Abstract

Graphene-based photodetectors have recently received much attention for their potential to detect weak signals and their short response time, both of which are crucial in applications such as optical positioning, remote sensing, and biomedical imaging. However, existing devices for detecting weak signals are limited by the current photogating mechanism, so the price for achieving ultrahigh sensitivity is to sacrifice response time. In this work, we bridge the gap between ultrafast response and ultrahigh sensitivity by employing a graphene/SiO2/lightly doped Si architecture with an interfacial gating mechanism. Our device is capable of detecting a signal of <1  nW (with a responsivity of 1000  AW1), and the spectral response extends from the visible to near-IR. More important, the photoresponse time of our device has been pushed to 400  ns. The current device structure does not need a complicated fabrication process and is fully compatible with silicon technology. This work not only will open up a route to graphene-based high-performance optoelectronic devices but also has great potential for ultrafast weak signal detection.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
High-performance position-sensitive detector based on graphene–silicon heterojunction

Wenhui Wang, Zhenzhong Yan, Jinfeng Zhang, Junpeng Lu, Hua Qin, and Zhenhua Ni
Optica 5(1) 27-31 (2018)

Bilayer graphene based surface passivation enhanced nano structured self-powered near-infrared photodetector

Longhui Zeng, Chao Xie, Lili Tao, Hui Long, Chunyin Tang, Yuen H. Tsang, and Jiansheng Jie
Opt. Express 23(4) 4839-4846 (2015)

Carbon nanotube arrays based high-performance infrared photodetector [Invited]

Qingsheng Zeng, Sheng Wang, Leijing Yang, Zhenxing Wang, Tian Pei, Zhiyong Zhang, Lian-Mao Peng, Weiwei Zhou, Jie Liu, Weiya Zhou, and Sishen Xie
Opt. Mater. Express 2(6) 839-848 (2012)

References

  • View by:
  • |
  • |
  • |

  1. F. Xia, T. Mueller, Y. Lin, A. Valdes-Garcia, and P. Avouris, “Ultrafast graphene photodetector,” Nat. Nanotechnol. 4, 839–843 (2009).
    [Crossref]
  2. K. J. Tielrooij, L. Piatkowski, M. Massicotte, A. Woessner, Q. Ma, Y. Lee, K. S. Myhro, C. N. Lau, P. Jarillo-Herrero, N. F. van Hulst, and F. H. L. Koppens, “Generation of photovoltage in graphene on a femtosecond timescale through efficient carrier heating,” Nat. Nanotechnol. 10, 437–443 (2015).
    [Crossref]
  3. G. Konstantatos, M. Badioli, L. Gaudreau, J. Osmond, M. Bernechea, F. P. G. de Arquer, F. Gatti, and F. H. Koppens, “Hybrid graphene-quantum dot phototransistors with ultrahigh gain,” Nat. Nanotechnol. 7, 363–368 (2012).
    [Crossref]
  4. L. Britnell, R. M. Ribeiro, A. Eckmann, R. Jalil, B. D. Belle, A. Mishchenko, Y. J. Kim, R. V. Gorbachev, T. Georgiou, S. V. Morozov, A. N. Grigorenko, A. K. Geim, C. Casiraghi, A. H. Castro Neto, and K. S. Novoselov, “Strong light-matter interactions in heterostructures of atomically thin films,” Science 340, 1311–1314 (2013).
    [Crossref]
  5. C. H. Liu, Y. C. Chang, T. B. Norris, and Z. Zhong, “Graphene photodetectors with ultra-broadband and high responsivity at room temperature,” Nat. Nanotechnol. 9, 273–278 (2014).
    [Crossref]
  6. Y. Liu, F. Wang, X. Wang, X. Wang, E. Flahaut, X. Liu, Y. Li, X. Wang, Y. Xu, Y. Shi, and R. Zhang, “Planar carbon nanotube-graphene hybrid films for high-performance broadband photodetectors,” Nat. Commun. 6, 8589 (2015).
    [Crossref]
  7. H. Qiao, J. Yuan, Z. Xu, C. Chen, S. Lin, Y. Wang, J. Song, Y. Liu, Q. Khan, H. Y. Hoh, C. X. Pan, S. Li, and Q. Bao, “Broadband photodetectors based on graphene-Bi2Te3 heterostructure,” ACS Nano 9, 1886–1894 (2015).
    [Crossref]
  8. G. Haider, P. Roy, C. W. Chiang, W. C. Tan, Y. R. Liou, H. T. Chang, C. T. Liang, W. H. Shih, and Y. F. Chen, “Electrical-polarization-induced ultrahigh responsivity photodetectors based on graphene and graphene quantum dots,” Adv. Funct. Mater. 26, 620–628 (2016).
    [Crossref]
  9. J. Miao, W. Hu, N. Guo, Z. Lu, X. Liu, L. Liao, P. Chen, T. Jiang, S. Wu, J. C. Ho, L. Wang, X. Chen, and W. Lu, “High-responsivity graphene/InAs nanowire heterojunction near-infrared photodetectors with distinct photocurrent on/off ratios,” Small 11, 936–942 (2015).
    [Crossref]
  10. W. Zhang, C. P. Chuu, J. K. Huang, C. H. Chen, M. L. Tsai, Y. H. Chang, C. T. Liang, Y. Z. Chen, Y. L. Chueh, J. H. He, M. Y. Chou, and L. J. Li, “Ultrahigh-gain photodetectors based on atomically thin graphene-MoS2 heterostructures,” Sci. Rep. 4, 3826 (2014).
    [Crossref]
  11. Z. Sun, Z. Liu, J. Li, G. Tai, S. P. Lau, and F. Yan, “Infrared photodetectors based on CVD-grown graphene and PbS quantum dots with ultrahigh responsivity,” Adv. Mater. 24, 5878–5883 (2012).
    [Crossref]
  12. Y. Lee, J. Kwon, E. Hwang, C. H. Ra, W. J. Yoo, J. H. Ahn, J. H. Park, and J. H. Cho, “High-performance Perovskite-graphene hybrid photodetector,” Adv. Mater. 27, 41–46 (2015).
    [Crossref]
  13. Z. Liu, K. Parvez, R. Li, R. Dong, X. Feng, and K. Müllen, “Transparent conductive electrodes from graphene/PEDOT:PSS hybrid inks for ultrathin organic photodetectors,” Adv. Mater. 27, 669–675 (2015).
    [Crossref]
  14. H. Xu, J. Wu, Q. Feng, N. Mao, C. Wang, and J. Zhang, “High responsivity and gate tunable graphene-MoS2 hybrid phototransistor,” Small 10, 2300–2306 (2014).
    [Crossref]
  15. X. Li, J. Wu, N. Mao, J. Zhang, Z. Lei, Z. Liu, and H. Xu, “A self-powered graphene-MoS2 hybrid phototransistor with fast response rate and high on-off ratio,” Carbon 92, 126–132 (2015).
    [Crossref]
  16. Y. Lee, S. H. Yu, J. Jeon, H. Kim, J. Y. Lee, H. Kim, J. H. Ahn, E. Hwang, and J. H. Cho, “Hybrid structures of organic dye and graphene for ultrahigh gain photodetectors,” Carbon 88, 165–172 (2015).
    [Crossref]
  17. F. Z. Liu and S. Kar, “Quantum carrier reinvestment-induced ultrahigh and broadband photocurrent responses in graphene-silicon junctions,” ACS Nano 8, 10270–10279 (2014).
    [Crossref]
  18. Z. H. Ni, H. M. Wang, J. Kasim, H. M. Fan, T. Yu, Y. H. Wu, Y. P. Feng, and Z. X. Shen, “Graphene thickness determination using reflection and contrast spectroscopy,” Nano Lett. 7, 2758–2763 (2007).
    [Crossref]
  19. D. K. Schroder, “Surface voltage and surface photovoltage: history, theory and applications,” Meas. Sci. Technol. 12, R16–R31 (2001).
    [Crossref]
  20. A. Cuevas and D. Macdonald, “Measuring and interpreting the lifetime of silicon wafers,” Sol. Energy 76, 255–262 (2004).
    [Crossref]
  21. Y. Zhang, T. Liu, B. Meng, X. Li, G. Liang, X. Hu, and Q. J. Wang, “Broadband high photoresponse from pure monolayer graphene photodetector,” Nat. Commun. 4, 1811 (2013).
    [Crossref]
  22. T. J. Echtermeyer, L. Britnell, P. K. Jasnos, A. Lombardo, R. V. Gorbachev, A. N. Grigorenko, A. K. Geim, A. C. Ferrari, and K. S. Novoselov, “Strong plasmonic enhancement of photovoltage in graphene,” Nat. Commun. 2, 458 (2011).
    [Crossref]
  23. M. Engel, M. Steiner, A. Lombardo, A. C. Ferrari, H. V. Löhneysen, P. Avouris, and R. Krupke, “Light-matter interaction in a microcavity-controlled graphene transistor,” Nat. Commun. 3, 906 (2012).
    [Crossref]
  24. B. K. Sarker, I. Childres, E. Cazalas, I. Jovanovic, and Y. P. Chen, “Gate-tunable and high responsivity graphene phototransistors on undoped semiconductor substrates,” arXiv: 1409.5725v2 (2015).
  25. P. Norton, “HgCdTe infrared detectors,” Opto-Electron. Rev. 10, 159–174 (2002).
  26. B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, and A. Kis, “Single-layer MoS2 transistors,” Nat. Nanotechnol. 6, 147–150 (2011).
    [Crossref]
  27. Z. Chen, Z. Cheng, J. Wang, X. Wan, C. Shu, H. K. Tsang, H. P. Ho, and J. B. Xu, “High responsivity, broadband, and fast graphene/silicon photodetector in photoconductor mode,” Adv. Opt. Mater. 3, 1207–1214 (2015).
    [Crossref]
  28. F. Yan, J. Li, and S. M. Mok, “Highly photosensitive thin film transistors based on a composite of poly (3-hexylthiophene) and titania nanoparticles,” J. Appl. Phys. 106, 074501 (2009).
    [Crossref]
  29. N. M. Gabor, J. C. W. Song, Q. Ma, N. L. Nair, T. Taychatanapat, K. Watanabe, T. Taniguchi, L. S. Levitov, and P. J. Herrero, “Hot carrier-assisted intrinsic photoresponse in graphene,” Science 334, 648–652 (2011).
    [Crossref]
  30. M. C. Lemme, F. H. L. Koppens, A. L. Falk, M. S. Rudner, H. Park, L. S. Levitov, and C. M. Marcus, “Gate-activated photoresponse in a graphene p–n junction,” Nano Lett. 11, 4134–4137 (2011).
    [Crossref]
  31. X. Gan, R. J. Shiue, Y. Gao, I. Meric, T. F. Heinz, K. Shepard, J. Hone, S. Assefa, and D. Englund, “Chip-integrated ultrafast graphene photodetector with high responsivity,” Nat. Photonics 7, 883–887 (2013).
    [Crossref]

2016 (1)

G. Haider, P. Roy, C. W. Chiang, W. C. Tan, Y. R. Liou, H. T. Chang, C. T. Liang, W. H. Shih, and Y. F. Chen, “Electrical-polarization-induced ultrahigh responsivity photodetectors based on graphene and graphene quantum dots,” Adv. Funct. Mater. 26, 620–628 (2016).
[Crossref]

2015 (9)

J. Miao, W. Hu, N. Guo, Z. Lu, X. Liu, L. Liao, P. Chen, T. Jiang, S. Wu, J. C. Ho, L. Wang, X. Chen, and W. Lu, “High-responsivity graphene/InAs nanowire heterojunction near-infrared photodetectors with distinct photocurrent on/off ratios,” Small 11, 936–942 (2015).
[Crossref]

K. J. Tielrooij, L. Piatkowski, M. Massicotte, A. Woessner, Q. Ma, Y. Lee, K. S. Myhro, C. N. Lau, P. Jarillo-Herrero, N. F. van Hulst, and F. H. L. Koppens, “Generation of photovoltage in graphene on a femtosecond timescale through efficient carrier heating,” Nat. Nanotechnol. 10, 437–443 (2015).
[Crossref]

Y. Liu, F. Wang, X. Wang, X. Wang, E. Flahaut, X. Liu, Y. Li, X. Wang, Y. Xu, Y. Shi, and R. Zhang, “Planar carbon nanotube-graphene hybrid films for high-performance broadband photodetectors,” Nat. Commun. 6, 8589 (2015).
[Crossref]

H. Qiao, J. Yuan, Z. Xu, C. Chen, S. Lin, Y. Wang, J. Song, Y. Liu, Q. Khan, H. Y. Hoh, C. X. Pan, S. Li, and Q. Bao, “Broadband photodetectors based on graphene-Bi2Te3 heterostructure,” ACS Nano 9, 1886–1894 (2015).
[Crossref]

Y. Lee, J. Kwon, E. Hwang, C. H. Ra, W. J. Yoo, J. H. Ahn, J. H. Park, and J. H. Cho, “High-performance Perovskite-graphene hybrid photodetector,” Adv. Mater. 27, 41–46 (2015).
[Crossref]

Z. Liu, K. Parvez, R. Li, R. Dong, X. Feng, and K. Müllen, “Transparent conductive electrodes from graphene/PEDOT:PSS hybrid inks for ultrathin organic photodetectors,” Adv. Mater. 27, 669–675 (2015).
[Crossref]

