Abstract

The paradigm of slow light in photonic crystal waveguides has already led to startling advances in nonlinear interactions and optical switching. Importantly, as slow light implies a highly reduced group velocity, this also leads to an original route for the enhancement of optical forces by appropriate tuning of the waveguide properties. Here, we demonstrate the use of slow light to enhance the guiding of submicrometer dielectric particles on a photonic crystal waveguide. Studies are based on a range of particle sizes, and we observe a four-fold enhancement in guiding velocity simply by changing the wavelength of the exciting laser within the slow light region. The particle velocity is therefore seen to be dependent upon the group velocity of light in the waveguide in agreement with force simulations. Finally, the enhancement of the lateral trap stiffness transverse to the waveguide axis further confirms the benefit of slow light for particle manipulation.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Slow light enhancement of nonlinear effects in silicon engineered photonic crystal waveguides

Christelle Monat, Bill Corcoran, Majid Ebnali-Heidari, Christian Grillet, Benjamin J. Eggleton, Thomas P. White, Liam O’Faolain, and Thomas. F. Krauss
Opt. Express 17(4) 2944-2953 (2009)

Slow light in a dielectric waveguide with negative-refractive-index photonic crystal cladding

Jinlong He, Yi Jin, Zhi Hong, and Sailing He
Opt. Express 16(15) 11077-11082 (2008)

Low-threshold bistability of slow light in photonic-crystal waveguides

Sergei F. Mingaleev, Andrey E. Miroshnichenko, and Yuri S. Kivshar
Opt. Express 15(19) 12380-12385 (2007)

References

  • View by:
  • |
  • |
  • |

  1. A. Ashkin, “Acceleration and trapping of particles by radiation pressure,” Phys. Rev. Lett. 24, 156–159 (1970).
    [Crossref]
  2. A. Ashkin and J. M. Dziedzic, “Optical trapping and manipulation of viruses and bacteria,” Science 235, 1517–1520 (1987).
    [Crossref]
  3. V. Garces-Chavez, K. Dholakia, and G. C. Spalding, “Extended-area optically induced organization of microparticies on a surface,” Appl. Phys. Lett. 86, 031106 (2005).
    [Crossref]
  4. K. Dholakia and T. Cizmar, “Shaping the future of manipulation,” Nat. Photonics 5, 335–342 (2011).
    [Crossref]
  5. Y. Arita, M. Mazilu, and K. Dholakia, “Laser-induced rotation and cooling of a trapped microgyroscope in vacuum,” Nat. Commun. 4, 2374 (2013).
    [Crossref]
  6. T. C. Li, S. Kheifets, and M. G. Raizen, “Millikelvin cooling of an optically trapped microsphere in vacuum,” Nat. Phys. 7, 527–530 (2011).
    [Crossref]
  7. D. Erickson, X. Serey, Y. F. Chen, and S. Mandal, “Nanomanipulation using near field photonics,” Lab Chip 11, 995–1009 (2011).
    [Crossref]
  8. Y. F. Chen, X. Serey, R. Sarkar, P. Chen, and D. Erickson, “Controlled photonic manipulation of proteins and other nanomaterials,” Nano Lett. 12, 1633–1637 (2012).
    [Crossref]
  9. S. Y. Lin and K. B. Crozier, “Trapping-assisted sensing of particles and proteins using on-chip optical microcavities,” ACS Nano 7, 1725–1730 (2013).
    [Crossref]
  10. N. Descharmes, U. P. Dharanipathy, Z. L. Diao, M. Tonin, and R. Houdre, “Observation of backaction and self-induced trapping in a planar hollow photonic crystal cavity,” Phys. Rev. Lett. 110, 123601 (2013).
    [Crossref]
  11. T. van Leest and J. Caro, “Cavity-enhanced optical trapping of bacteria using a silicon photonic crystal,” Lab Chip 13, 4358–4365 (2013).
    [Crossref]
  12. J. B. Khurgin, “Slow light in various media: a tutorial,” Adv. Opt. Photon. 2, 287–318 (2010).
    [Crossref]
  13. T. F. Krauss, “Slow light in photonic crystal waveguides,” J. Phys. D 40, 2666–2670 (2007).
    [Crossref]
  14. T. F. Krauss, “Why do we need slow light?” Nat. Photonics 2, 448–450 (2008).
    [Crossref]
  15. M. L. Povinelli, M. Ibanescu, S. G. Johnson, and J. D. Joannopoulos, “Slow-light enhancement of radiation pressure in an omnidirectional-reflector waveguide,” Appl. Phys. Lett. 85, 1466–1468 (2004).
    [Crossref]
  16. M. L. Povinelli, M. Loncar, E. J. Smythe, M. Ibanescu, S. G. Johnson, F. Capasso, and J. D. Joannopoulos, “Enhancement mechanisms for optical forces in integrated optics,” Proc. SPIE 6326, 632609 (2006).
  17. B. Corcoran, C. Monat, C. Grillet, D. J. Moss, B. J. Eggleton, T. P. White, L. O’Faolain, and T. F. Krauss, “Green light emission in silicon through slow-light enhanced third-harmonic generation in photonic-crystal waveguides,” Nat. Photonics 3, 206–210 (2009).
    [Crossref]
  18. S. Kawata and T. Sugiura, “Movement of micrometer-sized particles in the evanescent field of a laser-beam,” Opt. Lett. 17, 772–774 (1992).
    [Crossref]
  19. S. Kawata and T. Tani, “Optically driven Mie particles in an evanescent field along a channeled waveguide,” Opt. Lett. 21, 1768–1770 (1996).
    [Crossref]
  20. S. Gaugiran, S. Getin, J. M. Fedeli, G. Colas, A. Fuchs, F. Chatelain, and J. Derouard, “Optical manipulation of microparticles and cells on silicon nitride waveguides,” Opt. Express 13, 6956–6963 (2005).
    [Crossref]
  21. B. S. Ahluwalia, P. McCourt, T. Huser, and O. G. Helleso, “Optical trapping and propulsion of red blood cells on waveguide surfaces,” Opt. Express 18, 21053–21061 (2010).
    [Crossref]
  22. B. S. Schmidt, A. H. J. Yang, D. Erickson, and M. Lipson, “Optofluidic trapping and transport on solid core waveguides within a microfluidic device,” Opt. Express 15, 14322–14334 (2007).
    [Crossref]
  23. A. H. J. Yang, S. D. Moore, B. S. Schmidt, M. Klug, M. Lipson, and D. Erickson, “Optical manipulation of nanoparticles and biomolecules in sub-wavelength slot waveguides,” Nature 457, 71–75 (2009).
    [Crossref]
  24. P. T. Lin and P. T. Lee, “Efficient transportation of nano-sized particles along slotted photonic crystal waveguide,” Opt. Express 20, 3192–3199 (2012).
    [Crossref]
  25. M. G. Scullion, A. Di Falco, and T. F. Krauss, “Slotted photonic crystal cavities with integrated microfluidics for biosensing applications,” Biosens. Bioelectron. 27, 101–105 (2011).
    [Crossref]
  26. A. Gomez-Iglesias, D. O’Brien, L. O’Faolain, A. Miller, and T. F. Krauss, “Direct measurement of the group index of photonic crystal waveguides via Fourier transform spectral interferometry,” Appl. Phys. Lett. 90, 261107 (2007).
    [Crossref]
  27. K. C. Neuman and S. M. Block, “Optical trapping,” Rev. Sci. Instrum. 75, 2787–2809 (2004).
    [Crossref]
  28. A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: a flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181, 687–702 (2010).
    [Crossref]
  29. J. Li, T. P. White, L. O’Faolain, A. Gomez-Iglesias, and T. F. Krauss, “Systematic design of flat band slow light in photonic crystal waveguides,” Opt. Express 16, 6227–6232 (2008).
    [Crossref]
  30. L. O’Faolain, S. A. Schulz, D. M. Beggs, T. P. White, M. Spasenovic, L. Kuipers, F. Morichetti, A. Melloni, S. Mazoyer, J. P. Hugonin, P. Lalanne, and T. F. Krauss, “Loss engineered slow light waveguides,” Opt. Express 18, 27627–27638 (2010).
    [Crossref]
  31. The research data (and materials) supporting this publication can be accessed at http://dx.doi.org/10.17630/f3691f51 816d 40fd abc8 3d8eab136e01

