Abstract

Several phenomena have been recently exploited to circumvent scattering and have succeeded in imaging or focusing light through turbid layers. However, the requirement for the turbid medium to be steady during the imaging process remains a fundamental limitation of these methods. Here, we introduce an optical imaging modality that overcomes this challenge by taking advantage of the so-called shower-curtain effect, which is adapted to the spatial-frequency domain via speckle correlography. We present high-resolution imaging of objects hidden behind millimeter-thick tissue or dense lens cataracts. We demonstrate our imaging technique to be insensitive to rapid medium movements (>5m/s) beyond any biologically relevant motion. Furthermore, we show this method can be extended to several contrast mechanisms and imaging configurations.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Relation between speckle decorrelation and optical phase conjugation (OPC)-based turbidity suppression through dynamic scattering media: a study on in vivo mouse skin

Mooseok Jang, Haowen Ruan, Ivo M. Vellekoop, Benjamin Judkewitz, Euiheon Chung, and Changhuei Yang
Biomed. Opt. Express 6(1) 72-85 (2015)

Holographic imaging through a scattering layer using speckle interferometry

Atul S. Somkuwar, Bhargab Das, R. V. Vinu, YongKeun Park, and Rakesh Kumar Singh
J. Opt. Soc. Am. A 34(8) 1392-1399 (2017)

References

  • View by:
  • |
  • |
  • |

  1. V. Ntziachristos, Nat. Methods 7, 603 (2010).
    [Crossref]
  2. J. Bertolotti, E. G. van Putten, C. Blum, A. Lagendijk, W. L. Vos, and A. P. Mosk, Nature 491, 232 (2012).
    [Crossref]
  3. O. Katz, P. Heidmann, M. Fink, and S. Gigan, Nat. Photonics 8, 784 (2014).
    [Crossref]
  4. X. Yang, Y. Pu, and D. Psaltis, Opt. Express 22, 3405 (2014).
    [Crossref]
  5. Z. Yaqoob, D. Psaltis, M. Feld, and C. Yang, Nat. Photonics 2, 110 (2008).
    [Crossref]
  6. Y. Choi, T. D. Yang, C. Fang-Yen, P. Kang, K. J. Lee, R. R. Dasari, M. S. Feld, and W. Choi, Phys. Rev. Lett. 107, 023902 (2011).
    [Crossref]
  7. O. Katz, E. Small, and Y. Silberberg, Nat. Photonics 6, 549 (2012).
    [Crossref]
  8. S. M. Popoff, G. Lerosey, R. Carminati, M. Fink, A. C. Boccara, and S. Gigan, Phys. Rev. Lett. 104, 100601 (2010).
    [Crossref]
  9. D. B. Conkey, A. M. Caravaca-Aguirre, and R. Piestun, Opt. Express 20, 1733 (2012).
    [Crossref]
  10. D. Wang, E. H. Zhou, J. Brake, H. Ruan, M. Jang, and C. Yang, Optica 2, 728 (2015).
    [Crossref]
  11. Y. Liu, P. Lai, C. Ma, X. Xu, A. A. Grabar, and L. V. Wang, Nat. Commun. 6, 5904 (2015).
  12. L. Thrane, H. T. Yura, and P. E. Andersen, J. Opt. Soc. Am. A 17, 484 (2000).
    [Crossref]
  13. S. Jaruwatanadilok, A. Ishimaru, and Y. Kuga, IEEE Trans. Geosci. Remote Sens. 41, 1834 (2003).
    [Crossref]
  14. Y. Kuga and A. Ishimaru, Appl. Opt. 25, 4382 (1986).
    [Crossref]
  15. I. Dror, A. Sandrov, and N. S. Kopeika, Appl. Opt. 37, 6495 (1998).
    [Crossref]
  16. V. V. Belov and B. D. Borisov, Proc. SPIE 4338, 8 (2000).
    [Crossref]
  17. I. Freund, Phys. A 168, 49 (1990).
    [Crossref]
  18. P. S. Idell, J. R. Fienup, and R. S. Goodman, Opt. Lett. 12, 858 (1987).
    [Crossref]
  19. P. S. Idell, J. D. Gonglewski, D. G. Voelz, and J. Knopp, Opt. Lett. 14, 154 (1989).
    [Crossref]
  20. D. G. Voelz, J. D. Gonglewski, and P. S. Idell, Appl. Opt. 30, 3333 (1991).
    [Crossref]
  21. A. Labeyrie, Astron. Astrophys. 6, 85 (1970).
  22. J. C. Dainty, Laser Speckle and Related Phenomena, Topics in Applied Physics (Springer-Verlag, 1975), Vol. 9, p. 298.
  23. J. R. Fienup, Opt. Lett. 3, 27 (1978).
    [Crossref]
  24. J. R. Fienup, Appl. Opt. 21, 2758 (1982).
    [Crossref]
  25. J. W. Goodman and R. L. Haupt, Statistical Optics (Wiley, 2015).
  26. A. P. Mosk, A. Lagendijk, G. Lerosey, and M. Fink, Nat. Photonics 6, 283 (2012).
    [Crossref]
  27. B. Judkewitz, R. Horstmeyer, I. M. Vellekoop, I. N. Papadopoulos, and C. Yang, Nat. Phys. 11, 684 (2015).
    [Crossref]

