Abstract

Due to the high spontaneous emission coupled into the resonance mode in metallic nanolasers, there has been a debate concerning the coherence properties of this family of light sources. The second-order coherence function can unambiguously determine the nature of a given radiation. In this paper, an approach to measure the second-order coherence function for broad linewidth sources in the near-infrared telecommunication band is established based on a modified Hanbury Brown and Twiss configuration. Using this setup, it is shown that metallic coaxial and disk-shaped nanolasers with InGaAsP multiple quantum-well gain systems are indeed capable of generating coherent radiation.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Thresholdless quantum dot nanolaser

Yasutomo Ota, Masahiro Kakuda, Katsuyuki Watanabe, Satoshi Iwamoto, and Yasuhiko Arakawa
Opt. Express 25(17) 19981-19994 (2017)

Subwavelength semiconductor lasers for dense chip-scale integration

Qing Gu, Joseph S. T. Smalley, Maziar P. Nezhad, Aleksandar Simic, Jin Hyoung Lee, Michael Katz, Olesya Bondarenko, Boris Slutsky, Amit Mizrahi, Vitaliy Lomakin, and Yeshaiahu Fainman
Adv. Opt. Photon. 6(1) 1-56 (2014)

Ultrafast partial measurement of fourth-order coherence by HBT interferometry of upconversion-based autocorrelation

Alex Hayat, Amir Nevet, and Meir Orenstein
Opt. Lett. 35(5) 793-795 (2010)

References

  • View by:
  • |
  • |
  • |

  1. M. T. Hill, Y.-S. Oei, B. Smalbrugge, Y. Zhu, T. de Vries, P. J. van Veldhoven, F. W. M. van Otten, T. J. Eijkemans, J. P. Turkiewicz, H. de Waardt, E. J. Geluk, S.-H. Kwon, Y.-H. Lee, R. Nötzel, and M. K. Smit, “Lasing in metallic-coated nanocavities,” Nat. Photonics 1, 589–594 (2007).
    [Crossref]
  2. B. Min, E. Ostby, V. Sorger, E. Ulin-Avila, L. Yang, X. Zhang, and K. Vahala, “High-Q surface-plasmon-polariton whispering-gallery microcavity,” Nature 457, 455–458 (2009).
    [Crossref]
  3. R. F. Oulton, V. J. Sorger, T. Zentgraf, R. M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461, 629–632 (2009).
    [Crossref]
  4. M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, B. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460, 1110–1112 (2009).
    [Crossref]
  5. M. T. Hill, M. Marell, E. S. P. Leong, B. Smalbrugge, Y. Zhu, M. Sun, P. J. van Veldhoven, E. J. Geluk, F. Karouta, Y.-S. Oei, R. Nötzel, C.-Z. Ning, and M. K. Smit, “Lasing in metal-insulator-metal sub-wavelength plasmonic waveguides,” Opt. Express 17, 11107–11112 (2009).
    [Crossref]
  6. C. Walther, G. Scalari, M. I. Amanti, M. Beck, and J. Faist, “Microcavity laser oscillating in a circuit-based resonator,” Science 327, 1495–1497 (2010).
    [Crossref]
  7. M. P. Nezhad, A. Simic, O. Bondarenko, B. Slutsky, A. Mizrahi, L. Feng, V. Lomakin, and Y. Fainman, “Room-temperature subwavelength metallo-dielectric lasers,” Nat. Photonics 4, 395–399 (2010).
    [Crossref]
  8. K. Yu, A. Lakhani, and M. C. Wu, “Subwavelength metal-optic semiconductor nanopatch lasers,” Opt. Express 18, 8790–8799 (2010).
    [Crossref]
  9. S.-H. Kwon, J.-H. Kang, C. Seassal, S.-K. Kim, P. Regreny, Y.-H. Lee, C. M. Liber, and H.-G. Park, “Subwavelength plasmonic lasing from a semiconductor nanodisk with silver nanopan cavity,” Nano Lett. 10, 3679–3683 (2010).
    [Crossref]
  10. K. Ding, C. Liu, L. J. Yin, M. T. Hill, M. J. H. Marell, P. J. van Veldhoven, R. Nötzel, and C. Z. Ning, “Room-temperature continuous wave lasing in deep-subwavelength metallic cavities under electrical injection,” Phys. Rev. B 85, 041304(R) (2012).
    [Crossref]
  11. M. Khajavikhan, A. Simic, M. Katz, J. H. Lee, B. Slutsky, A. Mizrahi, V. Lomakin, and Y. Fainman, “Thresholdless nanoscale coaxial lasers,” Nature 482, 204–207 (2012).
    [Crossref]
  12. Y.-J. Lu, J. Kim, H.-Y. Chen, C. Wu, N. Dabidian, C. E. Sanders, C.-Y. Wang, M.-Y. Lu, B.-H. Li, X. Qiu, W.-H. Chang, L.-J. Chen, G. Shvets, C.-K. Shih, and S. Gwo, “Plasmonic nanolaser using epitaxial grown silver film,” Science 337, 450–453 (2012).
    [Crossref]
  13. T. P. H. Sidiropoulos, R. Röder, S. Geburt, O. Hess, S. A. Maier, C. Ronning, and R. F. Oulton, “Ultrafast plasmonic nanowire lasers near the surface plasmon frequency,” Nat. Phys. 10, 870–876 (2014).
    [Crossref]
  14. A. Yang, T. B. Hoang, M. Dridi, C. Deeb, M. H. Mikkelsen, G. C. Schatz, and T. W. Odom, “Real-time tunable lasing from plasmonic nanocavity arrays,” Nat. Commun. 6, 6939 (2015).
    [Crossref]
  15. S. Wu, S. Buckley, J. R. Schaibley, L. Feng, J. Yan, D. G. Mandrus, F. Hatami, W. Yao, J. Vučković, A. Majumdar, and X. Xu, “Monolayer semiconductor nanocavity lasers with ultralow thresholds,” Nature 520, 69–72 (2015).
    [Crossref]
  16. K. Ding and C. Z. Ning, “Metallic subwavelength-cavity semiconductor nanolasers,” Light Sci. Appl. 1, e20 (2012).
    [Crossref]
  17. P. R. Rice and H. J. Carmichael, “Photon statistics of a cavity-QED laser: a comment on the laser-phase-transition analogy,” Phys. Rev. A 50, 4318–4329 (1994).
    [Crossref]
  18. W. W. Chow, F. Jahnke, and C. Gies, “Emission properties of nanolasers during the transition to lasing,” Light Sci. Appl. 3, e201 (2014).
    [Crossref]
  19. S. Strauf, K. Hennessy, M. T. Rakher, Y.-S. Choi, A. Badolato, L. C. Andreani, E. L. Hu, P. M. Petroff, and D. Bouwmeester, “Self-tuned quantum dot gain in photonic crystal lasers,” Phys. Rev. Lett. 96, 127404 (2006).
    [Crossref]
  20. I. Prieto, J. M. Llorens, L. E. Muñoz-Camúñez, A. G. Taboada, J. Canet-Ferrer, J. M. Ripalda, C. Robles, G. Muñoz-Matutano, J. P. Martínez-Pastor, and P. A. Postigo, “Near thresholdless laser operation at room temperature,” Optica 2, 66–69 (2015).
    [Crossref]
  21. R. Hanbury Brown and R. Q. Twiss, “Correlation between photons in two coherent beams of light,” Nature 177, 27–29 (1956).
    [Crossref]
  22. Y.-S. Choi, M. T. Rakher, K. Hennessy, S. Strauf, A. Badolato, P. M. Petroff, D. Bouwmeester, and E. L. Hu, “Evolution of the onset of coherence in a family of photonic crystal nanolasers,” Appl. Phys. Lett. 91, 031108 (2007).
    [Crossref]
  23. R. Hostein, R. Braive, L. Le Gratiet, A. Talneau, G. Beaudoin, I. Robert-Philip, I. Sagnes, and A. Beveratos, “Demonstration of coherent emission from high-β photonic crystal nanolasers at room temperature,” Opt. Lett. 35, 1154–1156 (2010).
    [Crossref]
  24. A. Lebreton, I. Abram, R. Braive, I. Sagnes, I. Robert-Philip, and A. Beveratos, “Unequivocal differentiation of coherent and chaotic light through interferometric photon correlation measurements,” Phys. Rev. Lett. 110, 163603 (2013).
    [Crossref]
  25. Y. Ota, K. Watanabe, S. Iwamoto, and Y. Arakawa, “Measuring the second-order coherence of a nanolaser by intracavity frequency doubling,” Phys. Rev. A 89, 023824 (2014).
    [Crossref]
  26. J. Wiersig, C. Gies, F. Jahnke, M. Aßmann, T. Berstermann, M. Bayer, C. Kistner, S. Reitzenstein, C. Schneider, S. Höfling, A. Forchel, C. Kruse, J. Kalden, and D. Hommel, “Direct observation of correlations between individual photon emission events of a microcavity laser,” Nature 460, 245–249 (2009).
    [Crossref]
  27. D. G. Deppe, M. Li, and X. Yang, “Metal quenching of radiative emission in metal-clad nanolasers,” in IEEE Photonics Conference (IPC), Burlingame, California, 2012.
  28. S.-W. Chang and S. L. Chuang, “Fundamental formulation for plasmonic nanolasers,” IEEE J. Quantum Electron. 45, 1014–1023 (2009).
    [Crossref]
  29. C. T. Santis, S. T. Steger, Y. Vilenchik, A. Vasilyev, and A. Yariv, “High-coherence semiconductor lasers based on integral high-Q resonators in hybrid Si/III-V platforms,” Proc. Natl. Acad. Sci. U.S.A. 111, 2879–2884 (2014).
    [Crossref]
  30. R. Loudon, The Quantum Theory of Light, 3rd ed. (Oxford University, 2000).
  31. L. Mandel and E. Wolf, “Coherence properties of optical fields,” Rev. Mod. Phys. 37, 231–287 (1965).
    [Crossref]
  32. O. Svelto, Principles of Lasers, 5th ed. (Springer, 2010).
  33. W. E. Hayenga, H. Garcia-Gracia, H. Hodaei, Y. Fainman, and M. Khajavikhan, “Metallic coaxial nanolasers,” Advances in Physics: X 1, 262–275 (2016).
    [Crossref]
  34. M. Blazek, S. Hartmann, A. Molitor, and W. Elsaesser, “Unifying intensity noise and second-order coherence properties of amplified spontaneous emission sources,” Opt. Lett. 36, 3455–3457 (2011).
    [Crossref]

2016 (1)

W. E. Hayenga, H. Garcia-Gracia, H. Hodaei, Y. Fainman, and M. Khajavikhan, “Metallic coaxial nanolasers,” Advances in Physics: X 1, 262–275 (2016).
[Crossref]

2015 (3)

I. Prieto, J. M. Llorens, L. E. Muñoz-Camúñez, A. G. Taboada, J. Canet-Ferrer, J. M. Ripalda, C. Robles, G. Muñoz-Matutano, J. P. Martínez-Pastor, and P. A. Postigo, “Near thresholdless laser operation at room temperature,” Optica 2, 66–69 (2015).
[Crossref]

A. Yang, T. B. Hoang, M. Dridi, C. Deeb, M. H. Mikkelsen, G. C. Schatz, and T. W. Odom, “Real-time tunable lasing from plasmonic nanocavity arrays,” Nat. Commun. 6, 6939 (2015).
[Crossref]