2013 (4)

S. Y. Lin and K. B. Crozier, “Trapping-assisted sensing of particles and proteins using on-chip optical microcavities,” ACS Nano 7, 1725–1730 (2013).
[Crossref]

N. Descharmes, U. P. Dharanipathy, Z. L. Diao, M. Tonin, and R. Houdre, “Observation of backaction and self-induced trapping in a planar hollow photonic crystal cavity,” Phys. Rev. Lett. 110, 123601 (2013).
[Crossref]

T. van Leest and J. Caro, “Cavity-enhanced optical trapping of bacteria using a silicon photonic crystal,” Lab Chip 13, 4358–4365 (2013).
[Crossref]

Y. Arita, M. Mazilu, and K. Dholakia, “Laser-induced rotation and cooling of a trapped microgyroscope in vacuum,” Nat. Commun. 4, 2374 (2013).
[Crossref]

2012 (2)

Y. F. Chen, X. Serey, R. Sarkar, P. Chen, and D. Erickson, “Controlled photonic manipulation of proteins and other nanomaterials,” Nano Lett. 12, 1633–1637 (2012).
[Crossref]

P. T. Lin and P. T. Lee, “Efficient transportation of nano-sized particles along slotted photonic crystal waveguide,” Opt. Express 20, 3192–3199 (2012).
[Crossref]

2011 (4)

M. G. Scullion, A. Di Falco, and T. F. Krauss, “Slotted photonic crystal cavities with integrated microfluidics for biosensing applications,” Biosens. Bioelectron. 27, 101–105 (2011).
[Crossref]

T. C. Li, S. Kheifets, and M. G. Raizen, “Millikelvin cooling of an optically trapped microsphere in vacuum,” Nat. Phys. 7, 527–530 (2011).
[Crossref]

D. Erickson, X. Serey, Y. F. Chen, and S. Mandal, “Nanomanipulation using near field photonics,” Lab Chip 11, 995–1009 (2011).
[Crossref]

