Commun. 70, 155–160 (1989).
[Crossref]

Sagnes, I.

A. El Amili, G. Gredat, M. Alouini, I. Sagnes, and F. Bretenaker, “Experimental study of the delayed threshold phenomenon in a class-A VECSEL,” Eur. Phys. J. 58, 10501 (2012).
[Crossref]

R. Hostein, R. Braive, L. Le Gratiet, A. Talneau, G. Beaudoin, I. Robert-Philip, I. Sagnes, and A. Beveratos, “Demonstration of coherent emission from high-β photonic crystal nanolasers at room temperature,” Opt. Lett. 35, 1154–1156 (2010).
[Crossref]

Sanders, C. E.

Y.-J. Lu, J. Kim, H.-Y. Chen, C. Wu, N. Dabidian, C. E. Sanders, C.-Y. Wang, M.-Y. Lu, B.-H. Li, X. Qiu, W.-H. Chang, L.-J. Chen, G. Shvets, C.-K. Shih, and S. Gwo, “Plasmonic nanolaser using epitaxially grown silver film,” Science 337, 450–453 (2012).
[Crossref]

Sarmiento, T.

G. Shambat, S.-R. Kothapalli, J. Provine, T. Sarmiento, J. Harris, S. S. Gambhir, and J. Vučković, “Single-cell photonic nanocavity probes,” Nano Lett. 13, 4999–5005 (2013).
[Crossref]

B. Ellis, M. A. Mayer, G. Shambat, T. Sarmiento, J. Harris, E. E. Haller, and J. Vučković, “Ultralow-threshold electrically pumped quantum-dot photonic-crystal nanocavity laser,” Nat. Photonics 5, 297–300 (2011).
[Crossref]

Saxena, D.

D. Saxena, S. Mokkapati, P. Parkinson, N. Jiang, Q. Gao, H. H. Tan, and C. Jagadish, “Optically pumped room-temperature GaAs nanowire lasers,” Nat. Photonics 7, 963–968 (2013).
[Crossref]

Saykally, R. J.

Y. Nakayama, P. J. Pauzauskie, A. Radenovic, R. M. Onorato, R. J. Saykally, J. Liphardt, and P. Yang, “Tunable nanowire nonlinear optical probe,” Nature 447, 1098–1101 (2007).
[Crossref]

Scharpf, W.

W. Scharpf, M. Squicciarini, D. Bromley, C. Green, J. R. Tredicce, and L. M. Narducci, “Experimental observation of a delayed bifurcation at the threshold of an argon laser,” Opt. Commun. 63, 344–348 (1987).
[Crossref]

Scherer, A.

M. Lončar, A. Scherer, and Y. Qiu, “Photonic crystal laser sources for chemical detection,” Appl. Phys. Lett. 82, 4648–4650 (2003).
[Crossref]

Schneider, C.

S. Kim, B. Zhang, Z. Wang, J. Fischer, S. Brodbeck, M. Kamp, C. Schneider, S. Höfling, and H. Deng, “Coherent polariton laser,” Phys. Rev. X 6, 011026 (2016).

Sedgwick, F. G.

R. Chen, T.-T. D. Tran, K. W. Ng, W. S. Ko, L. C. Chuang, F. G. Sedgwick, and C. Chang-Hasnain, “Nanolasers grown on silicon,” Nat. Photonics 5, 170–175 (2011).
[Crossref]

Shalaev, V. M.

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460, 1110–1112 (2009).
[Crossref]

Shambat, G.

G. Shambat, S.-R. Kothapalli, J. Provine, T. Sarmiento, J. Harris, S. S. Gambhir, and J. Vučković, “Single-cell photonic nanocavity probes,” Nano Lett. 13, 4999–5005 (2013).
[Crossref]

B. Ellis, M. A. Mayer, G. Shambat, T. Sarmiento, J. Harris, E. E. Haller, and J. Vučković, “Ultralow-threshold electrically pumped quantum-dot photonic-crystal nanocavity laser,” Nat. Photonics 5, 297–300 (2011).
[Crossref]

Shane, J.