S. Wu, S. Buckley, J. R. Schaibley, L. Feng, J. Yan, D. G. Mandrus, F. Hatami, W. Yao, J. Vučković, A. Majumdar, and X. Xu, “Monolayer semiconductor nanocavity lasers with ultralow thresholds,” Nature 520, 69–72 (2015).
[Crossref]

2014 (4)

T. P. H. Sidiropoulos, R. Röder, S. Geburt, O. Hess, S. A. Maier, C. Ronning, and R. F. Oulton, “Ultrafast plasmonic nanowire lasers near the surface plasmon frequency,” Nat. Phys. 10, 870–876 (2014).
[Crossref]

W. W. Chow, F. Jahnke, and C. Gies, “Emission properties of nanolasers during the transition to lasing,” Light Sci. Appl. 3, e201 (2014).
[Crossref]

Y. Ota, K. Watanabe, S. Iwamoto, and Y. Arakawa, “Measuring the second-order coherence of a nanolaser by intracavity frequency doubling,” Phys. Rev. A 89, 023824 (2014).
[Crossref]

C. T. Santis, S. T. Steger, Y. Vilenchik, A. Vasilyev, and A. Yariv, “High-coherence semiconductor lasers based on integral high-Q resonators in hybrid Si/III-V platforms,” Proc. Natl. Acad. Sci. U.S.A. 111, 2879–2884 (2014).
[Crossref]

2013 (1)

A. Lebreton, I. Abram, R. Braive, I. Sagnes, I. Robert-Philip, and A. Beveratos, “Unequivocal differentiation of coherent and chaotic light through interferometric photon correlation measurements,” Phys. Rev. Lett. 110, 163603 (2013).
[Crossref]

2012 (4)

K. Ding, C. Liu, L. J. Yin, M. T. Hill, M. J. H. Marell, P. J. van Veldhoven, R. Nötzel, and C. Z. Ning, “Room-temperature continuous wave lasing in deep-subwavelength metallic cavities under electrical injection,” Phys. Rev. B 85, 041304(R) (2012).
[Crossref]

M. Khajavikhan, A. Simic, M. Katz, J. H. Lee, B. Slutsky, A. Mizrahi, V. Lomakin, and Y. Fainman, “Thresholdless nanoscale coaxial lasers,” Nature 482, 204–207 (2012).
[Crossref]

Y.-J. Lu, J. Kim, H.-Y. Chen, C. Wu, N. Dabidian, C. E. Sanders, C.-Y. Wang, M.-Y. Lu, B.-H. Li, X. Qiu, W.-H. Chang, L.-J. Chen, G. Shvets, C.-K. Shih, and S. Gwo, “Plasmonic nanolaser using epitaxial grown silver film,” Science 337, 450–453 (2012).
[Crossref]

K. Ding and C. Z. Ning, “Metallic subwavelength-cavity semiconductor nanolasers,” Light Sci. Appl. 1, e20 (2012).
[Crossref]

2011 (1)

2010 (5)

R. Hostein, R. Braive, L. Le Gratiet, A. Talneau, G. Beaudoin, I. Robert-Philip, I. Sagnes, and A. Beveratos, “Demonstration of coherent emission from high-β photonic crystal nanolasers at room temperature,” Opt. Lett. 35, 1154–1156 (2010).
[Crossref]

C. Walther, G. Scalari, M. I. Amanti, M. Beck, and J. Faist, “Microcavity laser oscillating in a circuit-based resonator,” Science 327, 1495–1497 (2010).
[Crossref]

M. P. Nezhad, A. Simic, O. Bondarenko, B. Slutsky, A. Mizrahi, L. Feng, V. Lomakin, and Y. Fainman, “Room-temperature subwavelength metallo-dielectric lasers,” Nat. Photonics 4, 395–399 (2010).
[Crossref]

K. Yu, A. Lakhani, and M. C. Wu, “Subwavelength metal-optic semiconductor nanopatch lasers,” Opt. Express 18, 8790–8799 (2010).
[Crossref]

S.-H. Kwon, J.-H. Kang, C. Seassal, S.-K. Kim, P. Regreny, Y.-H. Lee, C. M. Liber, and H.-G. Park, “Subwavelength plasmonic lasing from a semiconductor nanodisk with silver nanopan cavity,” Nano Lett. 10, 3679–3683 (2010).
[Crossref]

2009 (6)

B. Min, E. Ostby, V. Sorger, E. Ulin-Avila, L. Yang, X. Zhang, and K. Vahala, “High-Q surface-plasmon-polariton whispering-gallery microcavity,” Nature 457, 455–458 (2009).
[Crossref]

R. F. Oulton, V. J. Sorger, T. Zentgraf, R. M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461, 629–632 (2009).
[Crossref]

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, B. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460, 1110–1112 (2009).
[Crossref]

M. T. Hill, M. Marell, E. S. P. Leong, B. Smalbrugge, Y. Zhu, M. Sun, P. J. van Veldhoven, E. J. Geluk, F. Karouta, Y.-S. Oei, R. Nötzel, C.-Z. Ning, and M. K. Smit, “Lasing in metal-insulator-metal sub-wavelength plasmonic waveguides,” Opt. Express 17, 11107–11112 (2009).
[Crossref]

J. Wiersig, C. Gies, F. Jahnke, M. Aßmann, T. Berstermann, M. Bayer, C. Kistner, S. Reitzenstein, C. Schneider, S. Höfling, A. Forchel, C. Kruse, J. Kalden, and D. Hommel, “Direct observation of correlations between individual photon emission events of a microcavity laser,” Nature 460, 245–249 (2009).
[Crossref]

S.-W. Chang and S. L. Chuang, “Fundamental formulation for plasmonic nanolasers,” IEEE J. Quantum Electron. 45, 1014–1023 (2009).
[Crossref]

2007 (2)

Y.-S. Choi, M. T. Rakher, K. Hennessy, S. Strauf, A. Badolato, P. M. Petroff, D. Bouwmeester, and E. L. Hu, “Evolution of the onset of coherence in a family of photonic crystal nanolasers,” Appl. Phys. Lett. 91, 031108 (2007).
[Crossref]

M. T. Hill, Y.-S. Oei, B. Smalbrugge, Y. Zhu, T. de Vries, P. J. van Veldhoven, F. W. M. van Otten, T. J. Eijkemans, J. P. Turkiewicz, H. de Waardt, E. J. Geluk, S.-H. Kwon, Y.-H. Lee, R. Nötzel, and M. K. Smit, “Lasing in metallic-coated nanocavities,” Nat. Photonics 1, 589–594 (2007).
[Crossref]

2006 (1)

S. Strauf, K. Hennessy, M. T. Rakher, Y.-S. Choi, A. Badolato, L. C. Andreani, E. L. Hu, P. M. Petroff, and D. Bouwmeester, “Self-tuned quantum dot gain in photonic crystal lasers,” Phys. Rev. Lett. 96, 127404 (2006).
[Crossref]

1994 (1)

P. R. Rice and H. J. Carmichael, “Photon statistics of a cavity-QED laser: a comment on the laser-phase-transition analogy,” Phys. Rev. A 50, 4318–4329 (1994).
[Crossref]

1965 (1)

L. Mandel and E. Wolf, “Coherence properties of optical fields,” Rev. Mod. Phys. 37, 231–287 (1965).
[Crossref]

1956 (1)

R. Hanbury Brown and R. Q. Twiss, “Correlation between photons in two coherent beams of light,” Nature 177, 27–29 (1956).
[Crossref]

Abram, I.

A. Lebreton, I. Abram, R. Braive, I. Sagnes, I. Robert-Philip, and A. Beveratos, “Unequivocal differentiation of coherent and chaotic light through interferometric photon correlation measurements,” Phys. Rev. Lett. 110, 163603 (2013).
[Crossref]

Amanti, M. I.

C. Walther, G. Scalari, M. I. Amanti, M. Beck, and J. Faist, “Microcavity laser oscillating in a circuit-based resonator,” Science 327, 1495–1497 (2010).
[Crossref]

Andreani, L. C.

S. Strauf, K. Hennessy, M. T. Rakher, Y.-S. Choi, A. Badolato, L. C. Andreani, E. L. Hu, P. M. Petroff, and D. Bouwmeester, “Self-tuned quantum dot gain in photonic crystal lasers,” Phys. Rev. Lett. 96, 127404 (2006).
[Crossref]

Arakawa, Y.

Y. Ota, K. Watanabe, S. Iwamoto, and Y. Arakawa, “Measuring the second-order coherence of a nanolaser by intracavity frequency doubling,” Phys. Rev. A 89, 023824 (2014).
[Crossref]

Aßmann, M.

J. Wiersig, C. Gies, F. Jahnke, M. Aßmann, T. Berstermann, M. Bayer, C. Kistner, S. Reitzenstein, C. Schneider, S. Höfling, A. Forchel, C. Kruse, J. Kalden, and D. Hommel, “Direct observation of correlations between individual photon emission events of a microcavity laser,” Nature 460, 245–249 (2009).
[Crossref]

Badolato, A.

Y.-S. Choi, M. T. Rakher, K. Hennessy, S. Strauf, A. Badolato, P. M. Petroff, D. Bouwmeester, and E. L. Hu, “Evolution of the onset of coherence in a family of photonic crystal nanolasers,” Appl. Phys. Lett. 91, 031108 (2007).
[Crossref]

S. Strauf, K. Hennessy, M. T. Rakher, Y.-S. Choi, A. Badolato, L. C. Andreani, E. L. Hu, P. M. Petroff, and D. Bouwmeester, “Self-tuned quantum dot gain in photonic crystal lasers,” Phys. Rev. Lett. 96, 127404 (2006).
[Crossref]

Bakker, R.

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, B. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460, 1110–1112 (2009).
[Crossref]

Bartal, G.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R. M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461, 629–632 (2009).
[Crossref]

Bayer, M.

J. Wiersig, C. Gies, F. Jahnke, M. Aßmann, T. Berstermann, M. Bayer, C. Kistner, S. Reitzenstein, C. Schneider, S. Höfling, A. Forchel, C. Kruse, J. Kalden, and D. Hommel, “Direct observation of correlations between individual photon emission events of a microcavity laser,” Nature 460, 245–249 (2009).
[Crossref]

Beaudoin, G.

Beck, M.

C. Walther, G. Scalari, M. I. Amanti, M. Beck, and J. Faist, “Microcavity laser oscillating in a circuit-based resonator,” Science 327, 1495–1497 (2010).
[Crossref]

Belgrave, A. M.

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, B. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460, 1110–1112 (2009).
[Crossref]

Berstermann, T.

J. Wiersig, C. Gies, F. Jahnke, M. Aßmann, T. Berstermann, M. Bayer, C. Kistner, S. Reitzenstein, C. Schneider, S. Höfling, A. Forchel, C. Kruse, J. Kalden, and D. Hommel, “Direct observation of correlations between individual photon emission events of a microcavity laser,” Nature 460, 245–249 (2009).
[Crossref]

Beveratos, A.

A. Lebreton, I. Abram, R. Braive, I. Sagnes, I. Robert-Philip, and A. Beveratos, “Unequivocal differentiation of coherent and chaotic light through interferometric photon correlation measurements,” Phys. Rev. Lett. 110, 163603 (2013).
[Crossref]

R. Hostein, R. Braive, L. Le Gratiet, A. Talneau, G. Beaudoin, I. Robert-Philip, I. Sagnes, and A. Beveratos, “Demonstration of coherent emission from high-β photonic crystal nanolasers at room temperature,” Opt. Lett. 35, 1154–1156 (2010).
[Crossref]

Blazek, M.

