Abstract

Programmable spatial light modulators have significantly advanced the configurable optical trapping of particles. Typically, these devices are utilized in the Fourier plane of an optical system, but direct imaging of an amplitude pattern can potentially result in increased simplicity and computational speed. Here we demonstrate high-resolution direct imaging of a digital micromirror device (DMD) at high numerical apertures (NAs), which we apply to the optical trapping of a Bose–Einstein condensate (BEC). We utilize a (1200×1920) pixel DMD and commercially available 0.45 NA microscope objectives, finding that atoms confined in a hybrid optical/magnetic or all-optical potential can be patterned using repulsive blue-detuned (532 nm) light with 630(10) nm full width at half-maximum resolution, within 5% of the diffraction limit. The result is near arbitrary control of the density of the BEC without the need for expensive custom optics. We also introduce the technique of time-averaged DMD potentials, demonstrating the ability to produce multiple gray-scale levels with minimal heating of the atomic cloud, by utilizing the high switching speed (20 kHz maximum) of the DMD. These techniques will enable the realization and control of diverse optical potentials for superfluid dynamics and atomtronics applications with quantum gases. The performance of this system in a direct imaging configuration has wider application for optical trapping at non-trivial NAs.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Blue-detuned optical ring trap for Bose-Einstein condensates based on conical refraction

A. Turpin, J. Polo, Yu. V. Loiko, J. Küber, F. Schmaltz, T. K. Kalkandjiev, V. Ahufinger, G. Birkl, and J. Mompart
Opt. Express 23(2) 1638-1650 (2015)

Optical Scatter Imaging with a digital micromirror device

Jing-Yi Zheng, Robert M. Pasternack, and Nada N. Boustany
Opt. Express 17(22) 20401-20414 (2009)

References

  • View by:
  • |
  • |
  • |

  1. D. G. Grier, “A revolution in optical manipulation,” Nature 424, 810–816 (2003).
    [Crossref]
  2. M. Woerdemann, C. Alpmann, M. Esseling, and C. Denz, “Advanced optical trapping by complex beam shaping,” Laser Photon. Rev. 7, 839–854 (2013).
    [Crossref]
  3. K. C. Neuman and S. M. Block, “Optical trapping,” Rev. Sci. Instrum. 75, 2787–2809 (2004).
    [Crossref]
  4. S. Chowdhury, A. Thakur, P. Svec, C. Wang, W. Losert, and S. K. Gupta, “Automated manipulation of biological cells using gripper formations controlled by optical tweezers,” IEEE Trans. Automat. Sci. Eng. 11, 338–347 (2014).
    [Crossref]
  5. M. Pasienski and B. DeMarco, “A high-accuracy algorithm for designing arbitrary holographic atom traps,” Opt. Express 16, 2176–2190 (2008).
    [Crossref]
  6. A. Gaunt and Z. Hadzibabic, “Robust digital holography for ultracold atom trapping,” Sci. Rep. 2, 721 (2011).
  7. T. Harte, G. D. Bruce, J. Keeling, and D. Cassettari, “Conjugate gradient minimisation approach to generating holographic traps for ultracold atoms,” Opt. Express 22, 26548–26558 (2014).
    [Crossref]
  8. F. Nogrette, H. Labuhn, S. Ravets, D. Barredo, L. Béguin, A. Vernier, T. Lahaye, and A. Browaeys, “Single-atom trapping in holographic 2D arrays of microtraps with arbitrary geometries,” Phys. Rev. X 4, 021034 (2014).
    [Crossref]
  9. P. M. Preiss, R. Ma, M. E. Tai, A. Lukin, M. Rispoli, P. Zupancic, Y. Lahini, R. Islam, and M. Greiner, “Strongly correlated quantum walks in optical lattices,” Science 347, 1229–1233 (2015).
    [Crossref]
  10. T. Fukuhara, A. Kantian, M. Endres, M. Cheneau, P. Schauß, S. Hild, D. Bellem, U. Schollwöck, T. Giamarchi, C. Gross, I. Bloch, and S. Kuhr, “Quantum dynamics of a mobile spin impurity,” Nat. Phys. 9, 235–241 (2013).
    [Crossref]
  11. P. Zupancic, P. M. Preiss, R. Ma, A. Lukin, M. E. Tai, M. Rispoli, R. Islam, and M. Greiner, “Ultra-precise holographic beam shaping for microscopic quantum control,” Opt. Express 24, 13881–13893 (2016).
    [Crossref]
  12. P. C. Mogensen and J. Glückstad, “Dynamic array generation and pattern formation for optical tweezers,” Opt. Commun. 175, 75–81 (2000).
    [Crossref]
  13. R. L. Eriksen, P. C. Mogensen, and J. Glückstad, “Multiple-beam optical tweezers generated by the generalized phase-contrast method,” Opt. Lett. 27, 267–269 (2002).
    [Crossref]
  14. J. E. Curtis, B. A. Koss, and D. G. Grier, “Dynamic holographic optical tweezers,” Opt. Commun. 207, 169–175 (2002).
    [Crossref]
  15. D. Dudley, W. M. Duncan, and J. Slaughter, “Emerging digital micromirror device (DMD) applications,” Proc. SPIE 4985, 14–25 (2003).
  16. J. Liang, R. N. Kohn, M. F. Becker, and D. J. Heinzen, “1.5% root-mean-square flat-intensity laser beam formed using a binary-amplitude spatial light modulator,” Appl. Opt. 48, 1955–1962 (2009).
    [Crossref]
  17. L.-C. Ha, L. W. Clark, C. V. Parker, B. M. Anderson, and C. Chin, “Roton-maxon excitation spectrum of Bose condensates in a shaken optical lattice,” Phys. Rev. Lett. 114, 055301 (2015).
    [Crossref]
  18. A. Kumar, N. Anderson, W. Phillips, S. Eckel, G. Campbell, and S. Stringari, “Minimally destructive, Doppler measurement of a quantized flow in a ring-shaped Bose-Einstein condensate,” New J. Phys. 18, 025001 (2016).
    [Crossref]
  19. A. B. Stilgoe, A. V. Kashchuk, D. Preece, and H. Rubinsztein-Dunlop, “An interpretation and guide to single-pass beam shaping methods using SLMs and DMDs,” J. Opt. 18, 065609 (2016).
    [Crossref]
  20. M. Mirhosseini, O. S. Magana-Loaiza, C. Chen, B. Rodenburg, M. Malik, and R. W. Boyd, “Rapid generation of light beams carrying orbital angular momentum,” Opt. Express 21, 30196–30203 (2013).
    [Crossref]
  21. R. Liu, F. Li, M. Padgett, and D. Phillips, “Generalized photon sieves: fine control of complex fields with simple pinhole arrays,” Optica 2, 1028–1036 (2015).
    [Crossref]
  22. Our results represent an improvement over previously reported work on optical trapping of BECs using DMDs. We note that Ref. [11] directly imaged a DMD with a higher resolution (∼600  nm at 787.65  nm illumination) for the purposes of optical addressing of atoms trapped in an optical lattice, but not for atom trapping.
  23. B. Zimmermann, T. Mueller, J. Meineke, T. Esslinger, and H. Moritz, “High-resolution imaging of ultracold fermions in microscopically tailored optical potentials,” New J. Phys. 13, 043007 (2011).
    [Crossref]
  24. S. Schnelle, E. Van Ooijen, M. Davis, N. Heckenberg, and H. Rubinsztein-Dunlop, “Versatile two-dimensional potentials for ultra-cold atoms,” Opt. Express 16, 1405–1412 (2008).
    [Crossref]
  25. K. Henderson, C. Ryu, C. MacCormick, and M. Boshier, “Experimental demonstration of painting arbitrary and dynamic potentials for Bose-Einstein condensates,” New J. Phys. 11, 043030 (2009).
    [Crossref]
  26. T. A. Bell, J. A. P. Glidden, L. Humbert, M. W. J. Bromley, S. A. Haine, M. J. Davis, T. W. Neely, M. A. Baker, and H. Rubinsztein-Dunlop, “Bose–Einstein condensation in large time-averaged optical ring potentials,” New J. Phys. 18, 035003 (2016).
    [Crossref]
  27. Y.-J. Lin, A. Perry, R. Compton, I. Spielman, and J. Porto, “Rapid production of 87Rb Bose-Einstein condensates in a combined magnetic and optical potential,” Phys. Rev. A 79, 063631 (2009).
    [Crossref]
  28. W. Petrich, M. H. Anderson, J. R. Ensher, and E. A. Cornell, “Behavior of atoms in a compressed magneto-optical trap,” J. Opt. Soc. Am. B 11, 1332–1335 (1994).
    [Crossref]
  29. N. M. Parry, M. Baker, T. Neely, T. Carey, T. Bell, and H. Rubinsztein-Dunlop, “Note: high turn density magnetic coils with improved low pressure water cooling for use in atom optics,” Rev. Sci. Instrum. 85, 086103 (2014).
    [Crossref]
  30. M. Greiner, I. Bloch, T. W. Hänsch, and T. Esslinger, “Magnetic transport of trapped cold atoms over a large distance,” Phys. Rev. A 63, 031401 (2001).
    [Crossref]
  31. R. W. Floyd and L. Steinberg, “An adaptive algorithm for spatial gray-scale,” Proc. Soc. Information Display 17, 75–77 (1976).
  32. K. E. Wilson, Z. L. Newman, J. D. Lowney, and B. P. Anderson, “In situ imaging of vortices in Bose-Einstein condensates,” Phys. Rev. A 91, 023621 (2015).
    [Crossref]
  33. M. Pappa, P. Condylis, G. Konstantinidis, V. Bolpasi, A. Lazoudis, O. Morizot, D. Sahagun, M. Baker, and W. Von Klitzing, “Ultra-sensitive atom imaging for matter-wave optics,” New J. Phys. 13, 115012 (2011).
    [Crossref]
  34. S. Gupta, K. Murch, K. Moore, T. Purdy, and D. Stamper-Kurn, “Bose–Einstein condensation in a circular waveguide,” Phys. Rev. Lett. 95, 143201 (2005).
    [Crossref]
  35. S. Eckel, F. Jendrzejewski, A. Kumar, C. Lobb, and G. Campbell, “Interferometric measurement of the current-phase relationship of a superfluid weak link,” Phys. Rev. X 4, 031052 (2014).
    [Crossref]
  36. L. Corman, L. Chomaz, T. Bienaimé, R. Desbuquois, C. Weitenberg, S. Nascimbene, J. Dalibard, and J. Beugnon, “Quench-induced supercurrents in an annular Bose gas,” Phys. Rev. Lett. 113, 135302 (2014).
    [Crossref]
  37. L. Amico, A. Osterloh, and F. Cataliotti, “Quantum many particle systems in ring-shaped optical lattices,” Phys. Rev. Lett. 95, 063201 (2005).
    [Crossref]
  38. R. Horstmeyer, R. Heintzmann, G. Popescu, L. Waller, and C. Yang, “Standardizing the resolution claims for coherent microscopy,” Nat. Photonics 10, 68–71 (2016).
    [Crossref]
  39. L. Mathey, A. Ramantahn, K. C. Wright, S. R. Muniz, W. D. Phillips, and W. Charles, “Phase fluctuations in anisotropic Bose–Einstein condensates: from cigars to rings,” Phys. Rev. A 82, 033607 (2010).
    [Crossref]
  40. W. Muessel, H. Strobel, M. Joos, E. Nicklas, I. Stroescu, J. Tomkovič, D. B. Hume, and M. K. Oberthaler, “Optimized absorption imaging of mesoscopic atomic clouds,” Appl. Phys. B 113, 69–73 (2013).
    [Crossref]
  41. J. G. Lee, B. J. McIlvain, C. Lobb, and W. Hill, “Analogs of basic electronic circuit elements in a free-space atom chip,” Sci. Rep. 3, 1034–1038 (2013).
    [Crossref]
  42. J. Lee, S. Eckel, F. Jendrezjewski, C. Lobb, G. Campbell, and W. Hill, “Contact resistance and phase slips in mesoscopic superfluid atom transport,” Phys. Rev. A 93, 063619 (2016).
    [Crossref]
  43. T. Karpiuk, B. Gremaud, C. Miniatura, and M. Gajda, “Superfluid fountain effect in a Bose-Einstein condensate,” Phys. Rev. A 86, 033619 (2012).
    [Crossref]
  44. E. Samson, K. Wilson, Z. Newman, and B. Anderson, “Deterministic creation, pinning, and manipulation of quantized vortices in a Bose–Einstein condensate,” Phys. Rev. A 93, 023603 (2016).
    [Crossref]
  45. K. E. Wilson, E. C. Samson, Z. L. Newman, T. W. Neely, and B. P. Anderson, “Experimental methods for generating two-dimensional quantum turbulence in Bose–Einstein condensates,” Annu. Rev. Cold At. Mol. 1, 261–298 (2012).
    [Crossref]
  46. B. Seaman, M. Krämer, D. Anderson, and M. Holland, “Atomtronics: ultracold-atom analogs of electronic devices,” Phys. Rev. A 75, 023615 (2007).
    [Crossref]
  47. J. Catani, G. Barontini, G. Lamporesi, F. Rabatti, G. Thalhammer, F. Minardi, S. Stringari, and M. Inguscio, “Entropy exchange in a mixture of ultracold atoms,” Phys. Rev. Lett. 103, 140401 (2009).
    [Crossref]
  48. J.-Y. Choi, S. Hild, J. Zeiher, P. Schauß, A. Rubio-Abadal, T. Yefsah, V. Khemani, D. A. Huse, I. Bloch, and C. Gross, “Exploring the many-body localization in two dimensions,” Science 352, 1547–1552 (2016).
    [Crossref]

