Abstract

Optical quantum memory is an essential element for long-distance quantum communication and photonic quantum computation protocols. The practical implementation of such protocols requires an efficient quantum memory with a long coherence time. Beating the no-cloning limit, for example, requires efficiencies above 50%. An ideal optical fiber loop has a loss of 50% in 100 μs, and until now no universal quantum memory has beaten this time efficiency limit. Here, we report results of a gradient echo memory experiment in a cold atomic ensemble with a 1/e coherence time up to 1 ms and maximum efficiency up to 87%±2% for short storage times. Our experimental data demonstrate greater than 50% efficiency for storage times up to 0.6 ms. Quantum storage ability is verified beyond the ideal fiber limit using heterodyne tomography of small coherent states.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Protecting a quantum memory for a photonic polarization qubit in a cold atomic ensemble by dynamical decoupling

Yuelong Wu, Lirong Chen, Zhongxiao Xu, and Hai Wang
Opt. Express 22(19) 23360-23371 (2014)

Simple and efficient absorption filter for single photons from a cold atom quantum memory

Daniel T. Stack, Patricia J. Lee, and Qudsia Quraishi
Opt. Express 23(5) 6822-6832 (2015)

Dual-rail optical gradient echo memory

D. B. Higginbottom, J. Geng, G. T. Campbell, M. Hosseini, M. T. Cao, B. M. Sparkes, J. Bernu, N. P. Robins, P. K. Lam, and B. C. Buchler
Opt. Express 23(19) 24937-24944 (2015)

References

  • View by:
  • |
  • |
  • |

  1. A. I. Lvovsky, B. C. Sanders, and W. Tittel, “Optical quantum memory,” Nat. Photonics 3, 706–714 (2009).
    [Crossref]
  2. N. Sangouard, C. Simon, H. De Riedmatten, and N. Gisin, “Quantum repeaters based on atomic ensembles and linear optics,” Rev. Mod. Phys. 83, 33–80 (2011).
    [Crossref]
  3. H. J. Kimble, “The quantum Internet,” Nature 453, 1023–1030 (2008).
    [Crossref]
  4. E. Knill, R. Laflamme, and G. J. Milburn, “A scheme for efficient quantum computation with linear optics,” Nature 409, 46–52 (2001).
    [Crossref]
  5. Y.-H. Chen, M.-J. Lee, I.-C. Wang, S. Du, Y.-F. Chen, Y.-C. Chen, and I. A. Yu, “Coherent optical memory with high storage efficiency and large fractional delay,” Phys. Rev. Lett. 110, 083601 (2013).
    [Crossref]
  6. Lifetime here is defined as the time taken for the efficiency to drop by a factor of e.
  7. G. Heinze, C. Hubrich, and T. Halfmann, “Stopped light and image storage by electromagnetically induced transparency up to the regime of one minute,” Phys. Rev. Lett. 111, 033601 (2013).
    [Crossref]
  8. K. F. Reim, J. Nunn, V. O. Lorenz, B. J. Sussman, K. C. Lee, N. K. Langford, D. Jaksch, and I. A. Walmsley, “Towards high-speed optical quantum memories,” Nat. Photonics 4, 218–221 (2010).
    [Crossref]
  9. K. F. Reim, P. Michelberger, K. C. Lee, J. Nunn, N. K. Langford, and I. A. Walmsley, “Single-photon-level quantum memory at room temperature,” Phys. Rev. Lett. 107, 053603 (2011).
    [Crossref]
  10. M. Sabooni, Q. Li, S. Kroll, and L. Rippe, “Efficient quantum memory using a weakly absorbing sample,” Phys. Rev. Lett. 110, 133604 (2013).
    [Crossref]
  11. P. Jobez, C. Laplane, N. Timoney, N. Gisin, A. Ferrier, P. Goldner, and M. Afzelius, “Coherent spin control at the quantum level in an ensemble-based optical memory,” Phys. Rev. Lett. 114, 230502 (2015).
    [Crossref]
  12. M. Hosseini, B. M. Sparkes, G. Campbell, P. K. Lam, and B. C. Buchler, “High efficiency coherent optical memory with warm rubidium vapour,” Nat. Commun. 2, 174 (2011).
    [Crossref]
  13. M. P. Hedges, J. J. Longdell, Y. Li, and M. J. Sellars, “Efficient quantum memory for light,” Nature 465, 1052–1056 (2010).
    [Crossref]
  14. B. M. Sparkes, J. Bernu, M. Hosseini, J. Geng, Q. Glorieux, P. A. Altin, P. K. Lam, N. P. Robins, and B. C. Buchler, “Gradient echo memory in an ultra-high optical depth cold atomic ensemble,” New J. Phys. 15, 085027 (2013).
    [Crossref]
  15. F. Grosshans and P. Grangier, “Quantum cloning and teleportation criteria for continuous quantum variables,” Phys. Rev. A 64, 010301 (2001).
    [Crossref]
  16. M. Varnava, D. E. Browne, and T. Rudolph, “Loss tolerance in one-way quantum computation via counterfactual error correction,” Phys. Rev. Lett. 97, 120501 (2006).
    [Crossref]
  17. M. Hosseini, G. Campbell, B. M. Sparkes, P. K. Lam, and B. C. Buchler, “Unconditional room-temperature quantum memory,” Nat. Phys. 7, 794–798 (2011).
    [Crossref]
  18. S. Riedl, M. Lettner, C. Vo, S. Baur, G. Rempe, and S. Dürr, “Bose-Einstein condensate as a quantum memory for a photonic polarization qubit,” Phys. Rev. A 85, 022318 (2012).
    [Crossref]
  19. P. Jobez, I. Usmani, N. Timoney, C. Laplane, N. Gisin, and M. Afzelius, “Cavity-enhanced storage in an optical spin-wave memory,” New J. Phys. 16, 083005 (2014).
    [Crossref]
  20. J. Geng, G. T. Campbell, J. Bernu, D. B. Higginbottom, B. M. Sparkes, S. M. Assad, W. P. Zhang, N. P. Robins, P. K. Lam, and B. C. Buchler, “Electromagnetically induced transparency and four-wave mixing in a cold atomic ensemble with large optical depth,” New J. Phys. 16, 113053 (2014).
    [Crossref]
  21. W. Petrich, M. H. Anderson, J. R. Ensher, and E. A. Cornell, “Behavior of atoms in a compressed magneto-optical trap,” J. Opt. Soc. Am. B 11, 1332–1335 (1994).
    [Crossref]
  22. Y.-F. Hsiao, H.-S. Chen, P.-J. Tsai, and Y.-C. Chen, “Cold atomic media with ultrahigh optical depths,” Phys. Rev. A 90, 055401 (2014).
    [Crossref]
  23. See Supplement 1 for details of the numerical simulations, decay model, and multimode storage.
  24. F. Bussières, N. Sangouard, M. Afzelius, H. de Riedmatten, C. Simon, and W. Tittel, “Prospective applications of optical quantum memories,” J. Mod. Opt. 60, 1519–1537 (2013).
    [Crossref]
  25. S. D. Jenkins, T. Zhang, and T. A. B. Kennedy, “Motional dephasing of atomic clock spin waves in an optical lattice,” J. Phys. B 45, 124005 (2012).
    [Crossref]
  26. G. Hétet, J. J. Longdell, M. J. Sellars, P. K. Lam, and B. C. Buchler, “Multimodal properties and dynamics of gradient echo quantum memory,” Phys. Rev. Lett. 101, 203601 (2008).
    [Crossref]
  27. X. W. Luo, J. J. Hope, B. Hillman, and T. M. Stace, “Diffusion effects in gradient echo memory,” Phys. Rev. A 87, 062328 (2013).
    [Crossref]
  28. X.-H. Bao, A. Reingruber, P. Dietrich, J. Rui, A. Duck, T. Strassel, L. Li, N.-L. Liu, B. Zhao, and J.-W. Pan, “Efficient and long-lived quantum memory with cold atoms inside a ring cavity,” Nat. Phys. 8, 517–521 (2012).
    [Crossref]
  29. U. Leonhardt and H. Paul, “Measuring the quantum state of light,” Prog. Quantum Electron. 19, 89–130 (1995).
    [Crossref]
  30. G. Hetet, A. Peng, M. Johnsson, J. Hope, and P. K. Lam, “Characterization of electromagnetically-induced-transparency-based continuous-variable quantum memories,” Phys. Rev. A 77, 012323 (2008).
    [Crossref]
  31. T. C. Ralph and P. K. Lam, “Teleportation with bright squeezed light,” Phys. Rev. Lett. 81, 5668–5671 (1998).
    [Crossref]
  32. C. Liu, Z. Dutton, C. H. Behroozi, and L. V. Hau, “Observation of coherent optical information storage in an atomic medium using halted light pulses,” Nature 409, 490–493 (2001).
    [Crossref]
  33. J. J. Longdell, E. Fraval, M. J. Sellars, and N. B. Manson, “Stopped light with storage times greater than one second using electromagnetically induced transparency in a solid,” Phys. Rev. Lett. 95, 063601 (2005).
    [Crossref]
  34. K. S. Choi, H. Deng, J. Laurat, and H. J. Kimble, “Mapping photonic entanglement into and out of a quantum memory,” Nature 452, 67–71 (2008).
    [Crossref]
  35. N. B. Phillips, A. V. Gorshkov, and I. Novikova, “Optimal light storage in atomic vapor,” Phys. Rev. A 78, 023801 (2008).
    [Crossref]
  36. U. Schnorrberger, J. D. Thompson, S. Trotzky, R. Pugatch, N. Davidson, S. Kuhr, and I. Bloch, “Electromagnetically induced transparency and light storage in an atomic Mott insulator,” Phys. Rev. Lett. 103, 033003 (2009).
    [Crossref]
  37. R. Zhang, S. R. Garner, and L. V. Hau, “Creation of long-term coherent optical memory via controlled nonlinear interactions in Bose-Einstein condensates,” Phys. Rev. Lett. 103, 233602 (2009).
    [Crossref]
  38. R. Zhao, Y. O. Dudin, S. D. Jenkins, C. J. Campbell, D. N. Matsukevich, T. A. B. Kennedy, and A. Kuzmich, “Long-lived quantum memory,” Nat. Phys. 5, 100–104 (2009).
    [Crossref]
  39. S. Zhou, S. Zhang, C. Liu, J. F. Chen, J. Wen, M. Loy, G. Wong, and S. Du, “Optimal storage and retrieval of single-photon waveforms,” Opt. Express 20, 24124–24131 (2012).
    [Crossref]
  40. D. G. England, P. J. Bustard, J. Nunn, R. Lausten, and B. J. Sussman, “From photons to phonons and back: a THz optical memory in diamond,” Phys. Rev. Lett. 111, 243601 (2013).
    [Crossref]
  41. M. Gündoğan, M. Mazzera, P. M. Ledingham, M. Cristiani, and H. De Riedmatten, “Coherent storage of temporally multimode light using a spin-wave atomic frequency comb memory,” New J. Phys. 15, 045012 (2013).
    [Crossref]
  42. Z. Xu, Y. Wu, L. Tian, L. Chen, Z. Zhang, Z. Yan, S. Li, H. Wang, C. Xie, and K. Peng, “Long lifetime and high-fidelity quantum memory of photonic polarization qubit by lifting Zeeman degeneracy,” Phys. Rev. Lett. 111, 240503 (2013).
    [Crossref]
  43. M. R. Sprague, P. S. Michelberger, T. F. M. Champion, D. G. England, J. Nunn, X. M. Jin, W. S. Kolthammer, A. Abdolvand, P. St.J. Russell, and I. A. Walmsley, “Broadband single-photon-level memory in a hollow-core photonic crystal fibre,” Nat. Photonics 8, 287–291 (2014).
    [Crossref]
  44. J. I. Yoshikawa, K. Makino, S. Kurata, P. van Loock, and A. Furusawa, “Creation, storage, and on-demand release of optical quantum states with a negative Wigner function,” Phys. Rev. X 3, 041028 (2014).
  45. E. Bimbard, R. Boddeda, N. Vitrant, A. Grankin, V. Parigi, J. Stanojevic, A. Ourjoumtsev, and P. Grangier, “Homodyne tomography of a single photon retrieved on demand from a cavity-enhanced cold atom memory,” Phys. Rev. Lett. 112, 033601 (2014).
    [Crossref]
  46. A. Nicolas, L. Veissier, L. Giner, E. Giacobino, D. Maxein, and J. Laurat, “A quantum memory for orbital angular momentum photonic qubits,” Nat. Photonics 8, 234–238 (2014).
    [Crossref]
  47. D.-S. Ding, W. Zhang, Z.-Y. Zhou, S. Shi, G.-Y. Xiang, X.-S. Wang, Y.-K. Jiang, B.-S. Shi, and G.-C. Guo, “Quantum storage of orbital angular momentum entanglement in an atomic ensemble,” Phys. Rev. Lett. 114, 050502 (2015).
    [Crossref]
  48. B. Gouraud, D. Maxein, A. Nicolas, O. Morin, and J. Laurat, “Demonstration of a memory for tightly guided light in an optical nanofiber,” Phys. Rev. Lett. 114, 180503 (2015).
    [Crossref]
  49. D. L. McAuslan, P. M. Ledingham, W. R. Naylor, S. E. Bea-van, M. P. Hedges, M. J. Sellars, and J. J. Longdell, “Photon-echo quantum memories in inhomogeneously broadened two-level atoms,” Phys. Rev. A 84, 022309 (2011).
  50. J. Dajczgewand, J.-L. Le Gouët, A. Louchet-Chauvet, and T. Chanelière, “Large efficiency at telecom wavelength for optical quantum memories,” Opt. Lett. 39, 2711–2714 (2014).
    [Crossref]
  51. E. Saglamyurek, J. Jin, V. B. Verma, M. D. Shaw, F. Marsili, S. W. Nam, D. Oblak, and W. Tittel, “Quantum storage of entangled telecom-wavelength photons in an erbium-doped optical fibre,” Nat. Photonics 9, 83–87 (2015).
    [Crossref]
  52. B. Lauritzen, J. Minář, H. De Riedmatten, M. Afzelius, N. Sangouard, C. Simon, and N. Gisin, “Telecommunication-wavelength solid-state memory at the single photon level,” Phys. Rev. Lett. 104, 080502 (2010).
    [Crossref]
  53. S. Tanzilli, W. Tittel, M. Halder, O. Alibart, P. Baldi, N. Gisin, and H. Zbinden, “A photonic quantum information interface,” Nature 437, 116–120 (2005).
    [Crossref]
  54. R. Ikuta, Y. Kusaka, T. Kitano, H. Kato, T. Yamamoto, M. Koashi, and N. Imoto, “Wide-band quantum interface for visible-to-telecommunication wavelength conversion,” Nat. Commun. 2, 537 (2011).
    [Crossref]
  55. S. Zaske, A. Lenhard, and C. Becher, “Efficient frequency downconversion at the single photon level from the red spectral range to the telecommunications C-band,” Opt. Express 19, 12825 (2011).
    [Crossref]
  56. B. Albrecht, P. Farrera, X. Fernandez-Gonzalvo, M. Cristiani, and H. De Riedmatten, “A waveguide frequency converter connecting rubidium-based quantum memories to the telecom C-band,” Nat. Commun. 5, 3376 (2014).
  57. N. Maring, K. Kutluer, J. Cohen, M. Cristiani, M. Mazzera, P. M. Ledingham, and H. De Riedmatten, “Storage of up-converted telecom photons in a doped crystal,” New J. Phys. 16, 113021 (2014).
    [Crossref]
  58. Y. O. Dudin, L. Li, and A. Kuzmich, “Light storage on the time scale of a minute,” Phys. Rev. A 87, 031801 (2013).
    [Crossref]
  59. M. Zhong, M. P. Hedges, R. L. Ahlefeldt, J. G. Bartholomew, S. E. Beavan, S. M. Wittig, J. J. Longdell, and M. J. Sellars, “Optically addressable nuclear spins in a solid with a six-hour coherence time,” Nature 517, 177–180 (2015).
    [Crossref]

2015 (5)

P. Jobez, C. Laplane, N. Timoney, N. Gisin, A. Ferrier, P. Goldner, and M. Afzelius, “Coherent spin control at the quantum level in an ensemble-based optical memory,” Phys. Rev. Lett. 114, 230502 (2015).
[Crossref]

D.-S. Ding, W. Zhang, Z.-Y. Zhou, S. Shi, G.-Y. Xiang, X.-S. Wang, Y.-K. Jiang, B.-S. Shi, and G.-C. Guo, “Quantum storage of orbital angular momentum entanglement in an atomic ensemble,” Phys. Rev. Lett. 114, 050502 (2015).
[Crossref]

B. Gouraud, D. Maxein, A. Nicolas, O. Morin, and J. Laurat, “Demonstration of a memory for tightly guided light in an optical nanofiber,” Phys. Rev. Lett. 114, 180503 (2015).
[Crossref]

E. Saglamyurek, J. Jin, V. B. Verma, M. D. Shaw, F. Marsili, S. W. Nam, D. Oblak, and W. Tittel, “Quantum storage of entangled telecom-wavelength photons in an erbium-doped optical fibre,” Nat. Photonics 9, 83–87 (2015).
[Crossref]

M. Zhong, M. P. Hedges, R. L. Ahlefeldt, J. G. Bartholomew, S. E. Beavan, S. M. Wittig, J. J. Longdell, and M. J. Sellars, “Optically addressable nuclear spins in a solid with a six-hour coherence time,” Nature 517, 177–180 (2015).
[Crossref]

2014 (10)

B. Albrecht, P. Farrera, X. Fernandez-Gonzalvo, M. Cristiani, and H. De Riedmatten, “A waveguide frequency converter connecting rubidium-based quantum memories to the telecom C-band,” Nat. Commun. 5, 3376 (2014).