Bondarenko, O.

M. P. Nezhad, A. Simic, O. Bondarenko, B. Slutsky, A. Mizrahi, L. Feng, V. Lomakin, and Y. Fainman, “Room-temperature subwavelength metallo-dielectric lasers,” Nat. Photonics 4, 395–399 (2010).
[Crossref]

Bouwmeester, D.

Y.-S. Choi, M. T. Rakher, K. Hennessy, S. Strauf, A. Badolato, P. M. Petroff, D. Bouwmeester, and E. L. Hu, “Evolution of the onset of coherence in a family of photonic crystal nanolasers,” Appl. Phys. Lett. 91, 031108 (2007).
[Crossref]

S. Strauf, K. Hennessy, M. T. Rakher, Y.-S. Choi, A. Badolato, L. C. Andreani, E. L. Hu, P. M. Petroff, and D. Bouwmeester, “Self-tuned quantum dot gain in photonic crystal lasers,” Phys. Rev. Lett. 96, 127404 (2006).
[Crossref]

Braive, R.

A. Lebreton, I. Abram, R. Braive, I. Sagnes, I. Robert-Philip, and A. Beveratos, “Unequivocal differentiation of coherent and chaotic light through interferometric photon correlation measurements,” Phys. Rev. Lett. 110, 163603 (2013).
[Crossref]

R. Hostein, R. Braive, L. Le Gratiet, A. Talneau, G. Beaudoin, I. Robert-Philip, I. Sagnes, and A. Beveratos, “Demonstration of coherent emission from high-β photonic crystal nanolasers at room temperature,” Opt. Lett. 35, 1154–1156 (2010).
[Crossref]

Buckley, S.

S. Wu, S. Buckley, J. R. Schaibley, L. Feng, J. Yan, D. G. Mandrus, F. Hatami, W. Yao, J. Vučković, A. Majumdar, and X. Xu, “Monolayer semiconductor nanocavity lasers with ultralow thresholds,” Nature 520, 69–72 (2015).
[Crossref]

Canet-Ferrer, J.

Carmichael, H. J.

P. R. Rice and H. J. Carmichael, “Photon statistics of a cavity-QED laser: a comment on the laser-phase-transition analogy,” Phys. Rev. A 50, 4318–4329 (1994).
[Crossref]

Chang, S.-W.

S.-W. Chang and S. L. Chuang, “Fundamental formulation for plasmonic nanolasers,” IEEE J. Quantum Electron. 45, 1014–1023 (2009).
[Crossref]

Chang, W.-H.

Y.-J. Lu, J. Kim, H.-Y. Chen, C. Wu, N. Dabidian, C. E. Sanders, C.-Y. Wang, M.-Y. Lu, B.-H. Li, X. Qiu, W.-H. Chang, L.-J. Chen, G. Shvets, C.-K. Shih, and S. Gwo, “Plasmonic nanolaser using epitaxial grown silver film,” Science 337, 450–453 (2012).
[Crossref]

Chen, H.-Y.

Y.-J. Lu, J. Kim, H.-Y. Chen, C. Wu, N. Dabidian, C. E. Sanders, C.-Y. Wang, M.-Y. Lu, B.-H. Li, X. Qiu, W.-H. Chang, L.-J. Chen, G. Shvets, C.-K. Shih, and S. Gwo, “Plasmonic nanolaser using epitaxial grown silver film,” Science 337, 450–453 (2012).
[Crossref]

Chen, L.-J.

Y.-J. Lu, J. Kim, H.-Y. Chen, C. Wu, N. Dabidian, C. E. Sanders, C.-Y. Wang, M.-Y. Lu, B.-H. Li, X. Qiu, W.-H. Chang, L.-J. Chen, G. Shvets, C.-K. Shih, and S. Gwo, “Plasmonic nanolaser using epitaxial grown silver film,” Science 337, 450–453 (2012).
[Crossref]

Choi, Y.-S.

Y.-S. Choi, M. T. Rakher, K. Hennessy, S. Strauf, A. Badolato, P. M. Petroff, D. Bouwmeester, and E. L. Hu, “Evolution of the onset of coherence in a family of photonic crystal nanolasers,” Appl. Phys. Lett. 91, 031108 (2007).
[Crossref]

S. Strauf, K. Hennessy, M. T. Rakher, Y.-S. Choi, A. Badolato, L. C. Andreani, E. L. Hu, P. M. Petroff, and D. Bouwmeester, “Self-tuned quantum dot gain in photonic crystal lasers,” Phys. Rev. Lett. 96, 127404 (2006).
[Crossref]

Chow, W. W.

W. W. Chow, F. Jahnke, and C. Gies, “Emission properties of nanolasers during the transition to lasing,” Light Sci. Appl. 3, e201 (2014).
[Crossref]

Chuang, S. L.

S.-W. Chang and S. L. Chuang, “Fundamental formulation for plasmonic nanolasers,” IEEE J. Quantum Electron. 45, 1014–1023 (2009).
[Crossref]

Dabidian, N.

Y.-J. Lu, J. Kim, H.-Y. Chen, C. Wu, N. Dabidian, C. E. Sanders, C.-Y. Wang, M.-Y. Lu, B.-H. Li, X. Qiu, W.-H. Chang, L.-J. Chen, G. Shvets, C.-K. Shih, and S. Gwo, “Plasmonic nanolaser using epitaxial grown silver film,” Science 337, 450–453 (2012).
[Crossref]

Dai, L.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R. M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461, 629–632 (2009).
[Crossref]

de Vries, T.

M. T. Hill, Y.-S. Oei, B. Smalbrugge, Y. Zhu, T. de Vries, P. J. van Veldhoven, F. W. M. van Otten, T. J. Eijkemans, J. P. Turkiewicz, H. de Waardt, E. J. Geluk, S.-H. Kwon, Y.-H. Lee, R. Nötzel, and M. K. Smit, “Lasing in metallic-coated nanocavities,” Nat. Photonics 1, 589–594 (2007).
[Crossref]

de Waardt, H.

M. T. Hill, Y.-S. Oei, B. Smalbrugge, Y. Zhu, T. de Vries, P. J. van Veldhoven, F. W. M. van Otten, T. J. Eijkemans, J. P. Turkiewicz, H. de Waardt, E. J. Geluk, S.-H. Kwon, Y.-H. Lee, R. Nötzel, and M. K. Smit, “Lasing in metallic-coated nanocavities,” Nat. Photonics 1, 589–594 (2007).
[Crossref]

Deeb, C.

A. Yang, T. B. Hoang, M. Dridi, C. Deeb, M. H. Mikkelsen, G. C. Schatz, and T. W. Odom, “Real-time tunable lasing from plasmonic nanocavity arrays,” Nat. Commun. 6, 6939 (2015).
[Crossref]

Deppe, D. G.

D. G. Deppe, M. Li, and X. Yang, “Metal quenching of radiative emission in metal-clad nanolasers,” in IEEE Photonics Conference (IPC), Burlingame, California, 2012.

Ding, K.

K. Ding and C. Z. Ning, “Metallic subwavelength-cavity semiconductor nanolasers,” Light Sci. Appl. 1, e20 (2012).
[Crossref]

K. Ding, C. Liu, L. J. Yin, M. T. Hill, M. J. H. Marell, P. J. van Veldhoven, R. Nötzel, and C. Z. Ning, “Room-temperature continuous wave lasing in deep-subwavelength metallic cavities under electrical injection,” Phys. Rev. B 85, 041304(R) (2012).
[Crossref]

Dridi, M.

A. Yang, T. B. Hoang, M. Dridi, C. Deeb, M. H. Mikkelsen, G. C. Schatz, and T. W. Odom, “Real-time tunable lasing from plasmonic nanocavity arrays,” Nat. Commun. 6, 6939 (2015).
[Crossref]

Eijkemans, T. J.

M. T. Hill, Y.-S. Oei, B. Smalbrugge, Y. Zhu, T. de Vries, P. J. van Veldhoven, F. W. M. van Otten, T. J. Eijkemans, J. P. Turkiewicz, H. de Waardt, E. J. Geluk, S.-H. Kwon, Y.-H. Lee, R. Nötzel, and M. K. Smit, “Lasing in metallic-coated nanocavities,” Nat. Photonics 1, 589–594 (2007).
[Crossref]

Elsaesser, W.

Fainman, Y.

W. E. Hayenga, H. Garcia-Gracia, H. Hodaei, Y. Fainman, and M. Khajavikhan, “Metallic coaxial nanolasers,” Advances in Physics: X 1, 262–275 (2016).
[Crossref]

M. Khajavikhan, A. Simic, M. Katz, J. H. Lee, B. Slutsky, A. Mizrahi, V. Lomakin, and Y. Fainman, “Thresholdless nanoscale coaxial lasers,” Nature 482, 204–207 (2012).
[Crossref]

M. P. Nezhad, A. Simic, O. Bondarenko, B. Slutsky, A. Mizrahi, L. Feng, V. Lomakin, and Y. Fainman, “Room-temperature subwavelength metallo-dielectric lasers,” Nat. Photonics 4, 395–399 (2010).
[Crossref]

Faist, J.

C. Walther, G. Scalari, M. I. Amanti, M. Beck, and J. Faist, “Microcavity laser oscillating in a circuit-based resonator,” Science 327, 1495–1497 (2010).
[Crossref]

Feng, L.

S. Wu, S. Buckley, J. R. Schaibley, L. Feng, J. Yan, D. G. Mandrus, F. Hatami, W. Yao, J. Vučković, A. Majumdar, and X. Xu, “Monolayer semiconductor nanocavity lasers with ultralow thresholds,” Nature 520, 69–72 (2015).
[Crossref]

M. P. Nezhad, A. Simic, O. Bondarenko, B. Slutsky, A. Mizrahi, L. Feng, V. Lomakin, and Y. Fainman, “Room-temperature subwavelength metallo-dielectric lasers,” Nat. Photonics 4, 395–399 (2010).
[Crossref]

Forchel, A.

J. Wiersig, C. Gies, F. Jahnke, M. Aßmann, T. Berstermann, M. Bayer, C. Kistner, S. Reitzenstein, C. Schneider, S. Höfling, A. Forchel, C. Kruse, J. Kalden, and D. Hommel, “Direct observation of correlations between individual photon emission events of a microcavity laser,” Nature 460, 245–249 (2009).
[Crossref]

Garcia-Gracia, H.

W. E. Hayenga, H. Garcia-Gracia, H. Hodaei, Y. Fainman, and M. Khajavikhan, “Metallic coaxial nanolasers,” Advances in Physics: X 1, 262–275 (2016).
[Crossref]

Geburt, S.

T. P. H. Sidiropoulos, R. Röder, S. Geburt, O. Hess, S. A. Maier, C. Ronning, and R. F. Oulton, “Ultrafast plasmonic nanowire lasers near the surface plasmon frequency,” Nat. Phys. 10, 870–876 (2014).
[Crossref]

Geluk, E. J.

M. T. Hill, M. Marell, E. S. P. Leong, B. Smalbrugge, Y. Zhu, M. Sun, P. J. van Veldhoven, E. J. Geluk, F. Karouta, Y.-S. Oei, R. Nötzel, C.-Z. Ning, and M. K. Smit, “Lasing in metal-insulator-metal sub-wavelength plasmonic waveguides,” Opt. Express 17, 11107–11112 (2009).
[Crossref]

M. T. Hill, Y.-S. Oei, B. Smalbrugge, Y. Zhu, T. de Vries, P. J. van Veldhoven, F. W. M. van Otten, T. J. Eijkemans, J. P. Turkiewicz, H. de Waardt, E. J. Geluk, S.-H. Kwon, Y.-H. Lee, R. Nötzel, and M. K. Smit, “Lasing in metallic-coated nanocavities,” Nat. Photonics 1, 589–594 (2007).
[Crossref]

Gies, C.

