Abstract

Large-scale photonic switches are essential devices for energy- and cost-efficient optical communication networks in cloud and data-intensive computing. Silicon photonics is an attractive platform for high-density photonic integrated circuits with low manufacturing costs through the leveraging of existing advanced complementary metal-oxide-semiconductor processes. Many optical components such as lasers, modulators, splitters, and photodetectors have been successfully integrated on silicon; however, the quest for large-scale silicon photonic switches has remained elusive. Previous silicon photonic switches made of cascaded 1×2 or 2×2 building blocks have a limited port count (8×8) or excessive optical losses (>15dB). Here, we present a 64×64 digital silicon photonic switch with a low on-chip insertion loss (3.7 dB) and broadband operation (300 nm). The measured switching time is 0.91 μs, and the extinction ratio is larger than 60 dB. The matrix switch with 4096 microelectromechanical-systems-actuated vertical adiabatic couplers has been integrated on a 8.6mm×8.6mm chip. To our knowledge this is the largest monolithic switch, and the largest silicon photonic integrated circuit, reported to date. The passive matrix architecture of our switch is fundamentally more scalable than that of multistage switches.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Large-scale silicon photonic switches with movable directional couplers

Sangyoon Han, Tae Joon Seok, Niels Quack, Byung-Wook Yoo, and Ming C. Wu
Optica 2(4) 370-375 (2015)

Silicon photonic microelectromechanical switch using lateral adiabatic waveguide couplers

Takumi Nagai and Kazuhiro Hane
Opt. Express 26(26) 33906-33917 (2018)

Wafer-scale silicon photonic switches beyond die size limit

Tae Joon Seok, Kyungmok Kwon, Johannes Henriksson, Jianheng Luo, and Ming C. Wu
Optica 6(4) 490-494 (2019)

References

  • View by:
  • |
  • |
  • |

  1. L. Schares, X. J. Zhang, R. Wagle, D. Rajan, P. Selo, S.-P. Chang, J. R. Giles, K. Hildrum, D. M. Kuchta, J. L. Wolf, and E. Schenfeld, “A reconfigurable interconnect fabric with optical circuit switch and software optimizer for stream computing systems,” in Optical Fiber Communication Conference and National Fiber Optic Engineers Conference, OSA Technical Digest (CD) (Optical Society of America, 2009), paper OTuA1.
  2. G. Wang, D. G. Andersen, M. Kaminsky, K. Papagiannaki, T. S. E. Ng, M. Kozuch, and M. Ryan, “c-through: part-time optics in data centers,” in Proceedings of the ACM SIGCOMM Conference (ACM, 2010), pp. 327–338.
  3. A. Vahdat, H. Liu, X. Zhao, and C. Johnson, “The emerging optical data center,” in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference, OSA Technical Digest (CD) (Optical Society of America, 2011), paper OTuH2.
  4. N. Farrington, A. Forencich, G. Porter, P.-C. Sun, J. E. Ford, Y. Fainman, G. C. Papen, and A. Vahdat, “A multiport microsecond optical circuit switch for data center networking,” IEEE Photon. Technol. Lett. 25, 1589–1592 (2013).
    [Crossref]
  5. G. Porter, R. Strong, N. Farrington, A. Forencich, P. Chen-Sun, T. Rosing, Y. Fainman, G. Papen, and A. Vahdat, “Integrating microsecond circuit switching into the data center,” in Proceedings of the ACM SIGCOMM 2013 Conference (ACM, 2013), pp. 447–458.
  6. J. Bowers, A. Raza, D. Tardent, and J. Miglani, “Advantages and control of hybrid packet optical-circuit-switched data center networks,” in Advanced Photonics for Communications, OSA Technical Digest (online) (Optical Society of America, 2014), paper PM2C.4.
  7. B. G. Lee, N. Dupuis, P. Pepeljugoski, L. Schares, R. Budd, J. R. Bickford, and C. L. Schow, “Silicon photonic switch fabrics in computer communications systems,” J. Lightwave Technol. 33, 768–777 (2015).
    [Crossref]
  8. D. Liang and J. E. Bowers, “Recent progress in lasers on silicon,” Nat. Photonics 4, 511-517 (2010).
    [Crossref]
  9. G. T. Reed, G. Mashanovich, F. Y. Gardes, and D. J. Thomson, “Silicon optical modulators,” Nat. Photonics 4, 518–526 (2010).
    [Crossref]
  10. M. Asghari and A. V. Krishnamoorthy, “Silicon photonics: energy-efficient communication,” Nat. Photonics 5, 268–270 (2011).
    [Crossref]
  11. A. Rickman, “The commercialization of silicon photonics,” Nat. Photonics 8, 579–582 (2014).
    [Crossref]
  12. P. P. Absil, P. Verheyen, P. De Heyn, M. Pantouvaki, G. Lepage, J. De Coster, and J. Van Campenhout, “Silicon photonics integrated circuits: a manufacturing platform for high density, low power optical I/O’s,” Opt. Express 23, 9369–9378 (2015).
    [Crossref]
  13. Y. Vlasov, W. M. J. Green, and F. Xia, “High-throughput silicon nanophotonic wavelength-insensitive switch for on-chip optical networks,” Nat. Photonics 2, 242–246 (2008).
    [Crossref]
  14. J. Van Campenhout, W. M. Green, S. Assefa, and Y. A. Vlasov, “Low-power, 2 × 2 silicon electro-optic switch with 110-nm bandwidth for broadband reconfigurable optical networks,” Opt. Express 17, 24020–24029 (2009).
    [Crossref]
  15. Y. Shoji, K. Kintaka, S. Suda, H. Kawashima, T. Hasama, and H. Ishikawa, “Low-crosstalk 2 × 2 thermo-optic switch with silicon wire waveguides,” Opt. Express 18, 9071–9075 (2010).
    [Crossref]
  16. M. Yang, W. M. J. Green, S. Assefa, J. Van Campenhout, B. G. Lee, C. V. Jahnes, F. E. Doany, C. L. Schow, J. A. Kash, and Y. A. Vlasov, “Non-blocking 4 × 4 electro-optic silicon switch for on-chip photonic networks,” Opt. Express 19, 47-54 (2011).
    [Crossref]
  17. A. V. Rylyakov, C. L. Schow, B. G. Lee, W. M. J. Green, S. Assefa, F. E. Doany, M. Yang, J. Van Campenhout, C. V. Jahnes, J. A. Kash, and Y. A. Vlasov, “Silicon photonic switches hybrid-integrated with CMOS drivers,” IEEE J. Solid-State Circuits 47, 345–354 (2012).
    [Crossref]
  18. B. G. Lee, A. V. Rylyakov, W. M. J. Green, S. Assefa, C. W. Baks, R. Rimolo-Donadio, D. M. Kuchta, M. H. Khater, T. Barwicz, C. Reinholm, E. Kiewra, S. M. Shank, C. L. Schow, and Y. A. Vlasov, “Monolithic silicon integration of scaled photonic switch fabrics, CMOS logic, and device driver circuits,” J. Lightwave Technol. 32, 743–751 (2014).
    [Crossref]
  19. S. Sohma, T. Watanabe, N. Ooba, M. Itoh, T. Shibata, and H. Takahashi, “Silica-based PLC type 32 × 32 optical matrix switch,” in European Conference on Optical Communications (ECOC) (2006).
  20. L. Chen and Y. Chen, “Compact, low-loss and low-power 8×8 broadband silicon optical switch,” Opt. Express 20, 18977-18985 (2012).
    [Crossref]
  21. K. Suzuki, K. Tanizawa, T. Matsukawa, G. Cong, S.-H. Kim, S. Suda, M. Ohno, T. Chiba, H. Tadokoro, M. Yanagihara, Y. Igarashi, M. Masahara, S. Namiki, and H. Kawashima, “Ultra-compact 8 × 8 strictly-non-blocking Si-wire PILOSS switch,” Opt. Express 22, 3887–3894 (2014).
    [Crossref]
  22. K. Tanizawa, K. Suzuki, M. Toyama, M. Ohtsuka, N. Yokoyama, K. Matsumaro, M. Seki, K. Koshino, T. Sugaya, S. Suda, G. Cong, T. Kimura, K. Ikeda, S. Namiki, and H. Kawashima, “Ultra-compact 32 × 32 strictly-non-blocking Si-wire optical switch with fan-out LGA interposer,” Opt. Express 23, 17599–17606 (2015).
    [Crossref]
  23. S. Han, T. J. Seok, N. Quack, B.-W. Yoo, and M. C. Wu, “Large-scale silicon photonic switches with movable directional couplers,” Optica 2, 370–375 (2015).
    [Crossref]
  24. M. C. Wu, O. Solgaard, and J. E. Ford, “Optical MEMS for lightwave communication,” J. Lightwave Technol. 24, 4433–4454 (2006).
    [Crossref]
  25. V. Kaman, R. J. Helkey, and J. E. Bowers, “Compact and scalable three-dimensional microelectromechanical system optical switches,” J. Opt. Netw. 6, 19–24 (2007).
    [Crossref]
  26. T. G. Tiecke, K. P. Nayak, J. D. Thompson, T. Peyronel, N. P. de Leon, V. Vuletić, and M. D. Lukin, “Efficient fiber-optical interface for nanophotonic devices,” Optica 2, 70–75 (2015).
    [Crossref]
  27. J. G. Korvink and O. Paul, eds., MEMS: A Practical Guide to Design, Analysis, and Applications (William Andrew, 2006).

