Abstract

Scattering of light by random media limits many optical imaging and sensing applications, either by scrambling waves that carry images or by generating glare—background noise that hinders detection. In recent years, it was shown that the shaping of the wavefront of light before it enters the scattering environment allows an unexpected degree of control over the scattered fields and enables various imaging techniques that are being applied in microscopy and other demanding imaging tasks. Here, we show that similar ideas can be applied to reduce glare and enable imaging under tough conditions.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Efficient glare suppression with Hadamard-encoding-algorithm-based wavefront shaping

Jiawei Luo, Zhenhua Wu, Daixuan Wu, Zhibing Liu, Xiaoming Wei, Yuecheng Shen, and Zhaohui Li
Opt. Lett. 44(16) 4067-4070 (2019)

Veiling glare reduction methods compared for ophthalmic applications

Donald R. Buchele
Appl. Opt. 20(21) 3787-3791 (1981)

Feedback-based wavefront shaping

Ivo M. Vellekoop
Opt. Express 23(9) 12189-12206 (2015)

References

  • View by:
  • |
  • |
  • |

  1. I. M. Vellekoop and A. P. Mosk, Opt. Lett. 32, 2309 (2007).
    [Crossref]
  2. A. P. Mosk, A. Lagendijk, G. Lerosey, and M. Fink, Nat. Photonics 6, 283 (2012).
    [Crossref]
  3. I. M. Vellekoop and C. M. Aegerter, Opt. Lett. 35, 1245 (2010).
    [Crossref]
  4. S. M. Popoff, G. Lerosey, R. Carminati, M. Fink, A. C. Boccara, and S. Gigan, Phys. Rev. Lett. 104, 100601 (2010).
    [Crossref]
  5. O. Katz, E. Small, and Y. Silberberg, Nat. Photonics 6, 549 (2012).
    [Crossref]
  6. O. Katz, E. Small, Y. Guan, and Y. Silberberg, Optica 1, 170 (2014).
    [Crossref]
  7. D. E. Goldberg, Genetic Algorithms in Search, Optimization and Machine Learning (Addison-Wesley, 1989).
  8. D. B. Conkey, A. N. Brown, A. M. Caravaca-Aguirre, and R. Piestun, Opt. Express 20, 4840 (2012).
    [Crossref]
  9. N. Kaina, M. Dupré, G. Lerosey, and M. Fink, Sci. Rep. 4, 6693 (2014).
    [Crossref]
  10. J. T. Trauger and W. A. Traub, Nature 446, 771 (2007).
    [Crossref]
  11. J. W. Goodman, Statistical Optics (Wiley, 2000).
  12. J. W. Goodman, Speckle Phenomena in Optics: Theory and Applications (Roberts & Company, 2007).
  13. R. Fischer, I. Vidal, D. Gilboa, R. R. B. Correia, A. C. Ribeiro-Teixeira, S. D. Prado, J. Hickman, and Y. Silberberg, Phys. Rev. Lett. 115, 073901 (2015).
    [Crossref]
  14. Y. Bromberg and H. Cao, Phys. Rev. Lett. 112, 213904 (2014).
    [Crossref]
  15. I. Freund, I. M. Rosenbluh, and S. Feng, Phys. Rev. Lett. 61, 2328 (1988).
    [Crossref]
  16. S. Feng, C. Kane, P. A. Lee, and A. D. Stone, Phys. Rev. Lett. 61, 834 (1988).
    [Crossref]
  17. E. H. Zhou, H. Ruan, C. Yang, and B. Judkewitz, Optica 1, 227 (2014).
    [Crossref]
  18. C. Ma, X. Xu, Y. Liu, and L. V. Wang, Nat. Photonics 8, 931 (2014).
    [Crossref]

2015 (1)

R. Fischer, I. Vidal, D. Gilboa, R. R. B. Correia, A. C. Ribeiro-Teixeira, S. D. Prado, J. Hickman, and Y. Silberberg, Phys. Rev. Lett. 115, 073901 (2015).
[Crossref]

2014 (5)

Y. Bromberg and H. Cao, Phys. Rev. Lett. 112, 213904 (2014).
[Crossref]

E. H. Zhou, H. Ruan, C. Yang, and B. Judkewitz, Optica 1, 227 (2014).
[Crossref]

C. Ma, X. Xu, Y. Liu, and L. V. Wang, Nat. Photonics 8, 931 (2014).
[Crossref]

O. Katz, E. Small, Y. Guan, and Y. Silberberg, Optica 1, 170 (2014).
[Crossref]

N. Kaina, M. Dupré, G. Lerosey, and M. Fink, Sci. Rep. 4, 6693 (2014).
[Crossref]

2012 (3)