2015 (3)

D. Wang, E. H. Zhou, J. Brake, H. Ruan, M. Jang, and C. Yang, Optica 2, 728 (2015).
[Crossref]

Y. Liu, P. Lai, C. Ma, X. Xu, A. A. Grabar, and L. V. Wang, Nat. Commun. 6, 5904 (2015).

B. Judkewitz, R. Horstmeyer, I. M. Vellekoop, I. N. Papadopoulos, and C. Yang, Nat. Phys. 11, 684 (2015).
[Crossref]

2014 (2)

O. Katz, P. Heidmann, M. Fink, and S. Gigan, Nat. Photonics 8, 784 (2014).
[Crossref]

X. Yang, Y. Pu, and D. Psaltis, Opt. Express 22, 3405 (2014).
[Crossref]

2012 (4)

J. Bertolotti, E. G. van Putten, C. Blum, A. Lagendijk, W. L. Vos, and A. P. Mosk, Nature 491, 232 (2012).
[Crossref]

O. Katz, E. Small, and Y. Silberberg, Nat. Photonics 6, 549 (2012).
[Crossref]

D. B. Conkey, A. M. Caravaca-Aguirre, and R. Piestun, Opt. Express 20, 1733 (2012).
[Crossref]

A. P. Mosk, A. Lagendijk, G. Lerosey, and M. Fink, Nat. Photonics 6, 283 (2012).
[Crossref]

2011 (1)

Y. Choi, T. D. Yang, C. Fang-Yen, P. Kang, K. J. Lee, R. R. Dasari, M. S. Feld, and W. Choi, Phys. Rev. Lett. 107, 023902 (2011).
[Crossref]

2010 (2)

S. M. Popoff, G. Lerosey, R. Carminati, M. Fink, A. C. Boccara, and S. Gigan, Phys. Rev. Lett. 104, 100601 (2010).
[Crossref]

V. Ntziachristos, Nat. Methods 7, 603 (2010).
[Crossref]

2008 (1)

Z. Yaqoob, D. Psaltis, M. Feld, and C. Yang, Nat. Photonics 2, 110 (2008).
[Crossref]

2003 (1)

S. Jaruwatanadilok, A. Ishimaru, and Y. Kuga, IEEE Trans. Geosci. Remote Sens. 41, 1834 (2003).
[Crossref]

2000 (2)

1998 (1)

1991 (1)

1990 (1)

I. Freund, Phys. A 168, 49 (1990).
[Crossref]

1989 (1)

1987 (1)

1986 (1)

1982 (1)

1978 (1)

1970 (1)

A. Labeyrie, Astron. Astrophys. 6, 85 (1970).

Andersen, P. E.

Belov, V. V.

V. V. Belov and B. D. Borisov, Proc. SPIE 4338, 8 (2000).
[Crossref]

Bertolotti, J.

J. Bertolotti, E. G. van Putten, C. Blum, A. Lagendijk, W. L. Vos, and A. P. Mosk, Nature 491, 232 (2012).
[Crossref]

Blum, C.