W. W. Chow, F. Jahnke, and C. Gies, “Emission properties of nanolasers during the transition to lasing,” Light Sci. Appl. 3, e201 (2014).
[Crossref]

J. Wiersig, C. Gies, F. Jahnke, M. Aßmann, T. Berstermann, M. Bayer, C. Kistner, S. Reitzenstein, C. Schneider, S. Höfling, A. Forchel, C. Kruse, J. Kalden, and D. Hommel, “Direct observation of correlations between individual photon emission events of a microcavity laser,” Nature 460, 245–249 (2009).
[Crossref]

Gladden, C.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R. M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461, 629–632 (2009).
[Crossref]

Gwo, S.

Y.-J. Lu, J. Kim, H.-Y. Chen, C. Wu, N. Dabidian, C. E. Sanders, C.-Y. Wang, M.-Y. Lu, B.-H. Li, X. Qiu, W.-H. Chang, L.-J. Chen, G. Shvets, C.-K. Shih, and S. Gwo, “Plasmonic nanolaser using epitaxial grown silver film,” Science 337, 450–453 (2012).
[Crossref]

Hanbury Brown, R.

R. Hanbury Brown and R. Q. Twiss, “Correlation between photons in two coherent beams of light,” Nature 177, 27–29 (1956).
[Crossref]

Hartmann, S.

Hatami, F.

S. Wu, S. Buckley, J. R. Schaibley, L. Feng, J. Yan, D. G. Mandrus, F. Hatami, W. Yao, J. Vučković, A. Majumdar, and X. Xu, “Monolayer semiconductor nanocavity lasers with ultralow thresholds,” Nature 520, 69–72 (2015).
[Crossref]

Hayenga, W. E.

W. E. Hayenga, H. Garcia-Gracia, H. Hodaei, Y. Fainman, and M. Khajavikhan, “Metallic coaxial nanolasers,” Advances in Physics: X 1, 262–275 (2016).
[Crossref]

Hennessy, K.

Y.-S. Choi, M. T. Rakher, K. Hennessy, S. Strauf, A. Badolato, P. M. Petroff, D. Bouwmeester, and E. L. Hu, “Evolution of the onset of coherence in a family of photonic crystal nanolasers,” Appl. Phys. Lett. 91, 031108 (2007).
[Crossref]

S. Strauf, K. Hennessy, M. T. Rakher, Y.-S. Choi, A. Badolato, L. C. Andreani, E. L. Hu, P. M. Petroff, and D. Bouwmeester, “Self-tuned quantum dot gain in photonic crystal lasers,” Phys. Rev. Lett. 96, 127404 (2006).
[Crossref]

Herz, E.

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, B. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460, 1110–1112 (2009).
[Crossref]

Hess, O.

T. P. H. Sidiropoulos, R. Röder, S. Geburt, O. Hess, S. A. Maier, C. Ronning, and R. F. Oulton, “Ultrafast plasmonic nanowire lasers near the surface plasmon frequency,” Nat. Phys. 10, 870–876 (2014).
[Crossref]

Hill, M. T.

K. Ding, C. Liu, L. J. Yin, M. T. Hill, M. J. H. Marell, P. J. van Veldhoven, R. Nötzel, and C. Z. Ning, “Room-temperature continuous wave lasing in deep-subwavelength metallic cavities under electrical injection,” Phys. Rev. B 85, 041304(R) (2012).
[Crossref]

M. T. Hill, M. Marell, E. S. P. Leong, B. Smalbrugge, Y. Zhu, M. Sun, P. J. van Veldhoven, E. J. Geluk, F. Karouta, Y.-S. Oei, R. Nötzel, C.-Z. Ning, and M. K. Smit, “Lasing in metal-insulator-metal sub-wavelength plasmonic waveguides,” Opt. Express 17, 11107–11112 (2009).
[Crossref]

M. T. Hill, Y.-S. Oei, B. Smalbrugge, Y. Zhu, T. de Vries, P. J. van Veldhoven, F. W. M. van Otten, T. J. Eijkemans, J. P. Turkiewicz, H. de Waardt, E. J. Geluk, S.-H. Kwon, Y.-H. Lee, R. Nötzel, and M. K. Smit, “Lasing in metallic-coated nanocavities,” Nat. Photonics 1, 589–594 (2007).
[Crossref]

Hoang, T. B.

A. Yang, T. B. Hoang, M. Dridi, C. Deeb, M. H. Mikkelsen, G. C. Schatz, and T. W. Odom, “Real-time tunable lasing from plasmonic nanocavity arrays,” Nat. Commun. 6, 6939 (2015).
[Crossref]

Hodaei, H.

W. E. Hayenga, H. Garcia-Gracia, H. Hodaei, Y. Fainman, and M. Khajavikhan, “Metallic coaxial nanolasers,” Advances in Physics: X 1, 262–275 (2016).
[Crossref]

Höfling, S.

J. Wiersig, C. Gies, F. Jahnke, M. Aßmann, T. Berstermann, M. Bayer, C. Kistner, S. Reitzenstein, C. Schneider, S. Höfling, A. Forchel, C. Kruse, J. Kalden, and D. Hommel, “Direct observation of correlations between individual photon emission events of a microcavity laser,” Nature 460, 245–249 (2009).
[Crossref]

Hommel, D.

J. Wiersig, C. Gies, F. Jahnke, M. Aßmann, T. Berstermann, M. Bayer, C. Kistner, S. Reitzenstein, C. Schneider, S. Höfling, A. Forchel, C. Kruse, J. Kalden, and D. Hommel, “Direct observation of correlations between individual photon emission events of a microcavity laser,” Nature 460, 245–249 (2009).
[Crossref]

Hostein, R.

Hu, E. L.

Y.-S. Choi, M. T. Rakher, K. Hennessy, S. Strauf, A. Badolato, P. M. Petroff, D. Bouwmeester, and E. L. Hu, “Evolution of the onset of coherence in a family of photonic crystal nanolasers,” Appl. Phys. Lett. 91, 031108 (2007).
[Crossref]

S. Strauf, K. Hennessy, M. T. Rakher, Y.-S. Choi, A. Badolato, L. C. Andreani, E. L. Hu, P. M. Petroff, and D. Bouwmeester, “Self-tuned quantum dot gain in photonic crystal lasers,” Phys. Rev. Lett. 96, 127404 (2006).
[Crossref]

Iwamoto, S.

Y. Ota, K. Watanabe, S. Iwamoto, and Y. Arakawa, “Measuring the second-order coherence of a nanolaser by intracavity frequency doubling,” Phys. Rev. A 89, 023824 (2014).
[Crossref]

Jahnke, F.

W. W. Chow, F. Jahnke, and C. Gies, “Emission properties of nanolasers during the transition to lasing,” Light Sci. Appl. 3, e201 (2014).
[Crossref]

J. Wiersig, C. Gies, F. Jahnke, M. Aßmann, T. Berstermann, M. Bayer, C. Kistner, S. Reitzenstein, C. Schneider, S. Höfling, A. Forchel, C. Kruse, J. Kalden, and D. Hommel, “Direct observation of correlations between individual photon emission events of a microcavity laser,” Nature 460, 245–249 (2009).
[Crossref]

Kalden, J.

J. Wiersig, C. Gies, F. Jahnke, M. Aßmann, T. Berstermann, M. Bayer, C. Kistner, S. Reitzenstein, C. Schneider, S. Höfling, A. Forchel, C. Kruse, J. Kalden, and D. Hommel, “Direct observation of correlations between individual photon emission events of a microcavity laser,” Nature 460, 245–249 (2009).
[Crossref]

Kang, J.-H.

S.-H. Kwon, J.-H. Kang, C. Seassal, S.-K. Kim, P. Regreny, Y.-H. Lee, C. M. Liber, and H.-G. Park, “Subwavelength plasmonic lasing from a semiconductor nanodisk with silver nanopan cavity,” Nano Lett. 10, 3679–3683 (2010).
[Crossref]

Karouta, F.

Katz, M.

M. Khajavikhan, A. Simic, M. Katz, J. H. Lee, B. Slutsky, A. Mizrahi, V. Lomakin, and Y. Fainman, “Thresholdless nanoscale coaxial lasers,” Nature 482, 204–207 (2012).
[Crossref]

Khajavikhan, M.

W. E. Hayenga, H. Garcia-Gracia, H. Hodaei, Y. Fainman, and M. Khajavikhan, “Metallic coaxial nanolasers,” Advances in Physics: X 1, 262–275 (2016).
[Crossref]

M. Khajavikhan, A. Simic, M. Katz, J. H. Lee, B. Slutsky, A. Mizrahi, V. Lomakin, and Y. Fainman, “Thresholdless nanoscale coaxial lasers,” Nature 482, 204–207 (2012).
[Crossref]

Kim, J.

Y.-J. Lu, J. Kim, H.-Y. Chen, C. Wu, N. Dabidian, C. E. Sanders, C.-Y. Wang, M.-Y. Lu, B.-H. Li, X. Qiu, W.-H. Chang, L.-J. Chen, G. Shvets, C.-K. Shih, and S. Gwo, “Plasmonic nanolaser using epitaxial grown silver film,” Science 337, 450–453 (2012).
[Crossref]

Kim, S.-K.

S.-H. Kwon, J.-H. Kang, C. Seassal, S.-K. Kim, P. Regreny, Y.-H. Lee, C. M. Liber, and H.-G. Park, “Subwavelength plasmonic lasing from a semiconductor nanodisk with silver nanopan cavity,” Nano Lett. 10, 3679–3683 (2010).
[Crossref]

Kistner, C.

J. Wiersig, C. Gies, F. Jahnke, M. Aßmann, T. Berstermann, M. Bayer, C. Kistner, S. Reitzenstein, C. Schneider, S. Höfling, A. Forchel, C. Kruse, J. Kalden, and D. Hommel, “Direct observation of correlations between individual photon emission events of a microcavity laser,” Nature 460, 245–249 (2009).
[Crossref]

Kruse, C.

J. Wiersig, C. Gies, F. Jahnke, M. Aßmann, T. Berstermann, M. Bayer, C. Kistner, S. Reitzenstein, C. Schneider, S. Höfling, A. Forchel, C. Kruse, J. Kalden, and D. Hommel, “Direct observation of correlations between individual photon emission events of a microcavity laser,” Nature 460, 245–249 (2009).
[Crossref]

Kwon, S.-H.

S.-H. Kwon, J.-H. Kang, C. Seassal, S.-K. Kim, P. Regreny, Y.-H. Lee, C. M. Liber, and H.-G. Park, “Subwavelength plasmonic lasing from a semiconductor nanodisk with silver nanopan cavity,” Nano Lett. 10, 3679–3683 (2010).
[Crossref]

M. T. Hill, Y.-S. Oei, B. Smalbrugge, Y. Zhu, T. de Vries, P. J. van Veldhoven, F. W. M. van Otten, T. J. Eijkemans, J. P. Turkiewicz, H. de Waardt, E. J. Geluk, S.-H. Kwon, Y.-H. Lee, R. Nötzel, and M. K. Smit, “Lasing in metallic-coated nanocavities,” Nat. Photonics 1, 589–594 (2007).
[Crossref]

Lakhani, A.

