H. Guillet de Chatellus, E. Lacot, W. Glastre, O. Jacquin, and O. Hugon, “Theory of Talbot lasers,” Phys. Rev. A 88, 033828 (2013).

[Crossref]

R. Dezfooliyan and A. M. Weiner, “Photonic synthesis of high fidelity microwave arbitrary waveforms using near field frequency to time mapping,” Opt. Express 21, 22974–22987 (2013).

[Crossref]

K. Goda and B. Jalali, “Dispersive Fourier transformation for fast continuous single-shot measurements,” Nat. Photonics 7, 102–112 (2013).

[Crossref]

R. Salem, M. A. Foster, and A. L. Gaeta, “Application of space-time duality to ultrahigh-speed optical signal processing,” Adv. Opt. Photon. 5, 274–317 (2013).

[Crossref]

H. Guillet de Chatellus, O. Jacquin, O. Hugon, W. Glastre, E. Lacot, and J. Marklof, “Generation of ultrahigh and tunable repetition rates in CW injection-seeded frequency-shifted feedback lasers,” Opt. Express 21, 15065–15074 (2013).

[Crossref]

K. Goda, K. K. Tsia, and B. Jalali, “Serial time-encoded amplified imaging for real-time observation of fast dynamic phenomena,” Nature 458, 1145–1149 (2009).

[Crossref]

D. R. Solli, J. Chou, and B. Jalali, “Amplified wavelength-time transformation for real-time spectroscopy,” Nat. Photonics 2, 48–51 (2008).

[Crossref]

I. Li, J. D. McKinney, and A. M. Weiner, “Photonic synthesis of broadband microwave arbitrary waveforms applicable to ultra-wideband communication,” IEEE Microw. Wireless Compon. Lett. 15, 226–228 (2005).

[Crossref]

L. P. Yatsenko, B. W. Shore, and K. Bergmann, “Theory of a frequency-shifted feedback laser,” Opt. Commun. 236, 183–202 (2004).

[Crossref]

J. Azaña and M. A. Muriel, “Real-time optical spectrum analysis based on the time-space duality in chirped fiber gratings,” IEEE J. Quantum Electron. 36, 517–526 (2000).

[Crossref]

Y. C. Tong, L. Y. Chan, and H. K. Tsang, “Fiber dispersion or pulse spectrum measurement using a sampling oscilloscope,” Electron. Lett. 33, 983–985 (1997).

[Crossref]

P. D. Hale and F. V. Kowalski, “Output characterization of a frequency shifted feedback laser: theory and experiment,” IEEE J. Quantum Electron. 26, 1845–1851 (1990).

[Crossref]

F. V. Kowalski, J. A. Squier, and J. T. Pinckney, “Pulse generation with an acousto-optic frequency shifter in a passive cavity,” Appl. Phys. Lett. 50, 711–713 (1987).

[Crossref]

G. P. Agrawal, Nonlinear Fiber Optics (Elsevier, 2007).

Y. Park and J. Azaña, “Ultrahigh dispersion of broadband microwave signals by incoherent photonic processing,” Opt. Express 18, 14752–14761 (2010).

[Crossref]

Y. Park, T.-J. Ahn, J.-C. Kieffer, and J. Azaña, “Optical frequency domain reflectometry based on real-time Fourier transformation,” Opt. Express 15, 4597–4616 (2007).

[Crossref]

J. Azaña, N. K. Berger, B. Levit, and B. Fisher, “Broadband arbitrary waveform generation based on microwave frequency upshifting in optical fibers,” J. Lightwave Technol. 24, 2663–2675 (2006).

[Crossref]

J. Azaña and M. A. Muriel, “Real-time optical spectrum analysis based on the time-space duality in chirped fiber gratings,” IEEE J. Quantum Electron. 36, 517–526 (2000).

[Crossref]

L. P. Yatsenko, B. W. Shore, and K. Bergmann, “Theory of a frequency-shifted feedback laser,” Opt. Commun. 236, 183–202 (2004).

[Crossref]

Y. C. Tong, L. Y. Chan, and H. K. Tsang, “Fiber dispersion or pulse spectrum measurement using a sampling oscilloscope,” Electron. Lett. 33, 983–985 (1997).

[Crossref]

D. R. Solli, J. Chou, and B. Jalali, “Amplified wavelength-time transformation for real-time spectroscopy,” Nat. Photonics 2, 48–51 (2008).