2015 (5)

2014 (3)

2013 (1)

N. Farrington, A. Forencich, G. Porter, P.-C. Sun, J. E. Ford, Y. Fainman, G. C. Papen, and A. Vahdat, “A multiport microsecond optical circuit switch for data center networking,” IEEE Photon. Technol. Lett. 25, 1589–1592 (2013).
[Crossref]

2012 (2)

A. V. Rylyakov, C. L. Schow, B. G. Lee, W. M. J. Green, S. Assefa, F. E. Doany, M. Yang, J. Van Campenhout, C. V. Jahnes, J. A. Kash, and Y. A. Vlasov, “Silicon photonic switches hybrid-integrated with CMOS drivers,” IEEE J. Solid-State Circuits 47, 345–354 (2012).
[Crossref]

L. Chen and Y. Chen, “Compact, low-loss and low-power 8×8 broadband silicon optical switch,” Opt. Express 20, 18977-18985 (2012).
[Crossref]

2011 (2)

2010 (3)

Y. Shoji, K. Kintaka, S. Suda, H. Kawashima, T. Hasama, and H. Ishikawa, “Low-crosstalk 2 × 2 thermo-optic switch with silicon wire waveguides,” Opt. Express 18, 9071–9075 (2010).
[Crossref]

D. Liang and J. E. Bowers, “Recent progress in lasers on silicon,” Nat. Photonics 4, 511-517 (2010).
[Crossref]

G. T. Reed, G. Mashanovich, F. Y. Gardes, and D. J. Thomson, “Silicon optical modulators,” Nat. Photonics 4, 518–526 (2010).
[Crossref]

2009 (1)

2008 (1)

Y. Vlasov, W. M. J. Green, and F. Xia, “High-throughput silicon nanophotonic wavelength-insensitive switch for on-chip optical networks,” Nat. Photonics 2, 242–246 (2008).
[Crossref]

2007 (1)

2006 (1)

Absil, P. P.

Andersen, D. G.

G. Wang, D. G. Andersen, M. Kaminsky, K. Papagiannaki, T. S. E. Ng, M. Kozuch, and M. Ryan, “c-through: part-time optics in data centers,” in Proceedings of the ACM SIGCOMM Conference (ACM, 2010), pp. 327–338.

Asghari, M.

M. Asghari and A. V. Krishnamoorthy, “Silicon photonics: energy-efficient communication,” Nat. Photonics 5, 268–270 (2011).
[Crossref]

Assefa, S.