N. Maring, K. Kutluer, J. Cohen, M. Cristiani, M. Mazzera, P. M. Ledingham, and H. De Riedmatten, “Storage of up-converted telecom photons in a doped crystal,” New J. Phys. 16, 113021 (2014).
[Crossref]

J. Dajczgewand, J.-L. Le Gouët, A. Louchet-Chauvet, and T. Chanelière, “Large efficiency at telecom wavelength for optical quantum memories,” Opt. Lett. 39, 2711–2714 (2014).
[Crossref]

M. R. Sprague, P. S. Michelberger, T. F. M. Champion, D. G. England, J. Nunn, X. M. Jin, W. S. Kolthammer, A. Abdolvand, P. St.J. Russell, and I. A. Walmsley, “Broadband single-photon-level memory in a hollow-core photonic crystal fibre,” Nat. Photonics 8, 287–291 (2014).
[Crossref]

J. I. Yoshikawa, K. Makino, S. Kurata, P. van Loock, and A. Furusawa, “Creation, storage, and on-demand release of optical quantum states with a negative Wigner function,” Phys. Rev. X 3, 041028 (2014).

E. Bimbard, R. Boddeda, N. Vitrant, A. Grankin, V. Parigi, J. Stanojevic, A. Ourjoumtsev, and P. Grangier, “Homodyne tomography of a single photon retrieved on demand from a cavity-enhanced cold atom memory,” Phys. Rev. Lett. 112, 033601 (2014).
[Crossref]

A. Nicolas, L. Veissier, L. Giner, E. Giacobino, D. Maxein, and J. Laurat, “A quantum memory for orbital angular momentum photonic qubits,” Nat. Photonics 8, 234–238 (2014).
[Crossref]

P. Jobez, I. Usmani, N. Timoney, C. Laplane, N. Gisin, and M. Afzelius, “Cavity-enhanced storage in an optical spin-wave memory,” New J. Phys. 16, 083005 (2014).
[Crossref]

J. Geng, G. T. Campbell, J. Bernu, D. B. Higginbottom, B. M. Sparkes, S. M. Assad, W. P. Zhang, N. P. Robins, P. K. Lam, and B. C. Buchler, “Electromagnetically induced transparency and four-wave mixing in a cold atomic ensemble with large optical depth,” New J. Phys. 16, 113053 (2014).
[Crossref]

Y.-F. Hsiao, H.-S. Chen, P.-J. Tsai, and Y.-C. Chen, “Cold atomic media with ultrahigh optical depths,” Phys. Rev. A 90, 055401 (2014).
[Crossref]

2013 (10)

F. Bussières, N. Sangouard, M. Afzelius, H. de Riedmatten, C. Simon, and W. Tittel, “Prospective applications of optical quantum memories,” J. Mod. Opt. 60, 1519–1537 (2013).
[Crossref]

X. W. Luo, J. J. Hope, B. Hillman, and T. M. Stace, “Diffusion effects in gradient echo memory,” Phys. Rev. A 87, 062328 (2013).
[Crossref]

D. G. England, P. J. Bustard, J. Nunn, R. Lausten, and B. J. Sussman, “From photons to phonons and back: a THz optical memory in diamond,” Phys. Rev. Lett. 111, 243601 (2013).
[Crossref]

M. Gündoğan, M. Mazzera, P. M. Ledingham, M. Cristiani, and H. De Riedmatten, “Coherent storage of temporally multimode light using a spin-wave atomic frequency comb memory,” New J. Phys. 15, 045012 (2013).
[Crossref]

Z. Xu, Y. Wu, L. Tian, L. Chen, Z. Zhang, Z. Yan, S. Li, H. Wang, C. Xie, and K. Peng, “Long lifetime and high-fidelity quantum memory of photonic polarization qubit by lifting Zeeman degeneracy,” Phys. Rev. Lett. 111, 240503 (2013).
[Crossref]

B. M. Sparkes, J. Bernu, M. Hosseini, J. Geng, Q. Glorieux, P. A. Altin, P. K. Lam, N. P. Robins, and B. C. Buchler, “Gradient echo memory in an ultra-high optical depth cold atomic ensemble,” New J. Phys. 15, 085027 (2013).
[Crossref]

M. Sabooni, Q. Li, S. Kroll, and L. Rippe, “Efficient quantum memory using a weakly absorbing sample,” Phys. Rev. Lett. 110, 133604 (2013).
[Crossref]

Y.-H. Chen, M.-J. Lee, I.-C. Wang, S. Du, Y.-F. Chen, Y.-C. Chen, and I. A. Yu, “Coherent optical memory with high storage efficiency and large fractional delay,” Phys. Rev. Lett. 110, 083601 (2013).
[Crossref]

G. Heinze, C. Hubrich, and T. Halfmann, “Stopped light and image storage by electromagnetically induced transparency up to the regime of one minute,” Phys. Rev. Lett. 111, 033601 (2013).
[Crossref]

Y. O. Dudin, L. Li, and A. Kuzmich, “Light storage on the time scale of a minute,” Phys. Rev. A 87, 031801 (2013).
[Crossref]

2012 (4)

S. Zhou, S. Zhang, C. Liu, J. F. Chen, J. Wen, M. Loy, G. Wong, and S. Du, “Optimal storage and retrieval of single-photon waveforms,” Opt. Express 20, 24124–24131 (2012).
[Crossref]

S. Riedl, M. Lettner, C. Vo, S. Baur, G. Rempe, and S. Dürr, “Bose-Einstein condensate as a quantum memory for a photonic polarization qubit,” Phys. Rev. A 85, 022318 (2012).
[Crossref]

X.-H. Bao, A. Reingruber, P. Dietrich, J. Rui, A. Duck, T. Strassel, L. Li, N.-L. Liu, B. Zhao, and J.-W. Pan, “Efficient and long-lived quantum memory with cold atoms inside a ring cavity,” Nat. Phys. 8, 517–521 (2012).
[Crossref]

S. D. Jenkins, T. Zhang, and T. A. B. Kennedy, “Motional dephasing of atomic clock spin waves in an optical lattice,” J. Phys. B 45, 124005 (2012).
[Crossref]

2011 (7)

M. Hosseini, G. Campbell, B. M. Sparkes, P. K. Lam, and B. C. Buchler, “Unconditional room-temperature quantum memory,” Nat. Phys. 7, 794–798 (2011).
[Crossref]

N. Sangouard, C. Simon, H. De Riedmatten, and N. Gisin, “Quantum repeaters based on atomic ensembles and linear optics,” Rev. Mod. Phys. 83, 33–80 (2011).
[Crossref]

M. Hosseini, B. M. Sparkes, G. Campbell, P. K. Lam, and B. C. Buchler, “High efficiency coherent optical memory with warm rubidium vapour,” Nat. Commun. 2, 174 (2011).
[Crossref]

K. F. Reim, P. Michelberger, K. C. Lee, J. Nunn, N. K. Langford, and I. A. Walmsley, “Single-photon-level quantum memory at room temperature,” Phys. Rev. Lett. 107, 053603 (2011).
[Crossref]

D. L. McAuslan, P. M. Ledingham, W. R. Naylor, S. E. Bea-van, M. P. Hedges, M. J. Sellars, and J. J. Longdell, “Photon-echo quantum memories in inhomogeneously broadened two-level atoms,” Phys. Rev. A 84, 022309 (2011).

R. Ikuta, Y. Kusaka, T. Kitano, H. Kato, T. Yamamoto, M. Koashi, and N. Imoto, “Wide-band quantum interface for visible-to-telecommunication wavelength conversion,” Nat. Commun. 2, 537 (2011).
[Crossref]

S. Zaske, A. Lenhard, and C. Becher, “Efficient frequency downconversion at the single photon level from the red spectral range to the telecommunications C-band,” Opt. Express 19, 12825 (2011).
[Crossref]

2010 (3)

B. Lauritzen, J. Minář, H. De Riedmatten, M. Afzelius, N. Sangouard, C. Simon, and N. Gisin, “Telecommunication-wavelength solid-state memory at the single photon level,” Phys. Rev. Lett. 104, 080502 (2010).
[Crossref]

M. P. Hedges, J. J. Longdell, Y. Li, and M. J. Sellars, “Efficient quantum memory for light,” Nature 465, 1052–1056 (2010).
[Crossref]

K. F. Reim, J. Nunn, V. O. Lorenz, B. J. Sussman, K. C. Lee, N. K. Langford, D. Jaksch, and I. A. Walmsley, “Towards high-speed optical quantum memories,” Nat. Photonics 4, 218–221 (2010).
[Crossref]

2009 (4)

A. I. Lvovsky, B. C. Sanders, and W. Tittel, “Optical quantum memory,” Nat. Photonics 3, 706–714 (2009).
[Crossref]

U. Schnorrberger, J. D. Thompson, S. Trotzky, R. Pugatch, N. Davidson, S. Kuhr, and I. Bloch, “Electromagnetically induced transparency and light storage in an atomic Mott insulator,” Phys. Rev. Lett. 103, 033003 (2009).
[Crossref]

R. Zhang, S. R. Garner, and L. V. Hau, “Creation of long-term coherent optical memory via controlled nonlinear interactions in Bose-Einstein condensates,” Phys. Rev. Lett. 103, 233602 (2009).
[Crossref]

R. Zhao, Y. O. Dudin, S. D. Jenkins, C. J. Campbell, D. N. Matsukevich, T. A. B. Kennedy, and A. Kuzmich, “Long-lived quantum memory,” Nat. Phys. 5, 100–104 (2009).
[Crossref]

2008 (5)

K. S. Choi, H. Deng, J. Laurat, and H. J. Kimble, “Mapping photonic entanglement into and out of a quantum memory,” Nature 452, 67–71 (2008).
[Crossref]

N. B. Phillips, A. V. Gorshkov, and I. Novikova, “Optimal light storage in atomic vapor,” Phys. Rev. A 78, 023801 (2008).
[Crossref]

G. Hétet, J. J. Longdell, M. J. Sellars, P. K. Lam, and B. C. Buchler, “Multimodal properties and dynamics of gradient echo quantum memory,” Phys. Rev. Lett. 101, 203601 (2008).
[Crossref]

G. Hetet, A. Peng, M. Johnsson, J. Hope, and P. K. Lam, “Characterization of electromagnetically-induced-transparency-based continuous-variable quantum memories,” Phys. Rev. A 77, 012323 (2008).
[Crossref]

H. J. Kimble, “The quantum Internet,” Nature 453, 1023–1030 (2008).
[Crossref]

2006 (1)

M. Varnava, D. E. Browne, and T. Rudolph, “Loss tolerance in one-way quantum computation via counterfactual error correction,” Phys. Rev. Lett. 97, 120501 (2006).
[Crossref]

2005 (2)

J. J. Longdell, E. Fraval, M. J. Sellars, and N. B. Manson, “Stopped light with storage times greater than one second using electromagnetically induced transparency in a solid,” Phys. Rev. Lett. 95, 063601 (2005).
[Crossref]

S. Tanzilli, W. Tittel, M. Halder, O. Alibart, P. Baldi, N. Gisin, and H. Zbinden, “A photonic quantum information interface,” Nature 437, 116–120 (2005).
[Crossref]

2001 (3)

C. Liu, Z. Dutton, C. H. Behroozi, and L. V. Hau, “Observation of coherent optical information storage in an atomic medium using halted light pulses,” Nature 409, 490–493 (2001).
[Crossref]

F. Grosshans and P. Grangier, “Quantum cloning and teleportation criteria for continuous quantum variables,” Phys. Rev. A 64, 010301 (2001).
[Crossref]

E. Knill, R. Laflamme, and G. J. Milburn, “A scheme for efficient quantum computation with linear optics,” Nature 409, 46–52 (2001).
[Crossref]

1998 (1)

T. C. Ralph and P. K. Lam, “Teleportation with bright squeezed light,” Phys. Rev. Lett. 81, 5668–5671 (1998).
[Crossref]

1995 (1)

U. Leonhardt and H. Paul, “Measuring the quantum state of light,” Prog. Quantum Electron. 19, 89–130 (1995).
[Crossref]

1994 (1)

Abdolvand, A.

M. R. Sprague, P. S. Michelberger, T. F. M. Champion, D. G. England, J. Nunn, X. M. Jin, W. S. Kolthammer, A. Abdolvand, P. St.J. Russell, and I. A. Walmsley, “Broadband single-photon-level memory in a hollow-core photonic crystal fibre,” Nat. Photonics 8, 287–291 (2014).
[Crossref]

Afzelius, M.

P. Jobez, C. Laplane, N. Timoney, N. Gisin, A. Ferrier, P. Goldner, and M. Afzelius, “Coherent spin control at the quantum level in an ensemble-based optical memory,” Phys. Rev. Lett. 114, 230502 (2015).
[Crossref]

P. Jobez, I. Usmani, N. Timoney, C. Laplane, N. Gisin, and M. Afzelius, “Cavity-enhanced storage in an optical spin-wave memory,” New J. Phys. 16, 083005 (2014).
[Crossref]

F. Bussières, N. Sangouard, M. Afzelius, H. de Riedmatten, C. Simon, and W. Tittel, “Prospective applications of optical quantum memories,” J. Mod. Opt. 60, 1519–1537 (2013).
[Crossref]

B. Lauritzen, J. Minář, H. De Riedmatten, M. Afzelius, N. Sangouard, C. Simon, and N. Gisin, “Telecommunication-wavelength solid-state memory at the single photon level,” Phys. Rev. Lett. 104, 080502 (2010).
[Crossref]

Ahlefeldt, R. L.

M. Zhong, M. P. Hedges, R. L. Ahlefeldt, J. G. Bartholomew, S. E. Beavan, S. M. Wittig, J. J. Longdell, and M. J. Sellars, “Optically addressable nuclear spins in a solid with a six-hour coherence time,” Nature 517, 177–180 (2015).
[Crossref]

Albrecht, B.

B. Albrecht, P. Farrera, X. Fernandez-Gonzalvo, M. Cristiani, and H. De Riedmatten, “A waveguide frequency converter connecting rubidium-based quantum memories to the telecom C-band,” Nat. Commun. 5, 3376 (2014).

Alibart, O.

S. Tanzilli, W. Tittel, M. Halder, O. Alibart, P. Baldi, N. Gisin, and H. Zbinden, “A photonic quantum information interface,” Nature 437, 116–120 (2005).
[Crossref]

Altin, P. A.

B. M. Sparkes, J. Bernu, M. Hosseini, J. Geng, Q. Glorieux, P. A. Altin, P. K. Lam, N. P. Robins, and B. C. Buchler, “Gradient echo memory in an ultra-high optical depth cold atomic ensemble,” New J. Phys. 15, 085027 (2013).
[Crossref]

Anderson, M. H.

Assad, S. M.