K. Dholakia and T. Cizmar, “Shaping the future of manipulation,” Nat. Photonics 5, 335–342 (2011).
[Crossref]

2010 (4)

2009 (2)

A. H. J. Yang, S. D. Moore, B. S. Schmidt, M. Klug, M. Lipson, and D. Erickson, “Optical manipulation of nanoparticles and biomolecules in sub-wavelength slot waveguides,” Nature 457, 71–75 (2009).
[Crossref]

B. Corcoran, C. Monat, C. Grillet, D. J. Moss, B. J. Eggleton, T. P. White, L. O’Faolain, and T. F. Krauss, “Green light emission in silicon through slow-light enhanced third-harmonic generation in photonic-crystal waveguides,” Nat. Photonics 3, 206–210 (2009).
[Crossref]

2008 (2)

2007 (3)

B. S. Schmidt, A. H. J. Yang, D. Erickson, and M. Lipson, “Optofluidic trapping and transport on solid core waveguides within a microfluidic device,” Opt. Express 15, 14322–14334 (2007).
[Crossref]

A. Gomez-Iglesias, D. O’Brien, L. O’Faolain, A. Miller, and T. F. Krauss, “Direct measurement of the group index of photonic crystal waveguides via Fourier transform spectral interferometry,” Appl. Phys. Lett. 90, 261107 (2007).
[Crossref]

T. F. Krauss, “Slow light in photonic crystal waveguides,” J. Phys. D 40, 2666–2670 (2007).
[Crossref]

2006 (1)

M. L. Povinelli, M. Loncar, E. J. Smythe, M. Ibanescu, S. G. Johnson, F. Capasso, and J. D. Joannopoulos, “Enhancement mechanisms for optical forces in integrated optics,” Proc. SPIE 6326, 632609 (2006).

2005 (2)

V. Garces-Chavez, K. Dholakia, and G. C. Spalding, “Extended-area optically induced organization of microparticies on a surface,” Appl. Phys. Lett. 86, 031106 (2005).
[Crossref]

S. Gaugiran, S. Getin, J. M. Fedeli, G. Colas, A. Fuchs, F. Chatelain, and J. Derouard, “Optical manipulation of microparticles and cells on silicon nitride waveguides,” Opt. Express 13, 6956–6963 (2005).
[Crossref]

2004 (2)

K. C. Neuman and S. M. Block, “Optical trapping,” Rev. Sci. Instrum. 75, 2787–2809 (2004).
[Crossref]

M. L. Povinelli, M. Ibanescu, S. G. Johnson, and J. D. Joannopoulos, “Slow-light enhancement of radiation pressure in an omnidirectional-reflector waveguide,” Appl. Phys. Lett. 85, 1466–1468 (2004).
[Crossref]

1996 (1)

1992 (1)

1987 (1)

A. Ashkin and J. M. Dziedzic, “Optical trapping and manipulation of viruses and bacteria,” Science 235, 1517–1520 (1987).
[Crossref]

1970 (1)

A. Ashkin, “Acceleration and trapping of particles by radiation pressure,” Phys. Rev. Lett. 24, 156–159 (1970).
[Crossref]

Ahluwalia, B. S.

Arita, Y.

Y. Arita, M. Mazilu, and K. Dholakia, “Laser-induced rotation and cooling of a trapped microgyroscope in vacuum,” Nat. Commun. 4, 2374 (2013).
[Crossref]

Ashkin, A.

A. Ashkin and J. M. Dziedzic, “Optical trapping and manipulation of viruses and bacteria,” Science 235, 1517–1520 (1987).
[Crossref]

A. Ashkin, “Acceleration and trapping of particles by radiation pressure,” Phys. Rev. Lett. 24, 156–159 (1970).
[Crossref]

Beggs, D. M.

Bermel, P.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: a flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181, 687–702 (2010).
[Crossref]

Block, S. M.

K. C. Neuman and S. M. Block, “Optical trapping,” Rev. Sci. Instrum. 75, 2787–2809 (2004).
[Crossref]

Capasso, F.

M. L. Povinelli, M. Loncar, E. J. Smythe, M. Ibanescu, S. G. Johnson, F. Capasso, and J. D. Joannopoulos, “Enhancement mechanisms for optical forces in integrated optics,” Proc. SPIE 6326, 632609 (2006).

Caro, J.

T. van Leest and J. Caro, “Cavity-enhanced optical trapping of bacteria using a silicon photonic crystal,” Lab Chip 13, 4358–4365 (2013).
[Crossref]

Chatelain, F.

Chen, P.

Y. F. Chen, X. Serey, R. Sarkar, P. Chen, and D. Erickson, “Controlled photonic manipulation of proteins and other nanomaterials,” Nano Lett. 12, 1633–1637 (2012).
[Crossref]

Chen, Y. F.

Y. F. Chen, X. Serey, R. Sarkar, P. Chen, and D. Erickson, “Controlled photonic manipulation of proteins and other nanomaterials,” Nano Lett. 12, 1633–1637 (2012).
[Crossref]

D. Erickson, X. Serey, Y. F. Chen, and S. Mandal, “Nanomanipulation using near field photonics,” Lab Chip 11, 995–1009 (2011).
[Crossref]

Cizmar, T.