Baks, C. W.

Barwicz, T.

Bickford, J. R.

Bowers, J.

J. Bowers, A. Raza, D. Tardent, and J. Miglani, “Advantages and control of hybrid packet optical-circuit-switched data center networks,” in Advanced Photonics for Communications, OSA Technical Digest (online) (Optical Society of America, 2014), paper PM2C.4.

Bowers, J. E.

Budd, R.

Chang, S.-P.

L. Schares, X. J. Zhang, R. Wagle, D. Rajan, P. Selo, S.-P. Chang, J. R. Giles, K. Hildrum, D. M. Kuchta, J. L. Wolf, and E. Schenfeld, “A reconfigurable interconnect fabric with optical circuit switch and software optimizer for stream computing systems,” in Optical Fiber Communication Conference and National Fiber Optic Engineers Conference, OSA Technical Digest (CD) (Optical Society of America, 2009), paper OTuA1.

Chen, L.

Chen, Y.

Chen-Sun, P.

G. Porter, R. Strong, N. Farrington, A. Forencich, P. Chen-Sun, T. Rosing, Y. Fainman, G. Papen, and A. Vahdat, “Integrating microsecond circuit switching into the data center,” in Proceedings of the ACM SIGCOMM 2013 Conference (ACM, 2013), pp. 447–458.

Chiba, T.

Cong, G.

De Coster, J.

De Heyn, P.

de Leon, N. P.

Doany, F. E.

A. V. Rylyakov, C. L. Schow, B. G. Lee, W. M. J. Green, S. Assefa, F. E. Doany, M. Yang, J. Van Campenhout, C. V. Jahnes, J. A. Kash, and Y. A. Vlasov, “Silicon photonic switches hybrid-integrated with CMOS drivers,” IEEE J. Solid-State Circuits 47, 345–354 (2012).
[Crossref]

M. Yang, W. M. J. Green, S. Assefa, J. Van Campenhout, B. G. Lee, C. V. Jahnes, F. E. Doany, C. L. Schow, J. A. Kash, and Y. A. Vlasov, “Non-blocking 4 × 4 electro-optic silicon switch for on-chip photonic networks,” Opt. Express 19, 47-54 (2011).
[Crossref]

Dupuis, N.

Fainman, Y.

N. Farrington, A. Forencich, G. Porter, P.-C. Sun, J. E. Ford, Y. Fainman, G. C. Papen, and A. Vahdat, “A multiport microsecond optical circuit switch for data center networking,” IEEE Photon. Technol. Lett. 25, 1589–1592 (2013).
[Crossref]

G. Porter, R. Strong, N. Farrington, A. Forencich, P. Chen-Sun, T. Rosing, Y. Fainman, G. Papen, and A. Vahdat, “Integrating microsecond circuit switching into the data center,” in Proceedings of the ACM SIGCOMM 2013 Conference (ACM, 2013), pp. 447–458.

Farrington, N.

N. Farrington, A. Forencich, G. Porter, P.-C. Sun, J. E. Ford, Y. Fainman, G. C. Papen, and A. Vahdat, “A multiport microsecond optical circuit switch for data center networking,” IEEE Photon. Technol. Lett. 25, 1589–1592 (2013).
[Crossref]

G. Porter, R. Strong, N. Farrington, A. Forencich, P. Chen-Sun, T. Rosing, Y. Fainman, G. Papen, and A. Vahdat, “Integrating microsecond circuit switching into the data center,” in Proceedings of the ACM SIGCOMM 2013 Conference (ACM, 2013), pp. 447–458.

Ford, J. E.

N. Farrington, A. Forencich, G. Porter, P.-C. Sun, J. E. Ford, Y. Fainman, G. C. Papen, and A. Vahdat, “A multiport microsecond optical circuit switch for data center networking,” IEEE Photon. Technol. Lett. 25, 1589–1592 (2013).
[Crossref]

M. C. Wu, O. Solgaard, and J. E. Ford, “Optical MEMS for lightwave communication,” J. Lightwave Technol. 24, 4433–4454 (2006).
[Crossref]

Forencich, A.

N. Farrington, A. Forencich, G. Porter, P.-C. Sun, J. E. Ford, Y. Fainman, G. C. Papen, and A. Vahdat, “A multiport microsecond optical circuit switch for data center networking,” IEEE Photon. Technol. Lett. 25, 1589–1592 (2013).
[Crossref]

G. Porter, R. Strong, N. Farrington, A. Forencich, P. Chen-Sun, T. Rosing, Y. Fainman, G. Papen, and A. Vahdat, “Integrating microsecond circuit switching into the data center,” in Proceedings of the ACM SIGCOMM 2013 Conference (ACM, 2013), pp. 447–458.

Gardes, F. Y.

G. T. Reed, G. Mashanovich, F. Y. Gardes, and D. J. Thomson, “Silicon optical modulators,” Nat. Photonics 4, 518–526 (2010).
[Crossref]

Giles, J. R.

L. Schares, X. J. Zhang, R. Wagle, D. Rajan, P. Selo, S.-P. Chang, J. R. Giles, K. Hildrum, D. M. Kuchta, J. L. Wolf, and E. Schenfeld, “A reconfigurable interconnect fabric with optical circuit switch and software optimizer for stream computing systems,” in Optical Fiber Communication Conference and National Fiber Optic Engineers Conference, OSA Technical Digest (CD) (Optical Society of America, 2009), paper OTuA1.

Green, W. M.

Green, W. M. J.