Le Gratiet, L.

Lebreton, A.

A. Lebreton, I. Abram, R. Braive, I. Sagnes, I. Robert-Philip, and A. Beveratos, “Unequivocal differentiation of coherent and chaotic light through interferometric photon correlation measurements,” Phys. Rev. Lett. 110, 163603 (2013).
[Crossref]

Lee, J. H.

M. Khajavikhan, A. Simic, M. Katz, J. H. Lee, B. Slutsky, A. Mizrahi, V. Lomakin, and Y. Fainman, “Thresholdless nanoscale coaxial lasers,” Nature 482, 204–207 (2012).
[Crossref]

Lee, Y.-H.

S.-H. Kwon, J.-H. Kang, C. Seassal, S.-K. Kim, P. Regreny, Y.-H. Lee, C. M. Liber, and H.-G. Park, “Subwavelength plasmonic lasing from a semiconductor nanodisk with silver nanopan cavity,” Nano Lett. 10, 3679–3683 (2010).
[Crossref]

M. T. Hill, Y.-S. Oei, B. Smalbrugge, Y. Zhu, T. de Vries, P. J. van Veldhoven, F. W. M. van Otten, T. J. Eijkemans, J. P. Turkiewicz, H. de Waardt, E. J. Geluk, S.-H. Kwon, Y.-H. Lee, R. Nötzel, and M. K. Smit, “Lasing in metallic-coated nanocavities,” Nat. Photonics 1, 589–594 (2007).
[Crossref]

Leong, E. S. P.

Li, B.-H.

Y.-J. Lu, J. Kim, H.-Y. Chen, C. Wu, N. Dabidian, C. E. Sanders, C.-Y. Wang, M.-Y. Lu, B.-H. Li, X. Qiu, W.-H. Chang, L.-J. Chen, G. Shvets, C.-K. Shih, and S. Gwo, “Plasmonic nanolaser using epitaxial grown silver film,” Science 337, 450–453 (2012).
[Crossref]

Li, M.

D. G. Deppe, M. Li, and X. Yang, “Metal quenching of radiative emission in metal-clad nanolasers,” in IEEE Photonics Conference (IPC), Burlingame, California, 2012.

Liber, C. M.

S.-H. Kwon, J.-H. Kang, C. Seassal, S.-K. Kim, P. Regreny, Y.-H. Lee, C. M. Liber, and H.-G. Park, “Subwavelength plasmonic lasing from a semiconductor nanodisk with silver nanopan cavity,” Nano Lett. 10, 3679–3683 (2010).
[Crossref]

Liu, C.

K. Ding, C. Liu, L. J. Yin, M. T. Hill, M. J. H. Marell, P. J. van Veldhoven, R. Nötzel, and C. Z. Ning, “Room-temperature continuous wave lasing in deep-subwavelength metallic cavities under electrical injection,” Phys. Rev. B 85, 041304(R) (2012).
[Crossref]

Llorens, J. M.

Lomakin, V.

M. Khajavikhan, A. Simic, M. Katz, J. H. Lee, B. Slutsky, A. Mizrahi, V. Lomakin, and Y. Fainman, “Thresholdless nanoscale coaxial lasers,” Nature 482, 204–207 (2012).
[Crossref]

M. P. Nezhad, A. Simic, O. Bondarenko, B. Slutsky, A. Mizrahi, L. Feng, V. Lomakin, and Y. Fainman, “Room-temperature subwavelength metallo-dielectric lasers,” Nat. Photonics 4, 395–399 (2010).
[Crossref]

Loudon, R.

R. Loudon, The Quantum Theory of Light, 3rd ed. (Oxford University, 2000).

Lu, M.-Y.

Y.-J. Lu, J. Kim, H.-Y. Chen, C. Wu, N. Dabidian, C. E. Sanders, C.-Y. Wang, M.-Y. Lu, B.-H. Li, X. Qiu, W.-H. Chang, L.-J. Chen, G. Shvets, C.-K. Shih, and S. Gwo, “Plasmonic nanolaser using epitaxial grown silver film,” Science 337, 450–453 (2012).
[Crossref]

Lu, Y.-J.

Y.-J. Lu, J. Kim, H.-Y. Chen, C. Wu, N. Dabidian, C. E. Sanders, C.-Y. Wang, M.-Y. Lu, B.-H. Li, X. Qiu, W.-H. Chang, L.-J. Chen, G. Shvets, C.-K. Shih, and S. Gwo, “Plasmonic nanolaser using epitaxial grown silver film,” Science 337, 450–453 (2012).
[Crossref]

Ma, R. M.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R. M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461, 629–632 (2009).
[Crossref]

Maier, S. A.

T. P. H. Sidiropoulos, R. Röder, S. Geburt, O. Hess, S. A. Maier, C. Ronning, and R. F. Oulton, “Ultrafast plasmonic nanowire lasers near the surface plasmon frequency,” Nat. Phys. 10, 870–876 (2014).
[Crossref]

Majumdar, A.

S. Wu, S. Buckley, J. R. Schaibley, L. Feng, J. Yan, D. G. Mandrus, F. Hatami, W. Yao, J. Vučković, A. Majumdar, and X. Xu, “Monolayer semiconductor nanocavity lasers with ultralow thresholds,” Nature 520, 69–72 (2015).
[Crossref]

Mandel, L.

L. Mandel and E. Wolf, “Coherence properties of optical fields,” Rev. Mod. Phys. 37, 231–287 (1965).
[Crossref]

Mandrus, D. G.

S. Wu, S. Buckley, J. R. Schaibley, L. Feng, J. Yan, D. G. Mandrus, F. Hatami, W. Yao, J. Vučković, A. Majumdar, and X. Xu, “Monolayer semiconductor nanocavity lasers with ultralow thresholds,” Nature 520, 69–72 (2015).
[Crossref]

Marell, M.

Marell, M. J. H.

K. Ding, C. Liu, L. J. Yin, M. T. Hill, M. J. H. Marell, P. J. van Veldhoven, R. Nötzel, and C. Z. Ning, “Room-temperature continuous wave lasing in deep-subwavelength metallic cavities under electrical injection,” Phys. Rev. B 85, 041304(R) (2012).
[Crossref]

Martínez-Pastor, J. P.

Mikkelsen, M. H.

A. Yang, T. B. Hoang, M. Dridi, C. Deeb, M. H. Mikkelsen, G. C. Schatz, and T. W. Odom, “Real-time tunable lasing from plasmonic nanocavity arrays,” Nat. Commun. 6, 6939 (2015).
[Crossref]

Min, B.

B. Min, E. Ostby, V. Sorger, E. Ulin-Avila, L. Yang, X. Zhang, and K. Vahala, “High-Q surface-plasmon-polariton whispering-gallery microcavity,” Nature 457, 455–458 (2009).
[Crossref]

Mizrahi, A.

M. Khajavikhan, A. Simic, M. Katz, J. H. Lee, B. Slutsky, A. Mizrahi, V. Lomakin, and Y. Fainman, “Thresholdless nanoscale coaxial lasers,” Nature 482, 204–207 (2012).
[Crossref]

M. P. Nezhad, A. Simic, O. Bondarenko, B. Slutsky, A. Mizrahi, L. Feng, V. Lomakin, and Y. Fainman, “Room-temperature subwavelength metallo-dielectric lasers,” Nat. Photonics 4, 395–399 (2010).
[Crossref]

Molitor, A.

Muñoz-Camúñez, L. E.

Muñoz-Matutano, G.

Narimanov, E. E.

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, B. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460, 1110–1112 (2009).
[Crossref]

Nezhad, M. P.

M. P. Nezhad, A. Simic, O. Bondarenko, B. Slutsky, A. Mizrahi, L. Feng, V. Lomakin, and Y. Fainman, “Room-temperature subwavelength metallo-dielectric lasers,” Nat. Photonics 4, 395–399 (2010).
[Crossref]

Ning, C. Z.

K. Ding, C. Liu, L. J. Yin, M. T. Hill, M. J. H. Marell, P. J. van Veldhoven, R. Nötzel, and C. Z. Ning, “Room-temperature continuous wave lasing in deep-subwavelength metallic cavities under electrical injection,” Phys. Rev. B 85, 041304(R) (2012).
[Crossref]

K. Ding and C. Z. Ning, “Metallic subwavelength-cavity semiconductor nanolasers,” Light Sci. Appl. 1, e20 (2012).
[Crossref]

Ning, C.-Z.

Noginov, M. A.

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, B. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460, 1110–1112 (2009).
[Crossref]

Nötzel, R.

K. Ding, C. Liu, L. J. Yin, M. T. Hill, M. J. H. Marell, P. J. van Veldhoven, R. Nötzel, and C. Z. Ning, “Room-temperature continuous wave lasing in deep-subwavelength metallic cavities under electrical injection,” Phys. Rev. B 85, 041304(R) (2012).
[Crossref]

M. T. Hill, M. Marell, E. S. P. Leong, B. Smalbrugge, Y. Zhu, M. Sun, P. J. van Veldhoven, E. J. Geluk, F. Karouta, Y.-S. Oei, R. Nötzel, C.-Z. Ning, and M. K. Smit, “Lasing in metal-insulator-metal sub-wavelength plasmonic waveguides,” Opt. Express 17, 11107–11112 (2009).
[Crossref]

M. T. Hill, Y.-S. Oei, B. Smalbrugge, Y. Zhu, T. de Vries, P. J. van Veldhoven, F. W. M. van Otten, T. J. Eijkemans, J. P. Turkiewicz, H. de Waardt, E. J. Geluk, S.-H. Kwon, Y.-H. Lee, R. Nötzel, and M. K. Smit, “Lasing in metallic-coated nanocavities,” Nat. Photonics 1, 589–594 (2007).
[Crossref]

Odom, T. W.

A. Yang, T. B. Hoang, M. Dridi, C. Deeb, M. H. Mikkelsen, G. C. Schatz, and T. W. Odom, “Real-time tunable lasing from plasmonic nanocavity arrays,” Nat. Commun. 6, 6939 (2015).
[Crossref]

Oei, Y.-S.

M. T. Hill, M. Marell, E. S. P. Leong, B. Smalbrugge, Y. Zhu, M. Sun, P. J. van Veldhoven, E. J. Geluk, F. Karouta, Y.-S. Oei, R. Nötzel, C.-Z. Ning, and M. K. Smit, “Lasing in metal-insulator-metal sub-wavelength plasmonic waveguides,” Opt. Express 17, 11107–11112 (2009).
[Crossref]

M. T. Hill, Y.-S. Oei, B. Smalbrugge, Y. Zhu, T. de Vries, P. J. van Veldhoven, F. W. M. van Otten, T. J. Eijkemans, J. P. Turkiewicz, H. de Waardt, E. J. Geluk, S.-H. Kwon, Y.-H. Lee, R. Nötzel, and M. K. Smit, “Lasing in metallic-coated nanocavities,” Nat. Photonics 1, 589–594 (2007).
[Crossref]

Ostby, E.

B. Min, E. Ostby, V. Sorger, E. Ulin-Avila, L. Yang, X. Zhang, and K. Vahala, “High-Q surface-plasmon-polariton whispering-gallery microcavity,” Nature 457, 455–458 (2009).
[Crossref]

Ota, Y.