Q. Gu, J. S. T. Smalley, J. Shane, O. Bondarenko, and Y. Fainman, “Temperature effects in metal-clad semiconductor nanolasers,” Nanophotonics 4, 26–43 (2015).
[Crossref]

Shih, C.-K.

Y.-J. Lu, J. Kim, H.-Y. Chen, C. Wu, N. Dabidian, C. E. Sanders, C.-Y. Wang, M.-Y. Lu, B.-H. Li, X. Qiu, W.-H. Chang, L.-J. Chen, G. Shvets, C.-K. Shih, and S. Gwo, “Plasmonic nanolaser using epitaxially grown silver film,” Science 337, 450–453 (2012).
[Crossref]

Shvets, G.

Y.-J. Lu, J. Kim, H.-Y. Chen, C. Wu, N. Dabidian, C. E. Sanders, C.-Y. Wang, M.-Y. Lu, B.-H. Li, X. Qiu, W.-H. Chang, L.-J. Chen, G. Shvets, C.-K. Shih, and S. Gwo, “Plasmonic nanolaser using epitaxially grown silver film,” Science 337, 450–453 (2012).
[Crossref]

Simic, A.

M. Khajavikhan, A. Simic, M. Katz, J. H. Lee, B. Slutsky, A. Mizrahi, V. Lomakin, and Y. Fainman, “Thresholdless nanoscale coaxial lasers,” Nature 482, 204–207 (2012).
[Crossref]

M. P. Nezhad, A. Simic, O. Bondarenko, B. Slutsky, A. Mizrahi, L. Feng, V. Lomakin, and Y. Fainman, “Room-temperature subwavelength metallo-dielectric lasers,” Nat. Photonics 4, 395–399 (2010).
[Crossref]

Slutsky, B.

M. Khajavikhan, A. Simic, M. Katz, J. H. Lee, B. Slutsky, A. Mizrahi, V. Lomakin, and Y. Fainman, “Thresholdless nanoscale coaxial lasers,” Nature 482, 204–207 (2012).
[Crossref]

M. P. Nezhad, A. Simic, O. Bondarenko, B. Slutsky, A. Mizrahi, L. Feng, V. Lomakin, and Y. Fainman, “Room-temperature subwavelength metallo-dielectric lasers,” Nat. Photonics 4, 395–399 (2010).
[Crossref]

Smalbrugge, B.

M. T. Hill, Y.-S. Oei, B. Smalbrugge, Y. Zhu, T. de Vries, P. J. van Veldhoven, F. W. M. van Otten, T. J. Eijkemans, J. P. Turkiewicz, H. de Waardt, E. J. Geluk, S.-H. Kwon, Y.-H. Lee, R. Nötzel, and M. K. Smit, “Lasing in metallic-coated nanocavities,” Nat. Photonics 1, 589–594 (2007).
[Crossref]

Smalley, J. S. T.

Q. Gu, J. S. T. Smalley, J. Shane, O. Bondarenko, and Y. Fainman, “Temperature effects in metal-clad semiconductor nanolasers,” Nanophotonics 4, 26–43 (2015).
[Crossref]

Smit, M. K.

M. T. Hill, Y.-S. Oei, B. Smalbrugge, Y. Zhu, T. de Vries, P. J. van Veldhoven, F. W. M. van Otten, T. J. Eijkemans, J. P. Turkiewicz, H. de Waardt, E. J. Geluk, S.-H. Kwon, Y.-H. Lee, R. Nötzel, and M. K. Smit, “Lasing in metallic-coated nanocavities,” Nat. Photonics 1, 589–594 (2007).
[Crossref]

Smith, J. M.

J. M. Smith, G. S. Buller, D. Marshall, A. Miller, and C. C. Button, “Microsecond carrier lifetimes in InGaAsP quantum wells emitting at λ = 1.5  μm,” Appl. Phys. Lett. 80, 1870 (2002).
[Crossref]

Sorger, V. J.

R.-M. Ma, R. F. Oulton, V. J. Sorger, and X. Zhang, “Plasmon lasers: coherent light source at molecular scales,” Laser Photon. Rev. 7, 1–21 (2013).
[Crossref]

R. F. Oulton, V. J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461, 629–632 (2009).
[Crossref]

Spinelli, R.