D. B. Conkey, A. N. Brown, A. M. Caravaca-Aguirre, and R. Piestun, Opt. Express 20, 4840 (2012).
[Crossref]

A. P. Mosk, A. Lagendijk, G. Lerosey, and M. Fink, Nat. Photonics 6, 283 (2012).
[Crossref]

O. Katz, E. Small, and Y. Silberberg, Nat. Photonics 6, 549 (2012).
[Crossref]

2010 (2)

I. M. Vellekoop and C. M. Aegerter, Opt. Lett. 35, 1245 (2010).
[Crossref]

S. M. Popoff, G. Lerosey, R. Carminati, M. Fink, A. C. Boccara, and S. Gigan, Phys. Rev. Lett. 104, 100601 (2010).
[Crossref]

2007 (2)

I. M. Vellekoop and A. P. Mosk, Opt. Lett. 32, 2309 (2007).
[Crossref]

J. T. Trauger and W. A. Traub, Nature 446, 771 (2007).
[Crossref]

1988 (2)

I. Freund, I. M. Rosenbluh, and S. Feng, Phys. Rev. Lett. 61, 2328 (1988).
[Crossref]

S. Feng, C. Kane, P. A. Lee, and A. D. Stone, Phys. Rev. Lett. 61, 834 (1988).
[Crossref]

Aegerter, C. M.

Boccara, A. C.

S. M. Popoff, G. Lerosey, R. Carminati, M. Fink, A. C. Boccara, and S. Gigan, Phys. Rev. Lett. 104, 100601 (2010).
[Crossref]

Bromberg, Y.

Y. Bromberg and H. Cao, Phys. Rev. Lett. 112, 213904 (2014).
[Crossref]

Brown, A. N.

Cao, H.

Y. Bromberg and H. Cao, Phys. Rev. Lett. 112, 213904 (2014).
[Crossref]

Caravaca-Aguirre, A. M.

Carminati, R.

S. M. Popoff, G. Lerosey, R. Carminati, M. Fink, A. C. Boccara, and S. Gigan, Phys. Rev. Lett. 104, 100601 (2010).
[Crossref]

Conkey, D. B.

Correia, R. R. B.

R. Fischer, I. Vidal, D. Gilboa, R. R. B. Correia, A. C. Ribeiro-Teixeira, S. D. Prado, J. Hickman, and Y. Silberberg, Phys. Rev. Lett. 115, 073901 (2015).
[Crossref]

Dupré, M.

N. Kaina, M. Dupré, G. Lerosey, and M. Fink, Sci. Rep. 4, 6693 (2014).
[Crossref]

Feng, S.

I. Freund, I. M. Rosenbluh, and S. Feng, Phys. Rev. Lett. 61, 2328 (1988).
[Crossref]

S. Feng, C. Kane, P. A. Lee, and A. D. Stone, Phys. Rev. Lett. 61, 834 (1988).
[Crossref]

Fink, M.

N. Kaina, M. Dupré, G. Lerosey, and M. Fink, Sci. Rep. 4, 6693 (2014).
[Crossref]

A. P. Mosk, A. Lagendijk, G. Lerosey, and M. Fink, Nat. Photonics 6, 283 (2012).
[Crossref]

S. M. Popoff, G. Lerosey, R. Carminati, M. Fink, A. C. Boccara, and S. Gigan, Phys. Rev. Lett. 104, 100601 (2010).
[Crossref]

Fischer, R.

R. Fischer, I. Vidal, D. Gilboa, R. R. B. Correia, A. C. Ribeiro-Teixeira, S. D. Prado, J. Hickman, and Y. Silberberg, Phys. Rev. Lett. 115, 073901 (2015).
[Crossref]

Freund, I.

I. Freund, I. M. Rosenbluh, and S. Feng, Phys. Rev. Lett. 61, 2328 (1988).
[Crossref]

Gigan, S.

S. M. Popoff, G. Lerosey, R. Carminati, M. Fink, A. C. Boccara, and S. Gigan, Phys. Rev. Lett. 104, 100601 (2010).
[Crossref]

Gilboa, D.

R. Fischer, I. Vidal, D. Gilboa, R. R. B. Correia, A. C. Ribeiro-Teixeira, S. D. Prado, J. Hickman, and Y. Silberberg, Phys. Rev. Lett. 115, 073901 (2015).
[Crossref]

Goldberg, D. E.

D. E. Goldberg, Genetic Algorithms in Search, Optimization and Machine Learning (Addison-Wesley, 1989).

Goodman, J. W.