2016 (8)

P. Zupancic, P. M. Preiss, R. Ma, A. Lukin, M. E. Tai, M. Rispoli, R. Islam, and M. Greiner, “Ultra-precise holographic beam shaping for microscopic quantum control,” Opt. Express 24, 13881–13893 (2016).
[Crossref]

A. Kumar, N. Anderson, W. Phillips, S. Eckel, G. Campbell, and S. Stringari, “Minimally destructive, Doppler measurement of a quantized flow in a ring-shaped Bose-Einstein condensate,” New J. Phys. 18, 025001 (2016).
[Crossref]

A. B. Stilgoe, A. V. Kashchuk, D. Preece, and H. Rubinsztein-Dunlop, “An interpretation and guide to single-pass beam shaping methods using SLMs and DMDs,” J. Opt. 18, 065609 (2016).
[Crossref]

T. A. Bell, J. A. P. Glidden, L. Humbert, M. W. J. Bromley, S. A. Haine, M. J. Davis, T. W. Neely, M. A. Baker, and H. Rubinsztein-Dunlop, “Bose–Einstein condensation in large time-averaged optical ring potentials,” New J. Phys. 18, 035003 (2016).
[Crossref]

R. Horstmeyer, R. Heintzmann, G. Popescu, L. Waller, and C. Yang, “Standardizing the resolution claims for coherent microscopy,” Nat. Photonics 10, 68–71 (2016).
[Crossref]

J. Lee, S. Eckel, F. Jendrezjewski, C. Lobb, G. Campbell, and W. Hill, “Contact resistance and phase slips in mesoscopic superfluid atom transport,” Phys. Rev. A 93, 063619 (2016).
[Crossref]

E. Samson, K. Wilson, Z. Newman, and B. Anderson, “Deterministic creation, pinning, and manipulation of quantized vortices in a Bose–Einstein condensate,” Phys. Rev. A 93, 023603 (2016).
[Crossref]

J.-Y. Choi, S. Hild, J. Zeiher, P. Schauß, A. Rubio-Abadal, T. Yefsah, V. Khemani, D. A. Huse, I. Bloch, and C. Gross, “Exploring the many-body localization in two dimensions,” Science 352, 1547–1552 (2016).
[Crossref]

2015 (4)

K. E. Wilson, Z. L. Newman, J. D. Lowney, and B. P. Anderson, “In situ imaging of vortices in Bose-Einstein condensates,” Phys. Rev. A 91, 023621 (2015).
[Crossref]

L.-C. Ha, L. W. Clark, C. V. Parker, B. M. Anderson, and C. Chin, “Roton-maxon excitation spectrum of Bose condensates in a shaken optical lattice,” Phys. Rev. Lett. 114, 055301 (2015).
[Crossref]

R. Liu, F. Li, M. Padgett, and D. Phillips, “Generalized photon sieves: fine control of complex fields with simple pinhole arrays,” Optica 2, 1028–1036 (2015).
[Crossref]

P. M. Preiss, R. Ma, M. E. Tai, A. Lukin, M. Rispoli, P. Zupancic, Y. Lahini, R. Islam, and M. Greiner, “Strongly correlated quantum walks in optical lattices,” Science 347, 1229–1233 (2015).
[Crossref]

2014 (6)

S. Chowdhury, A. Thakur, P. Svec, C. Wang, W. Losert, and S. K. Gupta, “Automated manipulation of biological cells using gripper formations controlled by optical tweezers,” IEEE Trans. Automat. Sci. Eng. 11, 338–347 (2014).
[Crossref]

T. Harte, G. D. Bruce, J. Keeling, and D. Cassettari, “Conjugate gradient minimisation approach to generating holographic traps for ultracold atoms,” Opt. Express 22, 26548–26558 (2014).
[Crossref]

F. Nogrette, H. Labuhn, S. Ravets, D. Barredo, L. Béguin, A. Vernier, T. Lahaye, and A. Browaeys, “Single-atom trapping in holographic 2D arrays of microtraps with arbitrary geometries,” Phys. Rev. X 4, 021034 (2014).
[Crossref]

N. M. Parry, M. Baker, T. Neely, T. Carey, T. Bell, and H. Rubinsztein-Dunlop, “Note: high turn density magnetic coils with improved low pressure water cooling for use in atom optics,” Rev. Sci. Instrum. 85, 086103 (2014).
[Crossref]

S. Eckel, F. Jendrzejewski, A. Kumar, C. Lobb, and G. Campbell, “Interferometric measurement of the current-phase relationship of a superfluid weak link,” Phys. Rev. X 4, 031052 (2014).
[Crossref]

L. Corman, L. Chomaz, T. Bienaimé, R. Desbuquois, C. Weitenberg, S. Nascimbene, J. Dalibard, and J. Beugnon, “Quench-induced supercurrents in an annular Bose gas,” Phys. Rev. Lett. 113, 135302 (2014).
[Crossref]

2013 (5)

M. Mirhosseini, O. S. Magana-Loaiza, C. Chen, B. Rodenburg, M. Malik, and R. W. Boyd, “Rapid generation of light beams carrying orbital angular momentum,” Opt. Express 21, 30196–30203 (2013).
[Crossref]

M. Woerdemann, C. Alpmann, M. Esseling, and C. Denz, “Advanced optical trapping by complex beam shaping,” Laser Photon. Rev. 7, 839–854 (2013).
[Crossref]

T. Fukuhara, A. Kantian, M. Endres, M. Cheneau, P. Schauß, S. Hild, D. Bellem, U. Schollwöck, T. Giamarchi, C. Gross, I. Bloch, and S. Kuhr, “Quantum dynamics of a mobile spin impurity,” Nat. Phys. 9, 235–241 (2013).
[Crossref]

W. Muessel, H. Strobel, M. Joos, E. Nicklas, I. Stroescu, J. Tomkovič, D. B. Hume, and M. K. Oberthaler, “Optimized absorption imaging of mesoscopic atomic clouds,” Appl. Phys. B 113, 69–73 (2013).
[Crossref]

J. G. Lee, B. J. McIlvain, C. Lobb, and W. Hill, “Analogs of basic electronic circuit elements in a free-space atom chip,” Sci. Rep. 3, 1034–1038 (2013).
[Crossref]

2012 (2)

T. Karpiuk, B. Gremaud, C. Miniatura, and M. Gajda, “Superfluid fountain effect in a Bose-Einstein condensate,” Phys. Rev. A 86, 033619 (2012).
[Crossref]

K. E. Wilson, E. C. Samson, Z. L. Newman, T. W. Neely, and B. P. Anderson, “Experimental methods for generating two-dimensional quantum turbulence in Bose–Einstein condensates,” Annu. Rev. Cold At. Mol. 1, 261–298 (2012).
[Crossref]

2011 (3)

A. Gaunt and Z. Hadzibabic, “Robust digital holography for ultracold atom trapping,” Sci. Rep. 2, 721 (2011).

B. Zimmermann, T. Mueller, J. Meineke, T. Esslinger, and H. Moritz, “High-resolution imaging of ultracold fermions in microscopically tailored optical potentials,” New J. Phys. 13, 043007 (2011).
[Crossref]

M. Pappa, P. Condylis, G. Konstantinidis, V. Bolpasi, A. Lazoudis, O. Morizot, D. Sahagun, M. Baker, and W. Von Klitzing, “Ultra-sensitive atom imaging for matter-wave optics,” New J. Phys. 13, 115012 (2011).
[Crossref]

2010 (1)

L. Mathey, A. Ramantahn, K. C. Wright, S. R. Muniz, W. D. Phillips, and W. Charles, “Phase fluctuations in anisotropic Bose–Einstein condensates: from cigars to rings,” Phys. Rev. A 82, 033607 (2010).
[Crossref]

2009 (4)

K. Henderson, C. Ryu, C. MacCormick, and M. Boshier, “Experimental demonstration of painting arbitrary and dynamic potentials for Bose-Einstein condensates,” New J. Phys. 11, 043030 (2009).
[Crossref]

Y.-J. Lin, A. Perry, R. Compton, I. Spielman, and J. Porto, “Rapid production of 87Rb Bose-Einstein condensates in a combined magnetic and optical potential,” Phys. Rev. A 79, 063631 (2009).
[Crossref]

J. Liang, R. N. Kohn, M. F. Becker, and D. J. Heinzen, “1.5% root-mean-square flat-intensity laser beam formed using a binary-amplitude spatial light modulator,” Appl. Opt. 48, 1955–1962 (2009).
[Crossref]

J. Catani, G. Barontini, G. Lamporesi, F. Rabatti, G. Thalhammer, F. Minardi, S. Stringari, and M. Inguscio, “Entropy exchange in a mixture of ultracold atoms,” Phys. Rev. Lett. 103, 140401 (2009).
[Crossref]

2008 (2)

2007 (1)

B. Seaman, M. Krämer, D. Anderson, and M. Holland, “Atomtronics: ultracold-atom analogs of electronic devices,” Phys. Rev. A 75, 023615 (2007).
[Crossref]

2005 (2)

L. Amico, A. Osterloh, and F. Cataliotti, “Quantum many particle systems in ring-shaped optical lattices,” Phys. Rev. Lett. 95, 063201 (2005).
[Crossref]

S. Gupta, K. Murch, K. Moore, T. Purdy, and D. Stamper-Kurn, “Bose–Einstein condensation in a circular waveguide,” Phys. Rev. Lett. 95, 143201 (2005).
[Crossref]

2004 (1)

K. C. Neuman and S. M. Block, “Optical trapping,” Rev. Sci. Instrum. 75, 2787–2809 (2004).
[Crossref]

2003 (2)

D. G. Grier, “A revolution in optical manipulation,” Nature 424, 810–816 (2003).
[Crossref]

D. Dudley, W. M. Duncan, and J. Slaughter, “Emerging digital micromirror device (DMD) applications,” Proc. SPIE 4985, 14–25 (2003).

2002 (2)

2001 (1)

M. Greiner, I. Bloch, T. W. Hänsch, and T. Esslinger, “Magnetic transport of trapped cold atoms over a large distance,” Phys. Rev. A 63, 031401 (2001).
[Crossref]

2000 (1)

P. C. Mogensen and J. Glückstad, “Dynamic array generation and pattern formation for optical tweezers,” Opt. Commun. 175, 75–81 (2000).
[Crossref]

1994 (1)

1976 (1)

R. W. Floyd and L. Steinberg, “An adaptive algorithm for spatial gray-scale,” Proc. Soc. Information Display 17, 75–77 (1976).

Alpmann, C.

M. Woerdemann, C. Alpmann, M. Esseling, and C. Denz, “Advanced optical trapping by complex beam shaping,” Laser Photon. Rev. 7, 839–854 (2013).
[Crossref]

Amico, L.

L. Amico, A. Osterloh, and F. Cataliotti, “Quantum many particle systems in ring-shaped optical lattices,” Phys. Rev. Lett. 95, 063201 (2005).
[Crossref]

Anderson, B.

E. Samson, K. Wilson, Z. Newman, and B. Anderson, “Deterministic creation, pinning, and manipulation of quantized vortices in a Bose–Einstein condensate,” Phys. Rev. A 93, 023603 (2016).
[Crossref]

Anderson, B. M.

