Abstract

We show that a freestyle laser trap, including high-intensity and phase gradient forces along arbitrary curves, is able to confine multiple particles and drive their motion with the ability to speed them up or slow them down. This Letter reports, for first time, to the best of our knowledge, how such a trap can be experimentally created deep within the sample to construct rotating colloidal motors and study collective particle dynamics in distinct configurations. This new laser tool opens up promising perspectives in the study of hydrodynamics and optofluidics at the microscale.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Recent advances in holographic 3D particle tracking

Pasquale Memmolo, Lisa Miccio, Melania Paturzo, Giuseppe Di Caprio, Giuseppe Coppola, Paolo A. Netti, and Pietro Ferraro
Adv. Opt. Photon. 7(4) 713-755 (2015)

Dynamics of a levitated microparticle in vacuum trapped by a perfect vortex beam: three-dimensional motion around a complex optical potential

Yoshihiko Arita, Mingzhou Chen, Ewan M. Wright, and Kishan Dholakia
J. Opt. Soc. Am. B 34(6) C14-C19 (2017)

Pushing the limit: investigation of hydrodynamic forces on a trapped particle kicked by a laser pulse

Naja Villadsen, Daniel Ø. Andreasen, Jesper Hagelskjær, Jan Thøgersen, Alberto Imparato, and Søren Rud Keiding
Opt. Express 23(10) 13141-13152 (2015)

References

  • View by:
  • |
  • |
  • |

  1. M. Reichert and H. Stark, J. Phys. 16, S4085 (2004).
  2. Y. Roichman, D. G. Grier, and G. Zaslavsky, Phys. Rev. E 75, 020401 (2007).
  3. A. Grimm and H. Stark, Soft Matter 7, 3219 (2011).
    [Crossref]
  4. A. Ashkin, Optical Trapping and Manipulation of Neutral Particles Using Lasers: A Reprint Volume with Commentaries (World Scientific, 2006).
  5. H. He, M. E. J. Friese, N. R. Heckenberg, and H. Rubinsztein-Dunlop, Phys. Rev. Lett. 75, 826 (1995).
    [Crossref]
  6. E. G. Abramochkin and V. G. Volostnikov, Phys. Usp. 47, 1177 (2004).
    [Crossref]
  7. K. Ladavac and D. Grier, Opt. Express 12, 1144 (2004).
    [Crossref]
  8. A. Jesacher, S. Fürhapter, C. Maurer, S. Bernet, and M. Ritsch-Marte, Opt. Express 14, 6342 (2006).
    [Crossref]
  9. M. J. Padgett, J. E. Molloy, and D. Mcgloin, eds., Optical Tweezers: Methods and Applications (CRC Press, 2010).
  10. G. Sinclair, P. Jordan, J. Courtial, M. Padgett, J. Cooper, and Z. Laczik, Opt. Express 12, 5475 (2004).
    [Crossref]
  11. S. Bianchi and R. D. Leonardo, Comput. Phys. Commun. 181, 1444 (2010).
    [Crossref]
  12. K. Volke-Sepulveda, V. Garcés-Chávez, S. Chávez-Cerda, J. Arlt, and K. Dholakia, J. Opt. B 4, S82 (2002).
    [Crossref]
  13. J. Baumgartl, M. Mazilu, and K. Dholakia, Nat. Photonics 2, 675 (2008).
    [Crossref]
  14. Y. Roichman and D. G. Grier, Proc. SPIE 6483, 64830F (2007).
    [Crossref]
  15. Y. Roichman, B. Sun, Y. Roichman, J. Amato-Grill, and D. G. Grier, Phys. Rev. Lett. 100, 013602 (2008).
    [Crossref]
  16. S. Sukhov and A. Dogariu, Opt. Lett. 35, 3847 (2010).
    [Crossref]
  17. S.-H. Lee, Y. Roichman, and D. G. Grier, Opt. Express 18, 6988 (2010).
    [Crossref]
  18. E. R. Shanblatt and D. G. Grier, Opt. Express 19, 5833 (2011).
    [Crossref]
  19. J. A. Rodrigo, T. Alieva, E. Abramochkin, and I. Castro, Opt. Express 21, 20544 (2013).
    [Crossref]
  20. S. N. S. Reihani and L. B. Oddershede, Opt. Lett. 32, 1998 (2007).
    [Crossref]
  21. M. Dienerowitz, G. Gibson, R. Bowman, and M. Padgett, Opt. Express 19, 24589 (2011).
    [Crossref]
  22. T. Cizmar, L. C. D. Romero, K. Dholakia, and D. L. Andrews, J. Phys. B 43, 102001 (2010).
    [Crossref]

2013 (1)

2011 (3)

2010 (4)

S. Bianchi and R. D. Leonardo, Comput. Phys. Commun. 181, 1444 (2010).
[Crossref]

T. Cizmar, L. C. D. Romero, K. Dholakia, and D. L. Andrews, J. Phys. B 43, 102001 (2010).
[Crossref]

S.-H. Lee, Y. Roichman, and D. G. Grier, Opt. Express 18, 6988 (2010).
[Crossref]