Squicciarini, M.

W. Scharpf, M. Squicciarini, D. Bromley, C. Green, J. R. Tredicce, and L. M. Narducci, “Experimental observation of a delayed bifurcation at the threshold of an argon laser,” Opt. Commun. 63, 344–348 (1987).
[Crossref]

Stockman, M. I.

D. J. Bergman and M. I. Stockman, “Surface plasmon amplification by stimulated emission of radiation: quantum generation of coherent surface plasmons in nanosystems,” Phys. Rev. Lett. 90, 027402 (2003).
[Crossref]

Stout, S.

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460, 1110–1112 (2009).
[Crossref]

Strauf, S.

Y.-S. Choi, M. T. Rakher, K. Hennessy, S. Strauf, A. Badolato, P. M. Petroff, D. Bouwmeester, and E. L. Hu, “Evolution of the onset of coherence in a family of photonic crystal nanolasers,” Appl. Phys. Lett. 91, 031108 (2007).
[Crossref]

S. Strauf, K. Hennessy, M. T. Rakher, Y.-S. Choi, A. Badolato, L. C. Andreani, E. L. Hu, P. M. Petroff, and D. Bouwmeester, “Self-tuned quantum dot gain in photonic crystal lasers,” Phys. Rev. Lett. 96, 127404 (2006).
[Crossref]

Suteewong, T.

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460, 1110–1112 (2009).
[Crossref]

Taboada, A. G.

Talneau, A.

Tan, H. H.

D. Saxena, S. Mokkapati, P. Parkinson, N. Jiang, Q. Gao, H. H. Tan, and C. Jagadish, “Optically pumped room-temperature GaAs nanowire lasers,” Nat. Photonics 7, 963–968 (2013).
[Crossref]

Tran, T.-T. D.

R. Chen, T.-T. D. Tran, K. W. Ng, W. S. Ko, L. C. Chuang, F. G. Sedgwick, and C. Chang-Hasnain, “Nanolasers grown on silicon,” Nat. Photonics 5, 170–175 (2011).
[Crossref]

Tredicce, J. R.

J. R. Tredicce, G. L. Lippi, P. Mandel, B. Charasse, A. Chevalier, and B. Picqué, “Critical slowing down at a bifurcation,” Am. J. Phys. 72, 799–809 (2004).
[Crossref]

W. Scharpf, M. Squicciarini, D. Bromley, C. Green, J. R. Tredicce, and L. M. Narducci, “Experimental observation of a delayed bifurcation at the threshold of an argon laser,” Opt. Commun. 63, 344–348 (1987).
[Crossref]

Turkiewicz, J. P.

M. T. Hill, Y.-S. Oei, B. Smalbrugge, Y. Zhu, T. de Vries, P. J. van Veldhoven, F. W. M. van Otten, T. J. Eijkemans, J. P. Turkiewicz, H. de Waardt, E. J. Geluk, S.-H. Kwon, Y.-H. Lee, R. Nötzel, and M. K. Smit, “Lasing in metallic-coated nanocavities,” Nat. Photonics 1, 589–594 (2007).
[Crossref]

Ulrich, S. M.

S. M. Ulrich, C. Gies, S. Ates, J. Wiersig, S. Reitzenstein, C. Hofmann, A. Löffler, A. Forchel, F. Jahnke, and P. Michler, “Photon statistics of semiconductor microcavity lasers,” Phys. Rev. Lett. 98, 043906 (2007).
[Crossref]

van Otten, F. W. M.

M. T. Hill, Y.-S. Oei, B. Smalbrugge, Y. Zhu, T. de Vries, P. J. van Veldhoven, F. W. M. van Otten, T. J. Eijkemans, J. P. Turkiewicz, H. de Waardt, E. J. Geluk, S.-H. Kwon, Y.-H. Lee, R. Nötzel, and M. K. Smit, “Lasing in metallic-coated nanocavities,” Nat. Photonics 1, 589–594 (2007).
[Crossref]

van Veldhoven, P. J.