B. G. Lee, A. V. Rylyakov, W. M. J. Green, S. Assefa, C. W. Baks, R. Rimolo-Donadio, D. M. Kuchta, M. H. Khater, T. Barwicz, C. Reinholm, E. Kiewra, S. M. Shank, C. L. Schow, and Y. A. Vlasov, “Monolithic silicon integration of scaled photonic switch fabrics, CMOS logic, and device driver circuits,” J. Lightwave Technol. 32, 743–751 (2014).
[Crossref]

A. V. Rylyakov, C. L. Schow, B. G. Lee, W. M. J. Green, S. Assefa, F. E. Doany, M. Yang, J. Van Campenhout, C. V. Jahnes, J. A. Kash, and Y. A. Vlasov, “Silicon photonic switches hybrid-integrated with CMOS drivers,” IEEE J. Solid-State Circuits 47, 345–354 (2012).
[Crossref]

M. Yang, W. M. J. Green, S. Assefa, J. Van Campenhout, B. G. Lee, C. V. Jahnes, F. E. Doany, C. L. Schow, J. A. Kash, and Y. A. Vlasov, “Non-blocking 4 × 4 electro-optic silicon switch for on-chip photonic networks,” Opt. Express 19, 47-54 (2011).
[Crossref]

Y. Vlasov, W. M. J. Green, and F. Xia, “High-throughput silicon nanophotonic wavelength-insensitive switch for on-chip optical networks,” Nat. Photonics 2, 242–246 (2008).
[Crossref]

Han, S.

Hasama, T.

Helkey, R. J.

Hildrum, K.

L. Schares, X. J. Zhang, R. Wagle, D. Rajan, P. Selo, S.-P. Chang, J. R. Giles, K. Hildrum, D. M. Kuchta, J. L. Wolf, and E. Schenfeld, “A reconfigurable interconnect fabric with optical circuit switch and software optimizer for stream computing systems,” in Optical Fiber Communication Conference and National Fiber Optic Engineers Conference, OSA Technical Digest (CD) (Optical Society of America, 2009), paper OTuA1.

Igarashi, Y.

Ikeda, K.

Ishikawa, H.

Itoh, M.

S. Sohma, T. Watanabe, N. Ooba, M. Itoh, T. Shibata, and H. Takahashi, “Silica-based PLC type 32 × 32 optical matrix switch,” in European Conference on Optical Communications (ECOC) (2006).

Jahnes, C. V.

A. V. Rylyakov, C. L. Schow, B. G. Lee, W. M. J. Green, S. Assefa, F. E. Doany, M. Yang, J. Van Campenhout, C. V. Jahnes, J. A. Kash, and Y. A. Vlasov, “Silicon photonic switches hybrid-integrated with CMOS drivers,” IEEE J. Solid-State Circuits 47, 345–354 (2012).
[Crossref]

M. Yang, W. M. J. Green, S. Assefa, J. Van Campenhout, B. G. Lee, C. V. Jahnes, F. E. Doany, C. L. Schow, J. A. Kash, and Y. A. Vlasov, “Non-blocking 4 × 4 electro-optic silicon switch for on-chip photonic networks,” Opt. Express 19, 47-54 (2011).
[Crossref]

Johnson, C.

A. Vahdat, H. Liu, X. Zhao, and C. Johnson, “The emerging optical data center,” in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference, OSA Technical Digest (CD) (Optical Society of America, 2011), paper OTuH2.

Kaman, V.

Kaminsky, M.

G. Wang, D. G. Andersen, M. Kaminsky, K. Papagiannaki, T. S. E. Ng, M. Kozuch, and M. Ryan, “c-through: part-time optics in data centers,” in Proceedings of the ACM SIGCOMM Conference (ACM, 2010), pp. 327–338.

Kash, J. A.

A. V. Rylyakov, C. L. Schow, B. G. Lee, W. M. J. Green, S. Assefa, F. E. Doany, M. Yang, J. Van Campenhout, C. V. Jahnes, J. A. Kash, and Y. A. Vlasov, “Silicon photonic switches hybrid-integrated with CMOS drivers,” IEEE J. Solid-State Circuits 47, 345–354 (2012).
[Crossref]

M. Yang, W. M. J. Green, S. Assefa, J. Van Campenhout, B. G. Lee, C. V. Jahnes, F. E. Doany, C. L. Schow, J. A. Kash, and Y. A. Vlasov, “Non-blocking 4 × 4 electro-optic silicon switch for on-chip photonic networks,” Opt. Express 19, 47-54 (2011).
[Crossref]

Kawashima, H.

Khater, M. H.

Kiewra, E.

Kim, S.-H.

Kimura, T.

Kintaka, K.

Koshino, K.

Kozuch, M.

G. Wang, D. G. Andersen, M. Kaminsky, K. Papagiannaki, T. S. E. Ng, M. Kozuch, and M. Ryan, “c-through: part-time optics in data centers,” in Proceedings of the ACM SIGCOMM Conference (ACM, 2010), pp. 327–338.

Krishnamoorthy, A. V.

M. Asghari and A. V. Krishnamoorthy, “Silicon photonics: energy-efficient communication,” Nat. Photonics 5, 268–270 (2011).
[Crossref]

Kuchta, D. M.

B. G. Lee, A. V. Rylyakov, W. M. J. Green, S. Assefa, C. W. Baks, R. Rimolo-Donadio, D. M. Kuchta, M. H. Khater, T. Barwicz, C. Reinholm, E. Kiewra, S. M. Shank, C. L. Schow, and Y. A. Vlasov, “Monolithic silicon integration of scaled photonic switch fabrics, CMOS logic, and device driver circuits,” J. Lightwave Technol. 32, 743–751 (2014).
[Crossref]

L. Schares, X. J. Zhang, R. Wagle, D. Rajan, P. Selo, S.-P. Chang, J. R. Giles, K. Hildrum, D. M. Kuchta, J. L. Wolf, and E. Schenfeld, “A reconfigurable interconnect fabric with optical circuit switch and software optimizer for stream computing systems,” in Optical Fiber Communication Conference and National Fiber Optic Engineers Conference, OSA Technical Digest (CD) (Optical Society of America, 2009), paper OTuA1.

Lee, B. G.

Lepage, G.

Liang, D.

D. Liang and J. E. Bowers, “Recent progress in lasers on silicon,” Nat. Photonics 4, 511-517 (2010).
[Crossref]

Liu, H.