J. Bertolotti, E. G. van Putten, C. Blum, A. Lagendijk, W. L. Vos, and A. P. Mosk, Nature 491, 232 (2012).
[Crossref]

Boccara, A. C.

S. M. Popoff, G. Lerosey, R. Carminati, M. Fink, A. C. Boccara, and S. Gigan, Phys. Rev. Lett. 104, 100601 (2010).
[Crossref]

Borisov, B. D.

V. V. Belov and B. D. Borisov, Proc. SPIE 4338, 8 (2000).
[Crossref]

Brake, J.

Caravaca-Aguirre, A. M.

Carminati, R.

S. M. Popoff, G. Lerosey, R. Carminati, M. Fink, A. C. Boccara, and S. Gigan, Phys. Rev. Lett. 104, 100601 (2010).
[Crossref]

Choi, W.

Y. Choi, T. D. Yang, C. Fang-Yen, P. Kang, K. J. Lee, R. R. Dasari, M. S. Feld, and W. Choi, Phys. Rev. Lett. 107, 023902 (2011).
[Crossref]

Choi, Y.

Y. Choi, T. D. Yang, C. Fang-Yen, P. Kang, K. J. Lee, R. R. Dasari, M. S. Feld, and W. Choi, Phys. Rev. Lett. 107, 023902 (2011).
[Crossref]

Conkey, D. B.

Dainty, J. C.

J. C. Dainty, Laser Speckle and Related Phenomena, Topics in Applied Physics (Springer-Verlag, 1975), Vol. 9, p. 298.

Dasari, R. R.

Y. Choi, T. D. Yang, C. Fang-Yen, P. Kang, K. J. Lee, R. R. Dasari, M. S. Feld, and W. Choi, Phys. Rev. Lett. 107, 023902 (2011).
[Crossref]

Dror, I.

Fang-Yen, C.

Y. Choi, T. D. Yang, C. Fang-Yen, P. Kang, K. J. Lee, R. R. Dasari, M. S. Feld, and W. Choi, Phys. Rev. Lett. 107, 023902 (2011).
[Crossref]

Feld, M.

Z. Yaqoob, D. Psaltis, M. Feld, and C. Yang, Nat. Photonics 2, 110 (2008).
[Crossref]

Feld, M. S.

Y. Choi, T. D. Yang, C. Fang-Yen, P. Kang, K. J. Lee, R. R. Dasari, M. S. Feld, and W. Choi, Phys. Rev. Lett. 107, 023902 (2011).
[Crossref]

Fienup, J. R.

Fink, M.

O. Katz, P. Heidmann, M. Fink, and S. Gigan, Nat. Photonics 8, 784 (2014).
[Crossref]

A. P. Mosk, A. Lagendijk, G. Lerosey, and M. Fink, Nat. Photonics 6, 283 (2012).
[Crossref]

S. M. Popoff, G. Lerosey, R. Carminati, M. Fink, A. C. Boccara, and S. Gigan, Phys. Rev. Lett. 104, 100601 (2010).
[Crossref]

Freund, I.

I. Freund, Phys. A 168, 49 (1990).
[Crossref]

Gigan, S.

O. Katz, P. Heidmann, M. Fink, and S. Gigan, Nat. Photonics 8, 784 (2014).
[Crossref]

S. M. Popoff, G. Lerosey, R. Carminati, M. Fink, A. C. Boccara, and S. Gigan, Phys. Rev. Lett. 104, 100601 (2010).
[Crossref]

Gonglewski, J. D.

Goodman, J. W.

J. W. Goodman and R. L. Haupt, Statistical Optics (Wiley, 2015).

Goodman, R. S.

Grabar, A. A.

Y. Liu, P. Lai, C. Ma, X. Xu, A. A. Grabar, and L. V. Wang, Nat. Commun. 6, 5904 (2015).

Haupt, R. L.

J. W. Goodman and R. L. Haupt, Statistical Optics (Wiley, 2015).

Heidmann, P.

O. Katz, P. Heidmann, M. Fink, and S. Gigan, Nat. Photonics 8, 784 (2014).
[Crossref]

Horstmeyer, R.

B. Judkewitz, R. Horstmeyer, I. M. Vellekoop, I. N. Papadopoulos, and C. Yang, Nat. Phys. 11, 684 (2015).
[Crossref]

Idell, P. S.