Y. Ota, K. Watanabe, S. Iwamoto, and Y. Arakawa, “Measuring the second-order coherence of a nanolaser by intracavity frequency doubling,” Phys. Rev. A 89, 023824 (2014).
[Crossref]

Oulton, R. F.

T. P. H. Sidiropoulos, R. Röder, S. Geburt, O. Hess, S. A. Maier, C. Ronning, and R. F. Oulton, “Ultrafast plasmonic nanowire lasers near the surface plasmon frequency,” Nat. Phys. 10, 870–876 (2014).
[Crossref]

R. F. Oulton, V. J. Sorger, T. Zentgraf, R. M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461, 629–632 (2009).
[Crossref]

Park, H.-G.

S.-H. Kwon, J.-H. Kang, C. Seassal, S.-K. Kim, P. Regreny, Y.-H. Lee, C. M. Liber, and H.-G. Park, “Subwavelength plasmonic lasing from a semiconductor nanodisk with silver nanopan cavity,” Nano Lett. 10, 3679–3683 (2010).
[Crossref]

Petroff, P. M.

Y.-S. Choi, M. T. Rakher, K. Hennessy, S. Strauf, A. Badolato, P. M. Petroff, D. Bouwmeester, and E. L. Hu, “Evolution of the onset of coherence in a family of photonic crystal nanolasers,” Appl. Phys. Lett. 91, 031108 (2007).
[Crossref]

S. Strauf, K. Hennessy, M. T. Rakher, Y.-S. Choi, A. Badolato, L. C. Andreani, E. L. Hu, P. M. Petroff, and D. Bouwmeester, “Self-tuned quantum dot gain in photonic crystal lasers,” Phys. Rev. Lett. 96, 127404 (2006).
[Crossref]

Postigo, P. A.

Prieto, I.

Qiu, X.

Y.-J. Lu, J. Kim, H.-Y. Chen, C. Wu, N. Dabidian, C. E. Sanders, C.-Y. Wang, M.-Y. Lu, B.-H. Li, X. Qiu, W.-H. Chang, L.-J. Chen, G. Shvets, C.-K. Shih, and S. Gwo, “Plasmonic nanolaser using epitaxial grown silver film,” Science 337, 450–453 (2012).
[Crossref]

Rakher, M. T.

Y.-S. Choi, M. T. Rakher, K. Hennessy, S. Strauf, A. Badolato, P. M. Petroff, D. Bouwmeester, and E. L. Hu, “Evolution of the onset of coherence in a family of photonic crystal nanolasers,” Appl. Phys. Lett. 91, 031108 (2007).
[Crossref]

S. Strauf, K. Hennessy, M. T. Rakher, Y.-S. Choi, A. Badolato, L. C. Andreani, E. L. Hu, P. M. Petroff, and D. Bouwmeester, “Self-tuned quantum dot gain in photonic crystal lasers,” Phys. Rev. Lett. 96, 127404 (2006).
[Crossref]

Regreny, P.

S.-H. Kwon, J.-H. Kang, C. Seassal, S.-K. Kim, P. Regreny, Y.-H. Lee, C. M. Liber, and H.-G. Park, “Subwavelength plasmonic lasing from a semiconductor nanodisk with silver nanopan cavity,” Nano Lett. 10, 3679–3683 (2010).
[Crossref]

Reitzenstein, S.

J. Wiersig, C. Gies, F. Jahnke, M. Aßmann, T. Berstermann, M. Bayer, C. Kistner, S. Reitzenstein, C. Schneider, S. Höfling, A. Forchel, C. Kruse, J. Kalden, and D. Hommel, “Direct observation of correlations between individual photon emission events of a microcavity laser,” Nature 460, 245–249 (2009).
[Crossref]

Rice, P. R.

P. R. Rice and H. J. Carmichael, “Photon statistics of a cavity-QED laser: a comment on the laser-phase-transition analogy,” Phys. Rev. A 50, 4318–4329 (1994).
[Crossref]

Ripalda, J. M.

Robert-Philip, I.

A. Lebreton, I. Abram, R. Braive, I. Sagnes, I. Robert-Philip, and A. Beveratos, “Unequivocal differentiation of coherent and chaotic light through interferometric photon correlation measurements,” Phys. Rev. Lett. 110, 163603 (2013).
[Crossref]

R. Hostein, R. Braive, L. Le Gratiet, A. Talneau, G. Beaudoin, I. Robert-Philip, I. Sagnes, and A. Beveratos, “Demonstration of coherent emission from high-β photonic crystal nanolasers at room temperature,” Opt. Lett. 35, 1154–1156 (2010).
[Crossref]

Robles, C.

Röder, R.

T. P. H. Sidiropoulos, R. Röder, S. Geburt, O. Hess, S. A. Maier, C. Ronning, and R. F. Oulton, “Ultrafast plasmonic nanowire lasers near the surface plasmon frequency,” Nat. Phys. 10, 870–876 (2014).
[Crossref]

Ronning, C.

T. P. H. Sidiropoulos, R. Röder, S. Geburt, O. Hess, S. A. Maier, C. Ronning, and R. F. Oulton, “Ultrafast plasmonic nanowire lasers near the surface plasmon frequency,” Nat. Phys. 10, 870–876 (2014).
[Crossref]

Sagnes, I.

A. Lebreton, I. Abram, R. Braive, I. Sagnes, I. Robert-Philip, and A. Beveratos, “Unequivocal differentiation of coherent and chaotic light through interferometric photon correlation measurements,” Phys. Rev. Lett. 110, 163603 (2013).
[Crossref]

R. Hostein, R. Braive, L. Le Gratiet, A. Talneau, G. Beaudoin, I. Robert-Philip, I. Sagnes, and A. Beveratos, “Demonstration of coherent emission from high-β photonic crystal nanolasers at room temperature,” Opt. Lett. 35, 1154–1156 (2010).
[Crossref]

Sanders, C. E.

Y.-J. Lu, J. Kim, H.-Y. Chen, C. Wu, N. Dabidian, C. E. Sanders, C.-Y. Wang, M.-Y. Lu, B.-H. Li, X. Qiu, W.-H. Chang, L.-J. Chen, G. Shvets, C.-K. Shih, and S. Gwo, “Plasmonic nanolaser using epitaxial grown silver film,” Science 337, 450–453 (2012).
[Crossref]

Santis, C. T.

C. T. Santis, S. T. Steger, Y. Vilenchik, A. Vasilyev, and A. Yariv, “High-coherence semiconductor lasers based on integral high-Q resonators in hybrid Si/III-V platforms,” Proc. Natl. Acad. Sci. U.S.A. 111, 2879–2884 (2014).
[Crossref]

Scalari, G.

C. Walther, G. Scalari, M. I. Amanti, M. Beck, and J. Faist, “Microcavity laser oscillating in a circuit-based resonator,” Science 327, 1495–1497 (2010).
[Crossref]

Schaibley, J. R.

S. Wu, S. Buckley, J. R. Schaibley, L. Feng, J. Yan, D. G. Mandrus, F. Hatami, W. Yao, J. Vučković, A. Majumdar, and X. Xu, “Monolayer semiconductor nanocavity lasers with ultralow thresholds,” Nature 520, 69–72 (2015).
[Crossref]

Schatz, G. C.

A. Yang, T. B. Hoang, M. Dridi, C. Deeb, M. H. Mikkelsen, G. C. Schatz, and T. W. Odom, “Real-time tunable lasing from plasmonic nanocavity arrays,” Nat. Commun. 6, 6939 (2015).
[Crossref]

Schneider, C.

J. Wiersig, C. Gies, F. Jahnke, M. Aßmann, T. Berstermann, M. Bayer, C. Kistner, S. Reitzenstein, C. Schneider, S. Höfling, A. Forchel, C. Kruse, J. Kalden, and D. Hommel, “Direct observation of correlations between individual photon emission events of a microcavity laser,” Nature 460, 245–249 (2009).
[Crossref]

Seassal, C.

S.-H. Kwon, J.-H. Kang, C. Seassal, S.-K. Kim, P. Regreny, Y.-H. Lee, C. M. Liber, and H.-G. Park, “Subwavelength plasmonic lasing from a semiconductor nanodisk with silver nanopan cavity,” Nano Lett. 10, 3679–3683 (2010).
[Crossref]

Shalaev, B. M.

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, B. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460, 1110–1112 (2009).
[Crossref]

Shih, C.-K.

Y.-J. Lu, J. Kim, H.-Y. Chen, C. Wu, N. Dabidian, C. E. Sanders, C.-Y. Wang, M.-Y. Lu, B.-H. Li, X. Qiu, W.-H. Chang, L.-J. Chen, G. Shvets, C.-K. Shih, and S. Gwo, “Plasmonic nanolaser using epitaxial grown silver film,” Science 337, 450–453 (2012).
[Crossref]

Shvets, G.

Y.-J. Lu, J. Kim, H.-Y. Chen, C. Wu, N. Dabidian, C. E. Sanders, C.-Y. Wang, M.-Y. Lu, B.-H. Li, X. Qiu, W.-H. Chang, L.-J. Chen, G. Shvets, C.-K. Shih, and S. Gwo, “Plasmonic nanolaser using epitaxial grown silver film,” Science 337, 450–453 (2012).
[Crossref]

Sidiropoulos, T. P. H.

T. P. H. Sidiropoulos, R. Röder, S. Geburt, O. Hess, S. A. Maier, C. Ronning, and R. F. Oulton, “Ultrafast plasmonic nanowire lasers near the surface plasmon frequency,” Nat. Phys. 10, 870–876 (2014).
[Crossref]

Simic, A.

M. Khajavikhan, A. Simic, M. Katz, J. H. Lee, B. Slutsky, A. Mizrahi, V. Lomakin, and Y. Fainman, “Thresholdless nanoscale coaxial lasers,” Nature 482, 204–207 (2012).
[Crossref]

M. P. Nezhad, A. Simic, O. Bondarenko, B. Slutsky, A. Mizrahi, L. Feng, V. Lomakin, and Y. Fainman, “Room-temperature subwavelength metallo-dielectric lasers,” Nat. Photonics 4, 395–399 (2010).
[Crossref]

Slutsky, B.

M. Khajavikhan, A. Simic, M. Katz, J. H. Lee, B. Slutsky, A. Mizrahi, V. Lomakin, and Y. Fainman, “Thresholdless nanoscale coaxial lasers,” Nature 482, 204–207 (2012).
[Crossref]

M. P. Nezhad, A. Simic, O. Bondarenko, B. Slutsky, A. Mizrahi, L. Feng, V. Lomakin, and Y. Fainman, “Room-temperature subwavelength metallo-dielectric lasers,” Nat. Photonics 4, 395–399 (2010).
[Crossref]

Smalbrugge, B.

M. T. Hill, M. Marell, E. S. P. Leong, B. Smalbrugge, Y. Zhu, M. Sun, P. J. van Veldhoven, E. J. Geluk, F. Karouta, Y.-S. Oei, R. Nötzel, C.-Z. Ning, and M. K. Smit, “Lasing in metal-insulator-metal sub-wavelength plasmonic waveguides,” Opt. Express 17, 11107–11112 (2009).
[Crossref]

M. T. Hill, Y.-S. Oei, B. Smalbrugge, Y. Zhu, T. de Vries, P. J. van Veldhoven, F. W. M. van Otten, T. J. Eijkemans, J. P. Turkiewicz, H. de Waardt, E. J. Geluk, S.-H. Kwon, Y.-H. Lee, R. Nötzel, and M. K. Smit, “Lasing in metallic-coated nanocavities,” Nat. Photonics 1, 589–594 (2007).
[Crossref]

Smit, M. K.