A. Vahdat, H. Liu, X. Zhao, and C. Johnson, “The emerging optical data center,” in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference, OSA Technical Digest (CD) (Optical Society of America, 2011), paper OTuH2.

Lukin, M. D.

Masahara, M.

Mashanovich, G.

G. T. Reed, G. Mashanovich, F. Y. Gardes, and D. J. Thomson, “Silicon optical modulators,” Nat. Photonics 4, 518–526 (2010).
[Crossref]

Matsukawa, T.

Matsumaro, K.

Miglani, J.

J. Bowers, A. Raza, D. Tardent, and J. Miglani, “Advantages and control of hybrid packet optical-circuit-switched data center networks,” in Advanced Photonics for Communications, OSA Technical Digest (online) (Optical Society of America, 2014), paper PM2C.4.

Namiki, S.

Nayak, K. P.

Ng, T. S. E.

G. Wang, D. G. Andersen, M. Kaminsky, K. Papagiannaki, T. S. E. Ng, M. Kozuch, and M. Ryan, “c-through: part-time optics in data centers,” in Proceedings of the ACM SIGCOMM Conference (ACM, 2010), pp. 327–338.

Ohno, M.

Ohtsuka, M.

Ooba, N.

S. Sohma, T. Watanabe, N. Ooba, M. Itoh, T. Shibata, and H. Takahashi, “Silica-based PLC type 32 × 32 optical matrix switch,” in European Conference on Optical Communications (ECOC) (2006).

Pantouvaki, M.

Papagiannaki, K.

G. Wang, D. G. Andersen, M. Kaminsky, K. Papagiannaki, T. S. E. Ng, M. Kozuch, and M. Ryan, “c-through: part-time optics in data centers,” in Proceedings of the ACM SIGCOMM Conference (ACM, 2010), pp. 327–338.

Papen, G.

G. Porter, R. Strong, N. Farrington, A. Forencich, P. Chen-Sun, T. Rosing, Y. Fainman, G. Papen, and A. Vahdat, “Integrating microsecond circuit switching into the data center,” in Proceedings of the ACM SIGCOMM 2013 Conference (ACM, 2013), pp. 447–458.

Papen, G. C.

N. Farrington, A. Forencich, G. Porter, P.-C. Sun, J. E. Ford, Y. Fainman, G. C. Papen, and A. Vahdat, “A multiport microsecond optical circuit switch for data center networking,” IEEE Photon. Technol. Lett. 25, 1589–1592 (2013).
[Crossref]

Pepeljugoski, P.

Peyronel, T.

Porter, G.

N. Farrington, A. Forencich, G. Porter, P.-C. Sun, J. E. Ford, Y. Fainman, G. C. Papen, and A. Vahdat, “A multiport microsecond optical circuit switch for data center networking,” IEEE Photon. Technol. Lett. 25, 1589–1592 (2013).
[Crossref]

G. Porter, R. Strong, N. Farrington, A. Forencich, P. Chen-Sun, T. Rosing, Y. Fainman, G. Papen, and A. Vahdat, “Integrating microsecond circuit switching into the data center,” in Proceedings of the ACM SIGCOMM 2013 Conference (ACM, 2013), pp. 447–458.

Quack, N.

Rajan, D.

L. Schares, X. J. Zhang, R. Wagle, D. Rajan, P. Selo, S.-P. Chang, J. R. Giles, K. Hildrum, D. M. Kuchta, J. L. Wolf, and E. Schenfeld, “A reconfigurable interconnect fabric with optical circuit switch and software optimizer for stream computing systems,” in Optical Fiber Communication Conference and National Fiber Optic Engineers Conference, OSA Technical Digest (CD) (Optical Society of America, 2009), paper OTuA1.

Raza, A.

J. Bowers, A. Raza, D. Tardent, and J. Miglani, “Advantages and control of hybrid packet optical-circuit-switched data center networks,” in Advanced Photonics for Communications, OSA Technical Digest (online) (Optical Society of America, 2014), paper PM2C.4.

Reed, G. T.

G. T. Reed, G. Mashanovich, F. Y. Gardes, and D. J. Thomson, “Silicon optical modulators,” Nat. Photonics 4, 518–526 (2010).
[Crossref]

Reinholm, C.

Rickman, A.

A. Rickman, “The commercialization of silicon photonics,” Nat. Photonics 8, 579–582 (2014).
[Crossref]

Rimolo-Donadio, R.

Rosing, T.

G. Porter, R. Strong, N. Farrington, A. Forencich, P. Chen-Sun, T. Rosing, Y. Fainman, G. Papen, and A. Vahdat, “Integrating microsecond circuit switching into the data center,” in Proceedings of the ACM SIGCOMM 2013 Conference (ACM, 2013), pp. 447–458.

Ryan, M.

G. Wang, D. G. Andersen, M. Kaminsky, K. Papagiannaki, T. S. E. Ng, M. Kozuch, and M. Ryan, “c-through: part-time optics in data centers,” in Proceedings of the ACM SIGCOMM Conference (ACM, 2010), pp. 327–338.

Rylyakov, A. V.

B. G. Lee, A. V. Rylyakov, W. M. J. Green, S. Assefa, C. W. Baks, R. Rimolo-Donadio, D. M. Kuchta, M. H. Khater, T. Barwicz, C. Reinholm, E. Kiewra, S. M. Shank, C. L. Schow, and Y. A. Vlasov, “Monolithic silicon integration of scaled photonic switch fabrics, CMOS logic, and device driver circuits,” J. Lightwave Technol. 32, 743–751 (2014).
[Crossref]

A. V. Rylyakov, C. L. Schow, B. G. Lee, W. M. J. Green, S. Assefa, F. E. Doany, M. Yang, J. Van Campenhout, C. V. Jahnes, J. A. Kash, and Y. A. Vlasov, “Silicon photonic switches hybrid-integrated with CMOS drivers,” IEEE J. Solid-State Circuits 47, 345–354 (2012).
[Crossref]

Schares, L.