Ishimaru, A.

S. Jaruwatanadilok, A. Ishimaru, and Y. Kuga, IEEE Trans. Geosci. Remote Sens. 41, 1834 (2003).
[Crossref]

Y. Kuga and A. Ishimaru, Appl. Opt. 25, 4382 (1986).
[Crossref]

Jang, M.

Jaruwatanadilok, S.

S. Jaruwatanadilok, A. Ishimaru, and Y. Kuga, IEEE Trans. Geosci. Remote Sens. 41, 1834 (2003).
[Crossref]

Judkewitz, B.

B. Judkewitz, R. Horstmeyer, I. M. Vellekoop, I. N. Papadopoulos, and C. Yang, Nat. Phys. 11, 684 (2015).
[Crossref]

Kang, P.

Y. Choi, T. D. Yang, C. Fang-Yen, P. Kang, K. J. Lee, R. R. Dasari, M. S. Feld, and W. Choi, Phys. Rev. Lett. 107, 023902 (2011).
[Crossref]

Katz, O.

O. Katz, P. Heidmann, M. Fink, and S. Gigan, Nat. Photonics 8, 784 (2014).
[Crossref]

O. Katz, E. Small, and Y. Silberberg, Nat. Photonics 6, 549 (2012).
[Crossref]

Knopp, J.

Kopeika, N. S.

Kuga, Y.

S. Jaruwatanadilok, A. Ishimaru, and Y. Kuga, IEEE Trans. Geosci. Remote Sens. 41, 1834 (2003).
[Crossref]

Y. Kuga and A. Ishimaru, Appl. Opt. 25, 4382 (1986).
[Crossref]

Labeyrie, A.

A. Labeyrie, Astron. Astrophys. 6, 85 (1970).

Lagendijk, A.

A. P. Mosk, A. Lagendijk, G. Lerosey, and M. Fink, Nat. Photonics 6, 283 (2012).
[Crossref]

J. Bertolotti, E. G. van Putten, C. Blum, A. Lagendijk, W. L. Vos, and A. P. Mosk, Nature 491, 232 (2012).
[Crossref]

Lai, P.

Y. Liu, P. Lai, C. Ma, X. Xu, A. A. Grabar, and L. V. Wang, Nat. Commun. 6, 5904 (2015).

Lee, K. J.

Y. Choi, T. D. Yang, C. Fang-Yen, P. Kang, K. J. Lee, R. R. Dasari, M. S. Feld, and W. Choi, Phys. Rev. Lett. 107, 023902 (2011).
[Crossref]

Lerosey, G.

A. P. Mosk, A. Lagendijk, G. Lerosey, and M. Fink, Nat. Photonics 6, 283 (2012).
[Crossref]

S. M. Popoff, G. Lerosey, R. Carminati, M. Fink, A. C. Boccara, and S. Gigan, Phys. Rev. Lett. 104, 100601 (2010).
[Crossref]

Liu, Y.

Y. Liu, P. Lai, C. Ma, X. Xu, A. A. Grabar, and L. V. Wang, Nat. Commun. 6, 5904 (2015).

Ma, C.

Y. Liu, P. Lai, C. Ma, X. Xu, A. A. Grabar, and L. V. Wang, Nat. Commun. 6, 5904 (2015).

Mosk, A. P.

J. Bertolotti, E. G. van Putten, C. Blum, A. Lagendijk, W. L. Vos, and A. P. Mosk, Nature 491, 232 (2012).
[Crossref]

A. P. Mosk, A. Lagendijk, G. Lerosey, and M. Fink, Nat. Photonics 6, 283 (2012).
[Crossref]

Ntziachristos, V.

V. Ntziachristos, Nat. Methods 7, 603 (2010).
[Crossref]

Papadopoulos, I. N.

B. Judkewitz, R. Horstmeyer, I. M. Vellekoop, I. N. Papadopoulos, and C. Yang, Nat. Phys. 11, 684 (2015).
[Crossref]

Piestun, R.

Popoff, S. M.

S. M. Popoff, G. Lerosey, R. Carminati, M. Fink, A. C. Boccara, and S. Gigan, Phys. Rev. Lett. 104, 100601 (2010).
[Crossref]

Psaltis, D.