X. Li, J. Wu, N. Mao, J. Zhang, Z. Lei, Z. Liu, and H. Xu, “A self-powered graphene-MoS2 hybrid phototransistor with fast response rate and high on-off ratio,” Carbon 92, 126–132 (2015).
[Crossref]

Y. Lee, S. H. Yu, J. Jeon, H. Kim, J. Y. Lee, H. Kim, J. H. Ahn, E. Hwang, and J. H. Cho, “Hybrid structures of organic dye and graphene for ultrahigh gain photodetectors,” Carbon 88, 165–172 (2015).
[Crossref]

Z. Chen, Z. Cheng, J. Wang, X. Wan, C. Shu, H. K. Tsang, H. P. Ho, and J. B. Xu, “High responsivity, broadband, and fast graphene/silicon photodetector in photoconductor mode,” Adv. Opt. Mater. 3, 1207–1214 (2015).
[Crossref]

2014 (4)

C. H. Liu, Y. C. Chang, T. B. Norris, and Z. Zhong, “Graphene photodetectors with ultra-broadband and high responsivity at room temperature,” Nat. Nanotechnol. 9, 273–278 (2014).
[Crossref]

F. Z. Liu and S. Kar, “Quantum carrier reinvestment-induced ultrahigh and broadband photocurrent responses in graphene-silicon junctions,” ACS Nano 8, 10270–10279 (2014).
[Crossref]

H. Xu, J. Wu, Q. Feng, N. Mao, C. Wang, and J. Zhang, “High responsivity and gate tunable graphene-MoS2 hybrid phototransistor,” Small 10, 2300–2306 (2014).
[Crossref]

W. Zhang, C. P. Chuu, J. K. Huang, C. H. Chen, M. L. Tsai, Y. H. Chang, C. T. Liang, Y. Z. Chen, Y. L. Chueh, J. H. He, M. Y. Chou, and L. J. Li, “Ultrahigh-gain photodetectors based on atomically thin graphene-MoS2 heterostructures,” Sci. Rep. 4, 3826 (2014).
[Crossref]

2013 (3)

L. Britnell, R. M. Ribeiro, A. Eckmann, R. Jalil, B. D. Belle, A. Mishchenko, Y. J. Kim, R. V. Gorbachev, T. Georgiou, S. V. Morozov, A. N. Grigorenko, A. K. Geim, C. Casiraghi, A. H. Castro Neto, and K. S. Novoselov, “Strong light-matter interactions in heterostructures of atomically thin films,” Science 340, 1311–1314 (2013).
[Crossref]

Y. Zhang, T. Liu, B. Meng, X. Li, G. Liang, X. Hu, and Q. J. Wang, “Broadband high photoresponse from pure monolayer graphene photodetector,” Nat. Commun. 4, 1811 (2013).
[Crossref]

X. Gan, R. J. Shiue, Y. Gao, I. Meric, T. F. Heinz, K. Shepard, J. Hone, S. Assefa, and D. Englund, “Chip-integrated ultrafast graphene photodetector with high responsivity,” Nat. Photonics 7, 883–887 (2013).
[Crossref]

2012 (3)

M. Engel, M. Steiner, A. Lombardo, A. C. Ferrari, H. V. Löhneysen, P. Avouris, and R. Krupke, “Light-matter interaction in a microcavity-controlled graphene transistor,” Nat. Commun. 3, 906 (2012).
[Crossref]

G. Konstantatos, M. Badioli, L. Gaudreau, J. Osmond, M. Bernechea, F. P. G. de Arquer, F. Gatti, and F. H. Koppens, “Hybrid graphene-quantum dot phototransistors with ultrahigh gain,” Nat. Nanotechnol. 7, 363–368 (2012).
[Crossref]

Z. Sun, Z. Liu, J. Li, G. Tai, S. P. Lau, and F. Yan, “Infrared photodetectors based on CVD-grown graphene and PbS quantum dots with ultrahigh responsivity,” Adv. Mater. 24, 5878–5883 (2012).
[Crossref]

2011 (4)

T. J. Echtermeyer, L. Britnell, P. K. Jasnos, A. Lombardo, R. V. Gorbachev, A. N. Grigorenko, A. K. Geim, A. C. Ferrari, and K. S. Novoselov, “Strong plasmonic enhancement of photovoltage in graphene,” Nat. Commun. 2, 458 (2011).
[Crossref]

B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, and A. Kis, “Single-layer MoS2 transistors,” Nat. Nanotechnol. 6, 147–150 (2011).
[Crossref]

N. M. Gabor, J. C. W. Song, Q. Ma, N. L. Nair, T. Taychatanapat, K. Watanabe, T. Taniguchi, L. S. Levitov, and P. J. Herrero, “Hot carrier-assisted intrinsic photoresponse in graphene,” Science 334, 648–652 (2011).
[Crossref]

M. C. Lemme, F. H. L. Koppens, A. L. Falk, M. S. Rudner, H. Park, L. S. Levitov, and C. M. Marcus, “Gate-activated photoresponse in a graphene p–n junction,” Nano Lett. 11, 4134–4137 (2011).
[Crossref]

2009 (2)

F. Yan, J. Li, and S. M. Mok, “Highly photosensitive thin film transistors based on a composite of poly (3-hexylthiophene) and titania nanoparticles,” J. Appl. Phys. 106, 074501 (2009).
[Crossref]

F. Xia, T. Mueller, Y. Lin, A. Valdes-Garcia, and P. Avouris, “Ultrafast graphene photodetector,” Nat. Nanotechnol. 4, 839–843 (2009).
[Crossref]

2007 (1)

Z. H. Ni, H. M. Wang, J. Kasim, H. M. Fan, T. Yu, Y. H. Wu, Y. P. Feng, and Z. X. Shen, “Graphene thickness determination using reflection and contrast spectroscopy,” Nano Lett. 7, 2758–2763 (2007).
[Crossref]

2004 (1)

A. Cuevas and D. Macdonald, “Measuring and interpreting the lifetime of silicon wafers,” Sol. Energy 76, 255–262 (2004).
[Crossref]

2002 (1)

P. Norton, “HgCdTe infrared detectors,” Opto-Electron. Rev. 10, 159–174 (2002).

2001 (1)

D. K. Schroder, “Surface voltage and surface photovoltage: history, theory and applications,” Meas. Sci. Technol. 12, R16–R31 (2001).
[Crossref]

Ahn, J. H.

Y. Lee, J. Kwon, E. Hwang, C. H. Ra, W. J. Yoo, J. H. Ahn, J. H. Park, and J. H. Cho, “High-performance Perovskite-graphene hybrid photodetector,” Adv. Mater. 27, 41–46 (2015).
[Crossref]

Y. Lee, S. H. Yu, J. Jeon, H. Kim, J. Y. Lee, H. Kim, J. H. Ahn, E. Hwang, and J. H. Cho, “Hybrid structures of organic dye and graphene for ultrahigh gain photodetectors,” Carbon 88, 165–172 (2015).
[Crossref]

Assefa, S.

X. Gan, R. J. Shiue, Y. Gao, I. Meric, T. F. Heinz, K. Shepard, J. Hone, S. Assefa, and D. Englund, “Chip-integrated ultrafast graphene photodetector with high responsivity,” Nat. Photonics 7, 883–887 (2013).
[Crossref]

Avouris, P.

M. Engel, M. Steiner, A. Lombardo, A. C. Ferrari, H. V. Löhneysen, P. Avouris, and R. Krupke, “Light-matter interaction in a microcavity-controlled graphene transistor,” Nat. Commun. 3, 906 (2012).
[Crossref]

F. Xia, T. Mueller, Y. Lin, A. Valdes-Garcia, and P. Avouris, “Ultrafast graphene photodetector,” Nat. Nanotechnol. 4, 839–843 (2009).
[Crossref]

Badioli, M.

G. Konstantatos, M. Badioli, L. Gaudreau, J. Osmond, M. Bernechea, F. P. G. de Arquer, F. Gatti, and F. H. Koppens, “Hybrid graphene-quantum dot phototransistors with ultrahigh gain,” Nat. Nanotechnol. 7, 363–368 (2012).
[Crossref]

Bao, Q.

H. Qiao, J. Yuan, Z. Xu, C. Chen, S. Lin, Y. Wang, J. Song, Y. Liu, Q. Khan, H. Y. Hoh, C. X. Pan, S. Li, and Q. Bao, “Broadband photodetectors based on graphene-Bi2Te3 heterostructure,” ACS Nano 9, 1886–1894 (2015).
[Crossref]

Belle, B. D.

L. Britnell, R. M. Ribeiro, A. Eckmann, R. Jalil, B. D. Belle, A. Mishchenko, Y. J. Kim, R. V. Gorbachev, T. Georgiou, S. V. Morozov, A. N. Grigorenko, A. K. Geim, C. Casiraghi, A. H. Castro Neto, and K. S. Novoselov, “Strong light-matter interactions in heterostructures of atomically thin films,” Science 340, 1311–1314 (2013).
[Crossref]

Bernechea, M.

G. Konstantatos, M. Badioli, L. Gaudreau, J. Osmond, M. Bernechea, F. P. G. de Arquer, F. Gatti, and F. H. Koppens, “Hybrid graphene-quantum dot phototransistors with ultrahigh gain,” Nat. Nanotechnol. 7, 363–368 (2012).
[Crossref]

Britnell, L.

L. Britnell, R. M. Ribeiro, A. Eckmann, R. Jalil, B. D. Belle, A. Mishchenko, Y. J. Kim, R. V. Gorbachev, T. Georgiou, S. V. Morozov, A. N. Grigorenko, A. K. Geim, C. Casiraghi, A. H. Castro Neto, and K. S. Novoselov, “Strong light-matter interactions in heterostructures of atomically thin films,” Science 340, 1311–1314 (2013).
[Crossref]

T. J. Echtermeyer, L. Britnell, P. K. Jasnos, A. Lombardo, R. V. Gorbachev, A. N. Grigorenko, A. K. Geim, A. C. Ferrari, and K. S. Novoselov, “Strong plasmonic enhancement of photovoltage in graphene,” Nat. Commun. 2, 458 (2011).
[Crossref]

Brivio, J.

B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, and A. Kis, “Single-layer MoS2 transistors,” Nat. Nanotechnol. 6, 147–150 (2011).
[Crossref]

Casiraghi, C.

L. Britnell, R. M. Ribeiro, A. Eckmann, R. Jalil, B. D. Belle, A. Mishchenko, Y. J. Kim, R. V. Gorbachev, T. Georgiou, S. V. Morozov, A. N. Grigorenko, A. K. Geim, C. Casiraghi, A. H. Castro Neto, and K. S. Novoselov, “Strong light-matter interactions in heterostructures of atomically thin films,” Science 340, 1311–1314 (2013).
[Crossref]

Castro Neto, A. H.

L. Britnell, R. M. Ribeiro, A. Eckmann, R. Jalil, B. D. Belle, A. Mishchenko, Y. J. Kim, R. V. Gorbachev, T. Georgiou, S. V. Morozov, A. N. Grigorenko, A. K. Geim, C. Casiraghi, A. H. Castro Neto, and K. S. Novoselov, “Strong light-matter interactions in heterostructures of atomically thin films,” Science 340, 1311–1314 (2013).
[Crossref]

Cazalas, E.

B. K. Sarker, I. Childres, E. Cazalas, I. Jovanovic, and Y. P. Chen, “Gate-tunable and high responsivity graphene phototransistors on undoped semiconductor substrates,” arXiv: 1409.5725v2 (2015).

Chang, H. T.

G. Haider, P. Roy, C. W. Chiang, W. C. Tan, Y. R. Liou, H. T. Chang, C. T. Liang, W. H. Shih, and Y. F. Chen, “Electrical-polarization-induced ultrahigh responsivity photodetectors based on graphene and graphene quantum dots,” Adv. Funct. Mater. 26, 620–628 (2016).
[Crossref]

Chang, Y. C.

C. H. Liu, Y. C. Chang, T. B. Norris, and Z. Zhong, “Graphene photodetectors with ultra-broadband and high responsivity at room temperature,” Nat. Nanotechnol. 9, 273–278 (2014).
[Crossref]

Chang, Y. H.

W. Zhang, C. P. Chuu, J. K. Huang, C. H. Chen, M. L. Tsai, Y. H. Chang, C. T. Liang, Y. Z. Chen, Y. L. Chueh, J. H. He, M. Y. Chou, and L. J. Li, “Ultrahigh-gain photodetectors based on atomically thin graphene-MoS2 heterostructures,” Sci. Rep. 4, 3826 (2014).
[Crossref]

Chen, C.

H. Qiao, J. Yuan, Z. Xu, C. Chen, S. Lin, Y. Wang, J. Song, Y. Liu, Q. Khan, H. Y. Hoh, C. X. Pan, S. Li, and Q. Bao, “Broadband photodetectors based on graphene-Bi2Te3 heterostructure,” ACS Nano 9, 1886–1894 (2015).
[Crossref]

Chen, C. H.

W. Zhang, C. P. Chuu, J. K. Huang, C. H. Chen, M. L. Tsai, Y. H. Chang, C. T. Liang, Y. Z. Chen, Y. L. Chueh, J. H. He, M. Y. Chou, and L. J. Li, “Ultrahigh-gain photodetectors based on atomically thin graphene-MoS2 heterostructures,” Sci. Rep. 4, 3826 (2014).
[Crossref]

Chen, P.