J. Geng, G. T. Campbell, J. Bernu, D. B. Higginbottom, B. M. Sparkes, S. M. Assad, W. P. Zhang, N. P. Robins, P. K. Lam, and B. C. Buchler, “Electromagnetically induced transparency and four-wave mixing in a cold atomic ensemble with large optical depth,” New J. Phys. 16, 113053 (2014).
[Crossref]

Baldi, P.

S. Tanzilli, W. Tittel, M. Halder, O. Alibart, P. Baldi, N. Gisin, and H. Zbinden, “A photonic quantum information interface,” Nature 437, 116–120 (2005).
[Crossref]

Bao, X.-H.

X.-H. Bao, A. Reingruber, P. Dietrich, J. Rui, A. Duck, T. Strassel, L. Li, N.-L. Liu, B. Zhao, and J.-W. Pan, “Efficient and long-lived quantum memory with cold atoms inside a ring cavity,” Nat. Phys. 8, 517–521 (2012).
[Crossref]

Bartholomew, J. G.

M. Zhong, M. P. Hedges, R. L. Ahlefeldt, J. G. Bartholomew, S. E. Beavan, S. M. Wittig, J. J. Longdell, and M. J. Sellars, “Optically addressable nuclear spins in a solid with a six-hour coherence time,” Nature 517, 177–180 (2015).
[Crossref]

Baur, S.

S. Riedl, M. Lettner, C. Vo, S. Baur, G. Rempe, and S. Dürr, “Bose-Einstein condensate as a quantum memory for a photonic polarization qubit,” Phys. Rev. A 85, 022318 (2012).
[Crossref]

Beavan, S. E.

M. Zhong, M. P. Hedges, R. L. Ahlefeldt, J. G. Bartholomew, S. E. Beavan, S. M. Wittig, J. J. Longdell, and M. J. Sellars, “Optically addressable nuclear spins in a solid with a six-hour coherence time,” Nature 517, 177–180 (2015).
[Crossref]

Bea-van, S. E.

D. L. McAuslan, P. M. Ledingham, W. R. Naylor, S. E. Bea-van, M. P. Hedges, M. J. Sellars, and J. J. Longdell, “Photon-echo quantum memories in inhomogeneously broadened two-level atoms,” Phys. Rev. A 84, 022309 (2011).

Becher, C.

Behroozi, C. H.

C. Liu, Z. Dutton, C. H. Behroozi, and L. V. Hau, “Observation of coherent optical information storage in an atomic medium using halted light pulses,” Nature 409, 490–493 (2001).
[Crossref]

Bernu, J.

J. Geng, G. T. Campbell, J. Bernu, D. B. Higginbottom, B. M. Sparkes, S. M. Assad, W. P. Zhang, N. P. Robins, P. K. Lam, and B. C. Buchler, “Electromagnetically induced transparency and four-wave mixing in a cold atomic ensemble with large optical depth,” New J. Phys. 16, 113053 (2014).
[Crossref]

B. M. Sparkes, J. Bernu, M. Hosseini, J. Geng, Q. Glorieux, P. A. Altin, P. K. Lam, N. P. Robins, and B. C. Buchler, “Gradient echo memory in an ultra-high optical depth cold atomic ensemble,” New J. Phys. 15, 085027 (2013).
[Crossref]

Bimbard, E.

E. Bimbard, R. Boddeda, N. Vitrant, A. Grankin, V. Parigi, J. Stanojevic, A. Ourjoumtsev, and P. Grangier, “Homodyne tomography of a single photon retrieved on demand from a cavity-enhanced cold atom memory,” Phys. Rev. Lett. 112, 033601 (2014).
[Crossref]

Bloch, I.

U. Schnorrberger, J. D. Thompson, S. Trotzky, R. Pugatch, N. Davidson, S. Kuhr, and I. Bloch, “Electromagnetically induced transparency and light storage in an atomic Mott insulator,” Phys. Rev. Lett. 103, 033003 (2009).
[Crossref]

Boddeda, R.

E. Bimbard, R. Boddeda, N. Vitrant, A. Grankin, V. Parigi, J. Stanojevic, A. Ourjoumtsev, and P. Grangier, “Homodyne tomography of a single photon retrieved on demand from a cavity-enhanced cold atom memory,” Phys. Rev. Lett. 112, 033601 (2014).
[Crossref]

Browne, D. E.

M. Varnava, D. E. Browne, and T. Rudolph, “Loss tolerance in one-way quantum computation via counterfactual error correction,” Phys. Rev. Lett. 97, 120501 (2006).
[Crossref]

Buchler, B. C.

J. Geng, G. T. Campbell, J. Bernu, D. B. Higginbottom, B. M. Sparkes, S. M. Assad, W. P. Zhang, N. P. Robins, P. K. Lam, and B. C. Buchler, “Electromagnetically induced transparency and four-wave mixing in a cold atomic ensemble with large optical depth,” New J. Phys. 16, 113053 (2014).
[Crossref]

B. M. Sparkes, J. Bernu, M. Hosseini, J. Geng, Q. Glorieux, P. A. Altin, P. K. Lam, N. P. Robins, and B. C. Buchler, “Gradient echo memory in an ultra-high optical depth cold atomic ensemble,” New J. Phys. 15, 085027 (2013).
[Crossref]

M. Hosseini, B. M. Sparkes, G. Campbell, P. K. Lam, and B. C. Buchler, “High efficiency coherent optical memory with warm rubidium vapour,” Nat. Commun. 2, 174 (2011).
[Crossref]

M. Hosseini, G. Campbell, B. M. Sparkes, P. K. Lam, and B. C. Buchler, “Unconditional room-temperature quantum memory,” Nat. Phys. 7, 794–798 (2011).
[Crossref]

G. Hétet, J. J. Longdell, M. J. Sellars, P. K. Lam, and B. C. Buchler, “Multimodal properties and dynamics of gradient echo quantum memory,” Phys. Rev. Lett. 101, 203601 (2008).
[Crossref]

Bussières, F.

F. Bussières, N. Sangouard, M. Afzelius, H. de Riedmatten, C. Simon, and W. Tittel, “Prospective applications of optical quantum memories,” J. Mod. Opt. 60, 1519–1537 (2013).
[Crossref]

Bustard, P. J.

D. G. England, P. J. Bustard, J. Nunn, R. Lausten, and B. J. Sussman, “From photons to phonons and back: a THz optical memory in diamond,” Phys. Rev. Lett. 111, 243601 (2013).
[Crossref]

Campbell, C. J.

R. Zhao, Y. O. Dudin, S. D. Jenkins, C. J. Campbell, D. N. Matsukevich, T. A. B. Kennedy, and A. Kuzmich, “Long-lived quantum memory,” Nat. Phys. 5, 100–104 (2009).
[Crossref]

Campbell, G.

M. Hosseini, B. M. Sparkes, G. Campbell, P. K. Lam, and B. C. Buchler, “High efficiency coherent optical memory with warm rubidium vapour,” Nat. Commun. 2, 174 (2011).
[Crossref]

M. Hosseini, G. Campbell, B. M. Sparkes, P. K. Lam, and B. C. Buchler, “Unconditional room-temperature quantum memory,” Nat. Phys. 7, 794–798 (2011).
[Crossref]

Campbell, G. T.

J. Geng, G. T. Campbell, J. Bernu, D. B. Higginbottom, B. M. Sparkes, S. M. Assad, W. P. Zhang, N. P. Robins, P. K. Lam, and B. C. Buchler, “Electromagnetically induced transparency and four-wave mixing in a cold atomic ensemble with large optical depth,” New J. Phys. 16, 113053 (2014).
[Crossref]

Champion, T. F. M.

M. R. Sprague, P. S. Michelberger, T. F. M. Champion, D. G. England, J. Nunn, X. M. Jin, W. S. Kolthammer, A. Abdolvand, P. St.J. Russell, and I. A. Walmsley, “Broadband single-photon-level memory in a hollow-core photonic crystal fibre,” Nat. Photonics 8, 287–291 (2014).
[Crossref]

Chanelière, T.

Chen, H.-S.

Y.-F. Hsiao, H.-S. Chen, P.-J. Tsai, and Y.-C. Chen, “Cold atomic media with ultrahigh optical depths,” Phys. Rev. A 90, 055401 (2014).
[Crossref]

Chen, J. F.

Chen, L.

Z. Xu, Y. Wu, L. Tian, L. Chen, Z. Zhang, Z. Yan, S. Li, H. Wang, C. Xie, and K. Peng, “Long lifetime and high-fidelity quantum memory of photonic polarization qubit by lifting Zeeman degeneracy,” Phys. Rev. Lett. 111, 240503 (2013).
[Crossref]

Chen, Y.-C.

Y.-F. Hsiao, H.-S. Chen, P.-J. Tsai, and Y.-C. Chen, “Cold atomic media with ultrahigh optical depths,” Phys. Rev. A 90, 055401 (2014).
[Crossref]

Y.-H. Chen, M.-J. Lee, I.-C. Wang, S. Du, Y.-F. Chen, Y.-C. Chen, and I. A. Yu, “Coherent optical memory with high storage efficiency and large fractional delay,” Phys. Rev. Lett. 110, 083601 (2013).
[Crossref]

Chen, Y.-F.

Y.-H. Chen, M.-J. Lee, I.-C. Wang, S. Du, Y.-F. Chen, Y.-C. Chen, and I. A. Yu, “Coherent optical memory with high storage efficiency and large fractional delay,” Phys. Rev. Lett. 110, 083601 (2013).
[Crossref]

Chen, Y.-H.

Y.-H. Chen, M.-J. Lee, I.-C. Wang, S. Du, Y.-F. Chen, Y.-C. Chen, and I. A. Yu, “Coherent optical memory with high storage efficiency and large fractional delay,” Phys. Rev. Lett. 110, 083601 (2013).
[Crossref]

Choi, K. S.

K. S. Choi, H. Deng, J. Laurat, and H. J. Kimble, “Mapping photonic entanglement into and out of a quantum memory,” Nature 452, 67–71 (2008).
[Crossref]

Cohen, J.

N. Maring, K. Kutluer, J. Cohen, M. Cristiani, M. Mazzera, P. M. Ledingham, and H. De Riedmatten, “Storage of up-converted telecom photons in a doped crystal,” New J. Phys. 16, 113021 (2014).
[Crossref]

Cornell, E. A.

Cristiani, M.

N. Maring, K. Kutluer, J. Cohen, M. Cristiani, M. Mazzera, P. M. Ledingham, and H. De Riedmatten, “Storage of up-converted telecom photons in a doped crystal,” New J. Phys. 16, 113021 (2014).
[Crossref]

B. Albrecht, P. Farrera, X. Fernandez-Gonzalvo, M. Cristiani, and H. De Riedmatten, “A waveguide frequency converter connecting rubidium-based quantum memories to the telecom C-band,” Nat. Commun. 5, 3376 (2014).

M. Gündoğan, M. Mazzera, P. M. Ledingham, M. Cristiani, and H. De Riedmatten, “Coherent storage of temporally multimode light using a spin-wave atomic frequency comb memory,” New J. Phys. 15, 045012 (2013).
[Crossref]

Dajczgewand, J.

Davidson, N.

U. Schnorrberger, J. D. Thompson, S. Trotzky, R. Pugatch, N. Davidson, S. Kuhr, and I. Bloch, “Electromagnetically induced transparency and light storage in an atomic Mott insulator,” Phys. Rev. Lett. 103, 033003 (2009).
[Crossref]

De Riedmatten, H.

B. Albrecht, P. Farrera, X. Fernandez-Gonzalvo, M. Cristiani, and H. De Riedmatten, “A waveguide frequency converter connecting rubidium-based quantum memories to the telecom C-band,” Nat. Commun. 5, 3376 (2014).

N. Maring, K. Kutluer, J. Cohen, M. Cristiani, M. Mazzera, P. M. Ledingham, and H. De Riedmatten, “Storage of up-converted telecom photons in a doped crystal,” New J. Phys. 16, 113021 (2014).
[Crossref]

M. Gündoğan, M. Mazzera, P. M. Ledingham, M. Cristiani, and H. De Riedmatten, “Coherent storage of temporally multimode light using a spin-wave atomic frequency comb memory,” New J. Phys. 15, 045012 (2013).
[Crossref]

F. Bussières, N. Sangouard, M. Afzelius, H. de Riedmatten, C. Simon, and W. Tittel, “Prospective applications of optical quantum memories,” J. Mod. Opt. 60, 1519–1537 (2013).
[Crossref]

N. Sangouard, C. Simon, H. De Riedmatten, and N. Gisin, “Quantum repeaters based on atomic ensembles and linear optics,” Rev. Mod. Phys. 83, 33–80 (2011).
[Crossref]

B. Lauritzen, J. Minář, H. De Riedmatten, M. Afzelius, N. Sangouard, C. Simon, and N. Gisin, “Telecommunication-wavelength solid-state memory at the single photon level,” Phys. Rev. Lett. 104, 080502 (2010).
[Crossref]

Deng, H.

K. S. Choi, H. Deng, J. Laurat, and H. J. Kimble, “Mapping photonic entanglement into and out of a quantum memory,” Nature 452, 67–71 (2008).
[Crossref]

Dietrich, P.

X.-H. Bao, A. Reingruber, P. Dietrich, J. Rui, A. Duck, T. Strassel, L. Li, N.-L. Liu, B. Zhao, and J.-W. Pan, “Efficient and long-lived quantum memory with cold atoms inside a ring cavity,” Nat. Phys. 8, 517–521 (2012).
[Crossref]

Ding, D.-S.

D.-S. Ding, W. Zhang, Z.-Y. Zhou, S. Shi, G.-Y. Xiang, X.-S. Wang, Y.-K. Jiang, B.-S. Shi, and G.-C. Guo, “Quantum storage of orbital angular momentum entanglement in an atomic ensemble,” Phys. Rev. Lett. 114, 050502 (2015).
[Crossref]

Du, S.

Y.-H. Chen, M.-J. Lee, I.-C. Wang, S. Du, Y.-F. Chen, Y.-C. Chen, and I. A. Yu, “Coherent optical memory with high storage efficiency and large fractional delay,” Phys. Rev. Lett. 110, 083601 (2013).
[Crossref]

S. Zhou, S. Zhang, C. Liu, J. F. Chen, J. Wen, M. Loy, G. Wong, and S. Du, “Optimal storage and retrieval of single-photon waveforms,” Opt. Express 20, 24124–24131 (2012).
[Crossref]

Duck, A.

X.-H. Bao, A. Reingruber, P. Dietrich, J. Rui, A. Duck, T. Strassel, L. Li, N.-L. Liu, B. Zhao, and J.-W. Pan, “Efficient and long-lived quantum memory with cold atoms inside a ring cavity,” Nat. Phys. 8, 517–521 (2012).
[Crossref]

Dudin, Y. O.

Y. O. Dudin, L. Li, and A. Kuzmich, “Light storage on the time scale of a minute,” Phys. Rev. A 87, 031801 (2013).
[Crossref]

R. Zhao, Y. O. Dudin, S. D. Jenkins, C. J. Campbell, D. N. Matsukevich, T. A. B. Kennedy, and A. Kuzmich, “Long-lived quantum memory,” Nat. Phys. 5, 100–104 (2009).
[Crossref]

Dürr, S.

S. Riedl, M. Lettner, C. Vo, S. Baur, G. Rempe, and S. Dürr, “Bose-Einstein condensate as a quantum memory for a photonic polarization qubit,” Phys. Rev. A 85, 022318 (2012).
[Crossref]

Dutton, Z.

C. Liu, Z. Dutton, C. H. Behroozi, and L. V. Hau, “Observation of coherent optical information storage in an atomic medium using halted light pulses,” Nature 409, 490–493 (2001).
[Crossref]

England, D. G.

M. R. Sprague, P. S. Michelberger, T. F. M. Champion, D. G. England, J. Nunn, X. M. Jin, W. S. Kolthammer, A. Abdolvand, P. St.J. Russell, and I. A. Walmsley, “Broadband single-photon-level memory in a hollow-core photonic crystal fibre,” Nat. Photonics 8, 287–291 (2014).
[Crossref]

D. G. England, P. J. Bustard, J. Nunn, R. Lausten, and B. J. Sussman, “From photons to phonons and back: a THz optical memory in diamond,” Phys. Rev. Lett. 111, 243601 (2013).
[Crossref]

Ensher, J. R.

Farrera, P.