X. Yang, Y. Pu, and D. Psaltis, Opt. Express 22, 3405 (2014).
[Crossref]

Z. Yaqoob, D. Psaltis, M. Feld, and C. Yang, Nat. Photonics 2, 110 (2008).
[Crossref]

Pu, Y.

Ruan, H.

Sandrov, A.

Silberberg, Y.

O. Katz, E. Small, and Y. Silberberg, Nat. Photonics 6, 549 (2012).
[Crossref]

Small, E.

O. Katz, E. Small, and Y. Silberberg, Nat. Photonics 6, 549 (2012).
[Crossref]

Thrane, L.

van Putten, E. G.

J. Bertolotti, E. G. van Putten, C. Blum, A. Lagendijk, W. L. Vos, and A. P. Mosk, Nature 491, 232 (2012).
[Crossref]

Vellekoop, I. M.

B. Judkewitz, R. Horstmeyer, I. M. Vellekoop, I. N. Papadopoulos, and C. Yang, Nat. Phys. 11, 684 (2015).
[Crossref]

Voelz, D. G.

Vos, W. L.

J. Bertolotti, E. G. van Putten, C. Blum, A. Lagendijk, W. L. Vos, and A. P. Mosk, Nature 491, 232 (2012).
[Crossref]

Wang, D.

Wang, L. V.

Y. Liu, P. Lai, C. Ma, X. Xu, A. A. Grabar, and L. V. Wang, Nat. Commun. 6, 5904 (2015).

Xu, X.

Y. Liu, P. Lai, C. Ma, X. Xu, A. A. Grabar, and L. V. Wang, Nat. Commun. 6, 5904 (2015).

Yang, C.

B. Judkewitz, R. Horstmeyer, I. M. Vellekoop, I. N. Papadopoulos, and C. Yang, Nat. Phys. 11, 684 (2015).
[Crossref]

D. Wang, E. H. Zhou, J. Brake, H. Ruan, M. Jang, and C. Yang, Optica 2, 728 (2015).
[Crossref]

Z. Yaqoob, D. Psaltis, M. Feld, and C. Yang, Nat. Photonics 2, 110 (2008).
[Crossref]

Yang, T. D.

Y. Choi, T. D. Yang, C. Fang-Yen, P. Kang, K. J. Lee, R. R. Dasari, M. S. Feld, and W. Choi, Phys. Rev. Lett. 107, 023902 (2011).
[Crossref]

Yang, X.

Yaqoob, Z.

Z. Yaqoob, D. Psaltis, M. Feld, and C. Yang, Nat. Photonics 2, 110 (2008).
[Crossref]

Yura, H. T.

Zhou, E. H.

Appl. Opt. (4)

Astron. Astrophys. (1)

A. Labeyrie, Astron. Astrophys. 6, 85 (1970).

IEEE Trans. Geosci. Remote Sens. (1)

S. Jaruwatanadilok, A. Ishimaru, and Y. Kuga, IEEE Trans. Geosci. Remote Sens. 41, 1834 (2003).
[Crossref]

J. Opt. Soc. Am. A (1)

Nat. Commun. (1)

Y. Liu, P. Lai, C. Ma, X. Xu, A. A. Grabar, and L. V. Wang, Nat. Commun. 6, 5904 (2015).

Nat. Methods (1)

V. Ntziachristos, Nat. Methods 7, 603 (2010).
[Crossref]

Nat. Photonics (4)

O. Katz, P. Heidmann, M. Fink, and S. Gigan, Nat. Photonics 8, 784 (2014).
[Crossref]

Z. Yaqoob, D. Psaltis, M. Feld, and C. Yang, Nat. Photonics 2, 110 (2008).
[Crossref]

O. Katz, E. Small, and Y. Silberberg, Nat. Photonics 6, 549 (2012).
[Crossref]

A. P. Mosk, A. Lagendijk, G. Lerosey, and M. Fink, Nat. Photonics 6, 283 (2012).
[Crossref]

Nat. Phys. (1)

B. Judkewitz, R. Horstmeyer, I. M. Vellekoop, I. N. Papadopoulos, and C. Yang, Nat. Phys. 11, 684 (2015).
[Crossref]

Nature (1)