[Crossref]

H. Guillet de Chatellus, O. Jacquin, O. Hugon, W. Glastre, E. Lacot, and J. Marklof, “Generation of ultrahigh and tunable repetition rates in CW injection-seeded frequency-shifted feedback lasers,” Opt. Express 21, 15065–15074 (2013).

[Crossref]

H. Guillet de Chatellus, E. Lacot, W. Glastre, O. Jacquin, and O. Hugon, “Theory of Talbot lasers,” Phys. Rev. A 88, 033828 (2013).

[Crossref]

K. Goda and B. Jalali, “Dispersive Fourier transformation for fast continuous single-shot measurements,” Nat. Photonics 7, 102–112 (2013).

[Crossref]

K. Goda, K. K. Tsia, and B. Jalali, “Serial time-encoded amplified imaging for real-time observation of fast dynamic phenomena,” Nature 458, 1145–1149 (2009).

[Crossref]

H. Guillet de Chatellus, E. Lacot, W. Glastre, O. Jacquin, and O. Hugon, “Theory of Talbot lasers,” Phys. Rev. A 88, 033828 (2013).

[Crossref]

H. Guillet de Chatellus, O. Jacquin, O. Hugon, W. Glastre, E. Lacot, and J. Marklof, “Generation of ultrahigh and tunable repetition rates in CW injection-seeded frequency-shifted feedback lasers,” Opt. Express 21, 15065–15074 (2013).

[Crossref]

P. D. Hale and F. V. Kowalski, “Output characterization of a frequency shifted feedback laser: theory and experiment,” IEEE J. Quantum Electron. 26, 1845–1851 (1990).

[Crossref]

H. Guillet de Chatellus, E. Lacot, W. Glastre, O. Jacquin, and O. Hugon, “Theory of Talbot lasers,” Phys. Rev. A 88, 033828 (2013).

[Crossref]

H. Guillet de Chatellus, O. Jacquin, O. Hugon, W. Glastre, E. Lacot, and J. Marklof, “Generation of ultrahigh and tunable repetition rates in CW injection-seeded frequency-shifted feedback lasers,” Opt. Express 21, 15065–15074 (2013).

[Crossref]

H. Guillet de Chatellus, O. Jacquin, O. Hugon, W. Glastre, E. Lacot, and J. Marklof, “Generation of ultrahigh and tunable repetition rates in CW injection-seeded frequency-shifted feedback lasers,” Opt. Express 21, 15065–15074 (2013).

[Crossref]

H. Guillet de Chatellus, E. Lacot, W. Glastre, O. Jacquin, and O. Hugon, “Theory of Talbot lasers,” Phys. Rev. A 88, 033828 (2013).

[Crossref]

K. Goda and B. Jalali, “Dispersive Fourier transformation for fast continuous single-shot measurements,” Nat. Photonics 7, 102–112 (2013).

[Crossref]

K. Goda, K. K. Tsia, and B. Jalali, “Serial time-encoded amplified imaging for real-time observation of fast dynamic phenomena,” Nature 458, 1145–1149 (2009).

[Crossref]

D. R. Solli, J. Chou, and B. Jalali, “Amplified wavelength-time transformation for real-time spectroscopy,” Nat. Photonics 2, 48–51 (2008).

[Crossref]

P. D. Hale and F. V. Kowalski, “Output characterization of a frequency shifted feedback laser: theory and experiment,” IEEE J. Quantum Electron. 26, 1845–1851 (1990).

[Crossref]

F. V. Kowalski, J. A. Squier, and J. T. Pinckney, “Pulse generation with an acousto-optic frequency shifter in a passive cavity,” Appl. Phys. Lett. 50, 711–713 (1987).

[Crossref]

H. Guillet de Chatellus, E. Lacot, W. Glastre, O. Jacquin, and O. Hugon, “Theory of Talbot lasers,” Phys. Rev. A 88, 033828 (2013).

[Crossref]

H. Guillet de Chatellus, O. Jacquin, O. Hugon, W. Glastre, E. Lacot, and J. Marklof, “Generation of ultrahigh and tunable repetition rates in CW injection-seeded frequency-shifted feedback lasers,” Opt. Express 21, 15065–15074 (2013).