B. G. Lee, N. Dupuis, P. Pepeljugoski, L. Schares, R. Budd, J. R. Bickford, and C. L. Schow, “Silicon photonic switch fabrics in computer communications systems,” J. Lightwave Technol. 33, 768–777 (2015).
[Crossref]

L. Schares, X. J. Zhang, R. Wagle, D. Rajan, P. Selo, S.-P. Chang, J. R. Giles, K. Hildrum, D. M. Kuchta, J. L. Wolf, and E. Schenfeld, “A reconfigurable interconnect fabric with optical circuit switch and software optimizer for stream computing systems,” in Optical Fiber Communication Conference and National Fiber Optic Engineers Conference, OSA Technical Digest (CD) (Optical Society of America, 2009), paper OTuA1.

Schenfeld, E.

L. Schares, X. J. Zhang, R. Wagle, D. Rajan, P. Selo, S.-P. Chang, J. R. Giles, K. Hildrum, D. M. Kuchta, J. L. Wolf, and E. Schenfeld, “A reconfigurable interconnect fabric with optical circuit switch and software optimizer for stream computing systems,” in Optical Fiber Communication Conference and National Fiber Optic Engineers Conference, OSA Technical Digest (CD) (Optical Society of America, 2009), paper OTuA1.

Schow, C. L.

Seki, M.

Selo, P.

L. Schares, X. J. Zhang, R. Wagle, D. Rajan, P. Selo, S.-P. Chang, J. R. Giles, K. Hildrum, D. M. Kuchta, J. L. Wolf, and E. Schenfeld, “A reconfigurable interconnect fabric with optical circuit switch and software optimizer for stream computing systems,” in Optical Fiber Communication Conference and National Fiber Optic Engineers Conference, OSA Technical Digest (CD) (Optical Society of America, 2009), paper OTuA1.

Seok, T. J.

Shank, S. M.

Shibata, T.

S. Sohma, T. Watanabe, N. Ooba, M. Itoh, T. Shibata, and H. Takahashi, “Silica-based PLC type 32 × 32 optical matrix switch,” in European Conference on Optical Communications (ECOC) (2006).

Shoji, Y.

Sohma, S.

S. Sohma, T. Watanabe, N. Ooba, M. Itoh, T. Shibata, and H. Takahashi, “Silica-based PLC type 32 × 32 optical matrix switch,” in European Conference on Optical Communications (ECOC) (2006).

Solgaard, O.

Strong, R.

G. Porter, R. Strong, N. Farrington, A. Forencich, P. Chen-Sun, T. Rosing, Y. Fainman, G. Papen, and A. Vahdat, “Integrating microsecond circuit switching into the data center,” in Proceedings of the ACM SIGCOMM 2013 Conference (ACM, 2013), pp. 447–458.

Suda, S.

Sugaya, T.

Sun, P.-C.

N. Farrington, A. Forencich, G. Porter, P.-C. Sun, J. E. Ford, Y. Fainman, G. C. Papen, and A. Vahdat, “A multiport microsecond optical circuit switch for data center networking,” IEEE Photon. Technol. Lett. 25, 1589–1592 (2013).
[Crossref]

Suzuki, K.

Tadokoro, H.

Takahashi, H.

S. Sohma, T. Watanabe, N. Ooba, M. Itoh, T. Shibata, and H. Takahashi, “Silica-based PLC type 32 × 32 optical matrix switch,” in European Conference on Optical Communications (ECOC) (2006).

Tanizawa, K.

Tardent, D.

J. Bowers, A. Raza, D. Tardent, and J. Miglani, “Advantages and control of hybrid packet optical-circuit-switched data center networks,” in Advanced Photonics for Communications, OSA Technical Digest (online) (Optical Society of America, 2014), paper PM2C.4.

Thompson, J. D.

Thomson, D. J.

G. T. Reed, G. Mashanovich, F. Y. Gardes, and D. J. Thomson, “Silicon optical modulators,” Nat. Photonics 4, 518–526 (2010).
[Crossref]

Tiecke, T. G.

Toyama, M.

Vahdat, A.

N. Farrington, A. Forencich, G. Porter, P.-C. Sun, J. E. Ford, Y. Fainman, G. C. Papen, and A. Vahdat, “A multiport microsecond optical circuit switch for data center networking,” IEEE Photon. Technol. Lett. 25, 1589–1592 (2013).
[Crossref]

A. Vahdat, H. Liu, X. Zhao, and C. Johnson, “The emerging optical data center,” in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference, OSA Technical Digest (CD) (Optical Society of America, 2011), paper OTuH2.

G. Porter, R. Strong, N. Farrington, A. Forencich, P. Chen-Sun, T. Rosing, Y. Fainman, G. Papen, and A. Vahdat, “Integrating microsecond circuit switching into the data center,” in Proceedings of the ACM SIGCOMM 2013 Conference (ACM, 2013), pp. 447–458.

Van Campenhout, J.

Verheyen, P.

Vlasov, Y.

Y. Vlasov, W. M. J. Green, and F. Xia, “High-throughput silicon nanophotonic wavelength-insensitive switch for on-chip optical networks,” Nat. Photonics 2, 242–246 (2008).
[Crossref]

Vlasov, Y. A.

Vuletic, V.

Wagle, R.

L. Schares, X. J. Zhang, R. Wagle, D. Rajan, P. Selo, S.-P. Chang, J. R. Giles, K. Hildrum, D. M. Kuchta, J. L. Wolf, and E. Schenfeld, “A reconfigurable interconnect fabric with optical circuit switch and software optimizer for stream computing systems,” in Optical Fiber Communication Conference and National Fiber Optic Engineers Conference, OSA Technical Digest (CD) (Optical Society of America, 2009), paper OTuA1.

Wang, G.

G. Wang, D. G. Andersen, M. Kaminsky, K. Papagiannaki, T. S. E. Ng, M. Kozuch, and M. Ryan, “c-through: part-time optics in data centers,” in Proceedings of the ACM SIGCOMM Conference (ACM, 2010), pp. 327–338.