M. T. Hill, M. Marell, E. S. P. Leong, B. Smalbrugge, Y. Zhu, M. Sun, P. J. van Veldhoven, E. J. Geluk, F. Karouta, Y.-S. Oei, R. Nötzel, C.-Z. Ning, and M. K. Smit, “Lasing in metal-insulator-metal sub-wavelength plasmonic waveguides,” Opt. Express 17, 11107–11112 (2009).
[Crossref]

M. T. Hill, Y.-S. Oei, B. Smalbrugge, Y. Zhu, T. de Vries, P. J. van Veldhoven, F. W. M. van Otten, T. J. Eijkemans, J. P. Turkiewicz, H. de Waardt, E. J. Geluk, S.-H. Kwon, Y.-H. Lee, R. Nötzel, and M. K. Smit, “Lasing in metallic-coated nanocavities,” Nat. Photonics 1, 589–594 (2007).
[Crossref]

Sorger, V.

B. Min, E. Ostby, V. Sorger, E. Ulin-Avila, L. Yang, X. Zhang, and K. Vahala, “High-Q surface-plasmon-polariton whispering-gallery microcavity,” Nature 457, 455–458 (2009).
[Crossref]

Sorger, V. J.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R. M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461, 629–632 (2009).
[Crossref]

Steger, S. T.

C. T. Santis, S. T. Steger, Y. Vilenchik, A. Vasilyev, and A. Yariv, “High-coherence semiconductor lasers based on integral high-Q resonators in hybrid Si/III-V platforms,” Proc. Natl. Acad. Sci. U.S.A. 111, 2879–2884 (2014).
[Crossref]

Stout, S.

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, B. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460, 1110–1112 (2009).
[Crossref]

Strauf, S.

Y.-S. Choi, M. T. Rakher, K. Hennessy, S. Strauf, A. Badolato, P. M. Petroff, D. Bouwmeester, and E. L. Hu, “Evolution of the onset of coherence in a family of photonic crystal nanolasers,” Appl. Phys. Lett. 91, 031108 (2007).
[Crossref]

S. Strauf, K. Hennessy, M. T. Rakher, Y.-S. Choi, A. Badolato, L. C. Andreani, E. L. Hu, P. M. Petroff, and D. Bouwmeester, “Self-tuned quantum dot gain in photonic crystal lasers,” Phys. Rev. Lett. 96, 127404 (2006).
[Crossref]

Sun, M.

Suteewong, T.

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, B. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460, 1110–1112 (2009).
[Crossref]

Svelto, O.

O. Svelto, Principles of Lasers, 5th ed. (Springer, 2010).

Taboada, A. G.

Talneau, A.

Turkiewicz, J. P.

M. T. Hill, Y.-S. Oei, B. Smalbrugge, Y. Zhu, T. de Vries, P. J. van Veldhoven, F. W. M. van Otten, T. J. Eijkemans, J. P. Turkiewicz, H. de Waardt, E. J. Geluk, S.-H. Kwon, Y.-H. Lee, R. Nötzel, and M. K. Smit, “Lasing in metallic-coated nanocavities,” Nat. Photonics 1, 589–594 (2007).
[Crossref]

Twiss, R. Q.

R. Hanbury Brown and R. Q. Twiss, “Correlation between photons in two coherent beams of light,” Nature 177, 27–29 (1956).
[Crossref]

Ulin-Avila, E.

B. Min, E. Ostby, V. Sorger, E. Ulin-Avila, L. Yang, X. Zhang, and K. Vahala, “High-Q surface-plasmon-polariton whispering-gallery microcavity,” Nature 457, 455–458 (2009).
[Crossref]

Vahala, K.

B. Min, E. Ostby, V. Sorger, E. Ulin-Avila, L. Yang, X. Zhang, and K. Vahala, “High-Q surface-plasmon-polariton whispering-gallery microcavity,” Nature 457, 455–458 (2009).
[Crossref]

van Otten, F. W. M.

M. T. Hill, Y.-S. Oei, B. Smalbrugge, Y. Zhu, T. de Vries, P. J. van Veldhoven, F. W. M. van Otten, T. J. Eijkemans, J. P. Turkiewicz, H. de Waardt, E. J. Geluk, S.-H. Kwon, Y.-H. Lee, R. Nötzel, and M. K. Smit, “Lasing in metallic-coated nanocavities,” Nat. Photonics 1, 589–594 (2007).
[Crossref]

van Veldhoven, P. J.

K. Ding, C. Liu, L. J. Yin, M. T. Hill, M. J. H. Marell, P. J. van Veldhoven, R. Nötzel, and C. Z. Ning, “Room-temperature continuous wave lasing in deep-subwavelength metallic cavities under electrical injection,” Phys. Rev. B 85, 041304(R) (2012).
[Crossref]

M. T. Hill, M. Marell, E. S. P. Leong, B. Smalbrugge, Y. Zhu, M. Sun, P. J. van Veldhoven, E. J. Geluk, F. Karouta, Y.-S. Oei, R. Nötzel, C.-Z. Ning, and M. K. Smit, “Lasing in metal-insulator-metal sub-wavelength plasmonic waveguides,” Opt. Express 17, 11107–11112 (2009).
[Crossref]

M. T. Hill, Y.-S. Oei, B. Smalbrugge, Y. Zhu, T. de Vries, P. J. van Veldhoven, F. W. M. van Otten, T. J. Eijkemans, J. P. Turkiewicz, H. de Waardt, E. J. Geluk, S.-H. Kwon, Y.-H. Lee, R. Nötzel, and M. K. Smit, “Lasing in metallic-coated nanocavities,” Nat. Photonics 1, 589–594 (2007).
[Crossref]

Vasilyev, A.

C. T. Santis, S. T. Steger, Y. Vilenchik, A. Vasilyev, and A. Yariv, “High-coherence semiconductor lasers based on integral high-Q resonators in hybrid Si/III-V platforms,” Proc. Natl. Acad. Sci. U.S.A. 111, 2879–2884 (2014).
[Crossref]

Vilenchik, Y.

C. T. Santis, S. T. Steger, Y. Vilenchik, A. Vasilyev, and A. Yariv, “High-coherence semiconductor lasers based on integral high-Q resonators in hybrid Si/III-V platforms,” Proc. Natl. Acad. Sci. U.S.A. 111, 2879–2884 (2014).
[Crossref]

Vuckovic, J.

S. Wu, S. Buckley, J. R. Schaibley, L. Feng, J. Yan, D. G. Mandrus, F. Hatami, W. Yao, J. Vučković, A. Majumdar, and X. Xu, “Monolayer semiconductor nanocavity lasers with ultralow thresholds,” Nature 520, 69–72 (2015).
[Crossref]

Walther, C.

C. Walther, G. Scalari, M. I. Amanti, M. Beck, and J. Faist, “Microcavity laser oscillating in a circuit-based resonator,” Science 327, 1495–1497 (2010).
[Crossref]

Wang, C.-Y.

Y.-J. Lu, J. Kim, H.-Y. Chen, C. Wu, N. Dabidian, C. E. Sanders, C.-Y. Wang, M.-Y. Lu, B.-H. Li, X. Qiu, W.-H. Chang, L.-J. Chen, G. Shvets, C.-K. Shih, and S. Gwo, “Plasmonic nanolaser using epitaxial grown silver film,” Science 337, 450–453 (2012).
[Crossref]

Watanabe, K.

Y. Ota, K. Watanabe, S. Iwamoto, and Y. Arakawa, “Measuring the second-order coherence of a nanolaser by intracavity frequency doubling,” Phys. Rev. A 89, 023824 (2014).
[Crossref]

Wiersig, J.

J. Wiersig, C. Gies, F. Jahnke, M. Aßmann, T. Berstermann, M. Bayer, C. Kistner, S. Reitzenstein, C. Schneider, S. Höfling, A. Forchel, C. Kruse, J. Kalden, and D. Hommel, “Direct observation of correlations between individual photon emission events of a microcavity laser,” Nature 460, 245–249 (2009).
[Crossref]

Wiesner, U.

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, B. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460, 1110–1112 (2009).
[Crossref]

Wolf, E.

L. Mandel and E. Wolf, “Coherence properties of optical fields,” Rev. Mod. Phys. 37, 231–287 (1965).
[Crossref]

Wu, C.

Y.-J. Lu, J. Kim, H.-Y. Chen, C. Wu, N. Dabidian, C. E. Sanders, C.-Y. Wang, M.-Y. Lu, B.-H. Li, X. Qiu, W.-H. Chang, L.-J. Chen, G. Shvets, C.-K. Shih, and S. Gwo, “Plasmonic nanolaser using epitaxial grown silver film,” Science 337, 450–453 (2012).
[Crossref]

Wu, M. C.

Wu, S.

S. Wu, S. Buckley, J. R. Schaibley, L. Feng, J. Yan, D. G. Mandrus, F. Hatami, W. Yao, J. Vučković, A. Majumdar, and X. Xu, “Monolayer semiconductor nanocavity lasers with ultralow thresholds,” Nature 520, 69–72 (2015).
[Crossref]

Xu, X.

S. Wu, S. Buckley, J. R. Schaibley, L. Feng, J. Yan, D. G. Mandrus, F. Hatami, W. Yao, J. Vučković, A. Majumdar, and X. Xu, “Monolayer semiconductor nanocavity lasers with ultralow thresholds,” Nature 520, 69–72 (2015).
[Crossref]

Yan, J.

S. Wu, S. Buckley, J. R. Schaibley, L. Feng, J. Yan, D. G. Mandrus, F. Hatami, W. Yao, J. Vučković, A. Majumdar, and X. Xu, “Monolayer semiconductor nanocavity lasers with ultralow thresholds,” Nature 520, 69–72 (2015).
[Crossref]

Yang, A.

A. Yang, T. B. Hoang, M. Dridi, C. Deeb, M. H. Mikkelsen, G. C. Schatz, and T. W. Odom, “Real-time tunable lasing from plasmonic nanocavity arrays,” Nat. Commun. 6, 6939 (2015).
[Crossref]

Yang, L.

B. Min, E. Ostby, V. Sorger, E. Ulin-Avila, L. Yang, X. Zhang, and K. Vahala, “High-Q surface-plasmon-polariton whispering-gallery microcavity,” Nature 457, 455–458 (2009).
[Crossref]

Yang, X.

D. G. Deppe, M. Li, and X. Yang, “Metal quenching of radiative emission in metal-clad nanolasers,” in IEEE Photonics Conference (IPC), Burlingame, California, 2012.

Yao, W.

S. Wu, S. Buckley, J. R. Schaibley, L. Feng, J. Yan, D. G. Mandrus, F. Hatami, W. Yao, J. Vučković, A. Majumdar, and X. Xu, “Monolayer semiconductor nanocavity lasers with ultralow thresholds,” Nature 520, 69–72 (2015).
[Crossref]

Yariv, A.

C. T. Santis, S. T. Steger, Y. Vilenchik, A. Vasilyev, and A. Yariv, “High-coherence semiconductor lasers based on integral high-Q resonators in hybrid Si/III-V platforms,” Proc. Natl. Acad. Sci. U.S.A. 111, 2879–2884 (2014).
[Crossref]

Yin, L. J.

K. Ding, C. Liu, L. J. Yin, M. T. Hill, M. J. H. Marell, P. J. van Veldhoven, R. Nötzel, and C. Z. Ning, “Room-temperature continuous wave lasing in deep-subwavelength metallic cavities under electrical injection,” Phys. Rev. B 85, 041304(R) (2012).
[Crossref]

Yu, K.