K. Dholakia and T. Cizmar, “Shaping the future of manipulation,” Nat. Photonics 5, 335–342 (2011).
[Crossref]

Colas, G.

Corcoran, B.

B. Corcoran, C. Monat, C. Grillet, D. J. Moss, B. J. Eggleton, T. P. White, L. O’Faolain, and T. F. Krauss, “Green light emission in silicon through slow-light enhanced third-harmonic generation in photonic-crystal waveguides,” Nat. Photonics 3, 206–210 (2009).
[Crossref]

Crozier, K. B.

S. Y. Lin and K. B. Crozier, “Trapping-assisted sensing of particles and proteins using on-chip optical microcavities,” ACS Nano 7, 1725–1730 (2013).
[Crossref]

Derouard, J.

Descharmes, N.

N. Descharmes, U. P. Dharanipathy, Z. L. Diao, M. Tonin, and R. Houdre, “Observation of backaction and self-induced trapping in a planar hollow photonic crystal cavity,” Phys. Rev. Lett. 110, 123601 (2013).
[Crossref]

Dharanipathy, U. P.

N. Descharmes, U. P. Dharanipathy, Z. L. Diao, M. Tonin, and R. Houdre, “Observation of backaction and self-induced trapping in a planar hollow photonic crystal cavity,” Phys. Rev. Lett. 110, 123601 (2013).
[Crossref]

Dholakia, K.

Y. Arita, M. Mazilu, and K. Dholakia, “Laser-induced rotation and cooling of a trapped microgyroscope in vacuum,” Nat. Commun. 4, 2374 (2013).
[Crossref]

K. Dholakia and T. Cizmar, “Shaping the future of manipulation,” Nat. Photonics 5, 335–342 (2011).
[Crossref]

V. Garces-Chavez, K. Dholakia, and G. C. Spalding, “Extended-area optically induced organization of microparticies on a surface,” Appl. Phys. Lett. 86, 031106 (2005).
[Crossref]

Di Falco, A.

M. G. Scullion, A. Di Falco, and T. F. Krauss, “Slotted photonic crystal cavities with integrated microfluidics for biosensing applications,” Biosens. Bioelectron. 27, 101–105 (2011).
[Crossref]

Diao, Z. L.

N. Descharmes, U. P. Dharanipathy, Z. L. Diao, M. Tonin, and R. Houdre, “Observation of backaction and self-induced trapping in a planar hollow photonic crystal cavity,” Phys. Rev. Lett. 110, 123601 (2013).
[Crossref]

Dziedzic, J. M.

A. Ashkin and J. M. Dziedzic, “Optical trapping and manipulation of viruses and bacteria,” Science 235, 1517–1520 (1987).
[Crossref]

Eggleton, B. J.

B. Corcoran, C. Monat, C. Grillet, D. J. Moss, B. J. Eggleton, T. P. White, L. O’Faolain, and T. F. Krauss, “Green light emission in silicon through slow-light enhanced third-harmonic generation in photonic-crystal waveguides,” Nat. Photonics 3, 206–210 (2009).
[Crossref]

Erickson, D.

Y. F. Chen, X. Serey, R. Sarkar, P. Chen, and D. Erickson, “Controlled photonic manipulation of proteins and other nanomaterials,” Nano Lett. 12, 1633–1637 (2012).
[Crossref]

D. Erickson, X. Serey, Y. F. Chen, and S. Mandal, “Nanomanipulation using near field photonics,” Lab Chip 11, 995–1009 (2011).
[Crossref]

A. H. J. Yang, S. D. Moore, B. S. Schmidt, M. Klug, M. Lipson, and D. Erickson, “Optical manipulation of nanoparticles and biomolecules in sub-wavelength slot waveguides,” Nature 457, 71–75 (2009).
[Crossref]

B. S. Schmidt, A. H. J. Yang, D. Erickson, and M. Lipson, “Optofluidic trapping and transport on solid core waveguides within a microfluidic device,” Opt. Express 15, 14322–14334 (2007).
[Crossref]

Fedeli, J. M.

Fuchs, A.

Garces-Chavez, V.

V. Garces-Chavez, K. Dholakia, and G. C. Spalding, “Extended-area optically induced organization of microparticies on a surface,” Appl. Phys. Lett. 86, 031106 (2005).
[Crossref]

Gaugiran, S.

Getin, S.

Gomez-Iglesias, A.

J. Li, T. P. White, L. O’Faolain, A. Gomez-Iglesias, and T. F. Krauss, “Systematic design of flat band slow light in photonic crystal waveguides,” Opt. Express 16, 6227–6232 (2008).
[Crossref]

A. Gomez-Iglesias, D. O’Brien, L. O’Faolain, A. Miller, and T. F. Krauss, “Direct measurement of the group index of photonic crystal waveguides via Fourier transform spectral interferometry,” Appl. Phys. Lett. 90, 261107 (2007).
[Crossref]

Grillet, C.

B. Corcoran, C. Monat, C. Grillet, D. J. Moss, B. J. Eggleton, T. P. White, L. O’Faolain, and T. F. Krauss, “Green light emission in silicon through slow-light enhanced third-harmonic generation in photonic-crystal waveguides,” Nat. Photonics 3, 206–210 (2009).
[Crossref]

Helleso, O. G.