J. Miao, W. Hu, N. Guo, Z. Lu, X. Liu, L. Liao, P. Chen, T. Jiang, S. Wu, J. C. Ho, L. Wang, X. Chen, and W. Lu, “High-responsivity graphene/InAs nanowire heterojunction near-infrared photodetectors with distinct photocurrent on/off ratios,” Small 11, 936–942 (2015).
[Crossref]

Chen, X.

J. Miao, W. Hu, N. Guo, Z. Lu, X. Liu, L. Liao, P. Chen, T. Jiang, S. Wu, J. C. Ho, L. Wang, X. Chen, and W. Lu, “High-responsivity graphene/InAs nanowire heterojunction near-infrared photodetectors with distinct photocurrent on/off ratios,” Small 11, 936–942 (2015).
[Crossref]

Chen, Y. F.

G. Haider, P. Roy, C. W. Chiang, W. C. Tan, Y. R. Liou, H. T. Chang, C. T. Liang, W. H. Shih, and Y. F. Chen, “Electrical-polarization-induced ultrahigh responsivity photodetectors based on graphene and graphene quantum dots,” Adv. Funct. Mater. 26, 620–628 (2016).
[Crossref]

Chen, Y. P.

B. K. Sarker, I. Childres, E. Cazalas, I. Jovanovic, and Y. P. Chen, “Gate-tunable and high responsivity graphene phototransistors on undoped semiconductor substrates,” arXiv: 1409.5725v2 (2015).

Chen, Y. Z.

W. Zhang, C. P. Chuu, J. K. Huang, C. H. Chen, M. L. Tsai, Y. H. Chang, C. T. Liang, Y. Z. Chen, Y. L. Chueh, J. H. He, M. Y. Chou, and L. J. Li, “Ultrahigh-gain photodetectors based on atomically thin graphene-MoS2 heterostructures,” Sci. Rep. 4, 3826 (2014).
[Crossref]

Chen, Z.

Z. Chen, Z. Cheng, J. Wang, X. Wan, C. Shu, H. K. Tsang, H. P. Ho, and J. B. Xu, “High responsivity, broadband, and fast graphene/silicon photodetector in photoconductor mode,” Adv. Opt. Mater. 3, 1207–1214 (2015).
[Crossref]

Cheng, Z.

Z. Chen, Z. Cheng, J. Wang, X. Wan, C. Shu, H. K. Tsang, H. P. Ho, and J. B. Xu, “High responsivity, broadband, and fast graphene/silicon photodetector in photoconductor mode,” Adv. Opt. Mater. 3, 1207–1214 (2015).
[Crossref]

Chiang, C. W.

G. Haider, P. Roy, C. W. Chiang, W. C. Tan, Y. R. Liou, H. T. Chang, C. T. Liang, W. H. Shih, and Y. F. Chen, “Electrical-polarization-induced ultrahigh responsivity photodetectors based on graphene and graphene quantum dots,” Adv. Funct. Mater. 26, 620–628 (2016).
[Crossref]

Childres, I.

B. K. Sarker, I. Childres, E. Cazalas, I. Jovanovic, and Y. P. Chen, “Gate-tunable and high responsivity graphene phototransistors on undoped semiconductor substrates,” arXiv: 1409.5725v2 (2015).

Cho, J. H.

Y. Lee, S. H. Yu, J. Jeon, H. Kim, J. Y. Lee, H. Kim, J. H. Ahn, E. Hwang, and J. H. Cho, “Hybrid structures of organic dye and graphene for ultrahigh gain photodetectors,” Carbon 88, 165–172 (2015).
[Crossref]

Y. Lee, J. Kwon, E. Hwang, C. H. Ra, W. J. Yoo, J. H. Ahn, J. H. Park, and J. H. Cho, “High-performance Perovskite-graphene hybrid photodetector,” Adv. Mater. 27, 41–46 (2015).
[Crossref]

Chou, M. Y.

W. Zhang, C. P. Chuu, J. K. Huang, C. H. Chen, M. L. Tsai, Y. H. Chang, C. T. Liang, Y. Z. Chen, Y. L. Chueh, J. H. He, M. Y. Chou, and L. J. Li, “Ultrahigh-gain photodetectors based on atomically thin graphene-MoS2 heterostructures,” Sci. Rep. 4, 3826 (2014).
[Crossref]

Chueh, Y. L.

W. Zhang, C. P. Chuu, J. K. Huang, C. H. Chen, M. L. Tsai, Y. H. Chang, C. T. Liang, Y. Z. Chen, Y. L. Chueh, J. H. He, M. Y. Chou, and L. J. Li, “Ultrahigh-gain photodetectors based on atomically thin graphene-MoS2 heterostructures,” Sci. Rep. 4, 3826 (2014).
[Crossref]

Chuu, C. P.

W. Zhang, C. P. Chuu, J. K. Huang, C. H. Chen, M. L. Tsai, Y. H. Chang, C. T. Liang, Y. Z. Chen, Y. L. Chueh, J. H. He, M. Y. Chou, and L. J. Li, “Ultrahigh-gain photodetectors based on atomically thin graphene-MoS2 heterostructures,” Sci. Rep. 4, 3826 (2014).
[Crossref]

Cuevas, A.

A. Cuevas and D. Macdonald, “Measuring and interpreting the lifetime of silicon wafers,” Sol. Energy 76, 255–262 (2004).
[Crossref]

de Arquer, F. P. G.

G. Konstantatos, M. Badioli, L. Gaudreau, J. Osmond, M. Bernechea, F. P. G. de Arquer, F. Gatti, and F. H. Koppens, “Hybrid graphene-quantum dot phototransistors with ultrahigh gain,” Nat. Nanotechnol. 7, 363–368 (2012).
[Crossref]

Dong, R.

Z. Liu, K. Parvez, R. Li, R. Dong, X. Feng, and K. Müllen, “Transparent conductive electrodes from graphene/PEDOT:PSS hybrid inks for ultrathin organic photodetectors,” Adv. Mater. 27, 669–675 (2015).
[Crossref]

Echtermeyer, T. J.

T. J. Echtermeyer, L. Britnell, P. K. Jasnos, A. Lombardo, R. V. Gorbachev, A. N. Grigorenko, A. K. Geim, A. C. Ferrari, and K. S. Novoselov, “Strong plasmonic enhancement of photovoltage in graphene,” Nat. Commun. 2, 458 (2011).
[Crossref]

Eckmann, A.

L. Britnell, R. M. Ribeiro, A. Eckmann, R. Jalil, B. D. Belle, A. Mishchenko, Y. J. Kim, R. V. Gorbachev, T. Georgiou, S. V. Morozov, A. N. Grigorenko, A. K. Geim, C. Casiraghi, A. H. Castro Neto, and K. S. Novoselov, “Strong light-matter interactions in heterostructures of atomically thin films,” Science 340, 1311–1314 (2013).
[Crossref]

Engel, M.

M. Engel, M. Steiner, A. Lombardo, A. C. Ferrari, H. V. Löhneysen, P. Avouris, and R. Krupke, “Light-matter interaction in a microcavity-controlled graphene transistor,” Nat. Commun. 3, 906 (2012).
[Crossref]

Englund, D.

X. Gan, R. J. Shiue, Y. Gao, I. Meric, T. F. Heinz, K. Shepard, J. Hone, S. Assefa, and D. Englund, “Chip-integrated ultrafast graphene photodetector with high responsivity,” Nat. Photonics 7, 883–887 (2013).
[Crossref]

Falk, A. L.

M. C. Lemme, F. H. L. Koppens, A. L. Falk, M. S. Rudner, H. Park, L. S. Levitov, and C. M. Marcus, “Gate-activated photoresponse in a graphene p–n junction,” Nano Lett. 11, 4134–4137 (2011).
[Crossref]

Fan, H. M.

Z. H. Ni, H. M. Wang, J. Kasim, H. M. Fan, T. Yu, Y. H. Wu, Y. P. Feng, and Z. X. Shen, “Graphene thickness determination using reflection and contrast spectroscopy,” Nano Lett. 7, 2758–2763 (2007).
[Crossref]

Feng, Q.

H. Xu, J. Wu, Q. Feng, N. Mao, C. Wang, and J. Zhang, “High responsivity and gate tunable graphene-MoS2 hybrid phototransistor,” Small 10, 2300–2306 (2014).
[Crossref]

Feng, X.

Z. Liu, K. Parvez, R. Li, R. Dong, X. Feng, and K. Müllen, “Transparent conductive electrodes from graphene/PEDOT:PSS hybrid inks for ultrathin organic photodetectors,” Adv. Mater. 27, 669–675 (2015).
[Crossref]

Feng, Y. P.

Z. H. Ni, H. M. Wang, J. Kasim, H. M. Fan, T. Yu, Y. H. Wu, Y. P. Feng, and Z. X. Shen, “Graphene thickness determination using reflection and contrast spectroscopy,” Nano Lett. 7, 2758–2763 (2007).
[Crossref]

Ferrari, A. C.

M. Engel, M. Steiner, A. Lombardo, A. C. Ferrari, H. V. Löhneysen, P. Avouris, and R. Krupke, “Light-matter interaction in a microcavity-controlled graphene transistor,” Nat. Commun. 3, 906 (2012).
[Crossref]

T. J. Echtermeyer, L. Britnell, P. K. Jasnos, A. Lombardo, R. V. Gorbachev, A. N. Grigorenko, A. K. Geim, A. C. Ferrari, and K. S. Novoselov, “Strong plasmonic enhancement of photovoltage in graphene,” Nat. Commun. 2, 458 (2011).
[Crossref]

Flahaut, E.

Y. Liu, F. Wang, X. Wang, X. Wang, E. Flahaut, X. Liu, Y. Li, X. Wang, Y. Xu, Y. Shi, and R. Zhang, “Planar carbon nanotube-graphene hybrid films for high-performance broadband photodetectors,” Nat. Commun. 6, 8589 (2015).
[Crossref]

Gabor, N. M.

N. M. Gabor, J. C. W. Song, Q. Ma, N. L. Nair, T. Taychatanapat, K. Watanabe, T. Taniguchi, L. S. Levitov, and P. J. Herrero, “Hot carrier-assisted intrinsic photoresponse in graphene,” Science 334, 648–652 (2011).
[Crossref]

Gan, X.

X. Gan, R. J. Shiue, Y. Gao, I. Meric, T. F. Heinz, K. Shepard, J. Hone, S. Assefa, and D. Englund, “Chip-integrated ultrafast graphene photodetector with high responsivity,” Nat. Photonics 7, 883–887 (2013).
[Crossref]

Gao, Y.

X. Gan, R. J. Shiue, Y. Gao, I. Meric, T. F. Heinz, K. Shepard, J. Hone, S. Assefa, and D. Englund, “Chip-integrated ultrafast graphene photodetector with high responsivity,” Nat. Photonics 7, 883–887 (2013).
[Crossref]

Gatti, F.

G. Konstantatos, M. Badioli, L. Gaudreau, J. Osmond, M. Bernechea, F. P. G. de Arquer, F. Gatti, and F. H. Koppens, “Hybrid graphene-quantum dot phototransistors with ultrahigh gain,” Nat. Nanotechnol. 7, 363–368 (2012).
[Crossref]

Gaudreau, L.

G. Konstantatos, M. Badioli, L. Gaudreau, J. Osmond, M. Bernechea, F. P. G. de Arquer, F. Gatti, and F. H. Koppens, “Hybrid graphene-quantum dot phototransistors with ultrahigh gain,” Nat. Nanotechnol. 7, 363–368 (2012).
[Crossref]

Geim, A. K.

L. Britnell, R. M. Ribeiro, A. Eckmann, R. Jalil, B. D. Belle, A. Mishchenko, Y. J. Kim, R. V. Gorbachev, T. Georgiou, S. V. Morozov, A. N. Grigorenko, A. K. Geim, C. Casiraghi, A. H. Castro Neto, and K. S. Novoselov, “Strong light-matter interactions in heterostructures of atomically thin films,” Science 340, 1311–1314 (2013).
[Crossref]

T. J. Echtermeyer, L. Britnell, P. K. Jasnos, A. Lombardo, R. V. Gorbachev, A. N. Grigorenko, A. K. Geim, A. C. Ferrari, and K. S. Novoselov, “Strong plasmonic enhancement of photovoltage in graphene,” Nat. Commun. 2, 458 (2011).
[Crossref]

Georgiou, T.

L. Britnell, R. M. Ribeiro, A. Eckmann, R. Jalil, B. D. Belle, A. Mishchenko, Y. J. Kim, R. V. Gorbachev, T. Georgiou, S. V. Morozov, A. N. Grigorenko, A. K. Geim, C. Casiraghi, A. H. Castro Neto, and K. S. Novoselov, “Strong light-matter interactions in heterostructures of atomically thin films,” Science 340, 1311–1314 (2013).
[Crossref]

Giacometti, V.

B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, and A. Kis, “Single-layer MoS2 transistors,” Nat. Nanotechnol. 6, 147–150 (2011).
[Crossref]

Gorbachev, R. V.

L. Britnell, R. M. Ribeiro, A. Eckmann, R. Jalil, B. D. Belle, A. Mishchenko, Y. J. Kim, R. V. Gorbachev, T. Georgiou, S. V. Morozov, A. N. Grigorenko, A. K. Geim, C. Casiraghi, A. H. Castro Neto, and K. S. Novoselov, “Strong light-matter interactions in heterostructures of atomically thin films,” Science 340, 1311–1314 (2013).
[Crossref]

T. J. Echtermeyer, L. Britnell, P. K. Jasnos, A. Lombardo, R. V. Gorbachev, A. N. Grigorenko, A. K. Geim, A. C. Ferrari, and K. S. Novoselov, “Strong plasmonic enhancement of photovoltage in graphene,” Nat. Commun. 2, 458 (2011).
[Crossref]

Grigorenko, A. N.