B. Albrecht, P. Farrera, X. Fernandez-Gonzalvo, M. Cristiani, and H. De Riedmatten, “A waveguide frequency converter connecting rubidium-based quantum memories to the telecom C-band,” Nat. Commun. 5, 3376 (2014).

Fernandez-Gonzalvo, X.

B. Albrecht, P. Farrera, X. Fernandez-Gonzalvo, M. Cristiani, and H. De Riedmatten, “A waveguide frequency converter connecting rubidium-based quantum memories to the telecom C-band,” Nat. Commun. 5, 3376 (2014).

Ferrier, A.

P. Jobez, C. Laplane, N. Timoney, N. Gisin, A. Ferrier, P. Goldner, and M. Afzelius, “Coherent spin control at the quantum level in an ensemble-based optical memory,” Phys. Rev. Lett. 114, 230502 (2015).
[Crossref]

Fraval, E.

J. J. Longdell, E. Fraval, M. J. Sellars, and N. B. Manson, “Stopped light with storage times greater than one second using electromagnetically induced transparency in a solid,” Phys. Rev. Lett. 95, 063601 (2005).
[Crossref]

Furusawa, A.

J. I. Yoshikawa, K. Makino, S. Kurata, P. van Loock, and A. Furusawa, “Creation, storage, and on-demand release of optical quantum states with a negative Wigner function,” Phys. Rev. X 3, 041028 (2014).

Garner, S. R.

R. Zhang, S. R. Garner, and L. V. Hau, “Creation of long-term coherent optical memory via controlled nonlinear interactions in Bose-Einstein condensates,” Phys. Rev. Lett. 103, 233602 (2009).
[Crossref]

Geng, J.

J. Geng, G. T. Campbell, J. Bernu, D. B. Higginbottom, B. M. Sparkes, S. M. Assad, W. P. Zhang, N. P. Robins, P. K. Lam, and B. C. Buchler, “Electromagnetically induced transparency and four-wave mixing in a cold atomic ensemble with large optical depth,” New J. Phys. 16, 113053 (2014).
[Crossref]

B. M. Sparkes, J. Bernu, M. Hosseini, J. Geng, Q. Glorieux, P. A. Altin, P. K. Lam, N. P. Robins, and B. C. Buchler, “Gradient echo memory in an ultra-high optical depth cold atomic ensemble,” New J. Phys. 15, 085027 (2013).
[Crossref]

Giacobino, E.

A. Nicolas, L. Veissier, L. Giner, E. Giacobino, D. Maxein, and J. Laurat, “A quantum memory for orbital angular momentum photonic qubits,” Nat. Photonics 8, 234–238 (2014).
[Crossref]

Giner, L.

A. Nicolas, L. Veissier, L. Giner, E. Giacobino, D. Maxein, and J. Laurat, “A quantum memory for orbital angular momentum photonic qubits,” Nat. Photonics 8, 234–238 (2014).
[Crossref]

Gisin, N.

P. Jobez, C. Laplane, N. Timoney, N. Gisin, A. Ferrier, P. Goldner, and M. Afzelius, “Coherent spin control at the quantum level in an ensemble-based optical memory,” Phys. Rev. Lett. 114, 230502 (2015).
[Crossref]

P. Jobez, I. Usmani, N. Timoney, C. Laplane, N. Gisin, and M. Afzelius, “Cavity-enhanced storage in an optical spin-wave memory,” New J. Phys. 16, 083005 (2014).
[Crossref]

N. Sangouard, C. Simon, H. De Riedmatten, and N. Gisin, “Quantum repeaters based on atomic ensembles and linear optics,” Rev. Mod. Phys. 83, 33–80 (2011).
[Crossref]

B. Lauritzen, J. Minář, H. De Riedmatten, M. Afzelius, N. Sangouard, C. Simon, and N. Gisin, “Telecommunication-wavelength solid-state memory at the single photon level,” Phys. Rev. Lett. 104, 080502 (2010).
[Crossref]

S. Tanzilli, W. Tittel, M. Halder, O. Alibart, P. Baldi, N. Gisin, and H. Zbinden, “A photonic quantum information interface,” Nature 437, 116–120 (2005).
[Crossref]

Glorieux, Q.

B. M. Sparkes, J. Bernu, M. Hosseini, J. Geng, Q. Glorieux, P. A. Altin, P. K. Lam, N. P. Robins, and B. C. Buchler, “Gradient echo memory in an ultra-high optical depth cold atomic ensemble,” New J. Phys. 15, 085027 (2013).
[Crossref]

Goldner, P.

P. Jobez, C. Laplane, N. Timoney, N. Gisin, A. Ferrier, P. Goldner, and M. Afzelius, “Coherent spin control at the quantum level in an ensemble-based optical memory,” Phys. Rev. Lett. 114, 230502 (2015).
[Crossref]

Gorshkov, A. V.

N. B. Phillips, A. V. Gorshkov, and I. Novikova, “Optimal light storage in atomic vapor,” Phys. Rev. A 78, 023801 (2008).
[Crossref]

Gouraud, B.

B. Gouraud, D. Maxein, A. Nicolas, O. Morin, and J. Laurat, “Demonstration of a memory for tightly guided light in an optical nanofiber,” Phys. Rev. Lett. 114, 180503 (2015).
[Crossref]

Grangier, P.

E. Bimbard, R. Boddeda, N. Vitrant, A. Grankin, V. Parigi, J. Stanojevic, A. Ourjoumtsev, and P. Grangier, “Homodyne tomography of a single photon retrieved on demand from a cavity-enhanced cold atom memory,” Phys. Rev. Lett. 112, 033601 (2014).
[Crossref]

F. Grosshans and P. Grangier, “Quantum cloning and teleportation criteria for continuous quantum variables,” Phys. Rev. A 64, 010301 (2001).
[Crossref]

Grankin, A.

E. Bimbard, R. Boddeda, N. Vitrant, A. Grankin, V. Parigi, J. Stanojevic, A. Ourjoumtsev, and P. Grangier, “Homodyne tomography of a single photon retrieved on demand from a cavity-enhanced cold atom memory,” Phys. Rev. Lett. 112, 033601 (2014).
[Crossref]

Grosshans, F.

F. Grosshans and P. Grangier, “Quantum cloning and teleportation criteria for continuous quantum variables,” Phys. Rev. A 64, 010301 (2001).
[Crossref]

Gündogan, M.

M. Gündoğan, M. Mazzera, P. M. Ledingham, M. Cristiani, and H. De Riedmatten, “Coherent storage of temporally multimode light using a spin-wave atomic frequency comb memory,” New J. Phys. 15, 045012 (2013).
[Crossref]

Guo, G.-C.

D.-S. Ding, W. Zhang, Z.-Y. Zhou, S. Shi, G.-Y. Xiang, X.-S. Wang, Y.-K. Jiang, B.-S. Shi, and G.-C. Guo, “Quantum storage of orbital angular momentum entanglement in an atomic ensemble,” Phys. Rev. Lett. 114, 050502 (2015).
[Crossref]

Halder, M.

S. Tanzilli, W. Tittel, M. Halder, O. Alibart, P. Baldi, N. Gisin, and H. Zbinden, “A photonic quantum information interface,” Nature 437, 116–120 (2005).
[Crossref]

Halfmann, T.

G. Heinze, C. Hubrich, and T. Halfmann, “Stopped light and image storage by electromagnetically induced transparency up to the regime of one minute,” Phys. Rev. Lett. 111, 033601 (2013).
[Crossref]

Hau, L. V.

R. Zhang, S. R. Garner, and L. V. Hau, “Creation of long-term coherent optical memory via controlled nonlinear interactions in Bose-Einstein condensates,” Phys. Rev. Lett. 103, 233602 (2009).
[Crossref]

C. Liu, Z. Dutton, C. H. Behroozi, and L. V. Hau, “Observation of coherent optical information storage in an atomic medium using halted light pulses,” Nature 409, 490–493 (2001).
[Crossref]

Hedges, M. P.

M. Zhong, M. P. Hedges, R. L. Ahlefeldt, J. G. Bartholomew, S. E. Beavan, S. M. Wittig, J. J. Longdell, and M. J. Sellars, “Optically addressable nuclear spins in a solid with a six-hour coherence time,” Nature 517, 177–180 (2015).
[Crossref]

D. L. McAuslan, P. M. Ledingham, W. R. Naylor, S. E. Bea-van, M. P. Hedges, M. J. Sellars, and J. J. Longdell, “Photon-echo quantum memories in inhomogeneously broadened two-level atoms,” Phys. Rev. A 84, 022309 (2011).

M. P. Hedges, J. J. Longdell, Y. Li, and M. J. Sellars, “Efficient quantum memory for light,” Nature 465, 1052–1056 (2010).
[Crossref]

Heinze, G.

G. Heinze, C. Hubrich, and T. Halfmann, “Stopped light and image storage by electromagnetically induced transparency up to the regime of one minute,” Phys. Rev. Lett. 111, 033601 (2013).
[Crossref]

Hetet, G.

G. Hetet, A. Peng, M. Johnsson, J. Hope, and P. K. Lam, “Characterization of electromagnetically-induced-transparency-based continuous-variable quantum memories,” Phys. Rev. A 77, 012323 (2008).
[Crossref]

Hétet, G.

G. Hétet, J. J. Longdell, M. J. Sellars, P. K. Lam, and B. C. Buchler, “Multimodal properties and dynamics of gradient echo quantum memory,” Phys. Rev. Lett. 101, 203601 (2008).
[Crossref]

Higginbottom, D. B.

J. Geng, G. T. Campbell, J. Bernu, D. B. Higginbottom, B. M. Sparkes, S. M. Assad, W. P. Zhang, N. P. Robins, P. K. Lam, and B. C. Buchler, “Electromagnetically induced transparency and four-wave mixing in a cold atomic ensemble with large optical depth,” New J. Phys. 16, 113053 (2014).
[Crossref]

Hillman, B.

X. W. Luo, J. J. Hope, B. Hillman, and T. M. Stace, “Diffusion effects in gradient echo memory,” Phys. Rev. A 87, 062328 (2013).
[Crossref]

Hope, J.

G. Hetet, A. Peng, M. Johnsson, J. Hope, and P. K. Lam, “Characterization of electromagnetically-induced-transparency-based continuous-variable quantum memories,” Phys. Rev. A 77, 012323 (2008).
[Crossref]

Hope, J. J.

X. W. Luo, J. J. Hope, B. Hillman, and T. M. Stace, “Diffusion effects in gradient echo memory,” Phys. Rev. A 87, 062328 (2013).
[Crossref]

Hosseini, M.

B. M. Sparkes, J. Bernu, M. Hosseini, J. Geng, Q. Glorieux, P. A. Altin, P. K. Lam, N. P. Robins, and B. C. Buchler, “Gradient echo memory in an ultra-high optical depth cold atomic ensemble,” New J. Phys. 15, 085027 (2013).
[Crossref]

M. Hosseini, G. Campbell, B. M. Sparkes, P. K. Lam, and B. C. Buchler, “Unconditional room-temperature quantum memory,” Nat. Phys. 7, 794–798 (2011).
[Crossref]

M. Hosseini, B. M. Sparkes, G. Campbell, P. K. Lam, and B. C. Buchler, “High efficiency coherent optical memory with warm rubidium vapour,” Nat. Commun. 2, 174 (2011).
[Crossref]

Hsiao, Y.-F.

Y.-F. Hsiao, H.-S. Chen, P.-J. Tsai, and Y.-C. Chen, “Cold atomic media with ultrahigh optical depths,” Phys. Rev. A 90, 055401 (2014).
[Crossref]

Hubrich, C.

G. Heinze, C. Hubrich, and T. Halfmann, “Stopped light and image storage by electromagnetically induced transparency up to the regime of one minute,” Phys. Rev. Lett. 111, 033601 (2013).
[Crossref]

Ikuta, R.

R. Ikuta, Y. Kusaka, T. Kitano, H. Kato, T. Yamamoto, M. Koashi, and N. Imoto, “Wide-band quantum interface for visible-to-telecommunication wavelength conversion,” Nat. Commun. 2, 537 (2011).
[Crossref]

Imoto, N.

R. Ikuta, Y. Kusaka, T. Kitano, H. Kato, T. Yamamoto, M. Koashi, and N. Imoto, “Wide-band quantum interface for visible-to-telecommunication wavelength conversion,” Nat. Commun. 2, 537 (2011).
[Crossref]

Jaksch, D.

K. F. Reim, J. Nunn, V. O. Lorenz, B. J. Sussman, K. C. Lee, N. K. Langford, D. Jaksch, and I. A. Walmsley, “Towards high-speed optical quantum memories,” Nat. Photonics 4, 218–221 (2010).
[Crossref]

Jenkins, S. D.

S. D. Jenkins, T. Zhang, and T. A. B. Kennedy, “Motional dephasing of atomic clock spin waves in an optical lattice,” J. Phys. B 45, 124005 (2012).
[Crossref]

R. Zhao, Y. O. Dudin, S. D. Jenkins, C. J. Campbell, D. N. Matsukevich, T. A. B. Kennedy, and A. Kuzmich, “Long-lived quantum memory,” Nat. Phys. 5, 100–104 (2009).
[Crossref]

Jiang, Y.-K.

D.-S. Ding, W. Zhang, Z.-Y. Zhou, S. Shi, G.-Y. Xiang, X.-S. Wang, Y.-K. Jiang, B.-S. Shi, and G.-C. Guo, “Quantum storage of orbital angular momentum entanglement in an atomic ensemble,” Phys. Rev. Lett. 114, 050502 (2015).
[Crossref]

Jin, J.

E. Saglamyurek, J. Jin, V. B. Verma, M. D. Shaw, F. Marsili, S. W. Nam, D. Oblak, and W. Tittel, “Quantum storage of entangled telecom-wavelength photons in an erbium-doped optical fibre,” Nat. Photonics 9, 83–87 (2015).
[Crossref]

Jin, X. M.

M. R. Sprague, P. S. Michelberger, T. F. M. Champion, D. G. England, J. Nunn, X. M. Jin, W. S. Kolthammer, A. Abdolvand, P. St.J. Russell, and I. A. Walmsley, “Broadband single-photon-level memory in a hollow-core photonic crystal fibre,” Nat. Photonics 8, 287–291 (2014).
[Crossref]

Jobez, P.

P. Jobez, C. Laplane, N. Timoney, N. Gisin, A. Ferrier, P. Goldner, and M. Afzelius, “Coherent spin control at the quantum level in an ensemble-based optical memory,” Phys. Rev. Lett. 114, 230502 (2015).
[Crossref]

P. Jobez, I. Usmani, N. Timoney, C. Laplane, N. Gisin, and M. Afzelius, “Cavity-enhanced storage in an optical spin-wave memory,” New J. Phys. 16, 083005 (2014).
[Crossref]

Johnsson, M.

G. Hetet, A. Peng, M. Johnsson, J. Hope, and P. K. Lam, “Characterization of electromagnetically-induced-transparency-based continuous-variable quantum memories,” Phys. Rev. A 77, 012323 (2008).
[Crossref]

Kato, H.

R. Ikuta, Y. Kusaka, T. Kitano, H. Kato, T. Yamamoto, M. Koashi, and N. Imoto, “Wide-band quantum interface for visible-to-telecommunication wavelength conversion,” Nat. Commun. 2, 537 (2011).
[Crossref]

Kennedy, T. A. B.

S. D. Jenkins, T. Zhang, and T. A. B. Kennedy, “Motional dephasing of atomic clock spin waves in an optical lattice,” J. Phys. B 45, 124005 (2012).
[Crossref]

R. Zhao, Y. O. Dudin, S. D. Jenkins, C. J. Campbell, D. N. Matsukevich, T. A. B. Kennedy, and A. Kuzmich, “Long-lived quantum memory,” Nat. Phys. 5, 100–104 (2009).
[Crossref]

Kimble, H. J.

K. S. Choi, H. Deng, J. Laurat, and H. J. Kimble, “Mapping photonic entanglement into and out of a quantum memory,” Nature 452, 67–71 (2008).
[Crossref]

H. J. Kimble, “The quantum Internet,” Nature 453, 1023–1030 (2008).
[Crossref]

Kitano, T.

R. Ikuta, Y. Kusaka, T. Kitano, H. Kato, T. Yamamoto, M. Koashi, and N. Imoto, “Wide-band quantum interface for visible-to-telecommunication wavelength conversion,” Nat. Commun. 2, 537 (2011).
[Crossref]

Knill, E.