J. W. Goodman, Statistical Optics (Wiley, 2000).

J. W. Goodman, Speckle Phenomena in Optics: Theory and Applications (Roberts & Company, 2007).

Guan, Y.

Hickman, J.

R. Fischer, I. Vidal, D. Gilboa, R. R. B. Correia, A. C. Ribeiro-Teixeira, S. D. Prado, J. Hickman, and Y. Silberberg, Phys. Rev. Lett. 115, 073901 (2015).
[Crossref]

Judkewitz, B.

Kaina, N.

N. Kaina, M. Dupré, G. Lerosey, and M. Fink, Sci. Rep. 4, 6693 (2014).
[Crossref]

Kane, C.

S. Feng, C. Kane, P. A. Lee, and A. D. Stone, Phys. Rev. Lett. 61, 834 (1988).
[Crossref]

Katz, O.

O. Katz, E. Small, Y. Guan, and Y. Silberberg, Optica 1, 170 (2014).
[Crossref]

O. Katz, E. Small, and Y. Silberberg, Nat. Photonics 6, 549 (2012).
[Crossref]

Lagendijk, A.

A. P. Mosk, A. Lagendijk, G. Lerosey, and M. Fink, Nat. Photonics 6, 283 (2012).
[Crossref]

Lee, P. A.

S. Feng, C. Kane, P. A. Lee, and A. D. Stone, Phys. Rev. Lett. 61, 834 (1988).
[Crossref]

Lerosey, G.

N. Kaina, M. Dupré, G. Lerosey, and M. Fink, Sci. Rep. 4, 6693 (2014).
[Crossref]

A. P. Mosk, A. Lagendijk, G. Lerosey, and M. Fink, Nat. Photonics 6, 283 (2012).
[Crossref]

S. M. Popoff, G. Lerosey, R. Carminati, M. Fink, A. C. Boccara, and S. Gigan, Phys. Rev. Lett. 104, 100601 (2010).
[Crossref]

Liu, Y.

C. Ma, X. Xu, Y. Liu, and L. V. Wang, Nat. Photonics 8, 931 (2014).
[Crossref]

Ma, C.

C. Ma, X. Xu, Y. Liu, and L. V. Wang, Nat. Photonics 8, 931 (2014).
[Crossref]

Mosk, A. P.

A. P. Mosk, A. Lagendijk, G. Lerosey, and M. Fink, Nat. Photonics 6, 283 (2012).
[Crossref]

I. M. Vellekoop and A. P. Mosk, Opt. Lett. 32, 2309 (2007).
[Crossref]

Piestun, R.

Popoff, S. M.

S. M. Popoff, G. Lerosey, R. Carminati, M. Fink, A. C. Boccara, and S. Gigan, Phys. Rev. Lett. 104, 100601 (2010).
[Crossref]

Prado, S. D.

R. Fischer, I. Vidal, D. Gilboa, R. R. B. Correia, A. C. Ribeiro-Teixeira, S. D. Prado, J. Hickman, and Y. Silberberg, Phys. Rev. Lett. 115, 073901 (2015).
[Crossref]

Ribeiro-Teixeira, A. C.

R. Fischer, I. Vidal, D. Gilboa, R. R. B. Correia, A. C. Ribeiro-Teixeira, S. D. Prado, J. Hickman, and Y. Silberberg, Phys. Rev. Lett. 115, 073901 (2015).
[Crossref]

Rosenbluh, I. M.

I. Freund, I. M. Rosenbluh, and S. Feng, Phys. Rev. Lett. 61, 2328 (1988).
[Crossref]

Ruan, H.

Silberberg, Y.

R. Fischer, I. Vidal, D. Gilboa, R. R. B. Correia, A. C. Ribeiro-Teixeira, S. D. Prado, J. Hickman, and Y. Silberberg, Phys. Rev. Lett. 115, 073901 (2015).
[Crossref]

O. Katz, E. Small, Y. Guan, and Y. Silberberg, Optica 1, 170 (2014).
[Crossref]

O. Katz, E. Small, and Y. Silberberg, Nat. Photonics 6, 549 (2012).
[Crossref]

Small, E.

O. Katz, E. Small, Y. Guan, and Y. Silberberg, Optica 1, 170 (2014).
[Crossref]

O. Katz, E. Small, and Y. Silberberg, Nat. Photonics 6, 549 (2012).
[Crossref]

Stone, A. D.

S. Feng, C. Kane, P. A. Lee, and A. D. Stone, Phys. Rev. Lett. 61, 834 (1988).
[Crossref]

Traub, W. A.

J. T. Trauger and W. A. Traub, Nature 446, 771 (2007).
[Crossref]

Trauger, J. T.