L.-C. Ha, L. W. Clark, C. V. Parker, B. M. Anderson, and C. Chin, “Roton-maxon excitation spectrum of Bose condensates in a shaken optical lattice,” Phys. Rev. Lett. 114, 055301 (2015).
[Crossref]

Anderson, B. P.

K. E. Wilson, Z. L. Newman, J. D. Lowney, and B. P. Anderson, “In situ imaging of vortices in Bose-Einstein condensates,” Phys. Rev. A 91, 023621 (2015).
[Crossref]

K. E. Wilson, E. C. Samson, Z. L. Newman, T. W. Neely, and B. P. Anderson, “Experimental methods for generating two-dimensional quantum turbulence in Bose–Einstein condensates,” Annu. Rev. Cold At. Mol. 1, 261–298 (2012).
[Crossref]

Anderson, D.

B. Seaman, M. Krämer, D. Anderson, and M. Holland, “Atomtronics: ultracold-atom analogs of electronic devices,” Phys. Rev. A 75, 023615 (2007).
[Crossref]

Anderson, M. H.

Anderson, N.

A. Kumar, N. Anderson, W. Phillips, S. Eckel, G. Campbell, and S. Stringari, “Minimally destructive, Doppler measurement of a quantized flow in a ring-shaped Bose-Einstein condensate,” New J. Phys. 18, 025001 (2016).
[Crossref]

Baker, M.

N. M. Parry, M. Baker, T. Neely, T. Carey, T. Bell, and H. Rubinsztein-Dunlop, “Note: high turn density magnetic coils with improved low pressure water cooling for use in atom optics,” Rev. Sci. Instrum. 85, 086103 (2014).
[Crossref]

M. Pappa, P. Condylis, G. Konstantinidis, V. Bolpasi, A. Lazoudis, O. Morizot, D. Sahagun, M. Baker, and W. Von Klitzing, “Ultra-sensitive atom imaging for matter-wave optics,” New J. Phys. 13, 115012 (2011).
[Crossref]

Baker, M. A.

T. A. Bell, J. A. P. Glidden, L. Humbert, M. W. J. Bromley, S. A. Haine, M. J. Davis, T. W. Neely, M. A. Baker, and H. Rubinsztein-Dunlop, “Bose–Einstein condensation in large time-averaged optical ring potentials,” New J. Phys. 18, 035003 (2016).
[Crossref]

Barontini, G.

J. Catani, G. Barontini, G. Lamporesi, F. Rabatti, G. Thalhammer, F. Minardi, S. Stringari, and M. Inguscio, “Entropy exchange in a mixture of ultracold atoms,” Phys. Rev. Lett. 103, 140401 (2009).
[Crossref]

Barredo, D.

F. Nogrette, H. Labuhn, S. Ravets, D. Barredo, L. Béguin, A. Vernier, T. Lahaye, and A. Browaeys, “Single-atom trapping in holographic 2D arrays of microtraps with arbitrary geometries,” Phys. Rev. X 4, 021034 (2014).
[Crossref]

Becker, M. F.

Béguin, L.

F. Nogrette, H. Labuhn, S. Ravets, D. Barredo, L. Béguin, A. Vernier, T. Lahaye, and A. Browaeys, “Single-atom trapping in holographic 2D arrays of microtraps with arbitrary geometries,” Phys. Rev. X 4, 021034 (2014).
[Crossref]

Bell, T.

N. M. Parry, M. Baker, T. Neely, T. Carey, T. Bell, and H. Rubinsztein-Dunlop, “Note: high turn density magnetic coils with improved low pressure water cooling for use in atom optics,” Rev. Sci. Instrum. 85, 086103 (2014).
[Crossref]

Bell, T. A.

T. A. Bell, J. A. P. Glidden, L. Humbert, M. W. J. Bromley, S. A. Haine, M. J. Davis, T. W. Neely, M. A. Baker, and H. Rubinsztein-Dunlop, “Bose–Einstein condensation in large time-averaged optical ring potentials,” New J. Phys. 18, 035003 (2016).
[Crossref]

Bellem, D.

T. Fukuhara, A. Kantian, M. Endres, M. Cheneau, P. Schauß, S. Hild, D. Bellem, U. Schollwöck, T. Giamarchi, C. Gross, I. Bloch, and S. Kuhr, “Quantum dynamics of a mobile spin impurity,” Nat. Phys. 9, 235–241 (2013).
[Crossref]

Beugnon, J.

L. Corman, L. Chomaz, T. Bienaimé, R. Desbuquois, C. Weitenberg, S. Nascimbene, J. Dalibard, and J. Beugnon, “Quench-induced supercurrents in an annular Bose gas,” Phys. Rev. Lett. 113, 135302 (2014).
[Crossref]

Bienaimé, T.

L. Corman, L. Chomaz, T. Bienaimé, R. Desbuquois, C. Weitenberg, S. Nascimbene, J. Dalibard, and J. Beugnon, “Quench-induced supercurrents in an annular Bose gas,” Phys. Rev. Lett. 113, 135302 (2014).
[Crossref]

Bloch, I.

J.-Y. Choi, S. Hild, J. Zeiher, P. Schauß, A. Rubio-Abadal, T. Yefsah, V. Khemani, D. A. Huse, I. Bloch, and C. Gross, “Exploring the many-body localization in two dimensions,” Science 352, 1547–1552 (2016).
[Crossref]

T. Fukuhara, A. Kantian, M. Endres, M. Cheneau, P. Schauß, S. Hild, D. Bellem, U. Schollwöck, T. Giamarchi, C. Gross, I. Bloch, and S. Kuhr, “Quantum dynamics of a mobile spin impurity,” Nat. Phys. 9, 235–241 (2013).
[Crossref]

M. Greiner, I. Bloch, T. W. Hänsch, and T. Esslinger, “Magnetic transport of trapped cold atoms over a large distance,” Phys. Rev. A 63, 031401 (2001).
[Crossref]

Block, S. M.

K. C. Neuman and S. M. Block, “Optical trapping,” Rev. Sci. Instrum. 75, 2787–2809 (2004).
[Crossref]

Bolpasi, V.

M. Pappa, P. Condylis, G. Konstantinidis, V. Bolpasi, A. Lazoudis, O. Morizot, D. Sahagun, M. Baker, and W. Von Klitzing, “Ultra-sensitive atom imaging for matter-wave optics,” New J. Phys. 13, 115012 (2011).
[Crossref]

Boshier, M.

K. Henderson, C. Ryu, C. MacCormick, and M. Boshier, “Experimental demonstration of painting arbitrary and dynamic potentials for Bose-Einstein condensates,” New J. Phys. 11, 043030 (2009).
[Crossref]

Boyd, R. W.

Bromley, M. W. J.

T. A. Bell, J. A. P. Glidden, L. Humbert, M. W. J. Bromley, S. A. Haine, M. J. Davis, T. W. Neely, M. A. Baker, and H. Rubinsztein-Dunlop, “Bose–Einstein condensation in large time-averaged optical ring potentials,” New J. Phys. 18, 035003 (2016).
[Crossref]

Browaeys, A.

F. Nogrette, H. Labuhn, S. Ravets, D. Barredo, L. Béguin, A. Vernier, T. Lahaye, and A. Browaeys, “Single-atom trapping in holographic 2D arrays of microtraps with arbitrary geometries,” Phys. Rev. X 4, 021034 (2014).
[Crossref]

Bruce, G. D.

Campbell, G.

A. Kumar, N. Anderson, W. Phillips, S. Eckel, G. Campbell, and S. Stringari, “Minimally destructive, Doppler measurement of a quantized flow in a ring-shaped Bose-Einstein condensate,” New J. Phys. 18, 025001 (2016).
[Crossref]

J. Lee, S. Eckel, F. Jendrezjewski, C. Lobb, G. Campbell, and W. Hill, “Contact resistance and phase slips in mesoscopic superfluid atom transport,” Phys. Rev. A 93, 063619 (2016).
[Crossref]

S. Eckel, F. Jendrzejewski, A. Kumar, C. Lobb, and G. Campbell, “Interferometric measurement of the current-phase relationship of a superfluid weak link,” Phys. Rev. X 4, 031052 (2014).
[Crossref]

Carey, T.

N. M. Parry, M. Baker, T. Neely, T. Carey, T. Bell, and H. Rubinsztein-Dunlop, “Note: high turn density magnetic coils with improved low pressure water cooling for use in atom optics,” Rev. Sci. Instrum. 85, 086103 (2014).
[Crossref]

Cassettari, D.

Cataliotti, F.

L. Amico, A. Osterloh, and F. Cataliotti, “Quantum many particle systems in ring-shaped optical lattices,” Phys. Rev. Lett. 95, 063201 (2005).
[Crossref]

Catani, J.

J. Catani, G. Barontini, G. Lamporesi, F. Rabatti, G. Thalhammer, F. Minardi, S. Stringari, and M. Inguscio, “Entropy exchange in a mixture of ultracold atoms,” Phys. Rev. Lett. 103, 140401 (2009).
[Crossref]

Charles, W.

L. Mathey, A. Ramantahn, K. C. Wright, S. R. Muniz, W. D. Phillips, and W. Charles, “Phase fluctuations in anisotropic Bose–Einstein condensates: from cigars to rings,” Phys. Rev. A 82, 033607 (2010).
[Crossref]

Chen, C.

Cheneau, M.

T. Fukuhara, A. Kantian, M. Endres, M. Cheneau, P. Schauß, S. Hild, D. Bellem, U. Schollwöck, T. Giamarchi, C. Gross, I. Bloch, and S. Kuhr, “Quantum dynamics of a mobile spin impurity,” Nat. Phys. 9, 235–241 (2013).
[Crossref]

Chin, C.

L.-C. Ha, L. W. Clark, C. V. Parker, B. M. Anderson, and C. Chin, “Roton-maxon excitation spectrum of Bose condensates in a shaken optical lattice,” Phys. Rev. Lett. 114, 055301 (2015).
[Crossref]

Choi, J.-Y.

J.-Y. Choi, S. Hild, J. Zeiher, P. Schauß, A. Rubio-Abadal, T. Yefsah, V. Khemani, D. A. Huse, I. Bloch, and C. Gross, “Exploring the many-body localization in two dimensions,” Science 352, 1547–1552 (2016).
[Crossref]

Chomaz, L.

L. Corman, L. Chomaz, T. Bienaimé, R. Desbuquois, C. Weitenberg, S. Nascimbene, J. Dalibard, and J. Beugnon, “Quench-induced supercurrents in an annular Bose gas,” Phys. Rev. Lett. 113, 135302 (2014).
[Crossref]

Chowdhury, S.

S. Chowdhury, A. Thakur, P. Svec, C. Wang, W. Losert, and S. K. Gupta, “Automated manipulation of biological cells using gripper formations controlled by optical tweezers,” IEEE Trans. Automat. Sci. Eng. 11, 338–347 (2014).
[Crossref]

Clark, L. W.

L.-C. Ha, L. W. Clark, C. V. Parker, B. M. Anderson, and C. Chin, “Roton-maxon excitation spectrum of Bose condensates in a shaken optical lattice,” Phys. Rev. Lett. 114, 055301 (2015).
[Crossref]

Compton, R.

Y.-J. Lin, A. Perry, R. Compton, I. Spielman, and J. Porto, “Rapid production of 87Rb Bose-Einstein condensates in a combined magnetic and optical potential,” Phys. Rev. A 79, 063631 (2009).
[Crossref]

Condylis, P.

M. Pappa, P. Condylis, G. Konstantinidis, V. Bolpasi, A. Lazoudis, O. Morizot, D. Sahagun, M. Baker, and W. Von Klitzing, “Ultra-sensitive atom imaging for matter-wave optics,” New J. Phys. 13, 115012 (2011).
[Crossref]

Corman, L.

L. Corman, L. Chomaz, T. Bienaimé, R. Desbuquois, C. Weitenberg, S. Nascimbene, J. Dalibard, and J. Beugnon, “Quench-induced supercurrents in an annular Bose gas,” Phys. Rev. Lett. 113, 135302 (2014).
[Crossref]

Cornell, E. A.

Curtis, J. E.

J. E. Curtis, B. A. Koss, and D. G. Grier, “Dynamic holographic optical tweezers,” Opt. Commun. 207, 169–175 (2002).
[Crossref]

Dalibard, J.