E. Knill, R. Laflamme, and G. J. Milburn, “A scheme for efficient quantum computation with linear optics,” Nature 409, 46–52 (2001).
[Crossref]

Koashi, M.

R. Ikuta, Y. Kusaka, T. Kitano, H. Kato, T. Yamamoto, M. Koashi, and N. Imoto, “Wide-band quantum interface for visible-to-telecommunication wavelength conversion,” Nat. Commun. 2, 537 (2011).
[Crossref]

Kolthammer, W. S.

M. R. Sprague, P. S. Michelberger, T. F. M. Champion, D. G. England, J. Nunn, X. M. Jin, W. S. Kolthammer, A. Abdolvand, P. St.J. Russell, and I. A. Walmsley, “Broadband single-photon-level memory in a hollow-core photonic crystal fibre,” Nat. Photonics 8, 287–291 (2014).
[Crossref]

Kroll, S.

M. Sabooni, Q. Li, S. Kroll, and L. Rippe, “Efficient quantum memory using a weakly absorbing sample,” Phys. Rev. Lett. 110, 133604 (2013).
[Crossref]

Kuhr, S.

U. Schnorrberger, J. D. Thompson, S. Trotzky, R. Pugatch, N. Davidson, S. Kuhr, and I. Bloch, “Electromagnetically induced transparency and light storage in an atomic Mott insulator,” Phys. Rev. Lett. 103, 033003 (2009).
[Crossref]

Kurata, S.

J. I. Yoshikawa, K. Makino, S. Kurata, P. van Loock, and A. Furusawa, “Creation, storage, and on-demand release of optical quantum states with a negative Wigner function,” Phys. Rev. X 3, 041028 (2014).

Kusaka, Y.

R. Ikuta, Y. Kusaka, T. Kitano, H. Kato, T. Yamamoto, M. Koashi, and N. Imoto, “Wide-band quantum interface for visible-to-telecommunication wavelength conversion,” Nat. Commun. 2, 537 (2011).
[Crossref]

Kutluer, K.

N. Maring, K. Kutluer, J. Cohen, M. Cristiani, M. Mazzera, P. M. Ledingham, and H. De Riedmatten, “Storage of up-converted telecom photons in a doped crystal,” New J. Phys. 16, 113021 (2014).
[Crossref]

Kuzmich, A.

Y. O. Dudin, L. Li, and A. Kuzmich, “Light storage on the time scale of a minute,” Phys. Rev. A 87, 031801 (2013).
[Crossref]

R. Zhao, Y. O. Dudin, S. D. Jenkins, C. J. Campbell, D. N. Matsukevich, T. A. B. Kennedy, and A. Kuzmich, “Long-lived quantum memory,” Nat. Phys. 5, 100–104 (2009).
[Crossref]

Laflamme, R.

E. Knill, R. Laflamme, and G. J. Milburn, “A scheme for efficient quantum computation with linear optics,” Nature 409, 46–52 (2001).
[Crossref]

Lam, P. K.

J. Geng, G. T. Campbell, J. Bernu, D. B. Higginbottom, B. M. Sparkes, S. M. Assad, W. P. Zhang, N. P. Robins, P. K. Lam, and B. C. Buchler, “Electromagnetically induced transparency and four-wave mixing in a cold atomic ensemble with large optical depth,” New J. Phys. 16, 113053 (2014).
[Crossref]

B. M. Sparkes, J. Bernu, M. Hosseini, J. Geng, Q. Glorieux, P. A. Altin, P. K. Lam, N. P. Robins, and B. C. Buchler, “Gradient echo memory in an ultra-high optical depth cold atomic ensemble,” New J. Phys. 15, 085027 (2013).
[Crossref]

M. Hosseini, G. Campbell, B. M. Sparkes, P. K. Lam, and B. C. Buchler, “Unconditional room-temperature quantum memory,” Nat. Phys. 7, 794–798 (2011).
[Crossref]

M. Hosseini, B. M. Sparkes, G. Campbell, P. K. Lam, and B. C. Buchler, “High efficiency coherent optical memory with warm rubidium vapour,” Nat. Commun. 2, 174 (2011).
[Crossref]

G. Hétet, J. J. Longdell, M. J. Sellars, P. K. Lam, and B. C. Buchler, “Multimodal properties and dynamics of gradient echo quantum memory,” Phys. Rev. Lett. 101, 203601 (2008).
[Crossref]

G. Hetet, A. Peng, M. Johnsson, J. Hope, and P. K. Lam, “Characterization of electromagnetically-induced-transparency-based continuous-variable quantum memories,” Phys. Rev. A 77, 012323 (2008).
[Crossref]

T. C. Ralph and P. K. Lam, “Teleportation with bright squeezed light,” Phys. Rev. Lett. 81, 5668–5671 (1998).
[Crossref]

Langford, N. K.

K. F. Reim, P. Michelberger, K. C. Lee, J. Nunn, N. K. Langford, and I. A. Walmsley, “Single-photon-level quantum memory at room temperature,” Phys. Rev. Lett. 107, 053603 (2011).
[Crossref]

K. F. Reim, J. Nunn, V. O. Lorenz, B. J. Sussman, K. C. Lee, N. K. Langford, D. Jaksch, and I. A. Walmsley, “Towards high-speed optical quantum memories,” Nat. Photonics 4, 218–221 (2010).
[Crossref]

Laplane, C.

P. Jobez, C. Laplane, N. Timoney, N. Gisin, A. Ferrier, P. Goldner, and M. Afzelius, “Coherent spin control at the quantum level in an ensemble-based optical memory,” Phys. Rev. Lett. 114, 230502 (2015).
[Crossref]

P. Jobez, I. Usmani, N. Timoney, C. Laplane, N. Gisin, and M. Afzelius, “Cavity-enhanced storage in an optical spin-wave memory,” New J. Phys. 16, 083005 (2014).
[Crossref]

Laurat, J.

B. Gouraud, D. Maxein, A. Nicolas, O. Morin, and J. Laurat, “Demonstration of a memory for tightly guided light in an optical nanofiber,” Phys. Rev. Lett. 114, 180503 (2015).
[Crossref]

A. Nicolas, L. Veissier, L. Giner, E. Giacobino, D. Maxein, and J. Laurat, “A quantum memory for orbital angular momentum photonic qubits,” Nat. Photonics 8, 234–238 (2014).
[Crossref]

K. S. Choi, H. Deng, J. Laurat, and H. J. Kimble, “Mapping photonic entanglement into and out of a quantum memory,” Nature 452, 67–71 (2008).
[Crossref]

Lauritzen, B.

B. Lauritzen, J. Minář, H. De Riedmatten, M. Afzelius, N. Sangouard, C. Simon, and N. Gisin, “Telecommunication-wavelength solid-state memory at the single photon level,” Phys. Rev. Lett. 104, 080502 (2010).
[Crossref]

Lausten, R.

D. G. England, P. J. Bustard, J. Nunn, R. Lausten, and B. J. Sussman, “From photons to phonons and back: a THz optical memory in diamond,” Phys. Rev. Lett. 111, 243601 (2013).
[Crossref]

Le Gouët, J.-L.

Ledingham, P. M.

N. Maring, K. Kutluer, J. Cohen, M. Cristiani, M. Mazzera, P. M. Ledingham, and H. De Riedmatten, “Storage of up-converted telecom photons in a doped crystal,” New J. Phys. 16, 113021 (2014).
[Crossref]

M. Gündoğan, M. Mazzera, P. M. Ledingham, M. Cristiani, and H. De Riedmatten, “Coherent storage of temporally multimode light using a spin-wave atomic frequency comb memory,” New J. Phys. 15, 045012 (2013).
[Crossref]

D. L. McAuslan, P. M. Ledingham, W. R. Naylor, S. E. Bea-van, M. P. Hedges, M. J. Sellars, and J. J. Longdell, “Photon-echo quantum memories in inhomogeneously broadened two-level atoms,” Phys. Rev. A 84, 022309 (2011).

Lee, K. C.

K. F. Reim, P. Michelberger, K. C. Lee, J. Nunn, N. K. Langford, and I. A. Walmsley, “Single-photon-level quantum memory at room temperature,” Phys. Rev. Lett. 107, 053603 (2011).
[Crossref]

K. F. Reim, J. Nunn, V. O. Lorenz, B. J. Sussman, K. C. Lee, N. K. Langford, D. Jaksch, and I. A. Walmsley, “Towards high-speed optical quantum memories,” Nat. Photonics 4, 218–221 (2010).
[Crossref]

Lee, M.-J.

Y.-H. Chen, M.-J. Lee, I.-C. Wang, S. Du, Y.-F. Chen, Y.-C. Chen, and I. A. Yu, “Coherent optical memory with high storage efficiency and large fractional delay,” Phys. Rev. Lett. 110, 083601 (2013).
[Crossref]

Lenhard, A.

Leonhardt, U.

U. Leonhardt and H. Paul, “Measuring the quantum state of light,” Prog. Quantum Electron. 19, 89–130 (1995).
[Crossref]

Lettner, M.

S. Riedl, M. Lettner, C. Vo, S. Baur, G. Rempe, and S. Dürr, “Bose-Einstein condensate as a quantum memory for a photonic polarization qubit,” Phys. Rev. A 85, 022318 (2012).
[Crossref]

Li, L.

Y. O. Dudin, L. Li, and A. Kuzmich, “Light storage on the time scale of a minute,” Phys. Rev. A 87, 031801 (2013).
[Crossref]

X.-H. Bao, A. Reingruber, P. Dietrich, J. Rui, A. Duck, T. Strassel, L. Li, N.-L. Liu, B. Zhao, and J.-W. Pan, “Efficient and long-lived quantum memory with cold atoms inside a ring cavity,” Nat. Phys. 8, 517–521 (2012).
[Crossref]

Li, Q.

M. Sabooni, Q. Li, S. Kroll, and L. Rippe, “Efficient quantum memory using a weakly absorbing sample,” Phys. Rev. Lett. 110, 133604 (2013).
[Crossref]

Li, S.

Z. Xu, Y. Wu, L. Tian, L. Chen, Z. Zhang, Z. Yan, S. Li, H. Wang, C. Xie, and K. Peng, “Long lifetime and high-fidelity quantum memory of photonic polarization qubit by lifting Zeeman degeneracy,” Phys. Rev. Lett. 111, 240503 (2013).
[Crossref]

Li, Y.

M. P. Hedges, J. J. Longdell, Y. Li, and M. J. Sellars, “Efficient quantum memory for light,” Nature 465, 1052–1056 (2010).
[Crossref]

Liu, C.

S. Zhou, S. Zhang, C. Liu, J. F. Chen, J. Wen, M. Loy, G. Wong, and S. Du, “Optimal storage and retrieval of single-photon waveforms,” Opt. Express 20, 24124–24131 (2012).
[Crossref]

C. Liu, Z. Dutton, C. H. Behroozi, and L. V. Hau, “Observation of coherent optical information storage in an atomic medium using halted light pulses,” Nature 409, 490–493 (2001).
[Crossref]

Liu, N.-L.

X.-H. Bao, A. Reingruber, P. Dietrich, J. Rui, A. Duck, T. Strassel, L. Li, N.-L. Liu, B. Zhao, and J.-W. Pan, “Efficient and long-lived quantum memory with cold atoms inside a ring cavity,” Nat. Phys. 8, 517–521 (2012).
[Crossref]

Longdell, J. J.

M. Zhong, M. P. Hedges, R. L. Ahlefeldt, J. G. Bartholomew, S. E. Beavan, S. M. Wittig, J. J. Longdell, and M. J. Sellars, “Optically addressable nuclear spins in a solid with a six-hour coherence time,” Nature 517, 177–180 (2015).
[Crossref]

D. L. McAuslan, P. M. Ledingham, W. R. Naylor, S. E. Bea-van, M. P. Hedges, M. J. Sellars, and J. J. Longdell, “Photon-echo quantum memories in inhomogeneously broadened two-level atoms,” Phys. Rev. A 84, 022309 (2011).

M. P. Hedges, J. J. Longdell, Y. Li, and M. J. Sellars, “Efficient quantum memory for light,” Nature 465, 1052–1056 (2010).
[Crossref]

G. Hétet, J. J. Longdell, M. J. Sellars, P. K. Lam, and B. C. Buchler, “Multimodal properties and dynamics of gradient echo quantum memory,” Phys. Rev. Lett. 101, 203601 (2008).
[Crossref]

J. J. Longdell, E. Fraval, M. J. Sellars, and N. B. Manson, “Stopped light with storage times greater than one second using electromagnetically induced transparency in a solid,” Phys. Rev. Lett. 95, 063601 (2005).
[Crossref]

Lorenz, V. O.

K. F. Reim, J. Nunn, V. O. Lorenz, B. J. Sussman, K. C. Lee, N. K. Langford, D. Jaksch, and I. A. Walmsley, “Towards high-speed optical quantum memories,” Nat. Photonics 4, 218–221 (2010).
[Crossref]

Louchet-Chauvet, A.

Loy, M.

Luo, X. W.

X. W. Luo, J. J. Hope, B. Hillman, and T. M. Stace, “Diffusion effects in gradient echo memory,” Phys. Rev. A 87, 062328 (2013).
[Crossref]

Lvovsky, A. I.

A. I. Lvovsky, B. C. Sanders, and W. Tittel, “Optical quantum memory,” Nat. Photonics 3, 706–714 (2009).
[Crossref]

Makino, K.

J. I. Yoshikawa, K. Makino, S. Kurata, P. van Loock, and A. Furusawa, “Creation, storage, and on-demand release of optical quantum states with a negative Wigner function,” Phys. Rev. X 3, 041028 (2014).

Manson, N. B.

J. J. Longdell, E. Fraval, M. J. Sellars, and N. B. Manson, “Stopped light with storage times greater than one second using electromagnetically induced transparency in a solid,” Phys. Rev. Lett. 95, 063601 (2005).
[Crossref]

Maring, N.

N. Maring, K. Kutluer, J. Cohen, M. Cristiani, M. Mazzera, P. M. Ledingham, and H. De Riedmatten, “Storage of up-converted telecom photons in a doped crystal,” New J. Phys. 16, 113021 (2014).
[Crossref]

Marsili, F.

E. Saglamyurek, J. Jin, V. B. Verma, M. D. Shaw, F. Marsili, S. W. Nam, D. Oblak, and W. Tittel, “Quantum storage of entangled telecom-wavelength photons in an erbium-doped optical fibre,” Nat. Photonics 9, 83–87 (2015).
[Crossref]

Matsukevich, D. N.

R. Zhao, Y. O. Dudin, S. D. Jenkins, C. J. Campbell, D. N. Matsukevich, T. A. B. Kennedy, and A. Kuzmich, “Long-lived quantum memory,” Nat. Phys. 5, 100–104 (2009).
[Crossref]

Maxein, D.

B. Gouraud, D. Maxein, A. Nicolas, O. Morin, and J. Laurat, “Demonstration of a memory for tightly guided light in an optical nanofiber,” Phys. Rev. Lett. 114, 180503 (2015).
[Crossref]

A. Nicolas, L. Veissier, L. Giner, E. Giacobino, D. Maxein, and J. Laurat, “A quantum memory for orbital angular momentum photonic qubits,” Nat. Photonics 8, 234–238 (2014).
[Crossref]

Mazzera, M.

N. Maring, K. Kutluer, J. Cohen, M. Cristiani, M. Mazzera, P. M. Ledingham, and H. De Riedmatten, “Storage of up-converted telecom photons in a doped crystal,” New J. Phys. 16, 113021 (2014).
[Crossref]

M. Gündoğan, M. Mazzera, P. M. Ledingham, M. Cristiani, and H. De Riedmatten, “Coherent storage of temporally multimode light using a spin-wave atomic frequency comb memory,” New J. Phys. 15, 045012 (2013).
[Crossref]

McAuslan, D. L.

D. L. McAuslan, P. M. Ledingham, W. R. Naylor, S. E. Bea-van, M. P. Hedges, M. J. Sellars, and J. J. Longdell, “Photon-echo quantum memories in inhomogeneously broadened two-level atoms,” Phys. Rev. A 84, 022309 (2011).

Michelberger, P.

K. F. Reim, P. Michelberger, K. C. Lee, J. Nunn, N. K. Langford, and I. A. Walmsley, “Single-photon-level quantum memory at room temperature,” Phys. Rev. Lett. 107, 053603 (2011).
[Crossref]

Michelberger, P. S.