J. Bertolotti, E. G. van Putten, C. Blum, A. Lagendijk, W. L. Vos, and A. P. Mosk, Nature 491, 232 (2012).
[Crossref]

Opt. Express (2)

Opt. Lett. (3)

Optica (1)

Phys. A (1)

I. Freund, Phys. A 168, 49 (1990).
[Crossref]

Phys. Rev. Lett. (2)

Y. Choi, T. D. Yang, C. Fang-Yen, P. Kang, K. J. Lee, R. R. Dasari, M. S. Feld, and W. Choi, Phys. Rev. Lett. 107, 023902 (2011).
[Crossref]

S. M. Popoff, G. Lerosey, R. Carminati, M. Fink, A. C. Boccara, and S. Gigan, Phys. Rev. Lett. 104, 100601 (2010).
[Crossref]

Proc. SPIE (1)

V. V. Belov and B. D. Borisov, Proc. SPIE 4338, 8 (2000).
[Crossref]

Other (2)

J. C. Dainty, Laser Speckle and Related Phenomena, Topics in Applied Physics (Springer-Verlag, 1975), Vol. 9, p. 298.

J. W. Goodman and R. L. Haupt, Statistical Optics (Wiley, 2015).

Supplementary Material (1)

NameDescription
» Supplement 1: PDF (1152 KB)      Supplemental-document

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1. Shower-curtain phenomenon, data acquisition, processing, and results. (a) Object mask imaged in free space. Scale bar, 200 μm. (b) The object placed 5 mm behind a ground glass diffuser appears blurred. (c) The object placed very close to the ground glass diffuser can be seen clearly. (d) Experimental setup: an expanded laser beam is diffused by a first diffuser; the scattered light passes through the object and generates a complex pattern on a turbid medium. The plane of the turbid medium is imaged onto the camera with a lens of focal length f(1/a+1/b=1/f). (e) Data processing and experimental results: the acquisition procedure is repeated many times while the first diffuser is shifted. For each frame, we performed a Fourier transform, DC filtering, and averaging to obtain the autocorrelation of the object. From the autocorrelation, we retrieved the object with a phase retrieval algorithm.
Fig. 2.
Fig. 2. Imaging through biological turbid media. (a) and (b) Photograph of a ruler placed 0.5 in hidden behind a cataract and an 0.8-mm-thick chicken breast tissue. (c) Object mask used for imaging through cataract. Scale bar, 200 μm. (d) Object mask used for imaging through the chicken tissue. Scale bar, 100 μm. (e) and (f) Average of the recorded images as seen through the cataract and the tissue (distances 80 and 100 mm, respectively). (g) and (h) The reconstructed images as obtained after correlography analysis.
Fig. 3.
Fig. 3. Imaging through dynamic turbid media. (a) Experimental setup: an expanded laser beam is scattered by a ground glass diffuser and the resulting speckle pattern illuminates an object. The light transmitted through the object propagates 190 mm and goes through a rapidly rotating ground glass. We used a camera to record the light pattern on the rotating ground glass. (b) Object. Scale bar, 200 μm. (c) Representative single shot as recorded by the camera. (d) Average of 3000 camera frames of different speckle realizations. (e) Reconstructed image.
Fig. 4.
Fig. 4. Imaging around the corner. (a) In the reflection configuration, we recorded the light scattered off the turbid medium. For these experiments, as the turbid medium, we used white paper located 150 mm from the object. (b) Object. Scale bar, 200 μm. (c) Reconstructed image.
Fig. 5.
Fig. 5. Different contrast mechanisms. (a) Schematic principle of the experimental setup. (b) and (c) We placed an object made of fixed corneal tissue between two cross polarizers so that only light that changed polarization went through. The distance between the object and the turbid medium here was 55 mm. (b) Object aperture imaged in free space. Scale bar, 250 μm. (c) Reconstructed image. (d) and (e) Between two cross polarizers, we placed a dried retinal tissue sample so that only light scattered by tissue features went through. The distance between the object and the turbid medium here was 140 mm. (d) Retinal tissue object imaged in free space in a cross polarized configuration. Scale bar, 250 μm. (e) Reconstructed image through turbid medium.

Metrics