M. T. Hill, Y.-S. Oei, B. Smalbrugge, Y. Zhu, T. de Vries, P. J. van Veldhoven, F. W. M. van Otten, T. J. Eijkemans, J. P. Turkiewicz, H. de Waardt, E. J. Geluk, S.-H. Kwon, Y.-H. Lee, R. Nötzel, and M. K. Smit, “Lasing in metallic-coated nanocavities,” Nat. Photonics 1, 589–594 (2007).
[Crossref]

Vuckovic, J.

G. Shambat, S.-R. Kothapalli, J. Provine, T. Sarmiento, J. Harris, S. S. Gambhir, and J. Vučković, “Single-cell photonic nanocavity probes,” Nano Lett. 13, 4999–5005 (2013).
[Crossref]

B. Ellis, M. A. Mayer, G. Shambat, T. Sarmiento, J. Harris, E. E. Haller, and J. Vučković, “Ultralow-threshold electrically pumped quantum-dot photonic-crystal nanocavity laser,” Nat. Photonics 5, 297–300 (2011).
[Crossref]

H. Altug, D. Englund, and J. Vučković, “Ultrafast photonic crystal nanocavity laser,” Nat. Phys. 2, 484–488 (2006).
[Crossref]

Wang, C.-Y.

Y.-J. Lu, J. Kim, H.-Y. Chen, C. Wu, N. Dabidian, C. E. Sanders, C.-Y. Wang, M.-Y. Lu, B.-H. Li, X. Qiu, W.-H. Chang, L.-J. Chen, G. Shvets, C.-K. Shih, and S. Gwo, “Plasmonic nanolaser using epitaxially grown silver film,” Science 337, 450–453 (2012).
[Crossref]

Wang, Z.

S. Kim, B. Zhang, Z. Wang, J. Fischer, S. Brodbeck, M. Kamp, C. Schneider, S. Höfling, and H. Deng, “Coherent polariton laser,” Phys. Rev. X 6, 011026 (2016).

Westbergh, P.

Wiersig, J.

S. M. Ulrich, C. Gies, S. Ates, J. Wiersig, S. Reitzenstein, C. Hofmann, A. Löffler, A. Forchel, F. Jahnke, and P. Michler, “Photon statistics of semiconductor microcavity lasers,” Phys. Rev. Lett. 98, 043906 (2007).
[Crossref]

Wiesner, U.

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460, 1110–1112 (2009).
[Crossref]

Wu, C.

Y.-J. Lu, J. Kim, H.-Y. Chen, C. Wu, N. Dabidian, C. E. Sanders, C.-Y. Wang, M.-Y. Lu, B.-H. Li, X. Qiu, W.-H. Chang, L.-J. Chen, G. Shvets, C.-K. Shih, and S. Gwo, “Plasmonic nanolaser using epitaxially grown silver film,” Science 337, 450–453 (2012).
[Crossref]

Yang, J.-K.

H.-G. Park, S.-H. Kim, S.-H. Kwon, Y.-G. Ju, J.-K. Yang, J.-H. Baek, S.-B. Kim, and Y.-H. Lee, “Electrically driven single-cell photonic crystal laser,” Science 305, 1444–1447 (2004).
[Crossref]

Yang, P.

Y. Nakayama, P. J. Pauzauskie, A. Radenovic, R. M. Onorato, R. J. Saykally, J. Liphardt, and P. Yang, “Tunable nanowire nonlinear optical probe,” Nature 447, 1098–1101 (2007).
[Crossref]

Zentgraf, T.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461, 629–632 (2009).
[Crossref]

Zhang, B.

S. Kim, B. Zhang, Z. Wang, J. Fischer, S. Brodbeck, M. Kamp, C. Schneider, S. Höfling, and H. Deng, “Coherent polariton laser,” Phys. Rev. X 6, 011026 (2016).

Zhang, X.

R.-M. Ma, R. F. Oulton, V. J. Sorger, and X. Zhang, “Plasmon lasers: coherent light source at molecular scales,” Laser Photon. Rev. 7, 1–21 (2013).
[Crossref]

R. F. Oulton, V. J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461, 629–632 (2009).
[Crossref]

Zhu, G.