J. T. Trauger and W. A. Traub, Nature 446, 771 (2007).
[Crossref]

Vellekoop, I. M.

Vidal, I.

R. Fischer, I. Vidal, D. Gilboa, R. R. B. Correia, A. C. Ribeiro-Teixeira, S. D. Prado, J. Hickman, and Y. Silberberg, Phys. Rev. Lett. 115, 073901 (2015).
[Crossref]

Wang, L. V.

C. Ma, X. Xu, Y. Liu, and L. V. Wang, Nat. Photonics 8, 931 (2014).
[Crossref]

Xu, X.

C. Ma, X. Xu, Y. Liu, and L. V. Wang, Nat. Photonics 8, 931 (2014).
[Crossref]

Yang, C.

Zhou, E. H.

Nat. Photonics (3)

A. P. Mosk, A. Lagendijk, G. Lerosey, and M. Fink, Nat. Photonics 6, 283 (2012).
[Crossref]

O. Katz, E. Small, and Y. Silberberg, Nat. Photonics 6, 549 (2012).
[Crossref]

C. Ma, X. Xu, Y. Liu, and L. V. Wang, Nat. Photonics 8, 931 (2014).
[Crossref]

Nature (1)

J. T. Trauger and W. A. Traub, Nature 446, 771 (2007).
[Crossref]

Opt. Express (1)

Opt. Lett. (2)

Optica (2)

Phys. Rev. Lett. (5)

S. M. Popoff, G. Lerosey, R. Carminati, M. Fink, A. C. Boccara, and S. Gigan, Phys. Rev. Lett. 104, 100601 (2010).
[Crossref]

R. Fischer, I. Vidal, D. Gilboa, R. R. B. Correia, A. C. Ribeiro-Teixeira, S. D. Prado, J. Hickman, and Y. Silberberg, Phys. Rev. Lett. 115, 073901 (2015).
[Crossref]

Y. Bromberg and H. Cao, Phys. Rev. Lett. 112, 213904 (2014).
[Crossref]

I. Freund, I. M. Rosenbluh, and S. Feng, Phys. Rev. Lett. 61, 2328 (1988).
[Crossref]

S. Feng, C. Kane, P. A. Lee, and A. D. Stone, Phys. Rev. Lett. 61, 834 (1988).
[Crossref]

Sci. Rep. (1)

N. Kaina, M. Dupré, G. Lerosey, and M. Fink, Sci. Rep. 4, 6693 (2014).
[Crossref]

Other (3)

J. W. Goodman, Statistical Optics (Wiley, 2000).

J. W. Goodman, Speckle Phenomena in Optics: Theory and Applications (Roberts & Company, 2007).

D. E. Goldberg, Genetic Algorithms in Search, Optimization and Machine Learning (Addison-Wesley, 1989).

Supplementary Material (1)

NameDescription
» Supplement 1: PDF (2428 KB)      Supplementary Material

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1. (a) Experiment demonstrating glare reduction (for detailed experimental setup, see the Supplement 1). An SLM is used to control the wavefront of the incident coherent beam, to reduce the light scattered into the camera. The camera images an object, shown here illuminated by a separate incoherent source. (b) Experimental results: The six panels show the evolution of the optimization algorithm, progressively reducing the background and exposing the object (a toy figurine). The image is shown for increasing number of iterations, from 10 (top left) to 1200 (bottom right).
Fig. 2.
Fig. 2. Experimental illustration of speckles intensity reduction. (a) Speckle intensity distribution before optimization. (b) Speckle intensity distribution after 1000 GA iterations, minimizing light in a square area of 453×453 pixels. The power was reduced to 17% of its initial value. The SLM was divided into 32×40 effective elements.
Fig. 3.
Fig. 3. Simulation of speckle reduction. (a) Optimization results for different-sized square-shaped target areas. The diffuser is represented by a 256×256 random phase matrix and the control matrix size is 32×32. (b) Remaining power fraction versus side length of square-shaped target area for different control matrices sizes (16, 64, 256, and 1024 controls). It was possible to effectively darken 4, 16, 64, and 200 speckles, respectively.
Fig. 4.
Fig. 4. Constructive approach for optimizing dark areas for thin scattering layers. (a) Phases are applied to the SLM to align the field contributed by neighboring SLM pixels to the target spot in an antiferromagnetic pattern. (b) This reduces the total intensity to about 20% of its initial value and affects an area containing N speckles, here simulated with 64×64 controls in a 256×256 field. (c) To reduce the intensity even more, 4 cells are grouped together, as shown by the highlighted regions in (a), and the procedure is repeated, further reducing the intensity at the target. (d) This procedure can be repeated log2N/2 times to get optimal darkening around the target spot.

Metrics