L. Britnell, R. M. Ribeiro, A. Eckmann, R. Jalil, B. D. Belle, A. Mishchenko, Y. J. Kim, R. V. Gorbachev, T. Georgiou, S. V. Morozov, A. N. Grigorenko, A. K. Geim, C. Casiraghi, A. H. Castro Neto, and K. S. Novoselov, “Strong light-matter interactions in heterostructures of atomically thin films,” Science 340, 1311–1314 (2013).
[Crossref]

T. J. Echtermeyer, L. Britnell, P. K. Jasnos, A. Lombardo, R. V. Gorbachev, A. N. Grigorenko, A. K. Geim, A. C. Ferrari, and K. S. Novoselov, “Strong plasmonic enhancement of photovoltage in graphene,” Nat. Commun. 2, 458 (2011).
[Crossref]

Guo, N.

J. Miao, W. Hu, N. Guo, Z. Lu, X. Liu, L. Liao, P. Chen, T. Jiang, S. Wu, J. C. Ho, L. Wang, X. Chen, and W. Lu, “High-responsivity graphene/InAs nanowire heterojunction near-infrared photodetectors with distinct photocurrent on/off ratios,” Small 11, 936–942 (2015).
[Crossref]

Haider, G.

G. Haider, P. Roy, C. W. Chiang, W. C. Tan, Y. R. Liou, H. T. Chang, C. T. Liang, W. H. Shih, and Y. F. Chen, “Electrical-polarization-induced ultrahigh responsivity photodetectors based on graphene and graphene quantum dots,” Adv. Funct. Mater. 26, 620–628 (2016).
[Crossref]

He, J. H.

W. Zhang, C. P. Chuu, J. K. Huang, C. H. Chen, M. L. Tsai, Y. H. Chang, C. T. Liang, Y. Z. Chen, Y. L. Chueh, J. H. He, M. Y. Chou, and L. J. Li, “Ultrahigh-gain photodetectors based on atomically thin graphene-MoS2 heterostructures,” Sci. Rep. 4, 3826 (2014).
[Crossref]

Heinz, T. F.

X. Gan, R. J. Shiue, Y. Gao, I. Meric, T. F. Heinz, K. Shepard, J. Hone, S. Assefa, and D. Englund, “Chip-integrated ultrafast graphene photodetector with high responsivity,” Nat. Photonics 7, 883–887 (2013).
[Crossref]

Herrero, P. J.

N. M. Gabor, J. C. W. Song, Q. Ma, N. L. Nair, T. Taychatanapat, K. Watanabe, T. Taniguchi, L. S. Levitov, and P. J. Herrero, “Hot carrier-assisted intrinsic photoresponse in graphene,” Science 334, 648–652 (2011).
[Crossref]

Ho, H. P.

Z. Chen, Z. Cheng, J. Wang, X. Wan, C. Shu, H. K. Tsang, H. P. Ho, and J. B. Xu, “High responsivity, broadband, and fast graphene/silicon photodetector in photoconductor mode,” Adv. Opt. Mater. 3, 1207–1214 (2015).
[Crossref]

Ho, J. C.

J. Miao, W. Hu, N. Guo, Z. Lu, X. Liu, L. Liao, P. Chen, T. Jiang, S. Wu, J. C. Ho, L. Wang, X. Chen, and W. Lu, “High-responsivity graphene/InAs nanowire heterojunction near-infrared photodetectors with distinct photocurrent on/off ratios,” Small 11, 936–942 (2015).
[Crossref]

Hoh, H. Y.

H. Qiao, J. Yuan, Z. Xu, C. Chen, S. Lin, Y. Wang, J. Song, Y. Liu, Q. Khan, H. Y. Hoh, C. X. Pan, S. Li, and Q. Bao, “Broadband photodetectors based on graphene-Bi2Te3 heterostructure,” ACS Nano 9, 1886–1894 (2015).
[Crossref]

Hone, J.

X. Gan, R. J. Shiue, Y. Gao, I. Meric, T. F. Heinz, K. Shepard, J. Hone, S. Assefa, and D. Englund, “Chip-integrated ultrafast graphene photodetector with high responsivity,” Nat. Photonics 7, 883–887 (2013).
[Crossref]

Hu, W.

J. Miao, W. Hu, N. Guo, Z. Lu, X. Liu, L. Liao, P. Chen, T. Jiang, S. Wu, J. C. Ho, L. Wang, X. Chen, and W. Lu, “High-responsivity graphene/InAs nanowire heterojunction near-infrared photodetectors with distinct photocurrent on/off ratios,” Small 11, 936–942 (2015).
[Crossref]

Hu, X.

Y. Zhang, T. Liu, B. Meng, X. Li, G. Liang, X. Hu, and Q. J. Wang, “Broadband high photoresponse from pure monolayer graphene photodetector,” Nat. Commun. 4, 1811 (2013).
[Crossref]

Huang, J. K.

W. Zhang, C. P. Chuu, J. K. Huang, C. H. Chen, M. L. Tsai, Y. H. Chang, C. T. Liang, Y. Z. Chen, Y. L. Chueh, J. H. He, M. Y. Chou, and L. J. Li, “Ultrahigh-gain photodetectors based on atomically thin graphene-MoS2 heterostructures,” Sci. Rep. 4, 3826 (2014).
[Crossref]

Hwang, E.

Y. Lee, J. Kwon, E. Hwang, C. H. Ra, W. J. Yoo, J. H. Ahn, J. H. Park, and J. H. Cho, “High-performance Perovskite-graphene hybrid photodetector,” Adv. Mater. 27, 41–46 (2015).
[Crossref]

Y. Lee, S. H. Yu, J. Jeon, H. Kim, J. Y. Lee, H. Kim, J. H. Ahn, E. Hwang, and J. H. Cho, “Hybrid structures of organic dye and graphene for ultrahigh gain photodetectors,” Carbon 88, 165–172 (2015).
[Crossref]

Jalil, R.

L. Britnell, R. M. Ribeiro, A. Eckmann, R. Jalil, B. D. Belle, A. Mishchenko, Y. J. Kim, R. V. Gorbachev, T. Georgiou, S. V. Morozov, A. N. Grigorenko, A. K. Geim, C. Casiraghi, A. H. Castro Neto, and K. S. Novoselov, “Strong light-matter interactions in heterostructures of atomically thin films,” Science 340, 1311–1314 (2013).
[Crossref]

Jarillo-Herrero, P.

K. J. Tielrooij, L. Piatkowski, M. Massicotte, A. Woessner, Q. Ma, Y. Lee, K. S. Myhro, C. N. Lau, P. Jarillo-Herrero, N. F. van Hulst, and F. H. L. Koppens, “Generation of photovoltage in graphene on a femtosecond timescale through efficient carrier heating,” Nat. Nanotechnol. 10, 437–443 (2015).
[Crossref]

Jasnos, P. K.

T. J. Echtermeyer, L. Britnell, P. K. Jasnos, A. Lombardo, R. V. Gorbachev, A. N. Grigorenko, A. K. Geim, A. C. Ferrari, and K. S. Novoselov, “Strong plasmonic enhancement of photovoltage in graphene,” Nat. Commun. 2, 458 (2011).
[Crossref]

Jeon, J.

Y. Lee, S. H. Yu, J. Jeon, H. Kim, J. Y. Lee, H. Kim, J. H. Ahn, E. Hwang, and J. H. Cho, “Hybrid structures of organic dye and graphene for ultrahigh gain photodetectors,” Carbon 88, 165–172 (2015).
[Crossref]

Jiang, T.

J. Miao, W. Hu, N. Guo, Z. Lu, X. Liu, L. Liao, P. Chen, T. Jiang, S. Wu, J. C. Ho, L. Wang, X. Chen, and W. Lu, “High-responsivity graphene/InAs nanowire heterojunction near-infrared photodetectors with distinct photocurrent on/off ratios,” Small 11, 936–942 (2015).
[Crossref]

Jovanovic, I.

B. K. Sarker, I. Childres, E. Cazalas, I. Jovanovic, and Y. P. Chen, “Gate-tunable and high responsivity graphene phototransistors on undoped semiconductor substrates,” arXiv: 1409.5725v2 (2015).

Kar, S.

F. Z. Liu and S. Kar, “Quantum carrier reinvestment-induced ultrahigh and broadband photocurrent responses in graphene-silicon junctions,” ACS Nano 8, 10270–10279 (2014).
[Crossref]

Kasim, J.

Z. H. Ni, H. M. Wang, J. Kasim, H. M. Fan, T. Yu, Y. H. Wu, Y. P. Feng, and Z. X. Shen, “Graphene thickness determination using reflection and contrast spectroscopy,” Nano Lett. 7, 2758–2763 (2007).
[Crossref]

Khan, Q.

H. Qiao, J. Yuan, Z. Xu, C. Chen, S. Lin, Y. Wang, J. Song, Y. Liu, Q. Khan, H. Y. Hoh, C. X. Pan, S. Li, and Q. Bao, “Broadband photodetectors based on graphene-Bi2Te3 heterostructure,” ACS Nano 9, 1886–1894 (2015).
[Crossref]

Kim, H.

Y. Lee, S. H. Yu, J. Jeon, H. Kim, J. Y. Lee, H. Kim, J. H. Ahn, E. Hwang, and J. H. Cho, “Hybrid structures of organic dye and graphene for ultrahigh gain photodetectors,” Carbon 88, 165–172 (2015).
[Crossref]

Y. Lee, S. H. Yu, J. Jeon, H. Kim, J. Y. Lee, H. Kim, J. H. Ahn, E. Hwang, and J. H. Cho, “Hybrid structures of organic dye and graphene for ultrahigh gain photodetectors,” Carbon 88, 165–172 (2015).
[Crossref]

Kim, Y. J.

L. Britnell, R. M. Ribeiro, A. Eckmann, R. Jalil, B. D. Belle, A. Mishchenko, Y. J. Kim, R. V. Gorbachev, T. Georgiou, S. V. Morozov, A. N. Grigorenko, A. K. Geim, C. Casiraghi, A. H. Castro Neto, and K. S. Novoselov, “Strong light-matter interactions in heterostructures of atomically thin films,” Science 340, 1311–1314 (2013).
[Crossref]

Kis, A.

B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, and A. Kis, “Single-layer MoS2 transistors,” Nat. Nanotechnol. 6, 147–150 (2011).
[Crossref]

Konstantatos, G.

G. Konstantatos, M. Badioli, L. Gaudreau, J. Osmond, M. Bernechea, F. P. G. de Arquer, F. Gatti, and F. H. Koppens, “Hybrid graphene-quantum dot phototransistors with ultrahigh gain,” Nat. Nanotechnol. 7, 363–368 (2012).
[Crossref]

Koppens, F. H.

G. Konstantatos, M. Badioli, L. Gaudreau, J. Osmond, M. Bernechea, F. P. G. de Arquer, F. Gatti, and F. H. Koppens, “Hybrid graphene-quantum dot phototransistors with ultrahigh gain,” Nat. Nanotechnol. 7, 363–368 (2012).
[Crossref]

Koppens, F. H. L.

K. J. Tielrooij, L. Piatkowski, M. Massicotte, A. Woessner, Q. Ma, Y. Lee, K. S. Myhro, C. N. Lau, P. Jarillo-Herrero, N. F. van Hulst, and F. H. L. Koppens, “Generation of photovoltage in graphene on a femtosecond timescale through efficient carrier heating,” Nat. Nanotechnol. 10, 437–443 (2015).
[Crossref]

M. C. Lemme, F. H. L. Koppens, A. L. Falk, M. S. Rudner, H. Park, L. S. Levitov, and C. M. Marcus, “Gate-activated photoresponse in a graphene p–n junction,” Nano Lett. 11, 4134–4137 (2011).
[Crossref]

Krupke, R.

M. Engel, M. Steiner, A. Lombardo, A. C. Ferrari, H. V. Löhneysen, P. Avouris, and R. Krupke, “Light-matter interaction in a microcavity-controlled graphene transistor,” Nat. Commun. 3, 906 (2012).
[Crossref]

Kwon, J.

Y. Lee, J. Kwon, E. Hwang, C. H. Ra, W. J. Yoo, J. H. Ahn, J. H. Park, and J. H. Cho, “High-performance Perovskite-graphene hybrid photodetector,” Adv. Mater. 27, 41–46 (2015).
[Crossref]

Lau, C. N.

K. J. Tielrooij, L. Piatkowski, M. Massicotte, A. Woessner, Q. Ma, Y. Lee, K. S. Myhro, C. N. Lau, P. Jarillo-Herrero, N. F. van Hulst, and F. H. L. Koppens, “Generation of photovoltage in graphene on a femtosecond timescale through efficient carrier heating,” Nat. Nanotechnol. 10, 437–443 (2015).
[Crossref]

Lau, S. P.

Z. Sun, Z. Liu, J. Li, G. Tai, S. P. Lau, and F. Yan, “Infrared photodetectors based on CVD-grown graphene and PbS quantum dots with ultrahigh responsivity,” Adv. Mater. 24, 5878–5883 (2012).
[Crossref]

Lee, J. Y.