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460, 1110–1112 (2009).
[Crossref]

Zhu, Y.

M. T. Hill, Y.-S. Oei, B. Smalbrugge, Y. Zhu, T. de Vries, P. J. van Veldhoven, F. W. M. van Otten, T. J. Eijkemans, J. P. Turkiewicz, H. de Waardt, E. J. Geluk, S.-H. Kwon, Y.-H. Lee, R. Nötzel, and M. K. Smit, “Lasing in metallic-coated nanocavities,” Nat. Photonics 1, 589–594 (2007).
[Crossref]

Am. J. Phys. (1)

J. R. Tredicce, G. L. Lippi, P. Mandel, B. Charasse, A. Chevalier, and B. Picqué, “Critical slowing down at a bifurcation,” Am. J. Phys. 72, 799–809 (2004).
[Crossref]

Appl. Phys. Lett. (3)

Y.-S. Choi, M. T. Rakher, K. Hennessy, S. Strauf, A. Badolato, P. M. Petroff, D. Bouwmeester, and E. L. Hu, “Evolution of the onset of coherence in a family of photonic crystal nanolasers,” Appl. Phys. Lett. 91, 031108 (2007).
[Crossref]

J. M. Smith, G. S. Buller, D. Marshall, A. Miller, and C. C. Button, “Microsecond carrier lifetimes in InGaAsP quantum wells emitting at λ = 1.5  μm,” Appl. Phys. Lett. 80, 1870 (2002).
[Crossref]

M. Lončar, A. Scherer, and Y. Qiu, “Photonic crystal laser sources for chemical detection,” Appl. Phys. Lett. 82, 4648–4650 (2003).
[Crossref]

Eur. Phys. J. (1)

A. El Amili, G. Gredat, M. Alouini, I. Sagnes, and F. Bretenaker, “Experimental study of the delayed threshold phenomenon in a class-A VECSEL,” Eur. Phys. J. 58, 10501 (2012).
[Crossref]

J. Lightwave Technol. (1)

Laser Photon. Rev. (1)

R.-M. Ma, R. F. Oulton, V. J. Sorger, and X. Zhang, “Plasmon lasers: coherent light source at molecular scales,” Laser Photon. Rev. 7, 1–21 (2013).
[Crossref]

Nano Lett. (1)

G. Shambat, S.-R. Kothapalli, J. Provine, T. Sarmiento, J. Harris, S. S. Gambhir, and J. Vučković, “Single-cell photonic nanocavity probes,” Nano Lett. 13, 4999–5005 (2013).
[Crossref]

Nanophotonics (1)

Q. Gu, J. S. T. Smalley, J. Shane, O. Bondarenko, and Y. Fainman, “Temperature effects in metal-clad semiconductor nanolasers,” Nanophotonics 4, 26–43 (2015).
[Crossref]

Nat. Photonics (6)

D. A. B. Miller, “Are optical transistors the logical next step?” Nat. Photonics 4, 3–5 (2010).
[Crossref]

B. Ellis, M. A. Mayer, G. Shambat, T. Sarmiento, J. Harris, E. E. Haller, and J. Vučković, “Ultralow-threshold electrically pumped quantum-dot photonic-crystal nanocavity laser,” Nat. Photonics 5, 297–300 (2011).
[Crossref]

M. P. Nezhad, A. Simic, O. Bondarenko, B. Slutsky, A. Mizrahi, L. Feng, V. Lomakin, and Y. Fainman, “Room-temperature subwavelength metallo-dielectric lasers,” Nat. Photonics 4, 395–399 (2010).
[Crossref]

M. T. Hill, Y.-S. Oei, B. Smalbrugge, Y. Zhu, T. de Vries, P. J. van Veldhoven, F. W. M. van Otten, T. J. Eijkemans, J. P. Turkiewicz, H. de Waardt, E. J. Geluk, S.-H. Kwon, Y.-H. Lee, R. Nötzel, and M. K. Smit, “Lasing in metallic-coated nanocavities,” Nat. Photonics 1, 589–594 (2007).
[Crossref]