M. R. Sprague, P. S. Michelberger, T. F. M. Champion, D. G. England, J. Nunn, X. M. Jin, W. S. Kolthammer, A. Abdolvand, P. St.J. Russell, and I. A. Walmsley, “Broadband single-photon-level memory in a hollow-core photonic crystal fibre,” Nat. Photonics 8, 287–291 (2014).
[Crossref]

Milburn, G. J.

E. Knill, R. Laflamme, and G. J. Milburn, “A scheme for efficient quantum computation with linear optics,” Nature 409, 46–52 (2001).
[Crossref]

Minár, J.

B. Lauritzen, J. Minář, H. De Riedmatten, M. Afzelius, N. Sangouard, C. Simon, and N. Gisin, “Telecommunication-wavelength solid-state memory at the single photon level,” Phys. Rev. Lett. 104, 080502 (2010).
[Crossref]

Morin, O.

B. Gouraud, D. Maxein, A. Nicolas, O. Morin, and J. Laurat, “Demonstration of a memory for tightly guided light in an optical nanofiber,” Phys. Rev. Lett. 114, 180503 (2015).
[Crossref]

Nam, S. W.

E. Saglamyurek, J. Jin, V. B. Verma, M. D. Shaw, F. Marsili, S. W. Nam, D. Oblak, and W. Tittel, “Quantum storage of entangled telecom-wavelength photons in an erbium-doped optical fibre,” Nat. Photonics 9, 83–87 (2015).
[Crossref]

Naylor, W. R.

D. L. McAuslan, P. M. Ledingham, W. R. Naylor, S. E. Bea-van, M. P. Hedges, M. J. Sellars, and J. J. Longdell, “Photon-echo quantum memories in inhomogeneously broadened two-level atoms,” Phys. Rev. A 84, 022309 (2011).

Nicolas, A.

B. Gouraud, D. Maxein, A. Nicolas, O. Morin, and J. Laurat, “Demonstration of a memory for tightly guided light in an optical nanofiber,” Phys. Rev. Lett. 114, 180503 (2015).
[Crossref]

A. Nicolas, L. Veissier, L. Giner, E. Giacobino, D. Maxein, and J. Laurat, “A quantum memory for orbital angular momentum photonic qubits,” Nat. Photonics 8, 234–238 (2014).
[Crossref]

Novikova, I.

N. B. Phillips, A. V. Gorshkov, and I. Novikova, “Optimal light storage in atomic vapor,” Phys. Rev. A 78, 023801 (2008).
[Crossref]

Nunn, J.

M. R. Sprague, P. S. Michelberger, T. F. M. Champion, D. G. England, J. Nunn, X. M. Jin, W. S. Kolthammer, A. Abdolvand, P. St.J. Russell, and I. A. Walmsley, “Broadband single-photon-level memory in a hollow-core photonic crystal fibre,” Nat. Photonics 8, 287–291 (2014).
[Crossref]

D. G. England, P. J. Bustard, J. Nunn, R. Lausten, and B. J. Sussman, “From photons to phonons and back: a THz optical memory in diamond,” Phys. Rev. Lett. 111, 243601 (2013).
[Crossref]

K. F. Reim, P. Michelberger, K. C. Lee, J. Nunn, N. K. Langford, and I. A. Walmsley, “Single-photon-level quantum memory at room temperature,” Phys. Rev. Lett. 107, 053603 (2011).
[Crossref]

K. F. Reim, J. Nunn, V. O. Lorenz, B. J. Sussman, K. C. Lee, N. K. Langford, D. Jaksch, and I. A. Walmsley, “Towards high-speed optical quantum memories,” Nat. Photonics 4, 218–221 (2010).
[Crossref]

Oblak, D.

E. Saglamyurek, J. Jin, V. B. Verma, M. D. Shaw, F. Marsili, S. W. Nam, D. Oblak, and W. Tittel, “Quantum storage of entangled telecom-wavelength photons in an erbium-doped optical fibre,” Nat. Photonics 9, 83–87 (2015).
[Crossref]

Ourjoumtsev, A.

E. Bimbard, R. Boddeda, N. Vitrant, A. Grankin, V. Parigi, J. Stanojevic, A. Ourjoumtsev, and P. Grangier, “Homodyne tomography of a single photon retrieved on demand from a cavity-enhanced cold atom memory,” Phys. Rev. Lett. 112, 033601 (2014).
[Crossref]

Pan, J.-W.

X.-H. Bao, A. Reingruber, P. Dietrich, J. Rui, A. Duck, T. Strassel, L. Li, N.-L. Liu, B. Zhao, and J.-W. Pan, “Efficient and long-lived quantum memory with cold atoms inside a ring cavity,” Nat. Phys. 8, 517–521 (2012).
[Crossref]

Parigi, V.

E. Bimbard, R. Boddeda, N. Vitrant, A. Grankin, V. Parigi, J. Stanojevic, A. Ourjoumtsev, and P. Grangier, “Homodyne tomography of a single photon retrieved on demand from a cavity-enhanced cold atom memory,” Phys. Rev. Lett. 112, 033601 (2014).
[Crossref]

Paul, H.

U. Leonhardt and H. Paul, “Measuring the quantum state of light,” Prog. Quantum Electron. 19, 89–130 (1995).
[Crossref]

Peng, A.

G. Hetet, A. Peng, M. Johnsson, J. Hope, and P. K. Lam, “Characterization of electromagnetically-induced-transparency-based continuous-variable quantum memories,” Phys. Rev. A 77, 012323 (2008).
[Crossref]

Peng, K.

Z. Xu, Y. Wu, L. Tian, L. Chen, Z. Zhang, Z. Yan, S. Li, H. Wang, C. Xie, and K. Peng, “Long lifetime and high-fidelity quantum memory of photonic polarization qubit by lifting Zeeman degeneracy,” Phys. Rev. Lett. 111, 240503 (2013).
[Crossref]

Petrich, W.

Phillips, N. B.

N. B. Phillips, A. V. Gorshkov, and I. Novikova, “Optimal light storage in atomic vapor,” Phys. Rev. A 78, 023801 (2008).
[Crossref]

Pugatch, R.

U. Schnorrberger, J. D. Thompson, S. Trotzky, R. Pugatch, N. Davidson, S. Kuhr, and I. Bloch, “Electromagnetically induced transparency and light storage in an atomic Mott insulator,” Phys. Rev. Lett. 103, 033003 (2009).
[Crossref]

Ralph, T. C.

T. C. Ralph and P. K. Lam, “Teleportation with bright squeezed light,” Phys. Rev. Lett. 81, 5668–5671 (1998).
[Crossref]

Reim, K. F.

K. F. Reim, P. Michelberger, K. C. Lee, J. Nunn, N. K. Langford, and I. A. Walmsley, “Single-photon-level quantum memory at room temperature,” Phys. Rev. Lett. 107, 053603 (2011).
[Crossref]

K. F. Reim, J. Nunn, V. O. Lorenz, B. J. Sussman, K. C. Lee, N. K. Langford, D. Jaksch, and I. A. Walmsley, “Towards high-speed optical quantum memories,” Nat. Photonics 4, 218–221 (2010).
[Crossref]

Reingruber, A.

X.-H. Bao, A. Reingruber, P. Dietrich, J. Rui, A. Duck, T. Strassel, L. Li, N.-L. Liu, B. Zhao, and J.-W. Pan, “Efficient and long-lived quantum memory with cold atoms inside a ring cavity,” Nat. Phys. 8, 517–521 (2012).
[Crossref]

Rempe, G.

S. Riedl, M. Lettner, C. Vo, S. Baur, G. Rempe, and S. Dürr, “Bose-Einstein condensate as a quantum memory for a photonic polarization qubit,” Phys. Rev. A 85, 022318 (2012).
[Crossref]

Riedl, S.

S. Riedl, M. Lettner, C. Vo, S. Baur, G. Rempe, and S. Dürr, “Bose-Einstein condensate as a quantum memory for a photonic polarization qubit,” Phys. Rev. A 85, 022318 (2012).
[Crossref]

Rippe, L.

M. Sabooni, Q. Li, S. Kroll, and L. Rippe, “Efficient quantum memory using a weakly absorbing sample,” Phys. Rev. Lett. 110, 133604 (2013).
[Crossref]

Robins, N. P.

J. Geng, G. T. Campbell, J. Bernu, D. B. Higginbottom, B. M. Sparkes, S. M. Assad, W. P. Zhang, N. P. Robins, P. K. Lam, and B. C. Buchler, “Electromagnetically induced transparency and four-wave mixing in a cold atomic ensemble with large optical depth,” New J. Phys. 16, 113053 (2014).
[Crossref]

B. M. Sparkes, J. Bernu, M. Hosseini, J. Geng, Q. Glorieux, P. A. Altin, P. K. Lam, N. P. Robins, and B. C. Buchler, “Gradient echo memory in an ultra-high optical depth cold atomic ensemble,” New J. Phys. 15, 085027 (2013).
[Crossref]

Rudolph, T.

M. Varnava, D. E. Browne, and T. Rudolph, “Loss tolerance in one-way quantum computation via counterfactual error correction,” Phys. Rev. Lett. 97, 120501 (2006).
[Crossref]

Rui, J.

X.-H. Bao, A. Reingruber, P. Dietrich, J. Rui, A. Duck, T. Strassel, L. Li, N.-L. Liu, B. Zhao, and J.-W. Pan, “Efficient and long-lived quantum memory with cold atoms inside a ring cavity,” Nat. Phys. 8, 517–521 (2012).
[Crossref]

Russell, P. St.J.

M. R. Sprague, P. S. Michelberger, T. F. M. Champion, D. G. England, J. Nunn, X. M. Jin, W. S. Kolthammer, A. Abdolvand, P. St.J. Russell, and I. A. Walmsley, “Broadband single-photon-level memory in a hollow-core photonic crystal fibre,” Nat. Photonics 8, 287–291 (2014).
[Crossref]

Sabooni, M.

M. Sabooni, Q. Li, S. Kroll, and L. Rippe, “Efficient quantum memory using a weakly absorbing sample,” Phys. Rev. Lett. 110, 133604 (2013).
[Crossref]

Saglamyurek, E.

E. Saglamyurek, J. Jin, V. B. Verma, M. D. Shaw, F. Marsili, S. W. Nam, D. Oblak, and W. Tittel, “Quantum storage of entangled telecom-wavelength photons in an erbium-doped optical fibre,” Nat. Photonics 9, 83–87 (2015).
[Crossref]

Sanders, B. C.

A. I. Lvovsky, B. C. Sanders, and W. Tittel, “Optical quantum memory,” Nat. Photonics 3, 706–714 (2009).
[Crossref]

Sangouard, N.

F. Bussières, N. Sangouard, M. Afzelius, H. de Riedmatten, C. Simon, and W. Tittel, “Prospective applications of optical quantum memories,” J. Mod. Opt. 60, 1519–1537 (2013).
[Crossref]

N. Sangouard, C. Simon, H. De Riedmatten, and N. Gisin, “Quantum repeaters based on atomic ensembles and linear optics,” Rev. Mod. Phys. 83, 33–80 (2011).
[Crossref]

B. Lauritzen, J. Minář, H. De Riedmatten, M. Afzelius, N. Sangouard, C. Simon, and N. Gisin, “Telecommunication-wavelength solid-state memory at the single photon level,” Phys. Rev. Lett. 104, 080502 (2010).
[Crossref]

Schnorrberger, U.

U. Schnorrberger, J. D. Thompson, S. Trotzky, R. Pugatch, N. Davidson, S. Kuhr, and I. Bloch, “Electromagnetically induced transparency and light storage in an atomic Mott insulator,” Phys. Rev. Lett. 103, 033003 (2009).
[Crossref]

Sellars, M. J.

M. Zhong, M. P. Hedges, R. L. Ahlefeldt, J. G. Bartholomew, S. E. Beavan, S. M. Wittig, J. J. Longdell, and M. J. Sellars, “Optically addressable nuclear spins in a solid with a six-hour coherence time,” Nature 517, 177–180 (2015).
[Crossref]

D. L. McAuslan, P. M. Ledingham, W. R. Naylor, S. E. Bea-van, M. P. Hedges, M. J. Sellars, and J. J. Longdell, “Photon-echo quantum memories in inhomogeneously broadened two-level atoms,” Phys. Rev. A 84, 022309 (2011).

M. P. Hedges, J. J. Longdell, Y. Li, and M. J. Sellars, “Efficient quantum memory for light,” Nature 465, 1052–1056 (2010).
[Crossref]

G. Hétet, J. J. Longdell, M. J. Sellars, P. K. Lam, and B. C. Buchler, “Multimodal properties and dynamics of gradient echo quantum memory,” Phys. Rev. Lett. 101, 203601 (2008).
[Crossref]

J. J. Longdell, E. Fraval, M. J. Sellars, and N. B. Manson, “Stopped light with storage times greater than one second using electromagnetically induced transparency in a solid,” Phys. Rev. Lett. 95, 063601 (2005).
[Crossref]

Shaw, M. D.

E. Saglamyurek, J. Jin, V. B. Verma, M. D. Shaw, F. Marsili, S. W. Nam, D. Oblak, and W. Tittel, “Quantum storage of entangled telecom-wavelength photons in an erbium-doped optical fibre,” Nat. Photonics 9, 83–87 (2015).
[Crossref]

Shi, B.-S.

D.-S. Ding, W. Zhang, Z.-Y. Zhou, S. Shi, G.-Y. Xiang, X.-S. Wang, Y.-K. Jiang, B.-S. Shi, and G.-C. Guo, “Quantum storage of orbital angular momentum entanglement in an atomic ensemble,” Phys. Rev. Lett. 114, 050502 (2015).
[Crossref]

Shi, S.

D.-S. Ding, W. Zhang, Z.-Y. Zhou, S. Shi, G.-Y. Xiang, X.-S. Wang, Y.-K. Jiang, B.-S. Shi, and G.-C. Guo, “Quantum storage of orbital angular momentum entanglement in an atomic ensemble,” Phys. Rev. Lett. 114, 050502 (2015).
[Crossref]

Simon, C.

F. Bussières, N. Sangouard, M. Afzelius, H. de Riedmatten, C. Simon, and W. Tittel, “Prospective applications of optical quantum memories,” J. Mod. Opt. 60, 1519–1537 (2013).
[Crossref]

N. Sangouard, C. Simon, H. De Riedmatten, and N. Gisin, “Quantum repeaters based on atomic ensembles and linear optics,” Rev. Mod. Phys. 83, 33–80 (2011).
[Crossref]

B. Lauritzen, J. Minář, H. De Riedmatten, M. Afzelius, N. Sangouard, C. Simon, and N. Gisin, “Telecommunication-wavelength solid-state memory at the single photon level,” Phys. Rev. Lett. 104, 080502 (2010).
[Crossref]

Sparkes, B. M.

J. Geng, G. T. Campbell, J. Bernu, D. B. Higginbottom, B. M. Sparkes, S. M. Assad, W. P. Zhang, N. P. Robins, P. K. Lam, and B. C. Buchler, “Electromagnetically induced transparency and four-wave mixing in a cold atomic ensemble with large optical depth,” New J. Phys. 16, 113053 (2014).
[Crossref]

B. M. Sparkes, J. Bernu, M. Hosseini, J. Geng, Q. Glorieux, P. A. Altin, P. K. Lam, N. P. Robins, and B. C. Buchler, “Gradient echo memory in an ultra-high optical depth cold atomic ensemble,” New J. Phys. 15, 085027 (2013).
[Crossref]

M. Hosseini, B. M. Sparkes, G. Campbell, P. K. Lam, and B. C. Buchler, “High efficiency coherent optical memory with warm rubidium vapour,” Nat. Commun. 2, 174 (2011).
[Crossref]

M. Hosseini, G. Campbell, B. M. Sparkes, P. K. Lam, and B. C. Buchler, “Unconditional room-temperature quantum memory,” Nat. Phys. 7, 794–798 (2011).
[Crossref]

Sprague, M. R.

M. R. Sprague, P. S. Michelberger, T. F. M. Champion, D. G. England, J. Nunn, X. M. Jin, W. S. Kolthammer, A. Abdolvand, P. St.J. Russell, and I. A. Walmsley, “Broadband single-photon-level memory in a hollow-core photonic crystal fibre,” Nat. Photonics 8, 287–291 (2014).
[Crossref]

Stace, T. M.