Y. Lee, S. H. Yu, J. Jeon, H. Kim, J. Y. Lee, H. Kim, J. H. Ahn, E. Hwang, and J. H. Cho, “Hybrid structures of organic dye and graphene for ultrahigh gain photodetectors,” Carbon 88, 165–172 (2015).
[Crossref]

Lee, Y.

Y. Lee, S. H. Yu, J. Jeon, H. Kim, J. Y. Lee, H. Kim, J. H. Ahn, E. Hwang, and J. H. Cho, “Hybrid structures of organic dye and graphene for ultrahigh gain photodetectors,” Carbon 88, 165–172 (2015).
[Crossref]

Y. Lee, J. Kwon, E. Hwang, C. H. Ra, W. J. Yoo, J. H. Ahn, J. H. Park, and J. H. Cho, “High-performance Perovskite-graphene hybrid photodetector,” Adv. Mater. 27, 41–46 (2015).
[Crossref]

K. J. Tielrooij, L. Piatkowski, M. Massicotte, A. Woessner, Q. Ma, Y. Lee, K. S. Myhro, C. N. Lau, P. Jarillo-Herrero, N. F. van Hulst, and F. H. L. Koppens, “Generation of photovoltage in graphene on a femtosecond timescale through efficient carrier heating,” Nat. Nanotechnol. 10, 437–443 (2015).
[Crossref]

Lei, Z.

X. Li, J. Wu, N. Mao, J. Zhang, Z. Lei, Z. Liu, and H. Xu, “A self-powered graphene-MoS2 hybrid phototransistor with fast response rate and high on-off ratio,” Carbon 92, 126–132 (2015).
[Crossref]

Lemme, M. C.

M. C. Lemme, F. H. L. Koppens, A. L. Falk, M. S. Rudner, H. Park, L. S. Levitov, and C. M. Marcus, “Gate-activated photoresponse in a graphene p–n junction,” Nano Lett. 11, 4134–4137 (2011).
[Crossref]

Levitov, L. S.

N. M. Gabor, J. C. W. Song, Q. Ma, N. L. Nair, T. Taychatanapat, K. Watanabe, T. Taniguchi, L. S. Levitov, and P. J. Herrero, “Hot carrier-assisted intrinsic photoresponse in graphene,” Science 334, 648–652 (2011).
[Crossref]

M. C. Lemme, F. H. L. Koppens, A. L. Falk, M. S. Rudner, H. Park, L. S. Levitov, and C. M. Marcus, “Gate-activated photoresponse in a graphene p–n junction,” Nano Lett. 11, 4134–4137 (2011).
[Crossref]

Li, J.

Z. Sun, Z. Liu, J. Li, G. Tai, S. P. Lau, and F. Yan, “Infrared photodetectors based on CVD-grown graphene and PbS quantum dots with ultrahigh responsivity,” Adv. Mater. 24, 5878–5883 (2012).
[Crossref]

F. Yan, J. Li, and S. M. Mok, “Highly photosensitive thin film transistors based on a composite of poly (3-hexylthiophene) and titania nanoparticles,” J. Appl. Phys. 106, 074501 (2009).
[Crossref]

Li, L. J.

W. Zhang, C. P. Chuu, J. K. Huang, C. H. Chen, M. L. Tsai, Y. H. Chang, C. T. Liang, Y. Z. Chen, Y. L. Chueh, J. H. He, M. Y. Chou, and L. J. Li, “Ultrahigh-gain photodetectors based on atomically thin graphene-MoS2 heterostructures,” Sci. Rep. 4, 3826 (2014).
[Crossref]

Li, R.

Z. Liu, K. Parvez, R. Li, R. Dong, X. Feng, and K. Müllen, “Transparent conductive electrodes from graphene/PEDOT:PSS hybrid inks for ultrathin organic photodetectors,” Adv. Mater. 27, 669–675 (2015).
[Crossref]

Li, S.

H. Qiao, J. Yuan, Z. Xu, C. Chen, S. Lin, Y. Wang, J. Song, Y. Liu, Q. Khan, H. Y. Hoh, C. X. Pan, S. Li, and Q. Bao, “Broadband photodetectors based on graphene-Bi2Te3 heterostructure,” ACS Nano 9, 1886–1894 (2015).
[Crossref]

Li, X.

X. Li, J. Wu, N. Mao, J. Zhang, Z. Lei, Z. Liu, and H. Xu, “A self-powered graphene-MoS2 hybrid phototransistor with fast response rate and high on-off ratio,” Carbon 92, 126–132 (2015).
[Crossref]

Y. Zhang, T. Liu, B. Meng, X. Li, G. Liang, X. Hu, and Q. J. Wang, “Broadband high photoresponse from pure monolayer graphene photodetector,” Nat. Commun. 4, 1811 (2013).
[Crossref]

Li, Y.

Y. Liu, F. Wang, X. Wang, X. Wang, E. Flahaut, X. Liu, Y. Li, X. Wang, Y. Xu, Y. Shi, and R. Zhang, “Planar carbon nanotube-graphene hybrid films for high-performance broadband photodetectors,” Nat. Commun. 6, 8589 (2015).
[Crossref]

Liang, C. T.

G. Haider, P. Roy, C. W. Chiang, W. C. Tan, Y. R. Liou, H. T. Chang, C. T. Liang, W. H. Shih, and Y. F. Chen, “Electrical-polarization-induced ultrahigh responsivity photodetectors based on graphene and graphene quantum dots,” Adv. Funct. Mater. 26, 620–628 (2016).
[Crossref]

W. Zhang, C. P. Chuu, J. K. Huang, C. H. Chen, M. L. Tsai, Y. H. Chang, C. T. Liang, Y. Z. Chen, Y. L. Chueh, J. H. He, M. Y. Chou, and L. J. Li, “Ultrahigh-gain photodetectors based on atomically thin graphene-MoS2 heterostructures,” Sci. Rep. 4, 3826 (2014).
[Crossref]

Liang, G.

Y. Zhang, T. Liu, B. Meng, X. Li, G. Liang, X. Hu, and Q. J. Wang, “Broadband high photoresponse from pure monolayer graphene photodetector,” Nat. Commun. 4, 1811 (2013).
[Crossref]

Liao, L.

J. Miao, W. Hu, N. Guo, Z. Lu, X. Liu, L. Liao, P. Chen, T. Jiang, S. Wu, J. C. Ho, L. Wang, X. Chen, and W. Lu, “High-responsivity graphene/InAs nanowire heterojunction near-infrared photodetectors with distinct photocurrent on/off ratios,” Small 11, 936–942 (2015).
[Crossref]

Lin, S.

H. Qiao, J. Yuan, Z. Xu, C. Chen, S. Lin, Y. Wang, J. Song, Y. Liu, Q. Khan, H. Y. Hoh, C. X. Pan, S. Li, and Q. Bao, “Broadband photodetectors based on graphene-Bi2Te3 heterostructure,” ACS Nano 9, 1886–1894 (2015).
[Crossref]

Lin, Y.

F. Xia, T. Mueller, Y. Lin, A. Valdes-Garcia, and P. Avouris, “Ultrafast graphene photodetector,” Nat. Nanotechnol. 4, 839–843 (2009).
[Crossref]

Liou, Y. R.

G. Haider, P. Roy, C. W. Chiang, W. C. Tan, Y. R. Liou, H. T. Chang, C. T. Liang, W. H. Shih, and Y. F. Chen, “Electrical-polarization-induced ultrahigh responsivity photodetectors based on graphene and graphene quantum dots,” Adv. Funct. Mater. 26, 620–628 (2016).
[Crossref]

Liu, C. H.

C. H. Liu, Y. C. Chang, T. B. Norris, and Z. Zhong, “Graphene photodetectors with ultra-broadband and high responsivity at room temperature,” Nat. Nanotechnol. 9, 273–278 (2014).
[Crossref]

Liu, F. Z.

F. Z. Liu and S. Kar, “Quantum carrier reinvestment-induced ultrahigh and broadband photocurrent responses in graphene-silicon junctions,” ACS Nano 8, 10270–10279 (2014).
[Crossref]

Liu, T.

Y. Zhang, T. Liu, B. Meng, X. Li, G. Liang, X. Hu, and Q. J. Wang, “Broadband high photoresponse from pure monolayer graphene photodetector,” Nat. Commun. 4, 1811 (2013).
[Crossref]

Liu, X.

J. Miao, W. Hu, N. Guo, Z. Lu, X. Liu, L. Liao, P. Chen, T. Jiang, S. Wu, J. C. Ho, L. Wang, X. Chen, and W. Lu, “High-responsivity graphene/InAs nanowire heterojunction near-infrared photodetectors with distinct photocurrent on/off ratios,” Small 11, 936–942 (2015).
[Crossref]

Y. Liu, F. Wang, X. Wang, X. Wang, E. Flahaut, X. Liu, Y. Li, X. Wang, Y. Xu, Y. Shi, and R. Zhang, “Planar carbon nanotube-graphene hybrid films for high-performance broadband photodetectors,” Nat. Commun. 6, 8589 (2015).
[Crossref]

Liu, Y.

Y. Liu, F. Wang, X. Wang, X. Wang, E. Flahaut, X. Liu, Y. Li, X. Wang, Y. Xu, Y. Shi, and R. Zhang, “Planar carbon nanotube-graphene hybrid films for high-performance broadband photodetectors,” Nat. Commun. 6, 8589 (2015).
[Crossref]

H. Qiao, J. Yuan, Z. Xu, C. Chen, S. Lin, Y. Wang, J. Song, Y. Liu, Q. Khan, H. Y. Hoh, C. X. Pan, S. Li, and Q. Bao, “Broadband photodetectors based on graphene-Bi2Te3 heterostructure,” ACS Nano 9, 1886–1894 (2015).
[Crossref]

Liu, Z.

X. Li, J. Wu, N. Mao, J. Zhang, Z. Lei, Z. Liu, and H. Xu, “A self-powered graphene-MoS2 hybrid phototransistor with fast response rate and high on-off ratio,” Carbon 92, 126–132 (2015).
[Crossref]

Z. Liu, K. Parvez, R. Li, R. Dong, X. Feng, and K. Müllen, “Transparent conductive electrodes from graphene/PEDOT:PSS hybrid inks for ultrathin organic photodetectors,” Adv. Mater. 27, 669–675 (2015).
[Crossref]

Z. Sun, Z. Liu, J. Li, G. Tai, S. P. Lau, and F. Yan, “Infrared photodetectors based on CVD-grown graphene and PbS quantum dots with ultrahigh responsivity,” Adv. Mater. 24, 5878–5883 (2012).
[Crossref]

Löhneysen, H. V.

M. Engel, M. Steiner, A. Lombardo, A. C. Ferrari, H. V. Löhneysen, P. Avouris, and R. Krupke, “Light-matter interaction in a microcavity-controlled graphene transistor,” Nat. Commun. 3, 906 (2012).
[Crossref]

Lombardo, A.

M. Engel, M. Steiner, A. Lombardo, A. C. Ferrari, H. V. Löhneysen, P. Avouris, and R. Krupke, “Light-matter interaction in a microcavity-controlled graphene transistor,” Nat. Commun. 3, 906 (2012).
[Crossref]

T. J. Echtermeyer, L. Britnell, P. K. Jasnos, A. Lombardo, R. V. Gorbachev, A. N. Grigorenko, A. K. Geim, A. C. Ferrari, and K. S. Novoselov, “Strong plasmonic enhancement of photovoltage in graphene,” Nat. Commun. 2, 458 (2011).
[Crossref]

Lu, W.

J. Miao, W. Hu, N. Guo, Z. Lu, X. Liu, L. Liao, P. Chen, T. Jiang, S. Wu, J. C. Ho, L. Wang, X. Chen, and W. Lu, “High-responsivity graphene/InAs nanowire heterojunction near-infrared photodetectors with distinct photocurrent on/off ratios,” Small 11, 936–942 (2015).
[Crossref]

Lu, Z.

J. Miao, W. Hu, N. Guo, Z. Lu, X. Liu, L. Liao, P. Chen, T. Jiang, S. Wu, J. C. Ho, L. Wang, X. Chen, and W. Lu, “High-responsivity graphene/InAs nanowire heterojunction near-infrared photodetectors with distinct photocurrent on/off ratios,” Small 11, 936–942 (2015).
[Crossref]

Ma, Q.

K. J. Tielrooij, L. Piatkowski, M. Massicotte, A. Woessner, Q. Ma, Y. Lee, K. S. Myhro, C. N. Lau, P. Jarillo-Herrero, N. F. van Hulst, and F. H. L. Koppens, “Generation of photovoltage in graphene on a femtosecond timescale through efficient carrier heating,” Nat. Nanotechnol. 10, 437–443 (2015).
[Crossref]

N. M. Gabor, J. C. W. Song, Q. Ma, N. L. Nair, T. Taychatanapat, K. Watanabe, T. Taniguchi, L. S. Levitov, and P. J. Herrero, “Hot carrier-assisted intrinsic photoresponse in graphene,” Science 334, 648–652 (2011).
[Crossref]

Macdonald, D.

A. Cuevas and D. Macdonald, “Measuring and interpreting the lifetime of silicon wafers,” Sol. Energy 76, 255–262 (2004).
[Crossref]

Mao, N.

X. Li, J. Wu, N. Mao, J. Zhang, Z. Lei, Z. Liu, and H. Xu, “A self-powered graphene-MoS2 hybrid phototransistor with fast response rate and high on-off ratio,” Carbon 92, 126–132 (2015).
[Crossref]

H. Xu, J. Wu, Q. Feng, N. Mao, C. Wang, and J. Zhang, “High responsivity and gate tunable graphene-MoS2 hybrid phototransistor,” Small 10, 2300–2306 (2014).
[Crossref]

Marcus, C. M.