L. Corman, L. Chomaz, T. Bienaimé, R. Desbuquois, C. Weitenberg, S. Nascimbene, J. Dalibard, and J. Beugnon, “Quench-induced supercurrents in an annular Bose gas,” Phys. Rev. Lett. 113, 135302 (2014).
[Crossref]

Davis, M.

Davis, M. J.

T. A. Bell, J. A. P. Glidden, L. Humbert, M. W. J. Bromley, S. A. Haine, M. J. Davis, T. W. Neely, M. A. Baker, and H. Rubinsztein-Dunlop, “Bose–Einstein condensation in large time-averaged optical ring potentials,” New J. Phys. 18, 035003 (2016).
[Crossref]

DeMarco, B.

Denz, C.

M. Woerdemann, C. Alpmann, M. Esseling, and C. Denz, “Advanced optical trapping by complex beam shaping,” Laser Photon. Rev. 7, 839–854 (2013).
[Crossref]

Desbuquois, R.

L. Corman, L. Chomaz, T. Bienaimé, R. Desbuquois, C. Weitenberg, S. Nascimbene, J. Dalibard, and J. Beugnon, “Quench-induced supercurrents in an annular Bose gas,” Phys. Rev. Lett. 113, 135302 (2014).
[Crossref]

Dudley, D.

D. Dudley, W. M. Duncan, and J. Slaughter, “Emerging digital micromirror device (DMD) applications,” Proc. SPIE 4985, 14–25 (2003).

Duncan, W. M.

D. Dudley, W. M. Duncan, and J. Slaughter, “Emerging digital micromirror device (DMD) applications,” Proc. SPIE 4985, 14–25 (2003).

Eckel, S.

J. Lee, S. Eckel, F. Jendrezjewski, C. Lobb, G. Campbell, and W. Hill, “Contact resistance and phase slips in mesoscopic superfluid atom transport,” Phys. Rev. A 93, 063619 (2016).
[Crossref]

A. Kumar, N. Anderson, W. Phillips, S. Eckel, G. Campbell, and S. Stringari, “Minimally destructive, Doppler measurement of a quantized flow in a ring-shaped Bose-Einstein condensate,” New J. Phys. 18, 025001 (2016).
[Crossref]

S. Eckel, F. Jendrzejewski, A. Kumar, C. Lobb, and G. Campbell, “Interferometric measurement of the current-phase relationship of a superfluid weak link,” Phys. Rev. X 4, 031052 (2014).
[Crossref]

Endres, M.

T. Fukuhara, A. Kantian, M. Endres, M. Cheneau, P. Schauß, S. Hild, D. Bellem, U. Schollwöck, T. Giamarchi, C. Gross, I. Bloch, and S. Kuhr, “Quantum dynamics of a mobile spin impurity,” Nat. Phys. 9, 235–241 (2013).
[Crossref]

Ensher, J. R.

Eriksen, R. L.

Esseling, M.

M. Woerdemann, C. Alpmann, M. Esseling, and C. Denz, “Advanced optical trapping by complex beam shaping,” Laser Photon. Rev. 7, 839–854 (2013).
[Crossref]

Esslinger, T.

B. Zimmermann, T. Mueller, J. Meineke, T. Esslinger, and H. Moritz, “High-resolution imaging of ultracold fermions in microscopically tailored optical potentials,” New J. Phys. 13, 043007 (2011).
[Crossref]

M. Greiner, I. Bloch, T. W. Hänsch, and T. Esslinger, “Magnetic transport of trapped cold atoms over a large distance,” Phys. Rev. A 63, 031401 (2001).
[Crossref]

Floyd, R. W.

R. W. Floyd and L. Steinberg, “An adaptive algorithm for spatial gray-scale,” Proc. Soc. Information Display 17, 75–77 (1976).

Fukuhara, T.

T. Fukuhara, A. Kantian, M. Endres, M. Cheneau, P. Schauß, S. Hild, D. Bellem, U. Schollwöck, T. Giamarchi, C. Gross, I. Bloch, and S. Kuhr, “Quantum dynamics of a mobile spin impurity,” Nat. Phys. 9, 235–241 (2013).
[Crossref]

Gajda, M.

T. Karpiuk, B. Gremaud, C. Miniatura, and M. Gajda, “Superfluid fountain effect in a Bose-Einstein condensate,” Phys. Rev. A 86, 033619 (2012).
[Crossref]

Gaunt, A.

A. Gaunt and Z. Hadzibabic, “Robust digital holography for ultracold atom trapping,” Sci. Rep. 2, 721 (2011).

Giamarchi, T.

T. Fukuhara, A. Kantian, M. Endres, M. Cheneau, P. Schauß, S. Hild, D. Bellem, U. Schollwöck, T. Giamarchi, C. Gross, I. Bloch, and S. Kuhr, “Quantum dynamics of a mobile spin impurity,” Nat. Phys. 9, 235–241 (2013).
[Crossref]

Glidden, J. A. P.

T. A. Bell, J. A. P. Glidden, L. Humbert, M. W. J. Bromley, S. A. Haine, M. J. Davis, T. W. Neely, M. A. Baker, and H. Rubinsztein-Dunlop, “Bose–Einstein condensation in large time-averaged optical ring potentials,” New J. Phys. 18, 035003 (2016).
[Crossref]

Glückstad, J.

R. L. Eriksen, P. C. Mogensen, and J. Glückstad, “Multiple-beam optical tweezers generated by the generalized phase-contrast method,” Opt. Lett. 27, 267–269 (2002).
[Crossref]

P. C. Mogensen and J. Glückstad, “Dynamic array generation and pattern formation for optical tweezers,” Opt. Commun. 175, 75–81 (2000).
[Crossref]

Greiner, M.

P. Zupancic, P. M. Preiss, R. Ma, A. Lukin, M. E. Tai, M. Rispoli, R. Islam, and M. Greiner, “Ultra-precise holographic beam shaping for microscopic quantum control,” Opt. Express 24, 13881–13893 (2016).
[Crossref]

P. M. Preiss, R. Ma, M. E. Tai, A. Lukin, M. Rispoli, P. Zupancic, Y. Lahini, R. Islam, and M. Greiner, “Strongly correlated quantum walks in optical lattices,” Science 347, 1229–1233 (2015).
[Crossref]

M. Greiner, I. Bloch, T. W. Hänsch, and T. Esslinger, “Magnetic transport of trapped cold atoms over a large distance,” Phys. Rev. A 63, 031401 (2001).
[Crossref]

Gremaud, B.

T. Karpiuk, B. Gremaud, C. Miniatura, and M. Gajda, “Superfluid fountain effect in a Bose-Einstein condensate,” Phys. Rev. A 86, 033619 (2012).
[Crossref]

Grier, D. G.

D. G. Grier, “A revolution in optical manipulation,” Nature 424, 810–816 (2003).
[Crossref]

J. E. Curtis, B. A. Koss, and D. G. Grier, “Dynamic holographic optical tweezers,” Opt. Commun. 207, 169–175 (2002).
[Crossref]

Gross, C.

J.-Y. Choi, S. Hild, J. Zeiher, P. Schauß, A. Rubio-Abadal, T. Yefsah, V. Khemani, D. A. Huse, I. Bloch, and C. Gross, “Exploring the many-body localization in two dimensions,” Science 352, 1547–1552 (2016).
[Crossref]

T. Fukuhara, A. Kantian, M. Endres, M. Cheneau, P. Schauß, S. Hild, D. Bellem, U. Schollwöck, T. Giamarchi, C. Gross, I. Bloch, and S. Kuhr, “Quantum dynamics of a mobile spin impurity,” Nat. Phys. 9, 235–241 (2013).
[Crossref]

Gupta, S.

S. Gupta, K. Murch, K. Moore, T. Purdy, and D. Stamper-Kurn, “Bose–Einstein condensation in a circular waveguide,” Phys. Rev. Lett. 95, 143201 (2005).
[Crossref]

Gupta, S. K.

S. Chowdhury, A. Thakur, P. Svec, C. Wang, W. Losert, and S. K. Gupta, “Automated manipulation of biological cells using gripper formations controlled by optical tweezers,” IEEE Trans. Automat. Sci. Eng. 11, 338–347 (2014).
[Crossref]

Ha, L.-C.

L.-C. Ha, L. W. Clark, C. V. Parker, B. M. Anderson, and C. Chin, “Roton-maxon excitation spectrum of Bose condensates in a shaken optical lattice,” Phys. Rev. Lett. 114, 055301 (2015).
[Crossref]

Hadzibabic, Z.

A. Gaunt and Z. Hadzibabic, “Robust digital holography for ultracold atom trapping,” Sci. Rep. 2, 721 (2011).

Haine, S. A.

T. A. Bell, J. A. P. Glidden, L. Humbert, M. W. J. Bromley, S. A. Haine, M. J. Davis, T. W. Neely, M. A. Baker, and H. Rubinsztein-Dunlop, “Bose–Einstein condensation in large time-averaged optical ring potentials,” New J. Phys. 18, 035003 (2016).
[Crossref]

Hänsch, T. W.

M. Greiner, I. Bloch, T. W. Hänsch, and T. Esslinger, “Magnetic transport of trapped cold atoms over a large distance,” Phys. Rev. A 63, 031401 (2001).
[Crossref]

Harte, T.

Heckenberg, N.

Heintzmann, R.

R. Horstmeyer, R. Heintzmann, G. Popescu, L. Waller, and C. Yang, “Standardizing the resolution claims for coherent microscopy,” Nat. Photonics 10, 68–71 (2016).
[Crossref]

Heinzen, D. J.

Henderson, K.

K. Henderson, C. Ryu, C. MacCormick, and M. Boshier, “Experimental demonstration of painting arbitrary and dynamic potentials for Bose-Einstein condensates,” New J. Phys. 11, 043030 (2009).
[Crossref]

Hild, S.

J.-Y. Choi, S. Hild, J. Zeiher, P. Schauß, A. Rubio-Abadal, T. Yefsah, V. Khemani, D. A. Huse, I. Bloch, and C. Gross, “Exploring the many-body localization in two dimensions,” Science 352, 1547–1552 (2016).
[Crossref]

T. Fukuhara, A. Kantian, M. Endres, M. Cheneau, P. Schauß, S. Hild, D. Bellem, U. Schollwöck, T. Giamarchi, C. Gross, I. Bloch, and S. Kuhr, “Quantum dynamics of a mobile spin impurity,” Nat. Phys. 9, 235–241 (2013).
[Crossref]

Hill, W.

J. Lee, S. Eckel, F. Jendrezjewski, C. Lobb, G. Campbell, and W. Hill, “Contact resistance and phase slips in mesoscopic superfluid atom transport,” Phys. Rev. A 93, 063619 (2016).
[Crossref]

J. G. Lee, B. J. McIlvain, C. Lobb, and W. Hill, “Analogs of basic electronic circuit elements in a free-space atom chip,” Sci. Rep. 3, 1034–1038 (2013).
[Crossref]

Holland, M.

B. Seaman, M. Krämer, D. Anderson, and M. Holland, “Atomtronics: ultracold-atom analogs of electronic devices,” Phys. Rev. A 75, 023615 (2007).
[Crossref]

Horstmeyer, R.

R. Horstmeyer, R. Heintzmann, G. Popescu, L. Waller, and C. Yang, “Standardizing the resolution claims for coherent microscopy,” Nat. Photonics 10, 68–71 (2016).
[Crossref]

Humbert, L.

T. A. Bell, J. A. P. Glidden, L. Humbert, M. W. J. Bromley, S. A. Haine, M. J. Davis, T. W. Neely, M. A. Baker, and H. Rubinsztein-Dunlop, “Bose–Einstein condensation in large time-averaged optical ring potentials,” New J. Phys. 18, 035003 (2016).
[Crossref]

Hume, D. B.

W. Muessel, H. Strobel, M. Joos, E. Nicklas, I. Stroescu, J. Tomkovič, D. B. Hume, and M. K. Oberthaler, “Optimized absorption imaging of mesoscopic atomic clouds,” Appl. Phys. B 113, 69–73 (2013).
[Crossref]

Huse, D. A.

J.-Y. Choi, S. Hild, J. Zeiher, P. Schauß, A. Rubio-Abadal, T. Yefsah, V. Khemani, D. A. Huse, I. Bloch, and C. Gross, “Exploring the many-body localization in two dimensions,” Science 352, 1547–1552 (2016).
[Crossref]

Inguscio, M.