[Crossref]

I. Li, J. D. McKinney, and A. M. Weiner, “Photonic synthesis of broadband microwave arbitrary waveforms applicable to ultra-wideband communication,” IEEE Microw. Wireless Compon. Lett. 15, 226–228 (2005).

[Crossref]

C. Zhang, X. Wei, M. E. Marhic, and K. K. Y. Wong, “Ultrafast and versatile spectroscopy by temporal Fourier transform,” Sci. Rep. 4, 5351 (2014).

I. Li, J. D. McKinney, and A. M. Weiner, “Photonic synthesis of broadband microwave arbitrary waveforms applicable to ultra-wideband communication,” IEEE Microw. Wireless Compon. Lett. 15, 226–228 (2005).

[Crossref]

J. Azaña and M. A. Muriel, “Real-time optical spectrum analysis based on the time-space duality in chirped fiber gratings,” IEEE J. Quantum Electron. 36, 517–526 (2000).

[Crossref]

F. V. Kowalski, J. A. Squier, and J. T. Pinckney, “Pulse generation with an acousto-optic frequency shifter in a passive cavity,” Appl. Phys. Lett. 50, 711–713 (1987).

[Crossref]

S. Reza, R. Ricken, V. Quiring, and W. Sohler, “High resolution optical frequency domain ranging with an integrated frequency shifted feedback (FSF) laser,” in European Conference on Lasers and Electro-Optics 2007, Conference Digest (Optical Society of America, 2007), paper CJ3-5.

S. Reza, R. Ricken, V. Quiring, and W. Sohler, “High resolution optical frequency domain ranging with an integrated frequency shifted feedback (FSF) laser,” in European Conference on Lasers and Electro-Optics 2007, Conference Digest (Optical Society of America, 2007), paper CJ3-5.

S. Reza, R. Ricken, V. Quiring, and W. Sohler, “High resolution optical frequency domain ranging with an integrated frequency shifted feedback (FSF) laser,” in European Conference on Lasers and Electro-Optics 2007, Conference Digest (Optical Society of America, 2007), paper CJ3-5.

L. P. Yatsenko, B. W. Shore, and K. Bergmann, “Theory of a frequency-shifted feedback laser,” Opt. Commun. 236, 183–202 (2004).

[Crossref]

S. Reza, R. Ricken, V. Quiring, and W. Sohler, “High resolution optical frequency domain ranging with an integrated frequency shifted feedback (FSF) laser,” in European Conference on Lasers and Electro-Optics 2007, Conference Digest (Optical Society of America, 2007), paper CJ3-5.

D. R. Solli, J. Chou, and B. Jalali, “Amplified wavelength-time transformation for real-time spectroscopy,” Nat. Photonics 2, 48–51 (2008).

[Crossref]

F. V. Kowalski, J. A. Squier, and J. T. Pinckney, “Pulse generation with an acousto-optic frequency shifter in a passive cavity,” Appl. Phys. Lett. 50, 711–713 (1987).

[Crossref]

Y. C. Tong, L. Y. Chan, and H. K. Tsang, “Fiber dispersion or pulse spectrum measurement using a sampling oscilloscope,” Electron. Lett. 33, 983–985 (1997).

[Crossref]

Y. C. Tong, L. Y. Chan, and H. K. Tsang, “Fiber dispersion or pulse spectrum measurement using a sampling oscilloscope,” Electron. Lett. 33, 983–985 (1997).

[Crossref]

K. Goda, K. K. Tsia, and B. Jalali, “Serial time-encoded amplified imaging for real-time observation of fast dynamic phenomena,” Nature 458, 1145–1149 (2009).

[Crossref]

C. Zhang, X. Wei, M. E. Marhic, and K. K. Y. Wong, “Ultrafast and versatile spectroscopy by temporal Fourier transform,” Sci. Rep. 4, 5351 (2014).

C. Zhang, X. Wei, M. E. Marhic, and K. K. Y. Wong, “Ultrafast and versatile spectroscopy by temporal Fourier transform,” Sci. Rep. 4, 5351 (2014).

L. P. Yatsenko, B. W. Shore, and K. Bergmann, “Theory of a frequency-shifted feedback laser,” Opt. Commun. 236, 183–202 (2004).

[Crossref]

C. Zhang, X. Wei, M. E. Marhic, and K. K. Y. Wong, “Ultrafast and versatile spectroscopy by temporal Fourier transform,” Sci. Rep. 4, 5351 (2014).