M. C. Lemme, F. H. L. Koppens, A. L. Falk, M. S. Rudner, H. Park, L. S. Levitov, and C. M. Marcus, “Gate-activated photoresponse in a graphene p–n junction,” Nano Lett. 11, 4134–4137 (2011).
[Crossref]

Massicotte, M.

K. J. Tielrooij, L. Piatkowski, M. Massicotte, A. Woessner, Q. Ma, Y. Lee, K. S. Myhro, C. N. Lau, P. Jarillo-Herrero, N. F. van Hulst, and F. H. L. Koppens, “Generation of photovoltage in graphene on a femtosecond timescale through efficient carrier heating,” Nat. Nanotechnol. 10, 437–443 (2015).
[Crossref]

Meng, B.

Y. Zhang, T. Liu, B. Meng, X. Li, G. Liang, X. Hu, and Q. J. Wang, “Broadband high photoresponse from pure monolayer graphene photodetector,” Nat. Commun. 4, 1811 (2013).
[Crossref]

Meric, I.

X. Gan, R. J. Shiue, Y. Gao, I. Meric, T. F. Heinz, K. Shepard, J. Hone, S. Assefa, and D. Englund, “Chip-integrated ultrafast graphene photodetector with high responsivity,” Nat. Photonics 7, 883–887 (2013).
[Crossref]

Miao, J.

J. Miao, W. Hu, N. Guo, Z. Lu, X. Liu, L. Liao, P. Chen, T. Jiang, S. Wu, J. C. Ho, L. Wang, X. Chen, and W. Lu, “High-responsivity graphene/InAs nanowire heterojunction near-infrared photodetectors with distinct photocurrent on/off ratios,” Small 11, 936–942 (2015).
[Crossref]

Mishchenko, A.

L. Britnell, R. M. Ribeiro, A. Eckmann, R. Jalil, B. D. Belle, A. Mishchenko, Y. J. Kim, R. V. Gorbachev, T. Georgiou, S. V. Morozov, A. N. Grigorenko, A. K. Geim, C. Casiraghi, A. H. Castro Neto, and K. S. Novoselov, “Strong light-matter interactions in heterostructures of atomically thin films,” Science 340, 1311–1314 (2013).
[Crossref]

Mok, S. M.

F. Yan, J. Li, and S. M. Mok, “Highly photosensitive thin film transistors based on a composite of poly (3-hexylthiophene) and titania nanoparticles,” J. Appl. Phys. 106, 074501 (2009).
[Crossref]

Morozov, S. V.

L. Britnell, R. M. Ribeiro, A. Eckmann, R. Jalil, B. D. Belle, A. Mishchenko, Y. J. Kim, R. V. Gorbachev, T. Georgiou, S. V. Morozov, A. N. Grigorenko, A. K. Geim, C. Casiraghi, A. H. Castro Neto, and K. S. Novoselov, “Strong light-matter interactions in heterostructures of atomically thin films,” Science 340, 1311–1314 (2013).
[Crossref]

Mueller, T.

F. Xia, T. Mueller, Y. Lin, A. Valdes-Garcia, and P. Avouris, “Ultrafast graphene photodetector,” Nat. Nanotechnol. 4, 839–843 (2009).
[Crossref]

Müllen, K.

Z. Liu, K. Parvez, R. Li, R. Dong, X. Feng, and K. Müllen, “Transparent conductive electrodes from graphene/PEDOT:PSS hybrid inks for ultrathin organic photodetectors,” Adv. Mater. 27, 669–675 (2015).
[Crossref]

Myhro, K. S.

K. J. Tielrooij, L. Piatkowski, M. Massicotte, A. Woessner, Q. Ma, Y. Lee, K. S. Myhro, C. N. Lau, P. Jarillo-Herrero, N. F. van Hulst, and F. H. L. Koppens, “Generation of photovoltage in graphene on a femtosecond timescale through efficient carrier heating,” Nat. Nanotechnol. 10, 437–443 (2015).
[Crossref]

Nair, N. L.

N. M. Gabor, J. C. W. Song, Q. Ma, N. L. Nair, T. Taychatanapat, K. Watanabe, T. Taniguchi, L. S. Levitov, and P. J. Herrero, “Hot carrier-assisted intrinsic photoresponse in graphene,” Science 334, 648–652 (2011).
[Crossref]

Ni, Z. H.

Z. H. Ni, H. M. Wang, J. Kasim, H. M. Fan, T. Yu, Y. H. Wu, Y. P. Feng, and Z. X. Shen, “Graphene thickness determination using reflection and contrast spectroscopy,” Nano Lett. 7, 2758–2763 (2007).
[Crossref]

Norris, T. B.

C. H. Liu, Y. C. Chang, T. B. Norris, and Z. Zhong, “Graphene photodetectors with ultra-broadband and high responsivity at room temperature,” Nat. Nanotechnol. 9, 273–278 (2014).
[Crossref]

Norton, P.

P. Norton, “HgCdTe infrared detectors,” Opto-Electron. Rev. 10, 159–174 (2002).

Novoselov, K. S.

L. Britnell, R. M. Ribeiro, A. Eckmann, R. Jalil, B. D. Belle, A. Mishchenko, Y. J. Kim, R. V. Gorbachev, T. Georgiou, S. V. Morozov, A. N. Grigorenko, A. K. Geim, C. Casiraghi, A. H. Castro Neto, and K. S. Novoselov, “Strong light-matter interactions in heterostructures of atomically thin films,” Science 340, 1311–1314 (2013).
[Crossref]

T. J. Echtermeyer, L. Britnell, P. K. Jasnos, A. Lombardo, R. V. Gorbachev, A. N. Grigorenko, A. K. Geim, A. C. Ferrari, and K. S. Novoselov, “Strong plasmonic enhancement of photovoltage in graphene,” Nat. Commun. 2, 458 (2011).
[Crossref]

Osmond, J.

G. Konstantatos, M. Badioli, L. Gaudreau, J. Osmond, M. Bernechea, F. P. G. de Arquer, F. Gatti, and F. H. Koppens, “Hybrid graphene-quantum dot phototransistors with ultrahigh gain,” Nat. Nanotechnol. 7, 363–368 (2012).
[Crossref]

Pan, C. X.

H. Qiao, J. Yuan, Z. Xu, C. Chen, S. Lin, Y. Wang, J. Song, Y. Liu, Q. Khan, H. Y. Hoh, C. X. Pan, S. Li, and Q. Bao, “Broadband photodetectors based on graphene-Bi2Te3 heterostructure,” ACS Nano 9, 1886–1894 (2015).
[Crossref]

Park, H.

M. C. Lemme, F. H. L. Koppens, A. L. Falk, M. S. Rudner, H. Park, L. S. Levitov, and C. M. Marcus, “Gate-activated photoresponse in a graphene p–n junction,” Nano Lett. 11, 4134–4137 (2011).
[Crossref]

Park, J. H.

Y. Lee, J. Kwon, E. Hwang, C. H. Ra, W. J. Yoo, J. H. Ahn, J. H. Park, and J. H. Cho, “High-performance Perovskite-graphene hybrid photodetector,” Adv. Mater. 27, 41–46 (2015).
[Crossref]

Parvez, K.

Z. Liu, K. Parvez, R. Li, R. Dong, X. Feng, and K. Müllen, “Transparent conductive electrodes from graphene/PEDOT:PSS hybrid inks for ultrathin organic photodetectors,” Adv. Mater. 27, 669–675 (2015).
[Crossref]

Piatkowski, L.

K. J. Tielrooij, L. Piatkowski, M. Massicotte, A. Woessner, Q. Ma, Y. Lee, K. S. Myhro, C. N. Lau, P. Jarillo-Herrero, N. F. van Hulst, and F. H. L. Koppens, “Generation of photovoltage in graphene on a femtosecond timescale through efficient carrier heating,” Nat. Nanotechnol. 10, 437–443 (2015).
[Crossref]

Qiao, H.

H. Qiao, J. Yuan, Z. Xu, C. Chen, S. Lin, Y. Wang, J. Song, Y. Liu, Q. Khan, H. Y. Hoh, C. X. Pan, S. Li, and Q. Bao, “Broadband photodetectors based on graphene-Bi2Te3 heterostructure,” ACS Nano 9, 1886–1894 (2015).
[Crossref]

Ra, C. H.

Y. Lee, J. Kwon, E. Hwang, C. H. Ra, W. J. Yoo, J. H. Ahn, J. H. Park, and J. H. Cho, “High-performance Perovskite-graphene hybrid photodetector,” Adv. Mater. 27, 41–46 (2015).
[Crossref]

Radenovic, A.

B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, and A. Kis, “Single-layer MoS2 transistors,” Nat. Nanotechnol. 6, 147–150 (2011).
[Crossref]

Radisavljevic, B.

B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, and A. Kis, “Single-layer MoS2 transistors,” Nat. Nanotechnol. 6, 147–150 (2011).
[Crossref]

Ribeiro, R. M.

L. Britnell, R. M. Ribeiro, A. Eckmann, R. Jalil, B. D. Belle, A. Mishchenko, Y. J. Kim, R. V. Gorbachev, T. Georgiou, S. V. Morozov, A. N. Grigorenko, A. K. Geim, C. Casiraghi, A. H. Castro Neto, and K. S. Novoselov, “Strong light-matter interactions in heterostructures of atomically thin films,” Science 340, 1311–1314 (2013).
[Crossref]

Roy, P.

G. Haider, P. Roy, C. W. Chiang, W. C. Tan, Y. R. Liou, H. T. Chang, C. T. Liang, W. H. Shih, and Y. F. Chen, “Electrical-polarization-induced ultrahigh responsivity photodetectors based on graphene and graphene quantum dots,” Adv. Funct. Mater. 26, 620–628 (2016).
[Crossref]

Rudner, M. S.

M. C. Lemme, F. H. L. Koppens, A. L. Falk, M. S. Rudner, H. Park, L. S. Levitov, and C. M. Marcus, “Gate-activated photoresponse in a graphene p–n junction,” Nano Lett. 11, 4134–4137 (2011).
[Crossref]

Sarker, B. K.

B. K. Sarker, I. Childres, E. Cazalas, I. Jovanovic, and Y. P. Chen, “Gate-tunable and high responsivity graphene phototransistors on undoped semiconductor substrates,” arXiv: 1409.5725v2 (2015).

Schroder, D. K.

D. K. Schroder, “Surface voltage and surface photovoltage: history, theory and applications,” Meas. Sci. Technol. 12, R16–R31 (2001).
[Crossref]

Shen, Z. X.

Z. H. Ni, H. M. Wang, J. Kasim, H. M. Fan, T. Yu, Y. H. Wu, Y. P. Feng, and Z. X. Shen, “Graphene thickness determination using reflection and contrast spectroscopy,” Nano Lett. 7, 2758–2763 (2007).
[Crossref]

Shepard, K.

X. Gan, R. J. Shiue, Y. Gao, I. Meric, T. F. Heinz, K. Shepard, J. Hone, S. Assefa, and D. Englund, “Chip-integrated ultrafast graphene photodetector with high responsivity,” Nat. Photonics 7, 883–887 (2013).
[Crossref]

Shi, Y.

Y. Liu, F. Wang, X. Wang, X. Wang, E. Flahaut, X. Liu, Y. Li, X. Wang, Y. Xu, Y. Shi, and R. Zhang, “Planar carbon nanotube-graphene hybrid films for high-performance broadband photodetectors,” Nat. Commun. 6, 8589 (2015).
[Crossref]

Shih, W. H.

G. Haider, P. Roy, C. W. Chiang, W. C. Tan, Y. R. Liou, H. T. Chang, C. T. Liang, W. H. Shih, and Y. F. Chen, “Electrical-polarization-induced ultrahigh responsivity photodetectors based on graphene and graphene quantum dots,” Adv. Funct. Mater. 26, 620–628 (2016).
[Crossref]

Shiue, R. J.

X. Gan, R. J. Shiue, Y. Gao, I. Meric, T. F. Heinz, K. Shepard, J. Hone, S. Assefa, and D. Englund, “Chip-integrated ultrafast graphene photodetector with high responsivity,” Nat. Photonics 7, 883–887 (2013).
[Crossref]

Shu, C.

Z. Chen, Z. Cheng, J. Wang, X. Wan, C. Shu, H. K. Tsang, H. P. Ho, and J. B. Xu, “High responsivity, broadband, and fast graphene/silicon photodetector in photoconductor mode,” Adv. Opt. Mater. 3, 1207–1214 (2015).
[Crossref]

Song, J.

H. Qiao, J. Yuan, Z. Xu, C. Chen, S. Lin, Y. Wang, J. Song, Y. Liu, Q. Khan, H. Y. Hoh, C. X. Pan, S. Li, and Q. Bao, “Broadband photodetectors based on graphene-Bi2Te3 heterostructure,” ACS Nano 9, 1886–1894 (2015).
[Crossref]

Song, J. C. W.

N. M. Gabor, J. C. W. Song, Q. Ma, N. L. Nair, T. Taychatanapat, K. Watanabe, T. Taniguchi, L. S. Levitov, and P. J. Herrero, “Hot carrier-assisted intrinsic photoresponse in graphene,” Science 334, 648–652 (2011).
[Crossref]

Steiner, M.