R. Chen, T.-T. D. Tran, K. W. Ng, W. S. Ko, L. C. Chuang, F. G. Sedgwick, and C. Chang-Hasnain, “Nanolasers grown on silicon,” Nat. Photonics 5, 170–175 (2011).
[Crossref]

D. Saxena, S. Mokkapati, P. Parkinson, N. Jiang, Q. Gao, H. H. Tan, and C. Jagadish, “Optically pumped room-temperature GaAs nanowire lasers,” Nat. Photonics 7, 963–968 (2013).
[Crossref]

Nat. Phys. (1)

H. Altug, D. Englund, and J. Vučković, “Ultrafast photonic crystal nanocavity laser,” Nat. Phys. 2, 484–488 (2006).
[Crossref]

Nature (4)

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460, 1110–1112 (2009).
[Crossref]

R. F. Oulton, V. J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461, 629–632 (2009).
[Crossref]

M. Khajavikhan, A. Simic, M. Katz, J. H. Lee, B. Slutsky, A. Mizrahi, V. Lomakin, and Y. Fainman, “Thresholdless nanoscale coaxial lasers,” Nature 482, 204–207 (2012).
[Crossref]

Y. Nakayama, P. J. Pauzauskie, A. Radenovic, R. M. Onorato, R. J. Saykally, J. Liphardt, and P. Yang, “Tunable nanowire nonlinear optical probe,” Nature 447, 1098–1101 (2007).
[Crossref]

Opt. Commun. (2)

W. Scharpf, M. Squicciarini, D. Bromley, C. Green, J. R. Tredicce, and L. M. Narducci, “Experimental observation of a delayed bifurcation at the threshold of an argon laser,” Opt. Commun. 63, 344–348 (1987).
[Crossref]

F. T. Arecchi, W. Gadomski, R. Meucci, and J. A. Roversi, “Delayed bifurcation at the threshold of a swept gain CO2 laser,” Opt. Commun. 70, 155–160 (1989).
[Crossref]

Opt. Express (2)

Opt. Lett. (1)

Optica (1)

Phys. Rev. Lett. (3)

S. M. Ulrich, C. Gies, S. Ates, J. Wiersig, S. Reitzenstein, C. Hofmann, A. Löffler, A. Forchel, F. Jahnke, and P. Michler, “Photon statistics of semiconductor microcavity lasers,” Phys. Rev. Lett. 98, 043906 (2007).
[Crossref]

D. J. Bergman and M. I. Stockman, “Surface plasmon amplification by stimulated emission of radiation: quantum generation of coherent surface plasmons in nanosystems,” Phys. Rev. Lett. 90, 027402 (2003).
[Crossref]

S. Strauf, K. Hennessy, M. T. Rakher, Y.-S. Choi, A. Badolato, L. C. Andreani, E. L. Hu, P. M. Petroff, and D. Bouwmeester, “Self-tuned quantum dot gain in photonic crystal lasers,” Phys. Rev. Lett. 96, 127404 (2006).
[Crossref]

Phys. Rev. X (1)

S. Kim, B. Zhang, Z. Wang, J. Fischer, S. Brodbeck, M. Kamp, C. Schneider, S. Höfling, and H. Deng, “Coherent polariton laser,” Phys. Rev. X 6, 011026 (2016).

Science (3)

Y.-J. Lu, J. Kim, H.-Y. Chen, C. Wu, N. Dabidian, C. E. Sanders, C.-Y. Wang, M.-Y. Lu, B.-H. Li, X. Qiu, W.-H. Chang, L.-J. Chen, G. Shvets, C.-K. Shih, and S. Gwo, “Plasmonic nanolaser using epitaxially grown silver film,” Science 337, 450–453 (2012).
[Crossref]

H.-G. Park, S.-H. Kim, S.-H. Kwon, Y.-G. Ju, J.-K. Yang, J.-H. Baek, S.-B. Kim, and Y.-H. Lee, “Electrically driven single-cell photonic crystal laser,” Science 305, 1444–1447 (2004).
[Crossref]

S. Noda, “Seeking the ultimate nanolaser,” Science 314, 260–261 (2006).
[Crossref]

Other (2)