F. V. Kowalski, J. A. Squier, and J. T. Pinckney, “Pulse generation with an acousto-optic frequency shifter in a passive cavity,” Appl. Phys. Lett. 50, 711–713 (1987).

[Crossref]

Y. C. Tong, L. Y. Chan, and H. K. Tsang, “Fiber dispersion or pulse spectrum measurement using a sampling oscilloscope,” Electron. Lett. 33, 983–985 (1997).

[Crossref]

J. Azaña and M. A. Muriel, “Real-time optical spectrum analysis based on the time-space duality in chirped fiber gratings,” IEEE J. Quantum Electron. 36, 517–526 (2000).

[Crossref]

P. D. Hale and F. V. Kowalski, “Output characterization of a frequency shifted feedback laser: theory and experiment,” IEEE J. Quantum Electron. 26, 1845–1851 (1990).

[Crossref]

I. Li, J. D. McKinney, and A. M. Weiner, “Photonic synthesis of broadband microwave arbitrary waveforms applicable to ultra-wideband communication,” IEEE Microw. Wireless Compon. Lett. 15, 226–228 (2005).

[Crossref]

J. Azaña, N. K. Berger, B. Levit, and B. Fisher, “Broadband arbitrary waveform generation based on microwave frequency upshifting in optical fibers,” J. Lightwave Technol. 24, 2663–2675 (2006).

[Crossref]

J. van Howe and C. Xu, “Ultrafast optical signal processing based upon space-time dualities,” J. Lightwave Technol. 24, 2649–2662 (2006).

[Crossref]

F. Tian, X. Zhang, J. Li, and L. Xi, “Generation of 50 stable frequency-locked optical carriers for Tb/s multicarrier optical transmission using a recirculating frequency shifter,” J. Lightwave Technol. 29, 1085–1091 (2011).

[Crossref]

K. Goda and B. Jalali, “Dispersive Fourier transformation for fast continuous single-shot measurements,” Nat. Photonics 7, 102–112 (2013).

[Crossref]

D. R. Solli, J. Chou, and B. Jalali, “Amplified wavelength-time transformation for real-time spectroscopy,” Nat. Photonics 2, 48–51 (2008).

[Crossref]

K. Goda, K. K. Tsia, and B. Jalali, “Serial time-encoded amplified imaging for real-time observation of fast dynamic phenomena,” Nature 458, 1145–1149 (2009).

[Crossref]

L. P. Yatsenko, B. W. Shore, and K. Bergmann, “Theory of a frequency-shifted feedback laser,” Opt. Commun. 236, 183–202 (2004).

[Crossref]

H. Guillet de Chatellus, O. Jacquin, O. Hugon, W. Glastre, E. Lacot, and J. Marklof, “Generation of ultrahigh and tunable repetition rates in CW injection-seeded frequency-shifted feedback lasers,” Opt. Express 21, 15065–15074 (2013).

[Crossref]

Y. Park, T.-J. Ahn, J.-C. Kieffer, and J. Azaña, “Optical frequency domain reflectometry based on real-time Fourier transformation,” Opt. Express 15, 4597–4616 (2007).

[Crossref]

Y. Park and J. Azaña, “Ultrahigh dispersion of broadband microwave signals by incoherent photonic processing,” Opt. Express 18, 14752–14761 (2010).

[Crossref]

R. Dezfooliyan and A. M. Weiner, “Photonic synthesis of high fidelity microwave arbitrary waveforms using near field frequency to time mapping,” Opt. Express 21, 22974–22987 (2013).

[Crossref]

H. Guillet de Chatellus, E. Lacot, W. Glastre, O. Jacquin, and O. Hugon, “Theory of Talbot lasers,” Phys. Rev. A 88, 033828 (2013).

[Crossref]

C. Zhang, X. Wei, M. E. Marhic, and K. K. Y. Wong, “Ultrafast and versatile spectroscopy by temporal Fourier transform,” Sci. Rep. 4, 5351 (2014).

G. P. Agrawal, Nonlinear Fiber Optics (Elsevier, 2007).

S. Reza, R. Ricken, V. Quiring, and W. Sohler, “High resolution optical frequency domain ranging with an integrated frequency shifted feedback (FSF) laser,” in European Conference on Lasers and Electro-Optics 2007, Conference Digest (Optical Society of America, 2007), paper CJ3-5.