M. Engel, M. Steiner, A. Lombardo, A. C. Ferrari, H. V. Löhneysen, P. Avouris, and R. Krupke, “Light-matter interaction in a microcavity-controlled graphene transistor,” Nat. Commun. 3, 906 (2012).
[Crossref]

Sun, Z.

Z. Sun, Z. Liu, J. Li, G. Tai, S. P. Lau, and F. Yan, “Infrared photodetectors based on CVD-grown graphene and PbS quantum dots with ultrahigh responsivity,” Adv. Mater. 24, 5878–5883 (2012).
[Crossref]

Tai, G.

Z. Sun, Z. Liu, J. Li, G. Tai, S. P. Lau, and F. Yan, “Infrared photodetectors based on CVD-grown graphene and PbS quantum dots with ultrahigh responsivity,” Adv. Mater. 24, 5878–5883 (2012).
[Crossref]

Tan, W. C.

G. Haider, P. Roy, C. W. Chiang, W. C. Tan, Y. R. Liou, H. T. Chang, C. T. Liang, W. H. Shih, and Y. F. Chen, “Electrical-polarization-induced ultrahigh responsivity photodetectors based on graphene and graphene quantum dots,” Adv. Funct. Mater. 26, 620–628 (2016).
[Crossref]

Taniguchi, T.

N. M. Gabor, J. C. W. Song, Q. Ma, N. L. Nair, T. Taychatanapat, K. Watanabe, T. Taniguchi, L. S. Levitov, and P. J. Herrero, “Hot carrier-assisted intrinsic photoresponse in graphene,” Science 334, 648–652 (2011).
[Crossref]

Taychatanapat, T.

N. M. Gabor, J. C. W. Song, Q. Ma, N. L. Nair, T. Taychatanapat, K. Watanabe, T. Taniguchi, L. S. Levitov, and P. J. Herrero, “Hot carrier-assisted intrinsic photoresponse in graphene,” Science 334, 648–652 (2011).
[Crossref]

Tielrooij, K. J.

K. J. Tielrooij, L. Piatkowski, M. Massicotte, A. Woessner, Q. Ma, Y. Lee, K. S. Myhro, C. N. Lau, P. Jarillo-Herrero, N. F. van Hulst, and F. H. L. Koppens, “Generation of photovoltage in graphene on a femtosecond timescale through efficient carrier heating,” Nat. Nanotechnol. 10, 437–443 (2015).
[Crossref]

Tsai, M. L.

W. Zhang, C. P. Chuu, J. K. Huang, C. H. Chen, M. L. Tsai, Y. H. Chang, C. T. Liang, Y. Z. Chen, Y. L. Chueh, J. H. He, M. Y. Chou, and L. J. Li, “Ultrahigh-gain photodetectors based on atomically thin graphene-MoS2 heterostructures,” Sci. Rep. 4, 3826 (2014).
[Crossref]

Tsang, H. K.

Z. Chen, Z. Cheng, J. Wang, X. Wan, C. Shu, H. K. Tsang, H. P. Ho, and J. B. Xu, “High responsivity, broadband, and fast graphene/silicon photodetector in photoconductor mode,” Adv. Opt. Mater. 3, 1207–1214 (2015).
[Crossref]

Valdes-Garcia, A.

F. Xia, T. Mueller, Y. Lin, A. Valdes-Garcia, and P. Avouris, “Ultrafast graphene photodetector,” Nat. Nanotechnol. 4, 839–843 (2009).
[Crossref]

van Hulst, N. F.

K. J. Tielrooij, L. Piatkowski, M. Massicotte, A. Woessner, Q. Ma, Y. Lee, K. S. Myhro, C. N. Lau, P. Jarillo-Herrero, N. F. van Hulst, and F. H. L. Koppens, “Generation of photovoltage in graphene on a femtosecond timescale through efficient carrier heating,” Nat. Nanotechnol. 10, 437–443 (2015).
[Crossref]

Wan, X.

Z. Chen, Z. Cheng, J. Wang, X. Wan, C. Shu, H. K. Tsang, H. P. Ho, and J. B. Xu, “High responsivity, broadband, and fast graphene/silicon photodetector in photoconductor mode,” Adv. Opt. Mater. 3, 1207–1214 (2015).
[Crossref]

Wang, C.

H. Xu, J. Wu, Q. Feng, N. Mao, C. Wang, and J. Zhang, “High responsivity and gate tunable graphene-MoS2 hybrid phototransistor,” Small 10, 2300–2306 (2014).
[Crossref]

Wang, F.

Y. Liu, F. Wang, X. Wang, X. Wang, E. Flahaut, X. Liu, Y. Li, X. Wang, Y. Xu, Y. Shi, and R. Zhang, “Planar carbon nanotube-graphene hybrid films for high-performance broadband photodetectors,” Nat. Commun. 6, 8589 (2015).
[Crossref]

Wang, H. M.

Z. H. Ni, H. M. Wang, J. Kasim, H. M. Fan, T. Yu, Y. H. Wu, Y. P. Feng, and Z. X. Shen, “Graphene thickness determination using reflection and contrast spectroscopy,” Nano Lett. 7, 2758–2763 (2007).
[Crossref]

Wang, J.

Z. Chen, Z. Cheng, J. Wang, X. Wan, C. Shu, H. K. Tsang, H. P. Ho, and J. B. Xu, “High responsivity, broadband, and fast graphene/silicon photodetector in photoconductor mode,” Adv. Opt. Mater. 3, 1207–1214 (2015).
[Crossref]

Wang, L.

J. Miao, W. Hu, N. Guo, Z. Lu, X. Liu, L. Liao, P. Chen, T. Jiang, S. Wu, J. C. Ho, L. Wang, X. Chen, and W. Lu, “High-responsivity graphene/InAs nanowire heterojunction near-infrared photodetectors with distinct photocurrent on/off ratios,” Small 11, 936–942 (2015).
[Crossref]

Wang, Q. J.

Y. Zhang, T. Liu, B. Meng, X. Li, G. Liang, X. Hu, and Q. J. Wang, “Broadband high photoresponse from pure monolayer graphene photodetector,” Nat. Commun. 4, 1811 (2013).
[Crossref]

Wang, X.

Y. Liu, F. Wang, X. Wang, X. Wang, E. Flahaut, X. Liu, Y. Li, X. Wang, Y. Xu, Y. Shi, and R. Zhang, “Planar carbon nanotube-graphene hybrid films for high-performance broadband photodetectors,” Nat. Commun. 6, 8589 (2015).
[Crossref]

Y. Liu, F. Wang, X. Wang, X. Wang, E. Flahaut, X. Liu, Y. Li, X. Wang, Y. Xu, Y. Shi, and R. Zhang, “Planar carbon nanotube-graphene hybrid films for high-performance broadband photodetectors,” Nat. Commun. 6, 8589 (2015).
[Crossref]

Y. Liu, F. Wang, X. Wang, X. Wang, E. Flahaut, X. Liu, Y. Li, X. Wang, Y. Xu, Y. Shi, and R. Zhang, “Planar carbon nanotube-graphene hybrid films for high-performance broadband photodetectors,” Nat. Commun. 6, 8589 (2015).
[Crossref]

Wang, Y.

H. Qiao, J. Yuan, Z. Xu, C. Chen, S. Lin, Y. Wang, J. Song, Y. Liu, Q. Khan, H. Y. Hoh, C. X. Pan, S. Li, and Q. Bao, “Broadband photodetectors based on graphene-Bi2Te3 heterostructure,” ACS Nano 9, 1886–1894 (2015).
[Crossref]

Watanabe, K.

N. M. Gabor, J. C. W. Song, Q. Ma, N. L. Nair, T. Taychatanapat, K. Watanabe, T. Taniguchi, L. S. Levitov, and P. J. Herrero, “Hot carrier-assisted intrinsic photoresponse in graphene,” Science 334, 648–652 (2011).
[Crossref]

Woessner, A.

K. J. Tielrooij, L. Piatkowski, M. Massicotte, A. Woessner, Q. Ma, Y. Lee, K. S. Myhro, C. N. Lau, P. Jarillo-Herrero, N. F. van Hulst, and F. H. L. Koppens, “Generation of photovoltage in graphene on a femtosecond timescale through efficient carrier heating,” Nat. Nanotechnol. 10, 437–443 (2015).
[Crossref]

Wu, J.

X. Li, J. Wu, N. Mao, J. Zhang, Z. Lei, Z. Liu, and H. Xu, “A self-powered graphene-MoS2 hybrid phototransistor with fast response rate and high on-off ratio,” Carbon 92, 126–132 (2015).
[Crossref]

H. Xu, J. Wu, Q. Feng, N. Mao, C. Wang, and J. Zhang, “High responsivity and gate tunable graphene-MoS2 hybrid phototransistor,” Small 10, 2300–2306 (2014).
[Crossref]

Wu, S.

J. Miao, W. Hu, N. Guo, Z. Lu, X. Liu, L. Liao, P. Chen, T. Jiang, S. Wu, J. C. Ho, L. Wang, X. Chen, and W. Lu, “High-responsivity graphene/InAs nanowire heterojunction near-infrared photodetectors with distinct photocurrent on/off ratios,” Small 11, 936–942 (2015).
[Crossref]

Wu, Y. H.

Z. H. Ni, H. M. Wang, J. Kasim, H. M. Fan, T. Yu, Y. H. Wu, Y. P. Feng, and Z. X. Shen, “Graphene thickness determination using reflection and contrast spectroscopy,” Nano Lett. 7, 2758–2763 (2007).
[Crossref]

Xia, F.

F. Xia, T. Mueller, Y. Lin, A. Valdes-Garcia, and P. Avouris, “Ultrafast graphene photodetector,” Nat. Nanotechnol. 4, 839–843 (2009).
[Crossref]

Xu, H.

X. Li, J. Wu, N. Mao, J. Zhang, Z. Lei, Z. Liu, and H. Xu, “A self-powered graphene-MoS2 hybrid phototransistor with fast response rate and high on-off ratio,” Carbon 92, 126–132 (2015).
[Crossref]

H. Xu, J. Wu, Q. Feng, N. Mao, C. Wang, and J. Zhang, “High responsivity and gate tunable graphene-MoS2 hybrid phototransistor,” Small 10, 2300–2306 (2014).
[Crossref]

Xu, J. B.

Z. Chen, Z. Cheng, J. Wang, X. Wan, C. Shu, H. K. Tsang, H. P. Ho, and J. B. Xu, “High responsivity, broadband, and fast graphene/silicon photodetector in photoconductor mode,” Adv. Opt. Mater. 3, 1207–1214 (2015).
[Crossref]

Xu, Y.

Y. Liu, F. Wang, X. Wang, X. Wang, E. Flahaut, X. Liu, Y. Li, X. Wang, Y. Xu, Y. Shi, and R. Zhang, “Planar carbon nanotube-graphene hybrid films for high-performance broadband photodetectors,” Nat. Commun. 6, 8589 (2015).
[Crossref]

Xu, Z.

H. Qiao, J. Yuan, Z. Xu, C. Chen, S. Lin, Y. Wang, J. Song, Y. Liu, Q. Khan, H. Y. Hoh, C. X. Pan, S. Li, and Q. Bao, “Broadband photodetectors based on graphene-Bi2Te3 heterostructure,” ACS Nano 9, 1886–1894 (2015).
[Crossref]

Yan, F.

Z. Sun, Z. Liu, J. Li, G. Tai, S. P. Lau, and F. Yan, “Infrared photodetectors based on CVD-grown graphene and PbS quantum dots with ultrahigh responsivity,” Adv. Mater. 24, 5878–5883 (2012).
[Crossref]

F. Yan, J. Li, and S. M. Mok, “Highly photosensitive thin film transistors based on a composite of poly (3-hexylthiophene) and titania nanoparticles,” J. Appl. Phys. 106, 074501 (2009).
[Crossref]

Yoo, W. J.

Y. Lee, J. Kwon, E. Hwang, C. H. Ra, W. J. Yoo, J. H. Ahn, J. H. Park, and J. H. Cho, “High-performance Perovskite-graphene hybrid photodetector,” Adv. Mater. 27, 41–46 (2015).
[Crossref]

Yu, S. H.

Y. Lee, S. H. Yu, J. Jeon, H. Kim, J. Y. Lee, H. Kim, J. H. Ahn, E. Hwang, and J. H. Cho, “Hybrid structures of organic dye and graphene for ultrahigh gain photodetectors,” Carbon 88, 165–172 (2015).
[Crossref]

Yu, T.

Z. H. Ni, H. M. Wang, J. Kasim, H. M. Fan, T. Yu, Y. H. Wu, Y. P. Feng, and Z. X. Shen, “Graphene thickness determination using reflection and contrast spectroscopy,” Nano Lett. 7, 2758–2763 (2007).
[Crossref]

Yuan, J.

H. Qiao, J. Yuan, Z. Xu, C. Chen, S. Lin, Y. Wang, J. Song, Y. Liu, Q. Khan, H. Y. Hoh, C. X. Pan, S. Li, and Q. Bao, “Broadband photodetectors based on graphene-Bi2Te3 heterostructure,” ACS Nano 9, 1886–1894 (2015).
[Crossref]

Zhang, J.

X. Li, J. Wu, N. Mao, J. Zhang, Z. Lei, Z. Liu, and H. Xu, “A self-powered graphene-MoS2 hybrid phototransistor with fast response rate and high on-off ratio,” Carbon 92, 126–132 (2015).
[Crossref]

H. Xu, J. Wu, Q. Feng, N. Mao, C. Wang, and J. Zhang, “High responsivity and gate tunable graphene-MoS2 hybrid phototransistor,” Small 10, 2300–2306 (2014).
[Crossref]

Zhang, R.