R. Loudon, The Quantum Theory of Light (Oxford University, 2000).

T. Erneux and P. Glorieux, “Slow passage,” in Laser Dynamics (Cambridge University, 2010), pp. 155–171.

Supplementary Material (1)

NameDescription
» Supplement 1: PDF (828 KB)      Supplementary Material

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

(a) A schematic of the fabricated metallo-dielectric nanolaser: 300 nm of multiple quantum wells gain medium is surrounded by 100 nm of oxide, which is covered by 300 nm of silver. (b) and (c) SEM images of the nanolaser after (b) reactive ion etching and (c) silver deposition. (d) Normalized spectral evolution of our high-β nanolaser indicates a broadband spontaneous emission spectrum at low pump intensities and a distinct lasing peak (1421 nm) accompanied by a nonlasing mode (1414 nm) at high pump intensities.

Fig. 2.
Fig. 2.

(a) LL-curve: experimental (circles) and theoretical (dashed line) output power of the nanolaser as functions of input pump intensity. The theoretical LL-curve is generated by fitting the experimental data with a rate-equation model. The SE factor β is fitted to be 0.25. (b) The evolution of the nanolaser’s second-order intensity correlation function at zero delay g2(0), which confirms lasing as it approaches unity at high pump intensities. It decays at low pump intensities because the coherence time drops below the detection limit of our setup. (c) The experimental FWHM of the nanolaser and pump laser g2(τ) pulses as functions of the pump intensity. The FWHM narrows below the threshold due to the increasing radiative recombination rate as stimulated emission increases in fraction. Above the threshold, the DTP or DH leads to broadening of the FWHM until self-heating dominates beyond 12.5  kW/mm2 of pump intensity, at which point width narrowing is again observed. The inset plots the theoretical FWHM simulated with a rate-equation model without considering self-heating.

Fig. 3.
Fig. 3.

(a)–(c) Measured histograms at pump intensities labeled as I, II, and III in Fig. 2(b), corresponding to the SE, ASE, and lasing regimes of the nanolaser. (d)–(f) are the same as (a)–(c) but with the nonzero-delay pulses overlaid on top of the zero-delay pulses. In the SE regimes (a) and (d), the coherence time of the source is too short to be resolved by the photodetectors, resulting in the disappearance of the photon-bunching peak. In the ASE regimes (b) and (e), the coherence time lengthens and the photon-bunching peak emerges, indicating that the emission is partially incoherent. The photon-bunching peak disappears in (c) and (f) eventually when the nanolaser emission becomes fully coherent at high pump intensities. Additionally, the pulse FWHM varies at different emission regimes, with the broadest width appearing in the SE regime.

Fig. 4.
Fig. 4.

(a)–(e), Normalized output photon, carrier, and pump (injection) photon densities as functions of time at peak pump intensities Ipeak, (a) far below threshold, (b) slightly below threshold, (c) slightly above threshold, and (d) and (e) far above threshold. The black dashed lines and labels t1 and t2 in (c), (d), and (e) indicate when the pump pulse crosses Ith. The output photon pulse follows the shape of the pump pulse in (a) the SE regime, but narrows as (b) the pump intensity increases. In the far below threshold regime, the narrowing rate is predominantly influenced by the SE lifetime. (c)–(e) Above the threshold, the DTP-induced DH is observed, truncating part of the photon pulse (see the blue shaded regions), which leads to an asymmetrical pulse shape. As the pump intensity increases above the threshold, the pump pulse crosses the threshold at a smaller t1 and the DH effect trims away less of the output (i.e., blue shaded regions reduce in area), leading to pulse broadening. (f)–(j) The normalized autocorrelations g2(τ), of the photon pulses shown in (a)–(e). The cross correlations of neighboring photon pulses are identical to the autocorrelations, but are located at τn=n/Rrep. By definition, g2(τ) pulses are symmetrical, but their FWHM is proportional to those of the output photon pulses and, therefore, retain the width information of the output photon pulse. The FWHM of the pulses shown are (f) 17.32, (g) 9.86, (h) 5.38, (i) 9.94, and (j) 13.38 [ns].

Metrics