Houdre, R.

N. Descharmes, U. P. Dharanipathy, Z. L. Diao, M. Tonin, and R. Houdre, “Observation of backaction and self-induced trapping in a planar hollow photonic crystal cavity,” Phys. Rev. Lett. 110, 123601 (2013).
[Crossref]

Hugonin, J. P.

Huser, T.

Ibanescu, M.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: a flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181, 687–702 (2010).
[Crossref]

M. L. Povinelli, M. Loncar, E. J. Smythe, M. Ibanescu, S. G. Johnson, F. Capasso, and J. D. Joannopoulos, “Enhancement mechanisms for optical forces in integrated optics,” Proc. SPIE 6326, 632609 (2006).

M. L. Povinelli, M. Ibanescu, S. G. Johnson, and J. D. Joannopoulos, “Slow-light enhancement of radiation pressure in an omnidirectional-reflector waveguide,” Appl. Phys. Lett. 85, 1466–1468 (2004).
[Crossref]

Joannopoulos, J. D.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: a flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181, 687–702 (2010).
[Crossref]

M. L. Povinelli, M. Loncar, E. J. Smythe, M. Ibanescu, S. G. Johnson, F. Capasso, and J. D. Joannopoulos, “Enhancement mechanisms for optical forces in integrated optics,” Proc. SPIE 6326, 632609 (2006).

M. L. Povinelli, M. Ibanescu, S. G. Johnson, and J. D. Joannopoulos, “Slow-light enhancement of radiation pressure in an omnidirectional-reflector waveguide,” Appl. Phys. Lett. 85, 1466–1468 (2004).
[Crossref]

Johnson, S. G.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: a flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181, 687–702 (2010).
[Crossref]

M. L. Povinelli, M. Loncar, E. J. Smythe, M. Ibanescu, S. G. Johnson, F. Capasso, and J. D. Joannopoulos, “Enhancement mechanisms for optical forces in integrated optics,” Proc. SPIE 6326, 632609 (2006).

M. L. Povinelli, M. Ibanescu, S. G. Johnson, and J. D. Joannopoulos, “Slow-light enhancement of radiation pressure in an omnidirectional-reflector waveguide,” Appl. Phys. Lett. 85, 1466–1468 (2004).
[Crossref]

Kawata, S.

Kheifets, S.

T. C. Li, S. Kheifets, and M. G. Raizen, “Millikelvin cooling of an optically trapped microsphere in vacuum,” Nat. Phys. 7, 527–530 (2011).
[Crossref]

Khurgin, J. B.

Klug, M.

A. H. J. Yang, S. D. Moore, B. S. Schmidt, M. Klug, M. Lipson, and D. Erickson, “Optical manipulation of nanoparticles and biomolecules in sub-wavelength slot waveguides,” Nature 457, 71–75 (2009).
[Crossref]

Krauss, T. F.

M. G. Scullion, A. Di Falco, and T. F. Krauss, “Slotted photonic crystal cavities with integrated microfluidics for biosensing applications,” Biosens. Bioelectron. 27, 101–105 (2011).
[Crossref]

L. O’Faolain, S. A. Schulz, D. M. Beggs, T. P. White, M. Spasenovic, L. Kuipers, F. Morichetti, A. Melloni, S. Mazoyer, J. P. Hugonin, P. Lalanne, and T. F. Krauss, “Loss engineered slow light waveguides,” Opt. Express 18, 27627–27638 (2010).
[Crossref]

B. Corcoran, C. Monat, C. Grillet, D. J. Moss, B. J. Eggleton, T. P. White, L. O’Faolain, and T. F. Krauss, “Green light emission in silicon through slow-light enhanced third-harmonic generation in photonic-crystal waveguides,” Nat. Photonics 3, 206–210 (2009).
[Crossref]

T. F. Krauss, “Why do we need slow light?” Nat. Photonics 2, 448–450 (2008).
[Crossref]

J. Li, T. P. White, L. O’Faolain, A. Gomez-Iglesias, and T. F. Krauss, “Systematic design of flat band slow light in photonic crystal waveguides,” Opt. Express 16, 6227–6232 (2008).
[Crossref]

T. F. Krauss, “Slow light in photonic crystal waveguides,” J. Phys. D 40, 2666–2670 (2007).
[Crossref]

A. Gomez-Iglesias, D. O’Brien, L. O’Faolain, A. Miller, and T. F. Krauss, “Direct measurement of the group index of photonic crystal waveguides via Fourier transform spectral interferometry,” Appl. Phys. Lett. 90, 261107 (2007).
[Crossref]

Kuipers, L.

Lalanne, P.

Lee, P. T.

Li, J.

Li, T. C.

T. C. Li, S. Kheifets, and M. G. Raizen, “Millikelvin cooling of an optically trapped microsphere in vacuum,” Nat. Phys. 7, 527–530 (2011).
[Crossref]

Lin, P. T.

Lin, S. Y.

S. Y. Lin and K. B. Crozier, “Trapping-assisted sensing of particles and proteins using on-chip optical microcavities,” ACS Nano 7, 1725–1730 (2013).
[Crossref]

Lipson, M.