J. Catani, G. Barontini, G. Lamporesi, F. Rabatti, G. Thalhammer, F. Minardi, S. Stringari, and M. Inguscio, “Entropy exchange in a mixture of ultracold atoms,” Phys. Rev. Lett. 103, 140401 (2009).
[Crossref]

Islam, R.

P. Zupancic, P. M. Preiss, R. Ma, A. Lukin, M. E. Tai, M. Rispoli, R. Islam, and M. Greiner, “Ultra-precise holographic beam shaping for microscopic quantum control,” Opt. Express 24, 13881–13893 (2016).
[Crossref]

P. M. Preiss, R. Ma, M. E. Tai, A. Lukin, M. Rispoli, P. Zupancic, Y. Lahini, R. Islam, and M. Greiner, “Strongly correlated quantum walks in optical lattices,” Science 347, 1229–1233 (2015).
[Crossref]

Jendrezjewski, F.

J. Lee, S. Eckel, F. Jendrezjewski, C. Lobb, G. Campbell, and W. Hill, “Contact resistance and phase slips in mesoscopic superfluid atom transport,” Phys. Rev. A 93, 063619 (2016).
[Crossref]

Jendrzejewski, F.

S. Eckel, F. Jendrzejewski, A. Kumar, C. Lobb, and G. Campbell, “Interferometric measurement of the current-phase relationship of a superfluid weak link,” Phys. Rev. X 4, 031052 (2014).
[Crossref]

Joos, M.

W. Muessel, H. Strobel, M. Joos, E. Nicklas, I. Stroescu, J. Tomkovič, D. B. Hume, and M. K. Oberthaler, “Optimized absorption imaging of mesoscopic atomic clouds,” Appl. Phys. B 113, 69–73 (2013).
[Crossref]

Kantian, A.

T. Fukuhara, A. Kantian, M. Endres, M. Cheneau, P. Schauß, S. Hild, D. Bellem, U. Schollwöck, T. Giamarchi, C. Gross, I. Bloch, and S. Kuhr, “Quantum dynamics of a mobile spin impurity,” Nat. Phys. 9, 235–241 (2013).
[Crossref]

Karpiuk, T.

T. Karpiuk, B. Gremaud, C. Miniatura, and M. Gajda, “Superfluid fountain effect in a Bose-Einstein condensate,” Phys. Rev. A 86, 033619 (2012).
[Crossref]

Kashchuk, A. V.

A. B. Stilgoe, A. V. Kashchuk, D. Preece, and H. Rubinsztein-Dunlop, “An interpretation and guide to single-pass beam shaping methods using SLMs and DMDs,” J. Opt. 18, 065609 (2016).
[Crossref]

Keeling, J.

Khemani, V.

J.-Y. Choi, S. Hild, J. Zeiher, P. Schauß, A. Rubio-Abadal, T. Yefsah, V. Khemani, D. A. Huse, I. Bloch, and C. Gross, “Exploring the many-body localization in two dimensions,” Science 352, 1547–1552 (2016).
[Crossref]

Kohn, R. N.

Konstantinidis, G.

M. Pappa, P. Condylis, G. Konstantinidis, V. Bolpasi, A. Lazoudis, O. Morizot, D. Sahagun, M. Baker, and W. Von Klitzing, “Ultra-sensitive atom imaging for matter-wave optics,” New J. Phys. 13, 115012 (2011).
[Crossref]

Koss, B. A.

J. E. Curtis, B. A. Koss, and D. G. Grier, “Dynamic holographic optical tweezers,” Opt. Commun. 207, 169–175 (2002).
[Crossref]

Krämer, M.

B. Seaman, M. Krämer, D. Anderson, and M. Holland, “Atomtronics: ultracold-atom analogs of electronic devices,” Phys. Rev. A 75, 023615 (2007).
[Crossref]

Kuhr, S.

T. Fukuhara, A. Kantian, M. Endres, M. Cheneau, P. Schauß, S. Hild, D. Bellem, U. Schollwöck, T. Giamarchi, C. Gross, I. Bloch, and S. Kuhr, “Quantum dynamics of a mobile spin impurity,” Nat. Phys. 9, 235–241 (2013).
[Crossref]

Kumar, A.

A. Kumar, N. Anderson, W. Phillips, S. Eckel, G. Campbell, and S. Stringari, “Minimally destructive, Doppler measurement of a quantized flow in a ring-shaped Bose-Einstein condensate,” New J. Phys. 18, 025001 (2016).
[Crossref]

S. Eckel, F. Jendrzejewski, A. Kumar, C. Lobb, and G. Campbell, “Interferometric measurement of the current-phase relationship of a superfluid weak link,” Phys. Rev. X 4, 031052 (2014).
[Crossref]

Labuhn, H.

F. Nogrette, H. Labuhn, S. Ravets, D. Barredo, L. Béguin, A. Vernier, T. Lahaye, and A. Browaeys, “Single-atom trapping in holographic 2D arrays of microtraps with arbitrary geometries,” Phys. Rev. X 4, 021034 (2014).
[Crossref]

Lahaye, T.

F. Nogrette, H. Labuhn, S. Ravets, D. Barredo, L. Béguin, A. Vernier, T. Lahaye, and A. Browaeys, “Single-atom trapping in holographic 2D arrays of microtraps with arbitrary geometries,” Phys. Rev. X 4, 021034 (2014).
[Crossref]

Lahini, Y.

P. M. Preiss, R. Ma, M. E. Tai, A. Lukin, M. Rispoli, P. Zupancic, Y. Lahini, R. Islam, and M. Greiner, “Strongly correlated quantum walks in optical lattices,” Science 347, 1229–1233 (2015).
[Crossref]

Lamporesi, G.

J. Catani, G. Barontini, G. Lamporesi, F. Rabatti, G. Thalhammer, F. Minardi, S. Stringari, and M. Inguscio, “Entropy exchange in a mixture of ultracold atoms,” Phys. Rev. Lett. 103, 140401 (2009).
[Crossref]

Lazoudis, A.

M. Pappa, P. Condylis, G. Konstantinidis, V. Bolpasi, A. Lazoudis, O. Morizot, D. Sahagun, M. Baker, and W. Von Klitzing, “Ultra-sensitive atom imaging for matter-wave optics,” New J. Phys. 13, 115012 (2011).
[Crossref]

Lee, J.

J. Lee, S. Eckel, F. Jendrezjewski, C. Lobb, G. Campbell, and W. Hill, “Contact resistance and phase slips in mesoscopic superfluid atom transport,” Phys. Rev. A 93, 063619 (2016).
[Crossref]

Lee, J. G.

J. G. Lee, B. J. McIlvain, C. Lobb, and W. Hill, “Analogs of basic electronic circuit elements in a free-space atom chip,” Sci. Rep. 3, 1034–1038 (2013).
[Crossref]

Li, F.

Liang, J.

Lin, Y.-J.

Y.-J. Lin, A. Perry, R. Compton, I. Spielman, and J. Porto, “Rapid production of 87Rb Bose-Einstein condensates in a combined magnetic and optical potential,” Phys. Rev. A 79, 063631 (2009).
[Crossref]

Liu, R.

Lobb, C.

J. Lee, S. Eckel, F. Jendrezjewski, C. Lobb, G. Campbell, and W. Hill, “Contact resistance and phase slips in mesoscopic superfluid atom transport,” Phys. Rev. A 93, 063619 (2016).
[Crossref]

S. Eckel, F. Jendrzejewski, A. Kumar, C. Lobb, and G. Campbell, “Interferometric measurement of the current-phase relationship of a superfluid weak link,” Phys. Rev. X 4, 031052 (2014).
[Crossref]

J. G. Lee, B. J. McIlvain, C. Lobb, and W. Hill, “Analogs of basic electronic circuit elements in a free-space atom chip,” Sci. Rep. 3, 1034–1038 (2013).
[Crossref]

Losert, W.

S. Chowdhury, A. Thakur, P. Svec, C. Wang, W. Losert, and S. K. Gupta, “Automated manipulation of biological cells using gripper formations controlled by optical tweezers,” IEEE Trans. Automat. Sci. Eng. 11, 338–347 (2014).
[Crossref]

Lowney, J. D.

K. E. Wilson, Z. L. Newman, J. D. Lowney, and B. P. Anderson, “In situ imaging of vortices in Bose-Einstein condensates,” Phys. Rev. A 91, 023621 (2015).
[Crossref]

Lukin, A.

P. Zupancic, P. M. Preiss, R. Ma, A. Lukin, M. E. Tai, M. Rispoli, R. Islam, and M. Greiner, “Ultra-precise holographic beam shaping for microscopic quantum control,” Opt. Express 24, 13881–13893 (2016).
[Crossref]

P. M. Preiss, R. Ma, M. E. Tai, A. Lukin, M. Rispoli, P. Zupancic, Y. Lahini, R. Islam, and M. Greiner, “Strongly correlated quantum walks in optical lattices,” Science 347, 1229–1233 (2015).
[Crossref]

Ma, R.

P. Zupancic, P. M. Preiss, R. Ma, A. Lukin, M. E. Tai, M. Rispoli, R. Islam, and M. Greiner, “Ultra-precise holographic beam shaping for microscopic quantum control,” Opt. Express 24, 13881–13893 (2016).
[Crossref]

P. M. Preiss, R. Ma, M. E. Tai, A. Lukin, M. Rispoli, P. Zupancic, Y. Lahini, R. Islam, and M. Greiner, “Strongly correlated quantum walks in optical lattices,” Science 347, 1229–1233 (2015).
[Crossref]

MacCormick, C.

K. Henderson, C. Ryu, C. MacCormick, and M. Boshier, “Experimental demonstration of painting arbitrary and dynamic potentials for Bose-Einstein condensates,” New J. Phys. 11, 043030 (2009).
[Crossref]

Magana-Loaiza, O. S.

Malik, M.

Mathey, L.

L. Mathey, A. Ramantahn, K. C. Wright, S. R. Muniz, W. D. Phillips, and W. Charles, “Phase fluctuations in anisotropic Bose–Einstein condensates: from cigars to rings,” Phys. Rev. A 82, 033607 (2010).
[Crossref]

McIlvain, B. J.

J. G. Lee, B. J. McIlvain, C. Lobb, and W. Hill, “Analogs of basic electronic circuit elements in a free-space atom chip,” Sci. Rep. 3, 1034–1038 (2013).
[Crossref]

Meineke, J.

B. Zimmermann, T. Mueller, J. Meineke, T. Esslinger, and H. Moritz, “High-resolution imaging of ultracold fermions in microscopically tailored optical potentials,” New J. Phys. 13, 043007 (2011).
[Crossref]

Minardi, F.

J. Catani, G. Barontini, G. Lamporesi, F. Rabatti, G. Thalhammer, F. Minardi, S. Stringari, and M. Inguscio, “Entropy exchange in a mixture of ultracold atoms,” Phys. Rev. Lett. 103, 140401 (2009).
[Crossref]

Miniatura, C.

T. Karpiuk, B. Gremaud, C. Miniatura, and M. Gajda, “Superfluid fountain effect in a Bose-Einstein condensate,” Phys. Rev. A 86, 033619 (2012).
[Crossref]

Mirhosseini, M.

Mogensen, P. C.

R. L. Eriksen, P. C. Mogensen, and J. Glückstad, “Multiple-beam optical tweezers generated by the generalized phase-contrast method,” Opt. Lett. 27, 267–269 (2002).
[Crossref]

P. C. Mogensen and J. Glückstad, “Dynamic array generation and pattern formation for optical tweezers,” Opt. Commun. 175, 75–81 (2000).
[Crossref]

Moore, K.

S. Gupta, K. Murch, K. Moore, T. Purdy, and D. Stamper-Kurn, “Bose–Einstein condensation in a circular waveguide,” Phys. Rev. Lett. 95, 143201 (2005).
[Crossref]

Moritz, H.

B. Zimmermann, T. Mueller, J. Meineke, T. Esslinger, and H. Moritz, “High-resolution imaging of ultracold fermions in microscopically tailored optical potentials,” New J. Phys. 13, 043007 (2011).
[Crossref]

Morizot, O.

M. Pappa, P. Condylis, G. Konstantinidis, V. Bolpasi, A. Lazoudis, O. Morizot, D. Sahagun, M. Baker, and W. Von Klitzing, “Ultra-sensitive atom imaging for matter-wave optics,” New J. Phys. 13, 115012 (2011).
[Crossref]

Mueller, T.

B. Zimmermann, T. Mueller, J. Meineke, T. Esslinger, and H. Moritz, “High-resolution imaging of ultracold fermions in microscopically tailored optical potentials,” New J. Phys. 13, 043007 (2011).
[Crossref]

Muessel, W.