Zentgraf, T.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R. M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461, 629–632 (2009).
[Crossref]

Zhang, X.

B. Min, E. Ostby, V. Sorger, E. Ulin-Avila, L. Yang, X. Zhang, and K. Vahala, “High-Q surface-plasmon-polariton whispering-gallery microcavity,” Nature 457, 455–458 (2009).
[Crossref]

R. F. Oulton, V. J. Sorger, T. Zentgraf, R. M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461, 629–632 (2009).
[Crossref]

Zhu, G.

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, B. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460, 1110–1112 (2009).
[Crossref]

Zhu, Y.

M. T. Hill, M. Marell, E. S. P. Leong, B. Smalbrugge, Y. Zhu, M. Sun, P. J. van Veldhoven, E. J. Geluk, F. Karouta, Y.-S. Oei, R. Nötzel, C.-Z. Ning, and M. K. Smit, “Lasing in metal-insulator-metal sub-wavelength plasmonic waveguides,” Opt. Express 17, 11107–11112 (2009).
[Crossref]

M. T. Hill, Y.-S. Oei, B. Smalbrugge, Y. Zhu, T. de Vries, P. J. van Veldhoven, F. W. M. van Otten, T. J. Eijkemans, J. P. Turkiewicz, H. de Waardt, E. J. Geluk, S.-H. Kwon, Y.-H. Lee, R. Nötzel, and M. K. Smit, “Lasing in metallic-coated nanocavities,” Nat. Photonics 1, 589–594 (2007).
[Crossref]

Advances in Physics: X (1)

W. E. Hayenga, H. Garcia-Gracia, H. Hodaei, Y. Fainman, and M. Khajavikhan, “Metallic coaxial nanolasers,” Advances in Physics: X 1, 262–275 (2016).
[Crossref]

Appl. Phys. Lett. (1)

Y.-S. Choi, M. T. Rakher, K. Hennessy, S. Strauf, A. Badolato, P. M. Petroff, D. Bouwmeester, and E. L. Hu, “Evolution of the onset of coherence in a family of photonic crystal nanolasers,” Appl. Phys. Lett. 91, 031108 (2007).
[Crossref]

IEEE J. Quantum Electron. (1)

S.-W. Chang and S. L. Chuang, “Fundamental formulation for plasmonic nanolasers,” IEEE J. Quantum Electron. 45, 1014–1023 (2009).
[Crossref]

Light Sci. Appl. (2)

K. Ding and C. Z. Ning, “Metallic subwavelength-cavity semiconductor nanolasers,” Light Sci. Appl. 1, e20 (2012).
[Crossref]

W. W. Chow, F. Jahnke, and C. Gies, “Emission properties of nanolasers during the transition to lasing,” Light Sci. Appl. 3, e201 (2014).
[Crossref]

Nano Lett. (1)

S.-H. Kwon, J.-H. Kang, C. Seassal, S.-K. Kim, P. Regreny, Y.-H. Lee, C. M. Liber, and H.-G. Park, “Subwavelength plasmonic lasing from a semiconductor nanodisk with silver nanopan cavity,” Nano Lett. 10, 3679–3683 (2010).
[Crossref]

Nat. Commun. (1)

A. Yang, T. B. Hoang, M. Dridi, C. Deeb, M. H. Mikkelsen, G. C. Schatz, and T. W. Odom, “Real-time tunable lasing from plasmonic nanocavity arrays,” Nat. Commun. 6, 6939 (2015).
[Crossref]

Nat. Photonics (2)

M. P. Nezhad, A. Simic, O. Bondarenko, B. Slutsky, A. Mizrahi, L. Feng, V. Lomakin, and Y. Fainman, “Room-temperature subwavelength metallo-dielectric lasers,” Nat. Photonics 4, 395–399 (2010).
[Crossref]

M. T. Hill, Y.-S. Oei, B. Smalbrugge, Y. Zhu, T. de Vries, P. J. van Veldhoven, F. W. M. van Otten, T. J. Eijkemans, J. P. Turkiewicz, H. de Waardt, E. J. Geluk, S.-H. Kwon, Y.-H. Lee, R. Nötzel, and M. K. Smit, “Lasing in metallic-coated nanocavities,” Nat. Photonics 1, 589–594 (2007).
[Crossref]

Nat. Phys. (1)

T. P. H. Sidiropoulos, R. Röder, S. Geburt, O. Hess, S. A. Maier, C. Ronning, and R. F. Oulton, “Ultrafast plasmonic nanowire lasers near the surface plasmon frequency,” Nat. Phys. 10, 870–876 (2014).
[Crossref]

Nature (7)

R. Hanbury Brown and R. Q. Twiss, “Correlation between photons in two coherent beams of light,” Nature 177, 27–29 (1956).
[Crossref]

J. Wiersig, C. Gies, F. Jahnke, M. Aßmann, T. Berstermann, M. Bayer, C. Kistner, S. Reitzenstein, C. Schneider, S. Höfling, A. Forchel, C. Kruse, J. Kalden, and D. Hommel, “Direct observation of correlations between individual photon emission events of a microcavity laser,” Nature 460, 245–249 (2009).
[Crossref]

B. Min, E. Ostby, V. Sorger, E. Ulin-Avila, L. Yang, X. Zhang, and K. Vahala, “High-Q surface-plasmon-polariton whispering-gallery microcavity,” Nature 457, 455–458 (2009).
[Crossref]

R. F. Oulton, V. J. Sorger, T. Zentgraf, R. M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461, 629–632 (2009).
[Crossref]

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, B. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460, 1110–1112 (2009).
[Crossref]

S. Wu, S. Buckley, J. R. Schaibley, L. Feng, J. Yan, D. G. Mandrus, F. Hatami, W. Yao, J. Vučković, A. Majumdar, and X. Xu, “Monolayer semiconductor nanocavity lasers with ultralow thresholds,” Nature 520, 69–72 (2015).
[Crossref]

M. Khajavikhan, A. Simic, M. Katz, J. H. Lee, B. Slutsky, A. Mizrahi, V. Lomakin, and Y. Fainman, “Thresholdless nanoscale coaxial lasers,” Nature 482, 204–207 (2012).
[Crossref]

Opt. Express (2)

Opt. Lett. (2)

Optica (1)

Phys. Rev. A (2)

Y. Ota, K. Watanabe, S. Iwamoto, and Y. Arakawa, “Measuring the second-order coherence of a nanolaser by intracavity frequency doubling,” Phys. Rev. A 89, 023824 (2014).
[Crossref]

P. R. Rice and H. J. Carmichael, “Photon statistics of a cavity-QED laser: a comment on the laser-phase-transition analogy,” Phys. Rev. A 50, 4318–4329 (1994).
[Crossref]

Phys. Rev. B (1)

K. Ding, C. Liu, L. J. Yin, M. T. Hill, M. J. H. Marell, P. J. van Veldhoven, R. Nötzel, and C. Z. Ning, “Room-temperature continuous wave lasing in deep-subwavelength metallic cavities under electrical injection,” Phys. Rev. B 85, 041304(R) (2012).
[Crossref]

Phys. Rev. Lett. (2)

S. Strauf, K. Hennessy, M. T. Rakher, Y.-S. Choi, A. Badolato, L. C. Andreani, E. L. Hu, P. M. Petroff, and D. Bouwmeester, “Self-tuned quantum dot gain in photonic crystal lasers,” Phys. Rev. Lett. 96, 127404 (2006).
[Crossref]

A. Lebreton, I. Abram, R. Braive, I. Sagnes, I. Robert-Philip, and A. Beveratos, “Unequivocal differentiation of coherent and chaotic light through interferometric photon correlation measurements,” Phys. Rev. Lett. 110, 163603 (2013).
[Crossref]

Proc. Natl. Acad. Sci. U.S.A. (1)

C. T. Santis, S. T. Steger, Y. Vilenchik, A. Vasilyev, and A. Yariv, “High-coherence semiconductor lasers based on integral high-Q resonators in hybrid Si/III-V platforms,” Proc. Natl. Acad. Sci. U.S.A. 111, 2879–2884 (2014).
[Crossref]

Rev. Mod. Phys. (1)

L. Mandel and E. Wolf, “Coherence properties of optical fields,” Rev. Mod. Phys. 37, 231–287 (1965).
[Crossref]

Science (2)

Y.-J. Lu, J. Kim, H.-Y. Chen, C. Wu, N. Dabidian, C. E. Sanders, C.-Y. Wang, M.-Y. Lu, B.-H. Li, X. Qiu, W.-H. Chang, L.-J. Chen, G. Shvets, C.-K. Shih, and S. Gwo, “Plasmonic nanolaser using epitaxial grown silver film,” Science 337, 450–453 (2012).
[Crossref]

C. Walther, G. Scalari, M. I. Amanti, M. Beck, and J. Faist, “Microcavity laser oscillating in a circuit-based resonator,” Science 327, 1495–1497 (2010).
[Crossref]

Other (3)

O. Svelto, Principles of Lasers, 5th ed. (Springer, 2010).

R. Loudon, The Quantum Theory of Light, 3rd ed. (Oxford University, 2000).

D. G. Deppe, M. Li, and X. Yang, “Metal quenching of radiative emission in metal-clad nanolasers,” in IEEE Photonics Conference (IPC), Burlingame, California, 2012.

Supplementary Material (1)

NameDescription
» Supplement 1: PDF (629 KB)      Power loss in the modified Hanbury Brown-Twiss setup.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Coaxial nanolaser geometry and modes. (a) Illustration and (b) modal content of the metallic coaxial nanolaser. The resonator supports three modes within the gain bandwidth of the active medium: a pair of degenerate modes at 1303 nm and a gap-plasmon-type mode at 1373 nm. Q and Γ denote the quality factor and the extent of energy confinement to the semiconductor region, V m , the effective modal volume. The color bar shows the normalized | E | 2 , where E is the electric field. Nominal permittivity values are used in this simulation.

Fig. 2.
Fig. 2.

Characterization of the nanolaser under CW optical pumping at a temperature of 77 K. (a) Spectral evolution of the laser, (b) light–light curve in a logarithmic scale and linear scale (inset), and (c) linewidth versus pump power. The Lorentzian fit used to estimate the linewidth is depicted in the inset of (c).

Fig. 3.
Fig. 3.

Measurement setup and calibration results. (a)  μ - PL setup with the incorporated Hanbury Brown–Twiss interferometer. (b) Schematic of the spectrum and (c) second-order coherence measurement for the Agilent 81460A laser. (d) Measured output spectrum (dashed) and representation of the filtered emission (solid), and (e) second-order coherence function, for the ASE source.

Fig. 4.
Fig. 4.

Second-order coherence measurement results for nanoscale coaxial laser ( R core : 50    nm , Δ : 200    nm ) in Section 2. The g 2 ( τ ) measurements of the emitted light from the coaxial nanolaser as well as the corresponding emission spectra in a semi-logarithmic scale at pump powers of (a), (b) 215 μW, (c), (d) 79.7 μW, and (e), (f) 66.4 μW.

Fig. 5.
Fig. 5.

Second-order coherence measurement results for nanoscale disk-shaped lasers. The g 2 ( τ ) measurements of the emitted light from the disk-shaped nanolaser as well as the corresponding emission spectra in a semi-logarithmic scale for disk radii of (a), (b) 250 nm and (c), (d) 900 nm.

Metrics