A. H. J. Yang, S. D. Moore, B. S. Schmidt, M. Klug, M. Lipson, and D. Erickson, “Optical manipulation of nanoparticles and biomolecules in sub-wavelength slot waveguides,” Nature 457, 71–75 (2009).
[Crossref]

B. S. Schmidt, A. H. J. Yang, D. Erickson, and M. Lipson, “Optofluidic trapping and transport on solid core waveguides within a microfluidic device,” Opt. Express 15, 14322–14334 (2007).
[Crossref]

Loncar, M.

M. L. Povinelli, M. Loncar, E. J. Smythe, M. Ibanescu, S. G. Johnson, F. Capasso, and J. D. Joannopoulos, “Enhancement mechanisms for optical forces in integrated optics,” Proc. SPIE 6326, 632609 (2006).

Mandal, S.

D. Erickson, X. Serey, Y. F. Chen, and S. Mandal, “Nanomanipulation using near field photonics,” Lab Chip 11, 995–1009 (2011).
[Crossref]

Mazilu, M.

Y. Arita, M. Mazilu, and K. Dholakia, “Laser-induced rotation and cooling of a trapped microgyroscope in vacuum,” Nat. Commun. 4, 2374 (2013).
[Crossref]

Mazoyer, S.

McCourt, P.

Melloni, A.

Miller, A.

A. Gomez-Iglesias, D. O’Brien, L. O’Faolain, A. Miller, and T. F. Krauss, “Direct measurement of the group index of photonic crystal waveguides via Fourier transform spectral interferometry,” Appl. Phys. Lett. 90, 261107 (2007).
[Crossref]

Monat, C.

B. Corcoran, C. Monat, C. Grillet, D. J. Moss, B. J. Eggleton, T. P. White, L. O’Faolain, and T. F. Krauss, “Green light emission in silicon through slow-light enhanced third-harmonic generation in photonic-crystal waveguides,” Nat. Photonics 3, 206–210 (2009).
[Crossref]

Moore, S. D.

A. H. J. Yang, S. D. Moore, B. S. Schmidt, M. Klug, M. Lipson, and D. Erickson, “Optical manipulation of nanoparticles and biomolecules in sub-wavelength slot waveguides,” Nature 457, 71–75 (2009).
[Crossref]

Morichetti, F.

Moss, D. J.

B. Corcoran, C. Monat, C. Grillet, D. J. Moss, B. J. Eggleton, T. P. White, L. O’Faolain, and T. F. Krauss, “Green light emission in silicon through slow-light enhanced third-harmonic generation in photonic-crystal waveguides,” Nat. Photonics 3, 206–210 (2009).
[Crossref]

Neuman, K. C.

K. C. Neuman and S. M. Block, “Optical trapping,” Rev. Sci. Instrum. 75, 2787–2809 (2004).
[Crossref]

O’Brien, D.

A. Gomez-Iglesias, D. O’Brien, L. O’Faolain, A. Miller, and T. F. Krauss, “Direct measurement of the group index of photonic crystal waveguides via Fourier transform spectral interferometry,” Appl. Phys. Lett. 90, 261107 (2007).
[Crossref]

O’Faolain, L.

L. O’Faolain, S. A. Schulz, D. M. Beggs, T. P. White, M. Spasenovic, L. Kuipers, F. Morichetti, A. Melloni, S. Mazoyer, J. P. Hugonin, P. Lalanne, and T. F. Krauss, “Loss engineered slow light waveguides,” Opt. Express 18, 27627–27638 (2010).
[Crossref]

B. Corcoran, C. Monat, C. Grillet, D. J. Moss, B. J. Eggleton, T. P. White, L. O’Faolain, and T. F. Krauss, “Green light emission in silicon through slow-light enhanced third-harmonic generation in photonic-crystal waveguides,” Nat. Photonics 3, 206–210 (2009).
[Crossref]

J. Li, T. P. White, L. O’Faolain, A. Gomez-Iglesias, and T. F. Krauss, “Systematic design of flat band slow light in photonic crystal waveguides,” Opt. Express 16, 6227–6232 (2008).
[Crossref]

A. Gomez-Iglesias, D. O’Brien, L. O’Faolain, A. Miller, and T. F. Krauss, “Direct measurement of the group index of photonic crystal waveguides via Fourier transform spectral interferometry,” Appl. Phys. Lett. 90, 261107 (2007).
[Crossref]

Oskooi, A. F.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: a flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181, 687–702 (2010).
[Crossref]

Povinelli, M. L.

M. L. Povinelli, M. Loncar, E. J. Smythe, M. Ibanescu, S. G. Johnson, F. Capasso, and J. D. Joannopoulos, “Enhancement mechanisms for optical forces in integrated optics,” Proc. SPIE 6326, 632609 (2006).

M. L. Povinelli, M. Ibanescu, S. G. Johnson, and J. D. Joannopoulos, “Slow-light enhancement of radiation pressure in an omnidirectional-reflector waveguide,” Appl. Phys. Lett. 85, 1466–1468 (2004).
[Crossref]

Raizen, M. G.