Watanabe, T.

S. Sohma, T. Watanabe, N. Ooba, M. Itoh, T. Shibata, and H. Takahashi, “Silica-based PLC type 32 × 32 optical matrix switch,” in European Conference on Optical Communications (ECOC) (2006).

Wolf, J. L.

L. Schares, X. J. Zhang, R. Wagle, D. Rajan, P. Selo, S.-P. Chang, J. R. Giles, K. Hildrum, D. M. Kuchta, J. L. Wolf, and E. Schenfeld, “A reconfigurable interconnect fabric with optical circuit switch and software optimizer for stream computing systems,” in Optical Fiber Communication Conference and National Fiber Optic Engineers Conference, OSA Technical Digest (CD) (Optical Society of America, 2009), paper OTuA1.

Wu, M. C.

Xia, F.

Y. Vlasov, W. M. J. Green, and F. Xia, “High-throughput silicon nanophotonic wavelength-insensitive switch for on-chip optical networks,” Nat. Photonics 2, 242–246 (2008).
[Crossref]

Yanagihara, M.

Yang, M.

A. V. Rylyakov, C. L. Schow, B. G. Lee, W. M. J. Green, S. Assefa, F. E. Doany, M. Yang, J. Van Campenhout, C. V. Jahnes, J. A. Kash, and Y. A. Vlasov, “Silicon photonic switches hybrid-integrated with CMOS drivers,” IEEE J. Solid-State Circuits 47, 345–354 (2012).
[Crossref]

M. Yang, W. M. J. Green, S. Assefa, J. Van Campenhout, B. G. Lee, C. V. Jahnes, F. E. Doany, C. L. Schow, J. A. Kash, and Y. A. Vlasov, “Non-blocking 4 × 4 electro-optic silicon switch for on-chip photonic networks,” Opt. Express 19, 47-54 (2011).
[Crossref]

Yokoyama, N.

Yoo, B.-W.

Zhang, X. J.

L. Schares, X. J. Zhang, R. Wagle, D. Rajan, P. Selo, S.-P. Chang, J. R. Giles, K. Hildrum, D. M. Kuchta, J. L. Wolf, and E. Schenfeld, “A reconfigurable interconnect fabric with optical circuit switch and software optimizer for stream computing systems,” in Optical Fiber Communication Conference and National Fiber Optic Engineers Conference, OSA Technical Digest (CD) (Optical Society of America, 2009), paper OTuA1.

Zhao, X.

A. Vahdat, H. Liu, X. Zhao, and C. Johnson, “The emerging optical data center,” in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference, OSA Technical Digest (CD) (Optical Society of America, 2011), paper OTuH2.

IEEE J. Solid-State Circuits (1)

A. V. Rylyakov, C. L. Schow, B. G. Lee, W. M. J. Green, S. Assefa, F. E. Doany, M. Yang, J. Van Campenhout, C. V. Jahnes, J. A. Kash, and Y. A. Vlasov, “Silicon photonic switches hybrid-integrated with CMOS drivers,” IEEE J. Solid-State Circuits 47, 345–354 (2012).
[Crossref]

IEEE Photon. Technol. Lett. (1)

N. Farrington, A. Forencich, G. Porter, P.-C. Sun, J. E. Ford, Y. Fainman, G. C. Papen, and A. Vahdat, “A multiport microsecond optical circuit switch for data center networking,” IEEE Photon. Technol. Lett. 25, 1589–1592 (2013).
[Crossref]

J. Lightwave Technol. (3)

J. Opt. Netw. (1)

Nat. Photonics (5)

D. Liang and J. E. Bowers, “Recent progress in lasers on silicon,” Nat. Photonics 4, 511-517 (2010).
[Crossref]

G. T. Reed, G. Mashanovich, F. Y. Gardes, and D. J. Thomson, “Silicon optical modulators,” Nat. Photonics 4, 518–526 (2010).
[Crossref]

M. Asghari and A. V. Krishnamoorthy, “Silicon photonics: energy-efficient communication,” Nat. Photonics 5, 268–270 (2011).
[Crossref]

A. Rickman, “The commercialization of silicon photonics,” Nat. Photonics 8, 579–582 (2014).
[Crossref]

Y. Vlasov, W. M. J. Green, and F. Xia, “High-throughput silicon nanophotonic wavelength-insensitive switch for on-chip optical networks,” Nat. Photonics 2, 242–246 (2008).
[Crossref]

Opt. Express (7)

J. Van Campenhout, W. M. Green, S. Assefa, and Y. A. Vlasov, “Low-power, 2 × 2 silicon electro-optic switch with 110-nm bandwidth for broadband reconfigurable optical networks,” Opt. Express 17, 24020–24029 (2009).
[Crossref]

Y. Shoji, K. Kintaka, S. Suda, H. Kawashima, T. Hasama, and H. Ishikawa, “Low-crosstalk 2 × 2 thermo-optic switch with silicon wire waveguides,” Opt. Express 18, 9071–9075 (2010).
[Crossref]

M. Yang, W. M. J. Green, S. Assefa, J. Van Campenhout, B. G. Lee, C. V. Jahnes, F. E. Doany, C. L. Schow, J. A. Kash, and Y. A. Vlasov, “Non-blocking 4 × 4 electro-optic silicon switch for on-chip photonic networks,” Opt. Express 19, 47-54 (2011).
[Crossref]

L. Chen and Y. Chen, “Compact, low-loss and low-power 8×8 broadband silicon optical switch,” Opt. Express 20, 18977-18985 (2012).
[Crossref]

K. Suzuki, K. Tanizawa, T. Matsukawa, G. Cong, S.-H. Kim, S. Suda, M. Ohno, T. Chiba, H. Tadokoro, M. Yanagihara, Y. Igarashi, M. Masahara, S. Namiki, and H. Kawashima, “Ultra-compact 8 × 8 strictly-non-blocking Si-wire PILOSS switch,” Opt. Express 22, 3887–3894 (2014).
[Crossref]