W. Muessel, H. Strobel, M. Joos, E. Nicklas, I. Stroescu, J. Tomkovič, D. B. Hume, and M. K. Oberthaler, “Optimized absorption imaging of mesoscopic atomic clouds,” Appl. Phys. B 113, 69–73 (2013).
[Crossref]

Muniz, S. R.

L. Mathey, A. Ramantahn, K. C. Wright, S. R. Muniz, W. D. Phillips, and W. Charles, “Phase fluctuations in anisotropic Bose–Einstein condensates: from cigars to rings,” Phys. Rev. A 82, 033607 (2010).
[Crossref]

Murch, K.

S. Gupta, K. Murch, K. Moore, T. Purdy, and D. Stamper-Kurn, “Bose–Einstein condensation in a circular waveguide,” Phys. Rev. Lett. 95, 143201 (2005).
[Crossref]

Nascimbene, S.

L. Corman, L. Chomaz, T. Bienaimé, R. Desbuquois, C. Weitenberg, S. Nascimbene, J. Dalibard, and J. Beugnon, “Quench-induced supercurrents in an annular Bose gas,” Phys. Rev. Lett. 113, 135302 (2014).
[Crossref]

Neely, T.

N. M. Parry, M. Baker, T. Neely, T. Carey, T. Bell, and H. Rubinsztein-Dunlop, “Note: high turn density magnetic coils with improved low pressure water cooling for use in atom optics,” Rev. Sci. Instrum. 85, 086103 (2014).
[Crossref]

Neely, T. W.

T. A. Bell, J. A. P. Glidden, L. Humbert, M. W. J. Bromley, S. A. Haine, M. J. Davis, T. W. Neely, M. A. Baker, and H. Rubinsztein-Dunlop, “Bose–Einstein condensation in large time-averaged optical ring potentials,” New J. Phys. 18, 035003 (2016).
[Crossref]

K. E. Wilson, E. C. Samson, Z. L. Newman, T. W. Neely, and B. P. Anderson, “Experimental methods for generating two-dimensional quantum turbulence in Bose–Einstein condensates,” Annu. Rev. Cold At. Mol. 1, 261–298 (2012).
[Crossref]

Neuman, K. C.

K. C. Neuman and S. M. Block, “Optical trapping,” Rev. Sci. Instrum. 75, 2787–2809 (2004).
[Crossref]

Newman, Z.

E. Samson, K. Wilson, Z. Newman, and B. Anderson, “Deterministic creation, pinning, and manipulation of quantized vortices in a Bose–Einstein condensate,” Phys. Rev. A 93, 023603 (2016).
[Crossref]

Newman, Z. L.

K. E. Wilson, Z. L. Newman, J. D. Lowney, and B. P. Anderson, “In situ imaging of vortices in Bose-Einstein condensates,” Phys. Rev. A 91, 023621 (2015).
[Crossref]

K. E. Wilson, E. C. Samson, Z. L. Newman, T. W. Neely, and B. P. Anderson, “Experimental methods for generating two-dimensional quantum turbulence in Bose–Einstein condensates,” Annu. Rev. Cold At. Mol. 1, 261–298 (2012).
[Crossref]

Nicklas, E.

W. Muessel, H. Strobel, M. Joos, E. Nicklas, I. Stroescu, J. Tomkovič, D. B. Hume, and M. K. Oberthaler, “Optimized absorption imaging of mesoscopic atomic clouds,” Appl. Phys. B 113, 69–73 (2013).
[Crossref]

Nogrette, F.

F. Nogrette, H. Labuhn, S. Ravets, D. Barredo, L. Béguin, A. Vernier, T. Lahaye, and A. Browaeys, “Single-atom trapping in holographic 2D arrays of microtraps with arbitrary geometries,” Phys. Rev. X 4, 021034 (2014).
[Crossref]

Oberthaler, M. K.

W. Muessel, H. Strobel, M. Joos, E. Nicklas, I. Stroescu, J. Tomkovič, D. B. Hume, and M. K. Oberthaler, “Optimized absorption imaging of mesoscopic atomic clouds,” Appl. Phys. B 113, 69–73 (2013).
[Crossref]

Osterloh, A.

L. Amico, A. Osterloh, and F. Cataliotti, “Quantum many particle systems in ring-shaped optical lattices,” Phys. Rev. Lett. 95, 063201 (2005).
[Crossref]

Padgett, M.

Pappa, M.

M. Pappa, P. Condylis, G. Konstantinidis, V. Bolpasi, A. Lazoudis, O. Morizot, D. Sahagun, M. Baker, and W. Von Klitzing, “Ultra-sensitive atom imaging for matter-wave optics,” New J. Phys. 13, 115012 (2011).
[Crossref]

Parker, C. V.

L.-C. Ha, L. W. Clark, C. V. Parker, B. M. Anderson, and C. Chin, “Roton-maxon excitation spectrum of Bose condensates in a shaken optical lattice,” Phys. Rev. Lett. 114, 055301 (2015).
[Crossref]

Parry, N. M.

N. M. Parry, M. Baker, T. Neely, T. Carey, T. Bell, and H. Rubinsztein-Dunlop, “Note: high turn density magnetic coils with improved low pressure water cooling for use in atom optics,” Rev. Sci. Instrum. 85, 086103 (2014).
[Crossref]

Pasienski, M.

Perry, A.

Y.-J. Lin, A. Perry, R. Compton, I. Spielman, and J. Porto, “Rapid production of 87Rb Bose-Einstein condensates in a combined magnetic and optical potential,” Phys. Rev. A 79, 063631 (2009).
[Crossref]

Petrich, W.

Phillips, D.

Phillips, W.

A. Kumar, N. Anderson, W. Phillips, S. Eckel, G. Campbell, and S. Stringari, “Minimally destructive, Doppler measurement of a quantized flow in a ring-shaped Bose-Einstein condensate,” New J. Phys. 18, 025001 (2016).
[Crossref]

Phillips, W. D.

L. Mathey, A. Ramantahn, K. C. Wright, S. R. Muniz, W. D. Phillips, and W. Charles, “Phase fluctuations in anisotropic Bose–Einstein condensates: from cigars to rings,” Phys. Rev. A 82, 033607 (2010).
[Crossref]

Popescu, G.

R. Horstmeyer, R. Heintzmann, G. Popescu, L. Waller, and C. Yang, “Standardizing the resolution claims for coherent microscopy,” Nat. Photonics 10, 68–71 (2016).
[Crossref]

Porto, J.

Y.-J. Lin, A. Perry, R. Compton, I. Spielman, and J. Porto, “Rapid production of 87Rb Bose-Einstein condensates in a combined magnetic and optical potential,” Phys. Rev. A 79, 063631 (2009).
[Crossref]

Preece, D.

A. B. Stilgoe, A. V. Kashchuk, D. Preece, and H. Rubinsztein-Dunlop, “An interpretation and guide to single-pass beam shaping methods using SLMs and DMDs,” J. Opt. 18, 065609 (2016).
[Crossref]

Preiss, P. M.

P. Zupancic, P. M. Preiss, R. Ma, A. Lukin, M. E. Tai, M. Rispoli, R. Islam, and M. Greiner, “Ultra-precise holographic beam shaping for microscopic quantum control,” Opt. Express 24, 13881–13893 (2016).
[Crossref]

P. M. Preiss, R. Ma, M. E. Tai, A. Lukin, M. Rispoli, P. Zupancic, Y. Lahini, R. Islam, and M. Greiner, “Strongly correlated quantum walks in optical lattices,” Science 347, 1229–1233 (2015).
[Crossref]

Purdy, T.

S. Gupta, K. Murch, K. Moore, T. Purdy, and D. Stamper-Kurn, “Bose–Einstein condensation in a circular waveguide,” Phys. Rev. Lett. 95, 143201 (2005).
[Crossref]

Rabatti, F.

J. Catani, G. Barontini, G. Lamporesi, F. Rabatti, G. Thalhammer, F. Minardi, S. Stringari, and M. Inguscio, “Entropy exchange in a mixture of ultracold atoms,” Phys. Rev. Lett. 103, 140401 (2009).
[Crossref]

Ramantahn, A.

L. Mathey, A. Ramantahn, K. C. Wright, S. R. Muniz, W. D. Phillips, and W. Charles, “Phase fluctuations in anisotropic Bose–Einstein condensates: from cigars to rings,” Phys. Rev. A 82, 033607 (2010).
[Crossref]

Ravets, S.

F. Nogrette, H. Labuhn, S. Ravets, D. Barredo, L. Béguin, A. Vernier, T. Lahaye, and A. Browaeys, “Single-atom trapping in holographic 2D arrays of microtraps with arbitrary geometries,” Phys. Rev. X 4, 021034 (2014).
[Crossref]

Rispoli, M.

P. Zupancic, P. M. Preiss, R. Ma, A. Lukin, M. E. Tai, M. Rispoli, R. Islam, and M. Greiner, “Ultra-precise holographic beam shaping for microscopic quantum control,” Opt. Express 24, 13881–13893 (2016).
[Crossref]

P. M. Preiss, R. Ma, M. E. Tai, A. Lukin, M. Rispoli, P. Zupancic, Y. Lahini, R. Islam, and M. Greiner, “Strongly correlated quantum walks in optical lattices,” Science 347, 1229–1233 (2015).
[Crossref]

Rodenburg, B.

Rubinsztein-Dunlop, H.

T. A. Bell, J. A. P. Glidden, L. Humbert, M. W. J. Bromley, S. A. Haine, M. J. Davis, T. W. Neely, M. A. Baker, and H. Rubinsztein-Dunlop, “Bose–Einstein condensation in large time-averaged optical ring potentials,” New J. Phys. 18, 035003 (2016).
[Crossref]

A. B. Stilgoe, A. V. Kashchuk, D. Preece, and H. Rubinsztein-Dunlop, “An interpretation and guide to single-pass beam shaping methods using SLMs and DMDs,” J. Opt. 18, 065609 (2016).
[Crossref]

N. M. Parry, M. Baker, T. Neely, T. Carey, T. Bell, and H. Rubinsztein-Dunlop, “Note: high turn density magnetic coils with improved low pressure water cooling for use in atom optics,” Rev. Sci. Instrum. 85, 086103 (2014).
[Crossref]

S. Schnelle, E. Van Ooijen, M. Davis, N. Heckenberg, and H. Rubinsztein-Dunlop, “Versatile two-dimensional potentials for ultra-cold atoms,” Opt. Express 16, 1405–1412 (2008).
[Crossref]

Rubio-Abadal, A.

J.-Y. Choi, S. Hild, J. Zeiher, P. Schauß, A. Rubio-Abadal, T. Yefsah, V. Khemani, D. A. Huse, I. Bloch, and C. Gross, “Exploring the many-body localization in two dimensions,” Science 352, 1547–1552 (2016).
[Crossref]

Ryu, C.

K. Henderson, C. Ryu, C. MacCormick, and M. Boshier, “Experimental demonstration of painting arbitrary and dynamic potentials for Bose-Einstein condensates,” New J. Phys. 11, 043030 (2009).
[Crossref]

Sahagun, D.

M. Pappa, P. Condylis, G. Konstantinidis, V. Bolpasi, A. Lazoudis, O. Morizot, D. Sahagun, M. Baker, and W. Von Klitzing, “Ultra-sensitive atom imaging for matter-wave optics,” New J. Phys. 13, 115012 (2011).
[Crossref]

Samson, E.

E. Samson, K. Wilson, Z. Newman, and B. Anderson, “Deterministic creation, pinning, and manipulation of quantized vortices in a Bose–Einstein condensate,” Phys. Rev. A 93, 023603 (2016).
[Crossref]

Samson, E. C.

K. E. Wilson, E. C. Samson, Z. L. Newman, T. W. Neely, and B. P. Anderson, “Experimental methods for generating two-dimensional quantum turbulence in Bose–Einstein condensates,” Annu. Rev. Cold At. Mol. 1, 261–298 (2012).
[Crossref]

Schauß, P.

J.-Y. Choi, S. Hild, J. Zeiher, P. Schauß, A. Rubio-Abadal, T. Yefsah, V. Khemani, D. A. Huse, I. Bloch, and C. Gross, “Exploring the many-body localization in two dimensions,” Science 352, 1547–1552 (2016).
[Crossref]

T. Fukuhara, A. Kantian, M. Endres, M. Cheneau, P. Schauß, S. Hild, D. Bellem, U. Schollwöck, T. Giamarchi, C. Gross, I. Bloch, and S. Kuhr, “Quantum dynamics of a mobile spin impurity,” Nat. Phys. 9, 235–241 (2013).
[Crossref]

Schnelle, S.