T. C. Li, S. Kheifets, and M. G. Raizen, “Millikelvin cooling of an optically trapped microsphere in vacuum,” Nat. Phys. 7, 527–530 (2011).
[Crossref]

Roundy, D.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: a flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181, 687–702 (2010).
[Crossref]

Sarkar, R.

Y. F. Chen, X. Serey, R. Sarkar, P. Chen, and D. Erickson, “Controlled photonic manipulation of proteins and other nanomaterials,” Nano Lett. 12, 1633–1637 (2012).
[Crossref]

Schmidt, B. S.

A. H. J. Yang, S. D. Moore, B. S. Schmidt, M. Klug, M. Lipson, and D. Erickson, “Optical manipulation of nanoparticles and biomolecules in sub-wavelength slot waveguides,” Nature 457, 71–75 (2009).
[Crossref]

B. S. Schmidt, A. H. J. Yang, D. Erickson, and M. Lipson, “Optofluidic trapping and transport on solid core waveguides within a microfluidic device,” Opt. Express 15, 14322–14334 (2007).
[Crossref]

Schulz, S. A.

Scullion, M. G.

M. G. Scullion, A. Di Falco, and T. F. Krauss, “Slotted photonic crystal cavities with integrated microfluidics for biosensing applications,” Biosens. Bioelectron. 27, 101–105 (2011).
[Crossref]

Serey, X.

Y. F. Chen, X. Serey, R. Sarkar, P. Chen, and D. Erickson, “Controlled photonic manipulation of proteins and other nanomaterials,” Nano Lett. 12, 1633–1637 (2012).
[Crossref]

D. Erickson, X. Serey, Y. F. Chen, and S. Mandal, “Nanomanipulation using near field photonics,” Lab Chip 11, 995–1009 (2011).
[Crossref]

Smythe, E. J.

M. L. Povinelli, M. Loncar, E. J. Smythe, M. Ibanescu, S. G. Johnson, F. Capasso, and J. D. Joannopoulos, “Enhancement mechanisms for optical forces in integrated optics,” Proc. SPIE 6326, 632609 (2006).

Spalding, G. C.

V. Garces-Chavez, K. Dholakia, and G. C. Spalding, “Extended-area optically induced organization of microparticies on a surface,” Appl. Phys. Lett. 86, 031106 (2005).
[Crossref]

Spasenovic, M.

Sugiura, T.

Tani, T.

Tonin, M.

N. Descharmes, U. P. Dharanipathy, Z. L. Diao, M. Tonin, and R. Houdre, “Observation of backaction and self-induced trapping in a planar hollow photonic crystal cavity,” Phys. Rev. Lett. 110, 123601 (2013).
[Crossref]

van Leest, T.

T. van Leest and J. Caro, “Cavity-enhanced optical trapping of bacteria using a silicon photonic crystal,” Lab Chip 13, 4358–4365 (2013).
[Crossref]

White, T. P.

Yang, A. H. J.

A. H. J. Yang, S. D. Moore, B. S. Schmidt, M. Klug, M. Lipson, and D. Erickson, “Optical manipulation of nanoparticles and biomolecules in sub-wavelength slot waveguides,” Nature 457, 71–75 (2009).
[Crossref]

B. S. Schmidt, A. H. J. Yang, D. Erickson, and M. Lipson, “Optofluidic trapping and transport on solid core waveguides within a microfluidic device,” Opt. Express 15, 14322–14334 (2007).
[Crossref]

ACS Nano (1)

S. Y. Lin and K. B. Crozier, “Trapping-assisted sensing of particles and proteins using on-chip optical microcavities,” ACS Nano 7, 1725–1730 (2013).
[Crossref]

Adv. Opt. Photon. (1)

Appl. Phys. Lett. (3)

M. L. Povinelli, M. Ibanescu, S. G. Johnson, and J. D. Joannopoulos, “Slow-light enhancement of radiation pressure in an omnidirectional-reflector waveguide,” Appl. Phys. Lett. 85, 1466–1468 (2004).
[Crossref]

V. Garces-Chavez, K. Dholakia, and G. C. Spalding, “Extended-area optically induced organization of microparticies on a surface,” Appl. Phys. Lett. 86, 031106 (2005).
[Crossref]

A. Gomez-Iglesias, D. O’Brien, L. O’Faolain, A. Miller, and T. F. Krauss, “Direct measurement of the group index of photonic crystal waveguides via Fourier transform spectral interferometry,” Appl. Phys. Lett. 90, 261107 (2007).
[Crossref]

Biosens. Bioelectron. (1)

M. G. Scullion, A. Di Falco, and T. F. Krauss, “Slotted photonic crystal cavities with integrated microfluidics for biosensing applications,” Biosens. Bioelectron. 27, 101–105 (2011).
[Crossref]

Comput. Phys. Commun. (1)

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: a flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181, 687–702 (2010).
[Crossref]

J. Phys. D (1)

T. F. Krauss, “Slow light in photonic crystal waveguides,” J. Phys. D 40, 2666–2670 (2007).
[Crossref]

Lab Chip (2)

D. Erickson, X. Serey, Y. F. Chen, and S. Mandal, “Nanomanipulation using near field photonics,” Lab Chip 11, 995–1009 (2011).
[Crossref]