K. Tanizawa, K. Suzuki, M. Toyama, M. Ohtsuka, N. Yokoyama, K. Matsumaro, M. Seki, K. Koshino, T. Sugaya, S. Suda, G. Cong, T. Kimura, K. Ikeda, S. Namiki, and H. Kawashima, “Ultra-compact 32 × 32 strictly-non-blocking Si-wire optical switch with fan-out LGA interposer,” Opt. Express 23, 17599–17606 (2015).
[Crossref]

P. P. Absil, P. Verheyen, P. De Heyn, M. Pantouvaki, G. Lepage, J. De Coster, and J. Van Campenhout, “Silicon photonics integrated circuits: a manufacturing platform for high density, low power optical I/O’s,” Opt. Express 23, 9369–9378 (2015).
[Crossref]

Optica (2)

Other (7)

J. G. Korvink and O. Paul, eds., MEMS: A Practical Guide to Design, Analysis, and Applications (William Andrew, 2006).

S. Sohma, T. Watanabe, N. Ooba, M. Itoh, T. Shibata, and H. Takahashi, “Silica-based PLC type 32 × 32 optical matrix switch,” in European Conference on Optical Communications (ECOC) (2006).

G. Porter, R. Strong, N. Farrington, A. Forencich, P. Chen-Sun, T. Rosing, Y. Fainman, G. Papen, and A. Vahdat, “Integrating microsecond circuit switching into the data center,” in Proceedings of the ACM SIGCOMM 2013 Conference (ACM, 2013), pp. 447–458.

J. Bowers, A. Raza, D. Tardent, and J. Miglani, “Advantages and control of hybrid packet optical-circuit-switched data center networks,” in Advanced Photonics for Communications, OSA Technical Digest (online) (Optical Society of America, 2014), paper PM2C.4.

L. Schares, X. J. Zhang, R. Wagle, D. Rajan, P. Selo, S.-P. Chang, J. R. Giles, K. Hildrum, D. M. Kuchta, J. L. Wolf, and E. Schenfeld, “A reconfigurable interconnect fabric with optical circuit switch and software optimizer for stream computing systems,” in Optical Fiber Communication Conference and National Fiber Optic Engineers Conference, OSA Technical Digest (CD) (Optical Society of America, 2009), paper OTuA1.

G. Wang, D. G. Andersen, M. Kaminsky, K. Papagiannaki, T. S. E. Ng, M. Kozuch, and M. Ryan, “c-through: part-time optics in data centers,” in Proceedings of the ACM SIGCOMM Conference (ACM, 2010), pp. 327–338.

A. Vahdat, H. Liu, X. Zhao, and C. Johnson, “The emerging optical data center,” in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference, OSA Technical Digest (CD) (Optical Society of America, 2011), paper OTuH2.

Supplementary Material (1)

NameDescription
» Supplement 1: PDF (2569 KB)      Supplementary Information

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1.
Fig. 1. Schematics of silicon photonic MEMS switches. (a) Matrix architecture of silicon photonic MEMS switch, (b) close-up view of a MEMS-actuated adiabatic coupler, (c) switch unit cell in the OFF state, and (d) switch unit cell in the ON state. The adiabatic coupler is precisely positioned at the optimum distance to the bus waveguide.
Fig. 2.
Fig. 2. Numerical simulations of the adiabatic directional coupler. (a) Schematic of the simulated structure. The ridge width of the adiabatic coupler is tapered from 150 nm to 1 μm over a 30 μm length. (b) Effective refractive index calculation of adiabatic coupler modes. The gap spacing between two waveguides is 125 nm. Dashed and dotted lines represent the individual effective refractive indices of the bus waveguide and coupler waveguide, respectively. (c) Field profile of bus waveguide and adiabatic coupler at 0, 6, 12, 18, 24, and 30 μm distances (Gap=125nm).
Fig. 3.
Fig. 3. Simulated transfer characteristics of the designed adiabatic coupler. (a) Transmissions of the through and drop ports versus vertical gap spacing between the bus and coupler waveguides at 1550 nm wavelength, (b) spectral response of the drop port for various gap spacing. The designed adiabatic coupler exhibits broadband operation over a 300 nm wavelength range (1400–1700 nm).
Fig. 4.
Fig. 4. Fabricated large-scale silicon photonic switches. (a) Microscope image of the fabricated device. A 64×64 silicon photonic switch array is integrated on an area of 7mm×7mm. (b) Microscope image of a unit cell, (c) perspective SEM image of the fabricated silicon photonic switch array, (d) SEM image of a unit cell. Bus waveguides and coupler waveguides are highlighted with red and blue colors, respectively. (e) Close-up view SEM of the adiabatic coupler. The spacing between the bus and coupler waveguides is precisely defined by mechanical stoppers in the ON state. (f),(g) SEM images of the adiabatic couplers in (f) the OFF state and (g) the ON state.
Fig. 5.
Fig. 5. Measured transfer characteristics as a function of actuation voltage. The digital switching characteristic is clearly observed.
Fig. 6.
Fig. 6. Measured temporal response of a switch unit cell.
Fig. 7.
Fig. 7. Laser Doppler vibrometer measurement of a MEMS-actuated adiabatic coupler. The measured mechanical resonance frequency is 0.71 MHz.
Fig. 8.
Fig. 8. Measured spectral response of a switch unit cell confirming broadband operation.
Fig. 9.
Fig. 9. On-chip insertion loss with various light paths. The passive loss per cell and switching loss are estimated to be 0.026 and 0.47 dB, respectively.
Fig. 10.
Fig. 10. Reliability test of the fabricated silicon photonic MEMS switch. (a) Repeatability test. The switch was turned on and off at 100 kHz, and the optical transmissions were measured every 10 million cycles. The switch successfully operated over 10 billion cycles without significant performance degradation. (b) Stiction test. The switch is held in the ON state continuously for various amount of time. No stiction was observed upto 48 h of contact time.

Metrics