Y. Liu, F. Wang, X. Wang, X. Wang, E. Flahaut, X. Liu, Y. Li, X. Wang, Y. Xu, Y. Shi, and R. Zhang, “Planar carbon nanotube-graphene hybrid films for high-performance broadband photodetectors,” Nat. Commun. 6, 8589 (2015).
[Crossref]

Zhang, W.

W. Zhang, C. P. Chuu, J. K. Huang, C. H. Chen, M. L. Tsai, Y. H. Chang, C. T. Liang, Y. Z. Chen, Y. L. Chueh, J. H. He, M. Y. Chou, and L. J. Li, “Ultrahigh-gain photodetectors based on atomically thin graphene-MoS2 heterostructures,” Sci. Rep. 4, 3826 (2014).
[Crossref]

Zhang, Y.

Y. Zhang, T. Liu, B. Meng, X. Li, G. Liang, X. Hu, and Q. J. Wang, “Broadband high photoresponse from pure monolayer graphene photodetector,” Nat. Commun. 4, 1811 (2013).
[Crossref]

Zhong, Z.

C. H. Liu, Y. C. Chang, T. B. Norris, and Z. Zhong, “Graphene photodetectors with ultra-broadband and high responsivity at room temperature,” Nat. Nanotechnol. 9, 273–278 (2014).
[Crossref]

ACS Nano (2)

H. Qiao, J. Yuan, Z. Xu, C. Chen, S. Lin, Y. Wang, J. Song, Y. Liu, Q. Khan, H. Y. Hoh, C. X. Pan, S. Li, and Q. Bao, “Broadband photodetectors based on graphene-Bi2Te3 heterostructure,” ACS Nano 9, 1886–1894 (2015).
[Crossref]

F. Z. Liu and S. Kar, “Quantum carrier reinvestment-induced ultrahigh and broadband photocurrent responses in graphene-silicon junctions,” ACS Nano 8, 10270–10279 (2014).
[Crossref]

Adv. Funct. Mater. (1)

G. Haider, P. Roy, C. W. Chiang, W. C. Tan, Y. R. Liou, H. T. Chang, C. T. Liang, W. H. Shih, and Y. F. Chen, “Electrical-polarization-induced ultrahigh responsivity photodetectors based on graphene and graphene quantum dots,” Adv. Funct. Mater. 26, 620–628 (2016).
[Crossref]

Adv. Mater. (3)

Z. Sun, Z. Liu, J. Li, G. Tai, S. P. Lau, and F. Yan, “Infrared photodetectors based on CVD-grown graphene and PbS quantum dots with ultrahigh responsivity,” Adv. Mater. 24, 5878–5883 (2012).
[Crossref]

Y. Lee, J. Kwon, E. Hwang, C. H. Ra, W. J. Yoo, J. H. Ahn, J. H. Park, and J. H. Cho, “High-performance Perovskite-graphene hybrid photodetector,” Adv. Mater. 27, 41–46 (2015).
[Crossref]

Z. Liu, K. Parvez, R. Li, R. Dong, X. Feng, and K. Müllen, “Transparent conductive electrodes from graphene/PEDOT:PSS hybrid inks for ultrathin organic photodetectors,” Adv. Mater. 27, 669–675 (2015).
[Crossref]

Adv. Opt. Mater. (1)

Z. Chen, Z. Cheng, J. Wang, X. Wan, C. Shu, H. K. Tsang, H. P. Ho, and J. B. Xu, “High responsivity, broadband, and fast graphene/silicon photodetector in photoconductor mode,” Adv. Opt. Mater. 3, 1207–1214 (2015).
[Crossref]

Carbon (2)

X. Li, J. Wu, N. Mao, J. Zhang, Z. Lei, Z. Liu, and H. Xu, “A self-powered graphene-MoS2 hybrid phototransistor with fast response rate and high on-off ratio,” Carbon 92, 126–132 (2015).
[Crossref]

Y. Lee, S. H. Yu, J. Jeon, H. Kim, J. Y. Lee, H. Kim, J. H. Ahn, E. Hwang, and J. H. Cho, “Hybrid structures of organic dye and graphene for ultrahigh gain photodetectors,” Carbon 88, 165–172 (2015).
[Crossref]

J. Appl. Phys. (1)

F. Yan, J. Li, and S. M. Mok, “Highly photosensitive thin film transistors based on a composite of poly (3-hexylthiophene) and titania nanoparticles,” J. Appl. Phys. 106, 074501 (2009).
[Crossref]

Meas. Sci. Technol. (1)

D. K. Schroder, “Surface voltage and surface photovoltage: history, theory and applications,” Meas. Sci. Technol. 12, R16–R31 (2001).
[Crossref]

Nano Lett. (2)

M. C. Lemme, F. H. L. Koppens, A. L. Falk, M. S. Rudner, H. Park, L. S. Levitov, and C. M. Marcus, “Gate-activated photoresponse in a graphene p–n junction,” Nano Lett. 11, 4134–4137 (2011).
[Crossref]

Z. H. Ni, H. M. Wang, J. Kasim, H. M. Fan, T. Yu, Y. H. Wu, Y. P. Feng, and Z. X. Shen, “Graphene thickness determination using reflection and contrast spectroscopy,” Nano Lett. 7, 2758–2763 (2007).
[Crossref]

Nat. Commun. (4)

Y. Liu, F. Wang, X. Wang, X. Wang, E. Flahaut, X. Liu, Y. Li, X. Wang, Y. Xu, Y. Shi, and R. Zhang, “Planar carbon nanotube-graphene hybrid films for high-performance broadband photodetectors,” Nat. Commun. 6, 8589 (2015).
[Crossref]

Y. Zhang, T. Liu, B. Meng, X. Li, G. Liang, X. Hu, and Q. J. Wang, “Broadband high photoresponse from pure monolayer graphene photodetector,” Nat. Commun. 4, 1811 (2013).
[Crossref]

T. J. Echtermeyer, L. Britnell, P. K. Jasnos, A. Lombardo, R. V. Gorbachev, A. N. Grigorenko, A. K. Geim, A. C. Ferrari, and K. S. Novoselov, “Strong plasmonic enhancement of photovoltage in graphene,” Nat. Commun. 2, 458 (2011).
[Crossref]

M. Engel, M. Steiner, A. Lombardo, A. C. Ferrari, H. V. Löhneysen, P. Avouris, and R. Krupke, “Light-matter interaction in a microcavity-controlled graphene transistor,” Nat. Commun. 3, 906 (2012).
[Crossref]

Nat. Nanotechnol. (5)

B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, and A. Kis, “Single-layer MoS2 transistors,” Nat. Nanotechnol. 6, 147–150 (2011).
[Crossref]

C. H. Liu, Y. C. Chang, T. B. Norris, and Z. Zhong, “Graphene photodetectors with ultra-broadband and high responsivity at room temperature,” Nat. Nanotechnol. 9, 273–278 (2014).
[Crossref]

F. Xia, T. Mueller, Y. Lin, A. Valdes-Garcia, and P. Avouris, “Ultrafast graphene photodetector,” Nat. Nanotechnol. 4, 839–843 (2009).
[Crossref]

K. J. Tielrooij, L. Piatkowski, M. Massicotte, A. Woessner, Q. Ma, Y. Lee, K. S. Myhro, C. N. Lau, P. Jarillo-Herrero, N. F. van Hulst, and F. H. L. Koppens, “Generation of photovoltage in graphene on a femtosecond timescale through efficient carrier heating,” Nat. Nanotechnol. 10, 437–443 (2015).
[Crossref]

G. Konstantatos, M. Badioli, L. Gaudreau, J. Osmond, M. Bernechea, F. P. G. de Arquer, F. Gatti, and F. H. Koppens, “Hybrid graphene-quantum dot phototransistors with ultrahigh gain,” Nat. Nanotechnol. 7, 363–368 (2012).
[Crossref]

Nat. Photonics (1)

X. Gan, R. J. Shiue, Y. Gao, I. Meric, T. F. Heinz, K. Shepard, J. Hone, S. Assefa, and D. Englund, “Chip-integrated ultrafast graphene photodetector with high responsivity,” Nat. Photonics 7, 883–887 (2013).
[Crossref]

Opto-Electron. Rev. (1)

P. Norton, “HgCdTe infrared detectors,” Opto-Electron. Rev. 10, 159–174 (2002).

Sci. Rep. (1)

W. Zhang, C. P. Chuu, J. K. Huang, C. H. Chen, M. L. Tsai, Y. H. Chang, C. T. Liang, Y. Z. Chen, Y. L. Chueh, J. H. He, M. Y. Chou, and L. J. Li, “Ultrahigh-gain photodetectors based on atomically thin graphene-MoS2 heterostructures,” Sci. Rep. 4, 3826 (2014).
[Crossref]

Science (2)

N. M. Gabor, J. C. W. Song, Q. Ma, N. L. Nair, T. Taychatanapat, K. Watanabe, T. Taniguchi, L. S. Levitov, and P. J. Herrero, “Hot carrier-assisted intrinsic photoresponse in graphene,” Science 334, 648–652 (2011).
[Crossref]

L. Britnell, R. M. Ribeiro, A. Eckmann, R. Jalil, B. D. Belle, A. Mishchenko, Y. J. Kim, R. V. Gorbachev, T. Georgiou, S. V. Morozov, A. N. Grigorenko, A. K. Geim, C. Casiraghi, A. H. Castro Neto, and K. S. Novoselov, “Strong light-matter interactions in heterostructures of atomically thin films,” Science 340, 1311–1314 (2013).
[Crossref]

Small (2)

J. Miao, W. Hu, N. Guo, Z. Lu, X. Liu, L. Liao, P. Chen, T. Jiang, S. Wu, J. C. Ho, L. Wang, X. Chen, and W. Lu, “High-responsivity graphene/InAs nanowire heterojunction near-infrared photodetectors with distinct photocurrent on/off ratios,” Small 11, 936–942 (2015).
[Crossref]

H. Xu, J. Wu, Q. Feng, N. Mao, C. Wang, and J. Zhang, “High responsivity and gate tunable graphene-MoS2 hybrid phototransistor,” Small 10, 2300–2306 (2014).
[Crossref]

Sol. Energy (1)

A. Cuevas and D. Macdonald, “Measuring and interpreting the lifetime of silicon wafers,” Sol. Energy 76, 255–262 (2004).
[Crossref]

Other (1)

B. K. Sarker, I. Childres, E. Cazalas, I. Jovanovic, and Y. P. Chen, “Gate-tunable and high responsivity graphene phototransistors on undoped semiconductor substrates,” arXiv: 1409.5725v2 (2015).

Supplementary Material (1)

NameDescription
» Supplement 1: PDF (1697 KB)      Supplemental material

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1. Graphene photodetector based on interfacial gating. (a) Schematic diagram and optical image of the graphene photodetector on lightly p-doped silicon/SiO2 substrate; (b), (c) energy band diagrams of the lightly p-doped silicon/SiO2 interface with positive localized states (qϕ0) and its effect on graphene, respectively. The accumulation of photogenerated electrons (blue points) at the interface results in additional negative voltage under light illumination, lowers the Fermi level (Ef(Gr)) to its new position (Ef(Gr)), and results in a light-induced p-type doping in graphene.
Fig. 2.
Fig. 2. Photoresponse characteristics as a function of light power and wavelength. (a) Photoswitching characteristics of the graphene photodetector under varying light power; (b), (c) photocurrent and responsivity at VD=1  V and VG=0  V of the device as a function of the light power. The laser wavelength is 514 nm. (d) The spectral photocurrent response of the device at 0.05  μW light power from 450 to 1150 nm.
Fig. 3.
Fig. 3. Gate- and bias-modulated photoresponse. (a) I-VG characteristics of the device under varying light power; the inset is an enlarged view of the region in the dashed rectangle, showing the increase in the light current under illumination with increased light power. (b) Horizontal shift of the Dirac point (ΔVG) and the modulated charge carrier density (Δn) as a function of light power, (c) the extracted gate dependence of photocurrents (IlightIdark) from the curves in (a). The red circles represent the photocurrents of the device at individual gate voltages under a fixed light power of 3.66 μW. (d) Photocurrents at VG=0  V of the device as a function of VD under varying light power. The wavelength is 514 nm.
Fig. 4.
Fig. 4. Transient response of the device. (a) The transient response of the device switched on or off by an acoustic optical modulator with a frequency of 10 kHz. P=0.05  μW, VD=1  V, and VG=0  V. (b) The response time as a function of light power for our device and other graphene-based photogating devices (e.g., graphene/graphene quantum dots (G/GQDs) [10], graphene double layer structure (G/G) [5], graphene/SiC (G/SiC) [24], graphene/R6G (G/R6G)[16], graphene/Bi2Te3 (G/Bi2Te3) [7], graphene/Perovskite (G/Perovskite) [12], G/quantum dots (G/QDs) [3], graphene/MoS2 (G/MoS2) [14], graphene/carbon nanotubes (G/CNTs) [6], and graphene/Si (G/Si) [17]) reported in the literature; (c), (d) photoswitching characteristics of the device at 0.5 MHz modulation frequency under varying light power. The light wavelength is 514 nm.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

ΔI=Iph=WLCgμΔVGVD,

Metrics