T. van Leest and J. Caro, “Cavity-enhanced optical trapping of bacteria using a silicon photonic crystal,” Lab Chip 13, 4358–4365 (2013).
[Crossref]

Nano Lett. (1)

Y. F. Chen, X. Serey, R. Sarkar, P. Chen, and D. Erickson, “Controlled photonic manipulation of proteins and other nanomaterials,” Nano Lett. 12, 1633–1637 (2012).
[Crossref]

Nat. Commun. (1)

Y. Arita, M. Mazilu, and K. Dholakia, “Laser-induced rotation and cooling of a trapped microgyroscope in vacuum,” Nat. Commun. 4, 2374 (2013).
[Crossref]

Nat. Photonics (3)

K. Dholakia and T. Cizmar, “Shaping the future of manipulation,” Nat. Photonics 5, 335–342 (2011).
[Crossref]

T. F. Krauss, “Why do we need slow light?” Nat. Photonics 2, 448–450 (2008).
[Crossref]

B. Corcoran, C. Monat, C. Grillet, D. J. Moss, B. J. Eggleton, T. P. White, L. O’Faolain, and T. F. Krauss, “Green light emission in silicon through slow-light enhanced third-harmonic generation in photonic-crystal waveguides,” Nat. Photonics 3, 206–210 (2009).
[Crossref]

Nat. Phys. (1)

T. C. Li, S. Kheifets, and M. G. Raizen, “Millikelvin cooling of an optically trapped microsphere in vacuum,” Nat. Phys. 7, 527–530 (2011).
[Crossref]

Nature (1)

A. H. J. Yang, S. D. Moore, B. S. Schmidt, M. Klug, M. Lipson, and D. Erickson, “Optical manipulation of nanoparticles and biomolecules in sub-wavelength slot waveguides,” Nature 457, 71–75 (2009).
[Crossref]

Opt. Express (6)

Opt. Lett. (2)

Phys. Rev. Lett. (2)

N. Descharmes, U. P. Dharanipathy, Z. L. Diao, M. Tonin, and R. Houdre, “Observation of backaction and self-induced trapping in a planar hollow photonic crystal cavity,” Phys. Rev. Lett. 110, 123601 (2013).
[Crossref]

A. Ashkin, “Acceleration and trapping of particles by radiation pressure,” Phys. Rev. Lett. 24, 156–159 (1970).
[Crossref]

Proc. SPIE (1)

M. L. Povinelli, M. Loncar, E. J. Smythe, M. Ibanescu, S. G. Johnson, F. Capasso, and J. D. Joannopoulos, “Enhancement mechanisms for optical forces in integrated optics,” Proc. SPIE 6326, 632609 (2006).

Rev. Sci. Instrum. (1)

K. C. Neuman and S. M. Block, “Optical trapping,” Rev. Sci. Instrum. 75, 2787–2809 (2004).
[Crossref]

Science (1)

A. Ashkin and J. M. Dziedzic, “Optical trapping and manipulation of viruses and bacteria,” Science 235, 1517–1520 (1987).
[Crossref]

Other (1)

The research data (and materials) supporting this publication can be accessed at http://dx.doi.org/10.17630/f3691f51 816d 40fd abc8 3d8eab136e01

Supplementary Material (2)

NameDescription
» Supplement 1: PDF (1255 KB)     
» Visualization 1: AVI (9258 KB)     

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Slow light characterization of a photonic crystal waveguide. (a) Measured transmission spectrum of the photonic crystal waveguide (normalized to blank waveguide). (b) Corresponding group index (ng) profile as measured using a Mach–Zehnder interferometer setup. Slow light effects from the photonic crystal waveguide structure result in an increase in group index near the waveguide cut-off wavelength.

Fig. 2.
Fig. 2.

Photonic crystal enhanced optical guiding of dielectric particles inside a microfluidic channel. (a) Silicon photonic crystal waveguide array with integrated PDMS microchannel. (b) Photonic crystal waveguides and input ridge waveguides inside the microchannel used to deliver particle solutions. (c) Time-lapse images of trapped fluorescent particles (490 nm in diameter) moving across (from left to right) the PhC at the excitation wavelength of 1558 nm. (d) Positional evolution of the two particles along the PhC.

Fig. 3.
Fig. 3.

Particle velocities on the PhC crystal dependent on the excitation wavelength. (a) Particle positions measured as a function of time for 490 nm diameter particles. Broken lines represent the linear fit to the measurements for each wavelength. (b) Particle velocities obtained from the inverse gradient of the fitted curves in (a) for each wavelength.

Fig. 4.
Fig. 4.

Lateral trap stiffness when trapping 600 nm diameter particles with a power of 2.5 mW. (a) Trap stiffness for different excitation wavelengths. (b) A linear relation between particle velocity and trap stiffness is observed. See Supplement 1, Note 3.

Fig. 5.
Fig. 5.

Force enhancement simulations of a dielectric particle on top of a photonic crystal waveguide. (a) W1 photonic crystal waveguide 3D FDTD simulation geometry. (b) Cross section showing particle force simulation geometry. (c) Simulated force enhancement in x direction for a 490 nm (in diameter) particle on top of photonic crystal, normalized to the same particle on a waveguide.

Metrics