Schollwöck, U.

T. Fukuhara, A. Kantian, M. Endres, M. Cheneau, P. Schauß, S. Hild, D. Bellem, U. Schollwöck, T. Giamarchi, C. Gross, I. Bloch, and S. Kuhr, “Quantum dynamics of a mobile spin impurity,” Nat. Phys. 9, 235–241 (2013).
[Crossref]

Seaman, B.

B. Seaman, M. Krämer, D. Anderson, and M. Holland, “Atomtronics: ultracold-atom analogs of electronic devices,” Phys. Rev. A 75, 023615 (2007).
[Crossref]

Slaughter, J.

D. Dudley, W. M. Duncan, and J. Slaughter, “Emerging digital micromirror device (DMD) applications,” Proc. SPIE 4985, 14–25 (2003).

Spielman, I.

Y.-J. Lin, A. Perry, R. Compton, I. Spielman, and J. Porto, “Rapid production of 87Rb Bose-Einstein condensates in a combined magnetic and optical potential,” Phys. Rev. A 79, 063631 (2009).
[Crossref]

Stamper-Kurn, D.

S. Gupta, K. Murch, K. Moore, T. Purdy, and D. Stamper-Kurn, “Bose–Einstein condensation in a circular waveguide,” Phys. Rev. Lett. 95, 143201 (2005).
[Crossref]

Steinberg, L.

R. W. Floyd and L. Steinberg, “An adaptive algorithm for spatial gray-scale,” Proc. Soc. Information Display 17, 75–77 (1976).

Stilgoe, A. B.

A. B. Stilgoe, A. V. Kashchuk, D. Preece, and H. Rubinsztein-Dunlop, “An interpretation and guide to single-pass beam shaping methods using SLMs and DMDs,” J. Opt. 18, 065609 (2016).
[Crossref]

Stringari, S.

A. Kumar, N. Anderson, W. Phillips, S. Eckel, G. Campbell, and S. Stringari, “Minimally destructive, Doppler measurement of a quantized flow in a ring-shaped Bose-Einstein condensate,” New J. Phys. 18, 025001 (2016).
[Crossref]

J. Catani, G. Barontini, G. Lamporesi, F. Rabatti, G. Thalhammer, F. Minardi, S. Stringari, and M. Inguscio, “Entropy exchange in a mixture of ultracold atoms,” Phys. Rev. Lett. 103, 140401 (2009).
[Crossref]

Strobel, H.

W. Muessel, H. Strobel, M. Joos, E. Nicklas, I. Stroescu, J. Tomkovič, D. B. Hume, and M. K. Oberthaler, “Optimized absorption imaging of mesoscopic atomic clouds,” Appl. Phys. B 113, 69–73 (2013).
[Crossref]

Stroescu, I.

W. Muessel, H. Strobel, M. Joos, E. Nicklas, I. Stroescu, J. Tomkovič, D. B. Hume, and M. K. Oberthaler, “Optimized absorption imaging of mesoscopic atomic clouds,” Appl. Phys. B 113, 69–73 (2013).
[Crossref]

Svec, P.

S. Chowdhury, A. Thakur, P. Svec, C. Wang, W. Losert, and S. K. Gupta, “Automated manipulation of biological cells using gripper formations controlled by optical tweezers,” IEEE Trans. Automat. Sci. Eng. 11, 338–347 (2014).
[Crossref]

Tai, M. E.

P. Zupancic, P. M. Preiss, R. Ma, A. Lukin, M. E. Tai, M. Rispoli, R. Islam, and M. Greiner, “Ultra-precise holographic beam shaping for microscopic quantum control,” Opt. Express 24, 13881–13893 (2016).
[Crossref]

P. M. Preiss, R. Ma, M. E. Tai, A. Lukin, M. Rispoli, P. Zupancic, Y. Lahini, R. Islam, and M. Greiner, “Strongly correlated quantum walks in optical lattices,” Science 347, 1229–1233 (2015).
[Crossref]

Thakur, A.

S. Chowdhury, A. Thakur, P. Svec, C. Wang, W. Losert, and S. K. Gupta, “Automated manipulation of biological cells using gripper formations controlled by optical tweezers,” IEEE Trans. Automat. Sci. Eng. 11, 338–347 (2014).
[Crossref]

Thalhammer, G.

J. Catani, G. Barontini, G. Lamporesi, F. Rabatti, G. Thalhammer, F. Minardi, S. Stringari, and M. Inguscio, “Entropy exchange in a mixture of ultracold atoms,” Phys. Rev. Lett. 103, 140401 (2009).
[Crossref]

Tomkovic, J.

W. Muessel, H. Strobel, M. Joos, E. Nicklas, I. Stroescu, J. Tomkovič, D. B. Hume, and M. K. Oberthaler, “Optimized absorption imaging of mesoscopic atomic clouds,” Appl. Phys. B 113, 69–73 (2013).
[Crossref]

Van Ooijen, E.

Vernier, A.

F. Nogrette, H. Labuhn, S. Ravets, D. Barredo, L. Béguin, A. Vernier, T. Lahaye, and A. Browaeys, “Single-atom trapping in holographic 2D arrays of microtraps with arbitrary geometries,” Phys. Rev. X 4, 021034 (2014).
[Crossref]

Von Klitzing, W.

M. Pappa, P. Condylis, G. Konstantinidis, V. Bolpasi, A. Lazoudis, O. Morizot, D. Sahagun, M. Baker, and W. Von Klitzing, “Ultra-sensitive atom imaging for matter-wave optics,” New J. Phys. 13, 115012 (2011).
[Crossref]

Waller, L.

R. Horstmeyer, R. Heintzmann, G. Popescu, L. Waller, and C. Yang, “Standardizing the resolution claims for coherent microscopy,” Nat. Photonics 10, 68–71 (2016).
[Crossref]

Wang, C.

S. Chowdhury, A. Thakur, P. Svec, C. Wang, W. Losert, and S. K. Gupta, “Automated manipulation of biological cells using gripper formations controlled by optical tweezers,” IEEE Trans. Automat. Sci. Eng. 11, 338–347 (2014).
[Crossref]

Weitenberg, C.

L. Corman, L. Chomaz, T. Bienaimé, R. Desbuquois, C. Weitenberg, S. Nascimbene, J. Dalibard, and J. Beugnon, “Quench-induced supercurrents in an annular Bose gas,” Phys. Rev. Lett. 113, 135302 (2014).
[Crossref]

Wilson, K.

E. Samson, K. Wilson, Z. Newman, and B. Anderson, “Deterministic creation, pinning, and manipulation of quantized vortices in a Bose–Einstein condensate,” Phys. Rev. A 93, 023603 (2016).
[Crossref]

Wilson, K. E.

K. E. Wilson, Z. L. Newman, J. D. Lowney, and B. P. Anderson, “In situ imaging of vortices in Bose-Einstein condensates,” Phys. Rev. A 91, 023621 (2015).
[Crossref]

K. E. Wilson, E. C. Samson, Z. L. Newman, T. W. Neely, and B. P. Anderson, “Experimental methods for generating two-dimensional quantum turbulence in Bose–Einstein condensates,” Annu. Rev. Cold At. Mol. 1, 261–298 (2012).
[Crossref]

Woerdemann, M.

M. Woerdemann, C. Alpmann, M. Esseling, and C. Denz, “Advanced optical trapping by complex beam shaping,” Laser Photon. Rev. 7, 839–854 (2013).
[Crossref]

Wright, K. C.

L. Mathey, A. Ramantahn, K. C. Wright, S. R. Muniz, W. D. Phillips, and W. Charles, “Phase fluctuations in anisotropic Bose–Einstein condensates: from cigars to rings,” Phys. Rev. A 82, 033607 (2010).
[Crossref]

Yang, C.

R. Horstmeyer, R. Heintzmann, G. Popescu, L. Waller, and C. Yang, “Standardizing the resolution claims for coherent microscopy,” Nat. Photonics 10, 68–71 (2016).
[Crossref]

Yefsah, T.

J.-Y. Choi, S. Hild, J. Zeiher, P. Schauß, A. Rubio-Abadal, T. Yefsah, V. Khemani, D. A. Huse, I. Bloch, and C. Gross, “Exploring the many-body localization in two dimensions,” Science 352, 1547–1552 (2016).
[Crossref]

Zeiher, J.

J.-Y. Choi, S. Hild, J. Zeiher, P. Schauß, A. Rubio-Abadal, T. Yefsah, V. Khemani, D. A. Huse, I. Bloch, and C. Gross, “Exploring the many-body localization in two dimensions,” Science 352, 1547–1552 (2016).
[Crossref]

Zimmermann, B.

B. Zimmermann, T. Mueller, J. Meineke, T. Esslinger, and H. Moritz, “High-resolution imaging of ultracold fermions in microscopically tailored optical potentials,” New J. Phys. 13, 043007 (2011).
[Crossref]

Zupancic, P.

P. Zupancic, P. M. Preiss, R. Ma, A. Lukin, M. E. Tai, M. Rispoli, R. Islam, and M. Greiner, “Ultra-precise holographic beam shaping for microscopic quantum control,” Opt. Express 24, 13881–13893 (2016).
[Crossref]

P. M. Preiss, R. Ma, M. E. Tai, A. Lukin, M. Rispoli, P. Zupancic, Y. Lahini, R. Islam, and M. Greiner, “Strongly correlated quantum walks in optical lattices,” Science 347, 1229–1233 (2015).
[Crossref]

Annu. Rev. Cold At. Mol. (1)

K. E. Wilson, E. C. Samson, Z. L. Newman, T. W. Neely, and B. P. Anderson, “Experimental methods for generating two-dimensional quantum turbulence in Bose–Einstein condensates,” Annu. Rev. Cold At. Mol. 1, 261–298 (2012).
[Crossref]

Appl. Opt. (1)

Appl. Phys. B (1)

W. Muessel, H. Strobel, M. Joos, E. Nicklas, I. Stroescu, J. Tomkovič, D. B. Hume, and M. K. Oberthaler, “Optimized absorption imaging of mesoscopic atomic clouds,” Appl. Phys. B 113, 69–73 (2013).
[Crossref]

IEEE Trans. Automat. Sci. Eng. (1)

S. Chowdhury, A. Thakur, P. Svec, C. Wang, W. Losert, and S. K. Gupta, “Automated manipulation of biological cells using gripper formations controlled by optical tweezers,” IEEE Trans. Automat. Sci. Eng. 11, 338–347 (2014).
[Crossref]

J. Opt. (1)

A. B. Stilgoe, A. V. Kashchuk, D. Preece, and H. Rubinsztein-Dunlop, “An interpretation and guide to single-pass beam shaping methods using SLMs and DMDs,” J. Opt. 18, 065609 (2016).
[Crossref]

J. Opt. Soc. Am. B (1)

Laser Photon. Rev. (1)

M. Woerdemann, C. Alpmann, M. Esseling, and C. Denz, “Advanced optical trapping by complex beam shaping,” Laser Photon. Rev. 7, 839–854 (2013).
[Crossref]

Nat. Photonics (1)

R. Horstmeyer, R. Heintzmann, G. Popescu, L. Waller, and C. Yang, “Standardizing the resolution claims for coherent microscopy,” Nat. Photonics 10, 68–71 (2016).
[Crossref]

Nat. Phys. (1)

T. Fukuhara, A. Kantian, M. Endres, M. Cheneau, P. Schauß, S. Hild, D. Bellem, U. Schollwöck, T. Giamarchi, C. Gross, I. Bloch, and S. Kuhr, “Quantum dynamics of a mobile spin impurity,” Nat. Phys. 9, 235–241 (2013).
[Crossref]

Nature (1)

D. G. Grier, “A revolution in optical manipulation,” Nature 424, 810–816 (2003).
[Crossref]

New J. Phys. (5)

A. Kumar, N. Anderson, W. Phillips, S. Eckel, G. Campbell, and S. Stringari, “Minimally destructive, Doppler measurement of a quantized flow in a ring-shaped Bose-Einstein condensate,” New J. Phys. 18, 025001 (2016).
[Crossref]