X. W. Luo, J. J. Hope, B. Hillman, and T. M. Stace, “Diffusion effects in gradient echo memory,” Phys. Rev. A 87, 062328 (2013).
[Crossref]

Stanojevic, J.

E. Bimbard, R. Boddeda, N. Vitrant, A. Grankin, V. Parigi, J. Stanojevic, A. Ourjoumtsev, and P. Grangier, “Homodyne tomography of a single photon retrieved on demand from a cavity-enhanced cold atom memory,” Phys. Rev. Lett. 112, 033601 (2014).
[Crossref]

Strassel, T.

X.-H. Bao, A. Reingruber, P. Dietrich, J. Rui, A. Duck, T. Strassel, L. Li, N.-L. Liu, B. Zhao, and J.-W. Pan, “Efficient and long-lived quantum memory with cold atoms inside a ring cavity,” Nat. Phys. 8, 517–521 (2012).
[Crossref]

Sussman, B. J.

D. G. England, P. J. Bustard, J. Nunn, R. Lausten, and B. J. Sussman, “From photons to phonons and back: a THz optical memory in diamond,” Phys. Rev. Lett. 111, 243601 (2013).
[Crossref]

K. F. Reim, J. Nunn, V. O. Lorenz, B. J. Sussman, K. C. Lee, N. K. Langford, D. Jaksch, and I. A. Walmsley, “Towards high-speed optical quantum memories,” Nat. Photonics 4, 218–221 (2010).
[Crossref]

Tanzilli, S.

S. Tanzilli, W. Tittel, M. Halder, O. Alibart, P. Baldi, N. Gisin, and H. Zbinden, “A photonic quantum information interface,” Nature 437, 116–120 (2005).
[Crossref]

Thompson, J. D.

U. Schnorrberger, J. D. Thompson, S. Trotzky, R. Pugatch, N. Davidson, S. Kuhr, and I. Bloch, “Electromagnetically induced transparency and light storage in an atomic Mott insulator,” Phys. Rev. Lett. 103, 033003 (2009).
[Crossref]

Tian, L.

Z. Xu, Y. Wu, L. Tian, L. Chen, Z. Zhang, Z. Yan, S. Li, H. Wang, C. Xie, and K. Peng, “Long lifetime and high-fidelity quantum memory of photonic polarization qubit by lifting Zeeman degeneracy,” Phys. Rev. Lett. 111, 240503 (2013).
[Crossref]

Timoney, N.

P. Jobez, C. Laplane, N. Timoney, N. Gisin, A. Ferrier, P. Goldner, and M. Afzelius, “Coherent spin control at the quantum level in an ensemble-based optical memory,” Phys. Rev. Lett. 114, 230502 (2015).
[Crossref]

P. Jobez, I. Usmani, N. Timoney, C. Laplane, N. Gisin, and M. Afzelius, “Cavity-enhanced storage in an optical spin-wave memory,” New J. Phys. 16, 083005 (2014).
[Crossref]

Tittel, W.

E. Saglamyurek, J. Jin, V. B. Verma, M. D. Shaw, F. Marsili, S. W. Nam, D. Oblak, and W. Tittel, “Quantum storage of entangled telecom-wavelength photons in an erbium-doped optical fibre,” Nat. Photonics 9, 83–87 (2015).
[Crossref]

F. Bussières, N. Sangouard, M. Afzelius, H. de Riedmatten, C. Simon, and W. Tittel, “Prospective applications of optical quantum memories,” J. Mod. Opt. 60, 1519–1537 (2013).
[Crossref]

A. I. Lvovsky, B. C. Sanders, and W. Tittel, “Optical quantum memory,” Nat. Photonics 3, 706–714 (2009).
[Crossref]

S. Tanzilli, W. Tittel, M. Halder, O. Alibart, P. Baldi, N. Gisin, and H. Zbinden, “A photonic quantum information interface,” Nature 437, 116–120 (2005).
[Crossref]

Trotzky, S.

U. Schnorrberger, J. D. Thompson, S. Trotzky, R. Pugatch, N. Davidson, S. Kuhr, and I. Bloch, “Electromagnetically induced transparency and light storage in an atomic Mott insulator,” Phys. Rev. Lett. 103, 033003 (2009).
[Crossref]

Tsai, P.-J.

Y.-F. Hsiao, H.-S. Chen, P.-J. Tsai, and Y.-C. Chen, “Cold atomic media with ultrahigh optical depths,” Phys. Rev. A 90, 055401 (2014).
[Crossref]

Usmani, I.

P. Jobez, I. Usmani, N. Timoney, C. Laplane, N. Gisin, and M. Afzelius, “Cavity-enhanced storage in an optical spin-wave memory,” New J. Phys. 16, 083005 (2014).
[Crossref]

van Loock, P.

J. I. Yoshikawa, K. Makino, S. Kurata, P. van Loock, and A. Furusawa, “Creation, storage, and on-demand release of optical quantum states with a negative Wigner function,” Phys. Rev. X 3, 041028 (2014).

Varnava, M.

M. Varnava, D. E. Browne, and T. Rudolph, “Loss tolerance in one-way quantum computation via counterfactual error correction,” Phys. Rev. Lett. 97, 120501 (2006).
[Crossref]

Veissier, L.

A. Nicolas, L. Veissier, L. Giner, E. Giacobino, D. Maxein, and J. Laurat, “A quantum memory for orbital angular momentum photonic qubits,” Nat. Photonics 8, 234–238 (2014).
[Crossref]

Verma, V. B.

E. Saglamyurek, J. Jin, V. B. Verma, M. D. Shaw, F. Marsili, S. W. Nam, D. Oblak, and W. Tittel, “Quantum storage of entangled telecom-wavelength photons in an erbium-doped optical fibre,” Nat. Photonics 9, 83–87 (2015).
[Crossref]

Vitrant, N.

E. Bimbard, R. Boddeda, N. Vitrant, A. Grankin, V. Parigi, J. Stanojevic, A. Ourjoumtsev, and P. Grangier, “Homodyne tomography of a single photon retrieved on demand from a cavity-enhanced cold atom memory,” Phys. Rev. Lett. 112, 033601 (2014).
[Crossref]

Vo, C.

S. Riedl, M. Lettner, C. Vo, S. Baur, G. Rempe, and S. Dürr, “Bose-Einstein condensate as a quantum memory for a photonic polarization qubit,” Phys. Rev. A 85, 022318 (2012).
[Crossref]

Walmsley, I. A.

M. R. Sprague, P. S. Michelberger, T. F. M. Champion, D. G. England, J. Nunn, X. M. Jin, W. S. Kolthammer, A. Abdolvand, P. St.J. Russell, and I. A. Walmsley, “Broadband single-photon-level memory in a hollow-core photonic crystal fibre,” Nat. Photonics 8, 287–291 (2014).
[Crossref]

K. F. Reim, P. Michelberger, K. C. Lee, J. Nunn, N. K. Langford, and I. A. Walmsley, “Single-photon-level quantum memory at room temperature,” Phys. Rev. Lett. 107, 053603 (2011).
[Crossref]

K. F. Reim, J. Nunn, V. O. Lorenz, B. J. Sussman, K. C. Lee, N. K. Langford, D. Jaksch, and I. A. Walmsley, “Towards high-speed optical quantum memories,” Nat. Photonics 4, 218–221 (2010).
[Crossref]

Wang, H.

Z. Xu, Y. Wu, L. Tian, L. Chen, Z. Zhang, Z. Yan, S. Li, H. Wang, C. Xie, and K. Peng, “Long lifetime and high-fidelity quantum memory of photonic polarization qubit by lifting Zeeman degeneracy,” Phys. Rev. Lett. 111, 240503 (2013).
[Crossref]

Wang, I.-C.

Y.-H. Chen, M.-J. Lee, I.-C. Wang, S. Du, Y.-F. Chen, Y.-C. Chen, and I. A. Yu, “Coherent optical memory with high storage efficiency and large fractional delay,” Phys. Rev. Lett. 110, 083601 (2013).
[Crossref]

Wang, X.-S.

D.-S. Ding, W. Zhang, Z.-Y. Zhou, S. Shi, G.-Y. Xiang, X.-S. Wang, Y.-K. Jiang, B.-S. Shi, and G.-C. Guo, “Quantum storage of orbital angular momentum entanglement in an atomic ensemble,” Phys. Rev. Lett. 114, 050502 (2015).
[Crossref]

Wen, J.

Wittig, S. M.

M. Zhong, M. P. Hedges, R. L. Ahlefeldt, J. G. Bartholomew, S. E. Beavan, S. M. Wittig, J. J. Longdell, and M. J. Sellars, “Optically addressable nuclear spins in a solid with a six-hour coherence time,” Nature 517, 177–180 (2015).
[Crossref]

Wong, G.

Wu, Y.

Z. Xu, Y. Wu, L. Tian, L. Chen, Z. Zhang, Z. Yan, S. Li, H. Wang, C. Xie, and K. Peng, “Long lifetime and high-fidelity quantum memory of photonic polarization qubit by lifting Zeeman degeneracy,” Phys. Rev. Lett. 111, 240503 (2013).
[Crossref]

Xiang, G.-Y.

D.-S. Ding, W. Zhang, Z.-Y. Zhou, S. Shi, G.-Y. Xiang, X.-S. Wang, Y.-K. Jiang, B.-S. Shi, and G.-C. Guo, “Quantum storage of orbital angular momentum entanglement in an atomic ensemble,” Phys. Rev. Lett. 114, 050502 (2015).
[Crossref]

Xie, C.

Z. Xu, Y. Wu, L. Tian, L. Chen, Z. Zhang, Z. Yan, S. Li, H. Wang, C. Xie, and K. Peng, “Long lifetime and high-fidelity quantum memory of photonic polarization qubit by lifting Zeeman degeneracy,” Phys. Rev. Lett. 111, 240503 (2013).
[Crossref]

Xu, Z.

Z. Xu, Y. Wu, L. Tian, L. Chen, Z. Zhang, Z. Yan, S. Li, H. Wang, C. Xie, and K. Peng, “Long lifetime and high-fidelity quantum memory of photonic polarization qubit by lifting Zeeman degeneracy,” Phys. Rev. Lett. 111, 240503 (2013).
[Crossref]

Yamamoto, T.

R. Ikuta, Y. Kusaka, T. Kitano, H. Kato, T. Yamamoto, M. Koashi, and N. Imoto, “Wide-band quantum interface for visible-to-telecommunication wavelength conversion,” Nat. Commun. 2, 537 (2011).
[Crossref]

Yan, Z.

Z. Xu, Y. Wu, L. Tian, L. Chen, Z. Zhang, Z. Yan, S. Li, H. Wang, C. Xie, and K. Peng, “Long lifetime and high-fidelity quantum memory of photonic polarization qubit by lifting Zeeman degeneracy,” Phys. Rev. Lett. 111, 240503 (2013).
[Crossref]

Yoshikawa, J. I.

J. I. Yoshikawa, K. Makino, S. Kurata, P. van Loock, and A. Furusawa, “Creation, storage, and on-demand release of optical quantum states with a negative Wigner function,” Phys. Rev. X 3, 041028 (2014).

Yu, I. A.

Y.-H. Chen, M.-J. Lee, I.-C. Wang, S. Du, Y.-F. Chen, Y.-C. Chen, and I. A. Yu, “Coherent optical memory with high storage efficiency and large fractional delay,” Phys. Rev. Lett. 110, 083601 (2013).
[Crossref]

Zaske, S.

Zbinden, H.

S. Tanzilli, W. Tittel, M. Halder, O. Alibart, P. Baldi, N. Gisin, and H. Zbinden, “A photonic quantum information interface,” Nature 437, 116–120 (2005).
[Crossref]

Zhang, R.

R. Zhang, S. R. Garner, and L. V. Hau, “Creation of long-term coherent optical memory via controlled nonlinear interactions in Bose-Einstein condensates,” Phys. Rev. Lett. 103, 233602 (2009).
[Crossref]

Zhang, S.

Zhang, T.

S. D. Jenkins, T. Zhang, and T. A. B. Kennedy, “Motional dephasing of atomic clock spin waves in an optical lattice,” J. Phys. B 45, 124005 (2012).
[Crossref]

Zhang, W.

D.-S. Ding, W. Zhang, Z.-Y. Zhou, S. Shi, G.-Y. Xiang, X.-S. Wang, Y.-K. Jiang, B.-S. Shi, and G.-C. Guo, “Quantum storage of orbital angular momentum entanglement in an atomic ensemble,” Phys. Rev. Lett. 114, 050502 (2015).
[Crossref]

Zhang, W. P.

J. Geng, G. T. Campbell, J. Bernu, D. B. Higginbottom, B. M. Sparkes, S. M. Assad, W. P. Zhang, N. P. Robins, P. K. Lam, and B. C. Buchler, “Electromagnetically induced transparency and four-wave mixing in a cold atomic ensemble with large optical depth,” New J. Phys. 16, 113053 (2014).
[Crossref]

Zhang, Z.

Z. Xu, Y. Wu, L. Tian, L. Chen, Z. Zhang, Z. Yan, S. Li, H. Wang, C. Xie, and K. Peng, “Long lifetime and high-fidelity quantum memory of photonic polarization qubit by lifting Zeeman degeneracy,” Phys. Rev. Lett. 111, 240503 (2013).
[Crossref]

Zhao, B.

X.-H. Bao, A. Reingruber, P. Dietrich, J. Rui, A. Duck, T. Strassel, L. Li, N.-L. Liu, B. Zhao, and J.-W. Pan, “Efficient and long-lived quantum memory with cold atoms inside a ring cavity,” Nat. Phys. 8, 517–521 (2012).
[Crossref]

Zhao, R.

R. Zhao, Y. O. Dudin, S. D. Jenkins, C. J. Campbell, D. N. Matsukevich, T. A. B. Kennedy, and A. Kuzmich, “Long-lived quantum memory,” Nat. Phys. 5, 100–104 (2009).
[Crossref]

Zhong, M.

M. Zhong, M. P. Hedges, R. L. Ahlefeldt, J. G. Bartholomew, S. E. Beavan, S. M. Wittig, J. J. Longdell, and M. J. Sellars, “Optically addressable nuclear spins in a solid with a six-hour coherence time,” Nature 517, 177–180 (2015).
[Crossref]

Zhou, S.

Zhou, Z.-Y.

D.-S. Ding, W. Zhang, Z.-Y. Zhou, S. Shi, G.-Y. Xiang, X.-S. Wang, Y.-K. Jiang, B.-S. Shi, and G.-C. Guo, “Quantum storage of orbital angular momentum entanglement in an atomic ensemble,” Phys. Rev. Lett. 114, 050502 (2015).
[Crossref]

J. Mod. Opt. (1)

F. Bussières, N. Sangouard, M. Afzelius, H. de Riedmatten, C. Simon, and W. Tittel, “Prospective applications of optical quantum memories,” J. Mod. Opt. 60, 1519–1537 (2013).
[Crossref]

J. Opt. Soc. Am. B (1)

J. Phys. B (1)

S. D. Jenkins, T. Zhang, and T. A. B. Kennedy, “Motional dephasing of atomic clock spin waves in an optical lattice,” J. Phys. B 45, 124005 (2012).
[Crossref]

Nat. Commun. (3)

M. Hosseini, B. M. Sparkes, G. Campbell, P. K. Lam, and B. C. Buchler, “High efficiency coherent optical memory with warm rubidium vapour,” Nat. Commun. 2, 174 (2011).
[Crossref]

R. Ikuta, Y. Kusaka, T. Kitano, H. Kato, T. Yamamoto, M. Koashi, and N. Imoto, “Wide-band quantum interface for visible-to-telecommunication wavelength conversion,” Nat. Commun. 2, 537 (2011).
[Crossref]

B. Albrecht, P. Farrera, X. Fernandez-Gonzalvo, M. Cristiani, and H. De Riedmatten, “A waveguide frequency converter connecting rubidium-based quantum memories to the telecom C-band,” Nat. Commun. 5, 3376 (2014).