M. Pappa, P. Condylis, G. Konstantinidis, V. Bolpasi, A. Lazoudis, O. Morizot, D. Sahagun, M. Baker, and W. Von Klitzing, “Ultra-sensitive atom imaging for matter-wave optics,” New J. Phys. 13, 115012 (2011).
[Crossref]

B. Zimmermann, T. Mueller, J. Meineke, T. Esslinger, and H. Moritz, “High-resolution imaging of ultracold fermions in microscopically tailored optical potentials,” New J. Phys. 13, 043007 (2011).
[Crossref]

K. Henderson, C. Ryu, C. MacCormick, and M. Boshier, “Experimental demonstration of painting arbitrary and dynamic potentials for Bose-Einstein condensates,” New J. Phys. 11, 043030 (2009).
[Crossref]

T. A. Bell, J. A. P. Glidden, L. Humbert, M. W. J. Bromley, S. A. Haine, M. J. Davis, T. W. Neely, M. A. Baker, and H. Rubinsztein-Dunlop, “Bose–Einstein condensation in large time-averaged optical ring potentials,” New J. Phys. 18, 035003 (2016).
[Crossref]

Opt. Commun. (2)

P. C. Mogensen and J. Glückstad, “Dynamic array generation and pattern formation for optical tweezers,” Opt. Commun. 175, 75–81 (2000).
[Crossref]

J. E. Curtis, B. A. Koss, and D. G. Grier, “Dynamic holographic optical tweezers,” Opt. Commun. 207, 169–175 (2002).
[Crossref]

Opt. Express (5)

Opt. Lett. (1)

Optica (1)

Phys. Rev. A (8)

Y.-J. Lin, A. Perry, R. Compton, I. Spielman, and J. Porto, “Rapid production of 87Rb Bose-Einstein condensates in a combined magnetic and optical potential,” Phys. Rev. A 79, 063631 (2009).
[Crossref]

M. Greiner, I. Bloch, T. W. Hänsch, and T. Esslinger, “Magnetic transport of trapped cold atoms over a large distance,” Phys. Rev. A 63, 031401 (2001).
[Crossref]

L. Mathey, A. Ramantahn, K. C. Wright, S. R. Muniz, W. D. Phillips, and W. Charles, “Phase fluctuations in anisotropic Bose–Einstein condensates: from cigars to rings,” Phys. Rev. A 82, 033607 (2010).
[Crossref]

B. Seaman, M. Krämer, D. Anderson, and M. Holland, “Atomtronics: ultracold-atom analogs of electronic devices,” Phys. Rev. A 75, 023615 (2007).
[Crossref]

J. Lee, S. Eckel, F. Jendrezjewski, C. Lobb, G. Campbell, and W. Hill, “Contact resistance and phase slips in mesoscopic superfluid atom transport,” Phys. Rev. A 93, 063619 (2016).
[Crossref]

T. Karpiuk, B. Gremaud, C. Miniatura, and M. Gajda, “Superfluid fountain effect in a Bose-Einstein condensate,” Phys. Rev. A 86, 033619 (2012).
[Crossref]

E. Samson, K. Wilson, Z. Newman, and B. Anderson, “Deterministic creation, pinning, and manipulation of quantized vortices in a Bose–Einstein condensate,” Phys. Rev. A 93, 023603 (2016).
[Crossref]

K. E. Wilson, Z. L. Newman, J. D. Lowney, and B. P. Anderson, “In situ imaging of vortices in Bose-Einstein condensates,” Phys. Rev. A 91, 023621 (2015).
[Crossref]

Phys. Rev. Lett. (5)

J. Catani, G. Barontini, G. Lamporesi, F. Rabatti, G. Thalhammer, F. Minardi, S. Stringari, and M. Inguscio, “Entropy exchange in a mixture of ultracold atoms,” Phys. Rev. Lett. 103, 140401 (2009).
[Crossref]

S. Gupta, K. Murch, K. Moore, T. Purdy, and D. Stamper-Kurn, “Bose–Einstein condensation in a circular waveguide,” Phys. Rev. Lett. 95, 143201 (2005).
[Crossref]

L. Corman, L. Chomaz, T. Bienaimé, R. Desbuquois, C. Weitenberg, S. Nascimbene, J. Dalibard, and J. Beugnon, “Quench-induced supercurrents in an annular Bose gas,” Phys. Rev. Lett. 113, 135302 (2014).
[Crossref]

L. Amico, A. Osterloh, and F. Cataliotti, “Quantum many particle systems in ring-shaped optical lattices,” Phys. Rev. Lett. 95, 063201 (2005).
[Crossref]

L.-C. Ha, L. W. Clark, C. V. Parker, B. M. Anderson, and C. Chin, “Roton-maxon excitation spectrum of Bose condensates in a shaken optical lattice,” Phys. Rev. Lett. 114, 055301 (2015).
[Crossref]

Phys. Rev. X (2)

F. Nogrette, H. Labuhn, S. Ravets, D. Barredo, L. Béguin, A. Vernier, T. Lahaye, and A. Browaeys, “Single-atom trapping in holographic 2D arrays of microtraps with arbitrary geometries,” Phys. Rev. X 4, 021034 (2014).
[Crossref]

S. Eckel, F. Jendrzejewski, A. Kumar, C. Lobb, and G. Campbell, “Interferometric measurement of the current-phase relationship of a superfluid weak link,” Phys. Rev. X 4, 031052 (2014).
[Crossref]

Proc. Soc. Information Display (1)

R. W. Floyd and L. Steinberg, “An adaptive algorithm for spatial gray-scale,” Proc. Soc. Information Display 17, 75–77 (1976).

Proc. SPIE (1)

D. Dudley, W. M. Duncan, and J. Slaughter, “Emerging digital micromirror device (DMD) applications,” Proc. SPIE 4985, 14–25 (2003).

Rev. Sci. Instrum. (2)

K. C. Neuman and S. M. Block, “Optical trapping,” Rev. Sci. Instrum. 75, 2787–2809 (2004).
[Crossref]

N. M. Parry, M. Baker, T. Neely, T. Carey, T. Bell, and H. Rubinsztein-Dunlop, “Note: high turn density magnetic coils with improved low pressure water cooling for use in atom optics,” Rev. Sci. Instrum. 85, 086103 (2014).
[Crossref]

Sci. Rep. (2)

A. Gaunt and Z. Hadzibabic, “Robust digital holography for ultracold atom trapping,” Sci. Rep. 2, 721 (2011).

J. G. Lee, B. J. McIlvain, C. Lobb, and W. Hill, “Analogs of basic electronic circuit elements in a free-space atom chip,” Sci. Rep. 3, 1034–1038 (2013).
[Crossref]

Science (2)

J.-Y. Choi, S. Hild, J. Zeiher, P. Schauß, A. Rubio-Abadal, T. Yefsah, V. Khemani, D. A. Huse, I. Bloch, and C. Gross, “Exploring the many-body localization in two dimensions,” Science 352, 1547–1552 (2016).
[Crossref]

P. M. Preiss, R. Ma, M. E. Tai, A. Lukin, M. Rispoli, P. Zupancic, Y. Lahini, R. Islam, and M. Greiner, “Strongly correlated quantum walks in optical lattices,” Science 347, 1229–1233 (2015).
[Crossref]

Other (1)

Our results represent an improvement over previously reported work on optical trapping of BECs using DMDs. We note that Ref. [11] directly imaged a DMD with a higher resolution (∼600  nm at 787.65  nm illumination) for the purposes of optical addressing of atoms trapped in an optical lattice, but not for atom trapping.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Experimental apparatus and BEC production. (a) The 2DMOT (not shown) loads the 3DMOT located in the glass octagon in 5 s. The glass assembly incorporates a commercial Suprasil quartz fluorescence cell (science cell) with 1.25 mm thick walls. (b) After loading into a magnetic trap, the atoms are transferred to the science cell using the coil pairs shown [29]. After trapping and evaporation in the optical dipole trap (ODT), the atoms are transferred to a second dipole trap consisting of a red-detuned sheet beam crossed with a vertically propagating blue-detuned DMD-patterned potential. TOF imaging at 1× magnification is preformed along the horizontal axis, while high-magnification in-trap imaging uses the lower microscope system.

Fig. 2.
Fig. 2.

DMD projection system and reimaging/BEC imaging system. The DMD is imaged on to the atom plane with 0.01× magnification (100× minification), and combined with a red-detuned TEM00 sheet. The bottom system similarly produces an image of the BEC or DMD pattern, with adjustable magnification from 7.77×52.6×. The lens relay system will be used for a future implementation of darkground imaging [32,33].

Fig. 3.
Fig. 3.

(a) A single DMD mirror is imaged onto the camera with 105× magnification and 532 nm illumination, resulting in 650(50) nm FWHM (w0550  nm). The FWHM was determined through 100 1D fits of the image at varying angles through 180 deg; a single 1D fit is shown here for illustrative purposes. (b) A single DMD mirror is imaged with 52.6× magnification and 780 nm illumination, the imaging wavelength for Rb87, resulting in 960(80) nm FWHM (w0814  nm). (c) Siemens star resolution target, as projected and reimaged with 532 nm light. (d) Siemens star imprinted on to the atomic density and averaged over 10 runs of the experiment. Quantitative analysis of the resolution targets is presented in Fig. 5.

Fig. 4.
Fig. 4.

DMD-patterned optical traps and resulting resonant absorption images of atom distributions. Atoms are repelled from bright regions of the projected pattern, which is the inverse of the binary image applied to the DMD. We image the atoms immediately after turning off the optical trapping potentials, with a magnification of 52.6×. Bright areas represent regions of high atomic density and OD. (a) Ring-trap potential from a single experimental realization. TOF analysis gives N=1.3×105 atoms with matter–wave interference leading to the appearance of a central peak [39]. (b) Lattice pattern produced by applying a Floyd–Steinberg error-diffusion algorithm [31] to an 8 bit image of a sinusoidal lattice with 10 μm period, shown with a single realization of a BEC; N=3.7×105 and the BEC fraction is 34%. This image was produced by leaving the magnetic trap on, resulting in ωr=2π×20  Hz harmonic radial confinement. (c) Checkerboard pattern applied to the atoms, imaged with a single shot. Additional evaporation after transfer to the all-optical trap results in a nearly pure BEC in TOF with N=2.4×105 atoms. (d) Ring lattice of 25 sites, with ring radius of 43.2 μm, and site radius of 4.32 μm, with N=3.16×105 atoms. (e) Artistic impressions of Bose and Einstein applied to a nearly pure BEC of N=5.2×105 atoms, averaged over five experimental runs. ODs above 2.5 are below the signal-to-noise threshold of the horizontal imaging, leading to slight undercounting of the atoms in this case. Einstein image from www.muraldecal.com, used with permission.

Fig. 5.
Fig. 5.

MTF analysis. Left: zoomed-in versions of the Siemens star images in Fig. 3, with the top row representing the optical pattern at 532 nm illumination, and the bottom an average atomic density in the pattern, imaged with resonant 780 nm light. The green circles indicate radii of equally separated spatial frequencies used to generate the corresponding MTF plots by calculating contrast along the circular path. Right: the FWHM of the optical pattern is 1.39(0.02)  lp/μm, corresponding to a PSF FWHM of 630(10) nm. The atomic density MTF FWHM is 0.71(0.02)  lp/μm, corresponding to a PSF FWHM of 1250(20) nm.

Fig. 6.
Fig. 6.

(a) Gray-scale time-averaged pattern applied to the atoms, averaged over 10 sequential images. Each of the numbered patterns corresponds to the fractional duty cycle of 2.75 kHz, with 6 being the maximum (see text), corresponding to potential depth of 1.2μ. (b) Images used for analysis of the gray levels. The gray-scale image was subtracted from the average atomic background with no barriers present. The mean density and standard deviation were calculated over the circles as indicated. (c) Gray levels achieved through this process. A least squares regression line (LSRL) is indicated. As the optical potential of point 6 exceeds the condensate chemical potential, it was excluded from the fit. Image background and untrapped atoms result in an apparent maximum density suppression of 96%. (d) Two example pulse width modulations, corresponding to patterns 1, the minimum pulse, and 3, a 50% duty cycle, offset vertically for clarity. The envelope frequency fe=2.75  kHz and carrier frequency fc=16.5  kHz divisions are indicated. (e) Turning on and off barrier 3 only, with varying frequency, for a total modulation time of 500 cycles provides an estimate of the heating rate from mirror switching. Rates above 3  kHz appear to have a negligible heating effect over this modulation period.

Metrics