Nat. Photonics (5)

M. R. Sprague, P. S. Michelberger, T. F. M. Champion, D. G. England, J. Nunn, X. M. Jin, W. S. Kolthammer, A. Abdolvand, P. St.J. Russell, and I. A. Walmsley, “Broadband single-photon-level memory in a hollow-core photonic crystal fibre,” Nat. Photonics 8, 287–291 (2014).
[Crossref]

A. Nicolas, L. Veissier, L. Giner, E. Giacobino, D. Maxein, and J. Laurat, “A quantum memory for orbital angular momentum photonic qubits,” Nat. Photonics 8, 234–238 (2014).
[Crossref]

E. Saglamyurek, J. Jin, V. B. Verma, M. D. Shaw, F. Marsili, S. W. Nam, D. Oblak, and W. Tittel, “Quantum storage of entangled telecom-wavelength photons in an erbium-doped optical fibre,” Nat. Photonics 9, 83–87 (2015).
[Crossref]

A. I. Lvovsky, B. C. Sanders, and W. Tittel, “Optical quantum memory,” Nat. Photonics 3, 706–714 (2009).
[Crossref]

K. F. Reim, J. Nunn, V. O. Lorenz, B. J. Sussman, K. C. Lee, N. K. Langford, D. Jaksch, and I. A. Walmsley, “Towards high-speed optical quantum memories,” Nat. Photonics 4, 218–221 (2010).
[Crossref]

Nat. Phys. (3)

M. Hosseini, G. Campbell, B. M. Sparkes, P. K. Lam, and B. C. Buchler, “Unconditional room-temperature quantum memory,” Nat. Phys. 7, 794–798 (2011).
[Crossref]

X.-H. Bao, A. Reingruber, P. Dietrich, J. Rui, A. Duck, T. Strassel, L. Li, N.-L. Liu, B. Zhao, and J.-W. Pan, “Efficient and long-lived quantum memory with cold atoms inside a ring cavity,” Nat. Phys. 8, 517–521 (2012).
[Crossref]

R. Zhao, Y. O. Dudin, S. D. Jenkins, C. J. Campbell, D. N. Matsukevich, T. A. B. Kennedy, and A. Kuzmich, “Long-lived quantum memory,” Nat. Phys. 5, 100–104 (2009).
[Crossref]

Nature (7)

C. Liu, Z. Dutton, C. H. Behroozi, and L. V. Hau, “Observation of coherent optical information storage in an atomic medium using halted light pulses,” Nature 409, 490–493 (2001).
[Crossref]

S. Tanzilli, W. Tittel, M. Halder, O. Alibart, P. Baldi, N. Gisin, and H. Zbinden, “A photonic quantum information interface,” Nature 437, 116–120 (2005).
[Crossref]

M. Zhong, M. P. Hedges, R. L. Ahlefeldt, J. G. Bartholomew, S. E. Beavan, S. M. Wittig, J. J. Longdell, and M. J. Sellars, “Optically addressable nuclear spins in a solid with a six-hour coherence time,” Nature 517, 177–180 (2015).
[Crossref]

K. S. Choi, H. Deng, J. Laurat, and H. J. Kimble, “Mapping photonic entanglement into and out of a quantum memory,” Nature 452, 67–71 (2008).
[Crossref]

M. P. Hedges, J. J. Longdell, Y. Li, and M. J. Sellars, “Efficient quantum memory for light,” Nature 465, 1052–1056 (2010).
[Crossref]

H. J. Kimble, “The quantum Internet,” Nature 453, 1023–1030 (2008).
[Crossref]

E. Knill, R. Laflamme, and G. J. Milburn, “A scheme for efficient quantum computation with linear optics,” Nature 409, 46–52 (2001).
[Crossref]

New J. Phys. (5)

B. M. Sparkes, J. Bernu, M. Hosseini, J. Geng, Q. Glorieux, P. A. Altin, P. K. Lam, N. P. Robins, and B. C. Buchler, “Gradient echo memory in an ultra-high optical depth cold atomic ensemble,” New J. Phys. 15, 085027 (2013).
[Crossref]

P. Jobez, I. Usmani, N. Timoney, C. Laplane, N. Gisin, and M. Afzelius, “Cavity-enhanced storage in an optical spin-wave memory,” New J. Phys. 16, 083005 (2014).
[Crossref]

J. Geng, G. T. Campbell, J. Bernu, D. B. Higginbottom, B. M. Sparkes, S. M. Assad, W. P. Zhang, N. P. Robins, P. K. Lam, and B. C. Buchler, “Electromagnetically induced transparency and four-wave mixing in a cold atomic ensemble with large optical depth,” New J. Phys. 16, 113053 (2014).
[Crossref]

N. Maring, K. Kutluer, J. Cohen, M. Cristiani, M. Mazzera, P. M. Ledingham, and H. De Riedmatten, “Storage of up-converted telecom photons in a doped crystal,” New J. Phys. 16, 113021 (2014).
[Crossref]

M. Gündoğan, M. Mazzera, P. M. Ledingham, M. Cristiani, and H. De Riedmatten, “Coherent storage of temporally multimode light using a spin-wave atomic frequency comb memory,” New J. Phys. 15, 045012 (2013).
[Crossref]

Opt. Express (2)

Opt. Lett. (1)

Phys. Rev. A (8)

D. L. McAuslan, P. M. Ledingham, W. R. Naylor, S. E. Bea-van, M. P. Hedges, M. J. Sellars, and J. J. Longdell, “Photon-echo quantum memories in inhomogeneously broadened two-level atoms,” Phys. Rev. A 84, 022309 (2011).

Y. O. Dudin, L. Li, and A. Kuzmich, “Light storage on the time scale of a minute,” Phys. Rev. A 87, 031801 (2013).
[Crossref]

Y.-F. Hsiao, H.-S. Chen, P.-J. Tsai, and Y.-C. Chen, “Cold atomic media with ultrahigh optical depths,” Phys. Rev. A 90, 055401 (2014).
[Crossref]

X. W. Luo, J. J. Hope, B. Hillman, and T. M. Stace, “Diffusion effects in gradient echo memory,” Phys. Rev. A 87, 062328 (2013).
[Crossref]

N. B. Phillips, A. V. Gorshkov, and I. Novikova, “Optimal light storage in atomic vapor,” Phys. Rev. A 78, 023801 (2008).
[Crossref]

G. Hetet, A. Peng, M. Johnsson, J. Hope, and P. K. Lam, “Characterization of electromagnetically-induced-transparency-based continuous-variable quantum memories,” Phys. Rev. A 77, 012323 (2008).
[Crossref]

F. Grosshans and P. Grangier, “Quantum cloning and teleportation criteria for continuous quantum variables,” Phys. Rev. A 64, 010301 (2001).
[Crossref]

S. Riedl, M. Lettner, C. Vo, S. Baur, G. Rempe, and S. Dürr, “Bose-Einstein condensate as a quantum memory for a photonic polarization qubit,” Phys. Rev. A 85, 022318 (2012).
[Crossref]

Phys. Rev. Lett. (17)

M. Varnava, D. E. Browne, and T. Rudolph, “Loss tolerance in one-way quantum computation via counterfactual error correction,” Phys. Rev. Lett. 97, 120501 (2006).
[Crossref]

Y.-H. Chen, M.-J. Lee, I.-C. Wang, S. Du, Y.-F. Chen, Y.-C. Chen, and I. A. Yu, “Coherent optical memory with high storage efficiency and large fractional delay,” Phys. Rev. Lett. 110, 083601 (2013).
[Crossref]

K. F. Reim, P. Michelberger, K. C. Lee, J. Nunn, N. K. Langford, and I. A. Walmsley, “Single-photon-level quantum memory at room temperature,” Phys. Rev. Lett. 107, 053603 (2011).
[Crossref]

M. Sabooni, Q. Li, S. Kroll, and L. Rippe, “Efficient quantum memory using a weakly absorbing sample,” Phys. Rev. Lett. 110, 133604 (2013).
[Crossref]

P. Jobez, C. Laplane, N. Timoney, N. Gisin, A. Ferrier, P. Goldner, and M. Afzelius, “Coherent spin control at the quantum level in an ensemble-based optical memory,” Phys. Rev. Lett. 114, 230502 (2015).
[Crossref]

T. C. Ralph and P. K. Lam, “Teleportation with bright squeezed light,” Phys. Rev. Lett. 81, 5668–5671 (1998).
[Crossref]

U. Schnorrberger, J. D. Thompson, S. Trotzky, R. Pugatch, N. Davidson, S. Kuhr, and I. Bloch, “Electromagnetically induced transparency and light storage in an atomic Mott insulator,” Phys. Rev. Lett. 103, 033003 (2009).
[Crossref]

R. Zhang, S. R. Garner, and L. V. Hau, “Creation of long-term coherent optical memory via controlled nonlinear interactions in Bose-Einstein condensates,” Phys. Rev. Lett. 103, 233602 (2009).
[Crossref]

G. Heinze, C. Hubrich, and T. Halfmann, “Stopped light and image storage by electromagnetically induced transparency up to the regime of one minute,” Phys. Rev. Lett. 111, 033601 (2013).
[Crossref]

G. Hétet, J. J. Longdell, M. J. Sellars, P. K. Lam, and B. C. Buchler, “Multimodal properties and dynamics of gradient echo quantum memory,” Phys. Rev. Lett. 101, 203601 (2008).
[Crossref]

E. Bimbard, R. Boddeda, N. Vitrant, A. Grankin, V. Parigi, J. Stanojevic, A. Ourjoumtsev, and P. Grangier, “Homodyne tomography of a single photon retrieved on demand from a cavity-enhanced cold atom memory,” Phys. Rev. Lett. 112, 033601 (2014).
[Crossref]

D.-S. Ding, W. Zhang, Z.-Y. Zhou, S. Shi, G.-Y. Xiang, X.-S. Wang, Y.-K. Jiang, B.-S. Shi, and G.-C. Guo, “Quantum storage of orbital angular momentum entanglement in an atomic ensemble,” Phys. Rev. Lett. 114, 050502 (2015).
[Crossref]

B. Gouraud, D. Maxein, A. Nicolas, O. Morin, and J. Laurat, “Demonstration of a memory for tightly guided light in an optical nanofiber,” Phys. Rev. Lett. 114, 180503 (2015).
[Crossref]

B. Lauritzen, J. Minář, H. De Riedmatten, M. Afzelius, N. Sangouard, C. Simon, and N. Gisin, “Telecommunication-wavelength solid-state memory at the single photon level,” Phys. Rev. Lett. 104, 080502 (2010).
[Crossref]

D. G. England, P. J. Bustard, J. Nunn, R. Lausten, and B. J. Sussman, “From photons to phonons and back: a THz optical memory in diamond,” Phys. Rev. Lett. 111, 243601 (2013).
[Crossref]

J. J. Longdell, E. Fraval, M. J. Sellars, and N. B. Manson, “Stopped light with storage times greater than one second using electromagnetically induced transparency in a solid,” Phys. Rev. Lett. 95, 063601 (2005).
[Crossref]

Z. Xu, Y. Wu, L. Tian, L. Chen, Z. Zhang, Z. Yan, S. Li, H. Wang, C. Xie, and K. Peng, “Long lifetime and high-fidelity quantum memory of photonic polarization qubit by lifting Zeeman degeneracy,” Phys. Rev. Lett. 111, 240503 (2013).
[Crossref]

Phys. Rev. X (1)

J. I. Yoshikawa, K. Makino, S. Kurata, P. van Loock, and A. Furusawa, “Creation, storage, and on-demand release of optical quantum states with a negative Wigner function,” Phys. Rev. X 3, 041028 (2014).

Prog. Quantum Electron. (1)

U. Leonhardt and H. Paul, “Measuring the quantum state of light,” Prog. Quantum Electron. 19, 89–130 (1995).
[Crossref]

Rev. Mod. Phys. (1)

N. Sangouard, C. Simon, H. De Riedmatten, and N. Gisin, “Quantum repeaters based on atomic ensembles and linear optics,” Rev. Mod. Phys. 83, 33–80 (2011).
[Crossref]

Other (2)

Lifetime here is defined as the time taken for the efficiency to drop by a factor of e.

See Supplement 1 for details of the numerical simulations, decay model, and multimode storage.

Supplementary Material (1)

NameDescription
» Supplement 1: PDF (1418 KB)      Supplemental document

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

(a) Experimental schematic. A cold Rb87 cloud is prepared in the MOT. The photo of the atomic cloud was taken using a 30 s exposure. The probe and control fields are combined with angle θ at a beam splitter (BS). The polarizations of probe and control fields are set to be the same circular by a quarter-wave plate (QWP). The probe field is measured either by an avalanche photodiode (APD) or by a heterodyne detection (HD) system with a local oscillator (LO) beam. The GEM coils generate a magnetic field in the z direction with a reversible gradient. The atomic level scheme illustrates the relationship between the probe and control fields. (b) Measured Raman absorption spectra: (i) unbroadened Raman lines, (ii) Raman lines broadened by the magnetic field gradients used during the input and output stages. The oscillations are due to free-induction decay.

Fig. 2.
Fig. 2.

Demonstration of high-efficiency storage. (a) Experimental heterodyne data for input/recall pulses. The fringe visibility between the local oscillator and probe beams was >97%. (b) Demodulated experimental data (filled regions), averaged over 15 traces, show an efficiency of 87%±2%. Numerical results with and without 4WM are overlaid. (c) Storage and recall data for different storage times. The decay is relatively quick due to the presence of control and gradient fields, as described in the text.

Fig. 3.
Fig. 3.

Efficiency decay when both the control field and the magnetic field gradients are left on during storage, shown for varying values of the control field Rabi frequency Ωc. Solid lines are fitting curves with a decay model described in Eq. (1).

Fig. 4.
Fig. 4.

Memory lifetime is extended by turning off both the control and the magnetic gradient field. (a) Measured efficiency as a function of storage time. For θ=0.0°, the coherence time is limited by the atom loss; see text for details. The corresponding e1 decay time is 1 ms. Solid lines are the theoretical fit with Eq. (2). For θ=0.2°,0.55°, and 0.84°, the coherence times are limited by the longitudinal dephasing. (b) Measured coherence time due to the longitudinal dephasing as a function of the angle θ. The solid line shows the calculated curve for T=100μK. The shaded region shows the bounds for fits at T=110μK (lower bound) and T=90μK (upper bound).

Fig. 5.
Fig. 5.

(a) Measured Wigner functions of a selection of coherent states at the input and output of the memory. The parameter m is the number of pulses in the dataset, and t is the storage time. The mean measured photon numbers are indicated in the plots. The input states (top row) were recorded in the absence of trapped atoms, while the output states (bottom row) were recorded after being stored in the memory and recalled. (b) TV characterization of the quantum performance of the memory. The classical limit assumes the state is measured and recreated with the applicable vacuum penalties for each quadrature. The linear loss limit is a lower physical bound that an ideal fiber would follow, assuming it adds no noise. Indicated on this line are some accessible ideal fiber storage times, where 100 μs is at the T=1 boundary of the no-cloning limit.

Fig. 6.
Fig. 6.

Comparison of the efficiencies and storage times of quantum memories that output an optical state. Not all the experiments in this graph were done in the quantum regime, but all the techniques are at least theoretically compatible with quantum storage. Both universal capture-and-release (solid lines) and recall-only (dashed lines) memories are included. Note that preparation efficiencies for recall-only memories are not taken into account. The vertical axis of the plot shows measured efficiency, above 0.1 with a linear scale and below 0.1 with a logarithmic scale. The horizontal axis shows storage time, which spans nearly 15 orders of magnitude. For each experiment a point is plotted on the graph indicating the maximum storage efficiency, which always occurs for the shortest reported storage time. Where a decay model is given or data are available, a curve is also plotted showing how the storage efficiency decreases with storage time. The curves are plotted down to the point where the efficiency reaches e1 of the maximum recorded efficiency. The yellow curve and shaded region indicate the region accessible by an ideal fiber loop at 1550 nm, neglecting losses from input and output coupling. The methods are controlled reversible inhomogeneous broadening (CRIB), the Duan–Lukin–Cirac–Zoller (DLCZ) scheme, revival of silenced echo (ROSE), and hybrid photon echo rephasing (HYPER), respectively. Published data are labeled by institute, year, and citation. Citations that appear in this plot but not in the text are [3249].

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

E(t)=E0|erf[1iζ(tt0)/(4σL)]|2ζ2(tt0)2+1eΓsct,
E(t)=E0[1+(t/τl)2]2exp[(t/τd)21+(t/τl)2].

Metrics