S. Sukhov and A. Dogariu, Opt. Lett. 35, 3847 (2010).
[Crossref]

2008 (2)

Y. Roichman, B. Sun, Y. Roichman, J. Amato-Grill, and D. G. Grier, Phys. Rev. Lett. 100, 013602 (2008).
[Crossref]

J. Baumgartl, M. Mazilu, and K. Dholakia, Nat. Photonics 2, 675 (2008).
[Crossref]

2007 (3)

Y. Roichman and D. G. Grier, Proc. SPIE 6483, 64830F (2007).
[Crossref]

Y. Roichman, D. G. Grier, and G. Zaslavsky, Phys. Rev. E 75, 020401 (2007).

S. N. S. Reihani and L. B. Oddershede, Opt. Lett. 32, 1998 (2007).
[Crossref]

2006 (1)

2004 (4)

2002 (1)

K. Volke-Sepulveda, V. Garcés-Chávez, S. Chávez-Cerda, J. Arlt, and K. Dholakia, J. Opt. B 4, S82 (2002).
[Crossref]

1995 (1)

H. He, M. E. J. Friese, N. R. Heckenberg, and H. Rubinsztein-Dunlop, Phys. Rev. Lett. 75, 826 (1995).
[Crossref]

Abramochkin, E.

Abramochkin, E. G.

E. G. Abramochkin and V. G. Volostnikov, Phys. Usp. 47, 1177 (2004).
[Crossref]

Alieva, T.

Amato-Grill, J.

Y. Roichman, B. Sun, Y. Roichman, J. Amato-Grill, and D. G. Grier, Phys. Rev. Lett. 100, 013602 (2008).
[Crossref]

Andrews, D. L.

T. Cizmar, L. C. D. Romero, K. Dholakia, and D. L. Andrews, J. Phys. B 43, 102001 (2010).
[Crossref]

Arlt, J.

K. Volke-Sepulveda, V. Garcés-Chávez, S. Chávez-Cerda, J. Arlt, and K. Dholakia, J. Opt. B 4, S82 (2002).
[Crossref]

Ashkin, A.

A. Ashkin, Optical Trapping and Manipulation of Neutral Particles Using Lasers: A Reprint Volume with Commentaries (World Scientific, 2006).

Baumgartl, J.

J. Baumgartl, M. Mazilu, and K. Dholakia, Nat. Photonics 2, 675 (2008).
[Crossref]

Bernet, S.

Bianchi, S.

S. Bianchi and R. D. Leonardo, Comput. Phys. Commun. 181, 1444 (2010).
[Crossref]

Bowman, R.

Castro, I.

Chávez-Cerda, S.

K. Volke-Sepulveda, V. Garcés-Chávez, S. Chávez-Cerda, J. Arlt, and K. Dholakia, J. Opt. B 4, S82 (2002).
[Crossref]

Cizmar, T.

T. Cizmar, L. C. D. Romero, K. Dholakia, and D. L. Andrews, J. Phys. B 43, 102001 (2010).
[Crossref]

Cooper, J.

Courtial, J.

Dholakia, K.

T. Cizmar, L. C. D. Romero, K. Dholakia, and D. L. Andrews, J. Phys. B 43, 102001 (2010).
[Crossref]

J. Baumgartl, M. Mazilu, and K. Dholakia, Nat. Photonics 2, 675 (2008).
[Crossref]

K. Volke-Sepulveda, V. Garcés-Chávez, S. Chávez-Cerda, J. Arlt, and K. Dholakia, J. Opt. B 4, S82 (2002).
[Crossref]

Dienerowitz, M.

Dogariu, A.

Friese, M. E. J.

H. He, M. E. J. Friese, N. R. Heckenberg, and H. Rubinsztein-Dunlop, Phys. Rev. Lett. 75, 826 (1995).
[Crossref]

Fürhapter, S.

Garcés-Chávez, V.

K. Volke-Sepulveda, V. Garcés-Chávez, S. Chávez-Cerda, J. Arlt, and K. Dholakia, J. Opt. B 4, S82 (2002).
[Crossref]

Gibson, G.

Grier, D.

Grier, D. G.

E. R. Shanblatt and D. G. Grier, Opt. Express 19, 5833 (2011).
[Crossref]

S.-H. Lee, Y. Roichman, and D. G. Grier, Opt. Express 18, 6988 (2010).
[Crossref]

Y. Roichman, B. Sun, Y. Roichman, J. Amato-Grill, and D. G. Grier, Phys. Rev. Lett. 100, 013602 (2008).
[Crossref]

Y. Roichman and D. G. Grier, Proc. SPIE 6483, 64830F (2007).
[Crossref]

Y. Roichman, D. G. Grier, and G. Zaslavsky, Phys. Rev. E 75, 020401 (2007).

Grimm, A.

A. Grimm and H. Stark, Soft Matter 7, 3219 (2011).
[Crossref]

He, H.

H. He, M. E. J. Friese, N. R. Heckenberg, and H. Rubinsztein-Dunlop, Phys. Rev. Lett. 75, 826 (1995).
[Crossref]

Heckenberg, N. R.

H. He, M. E. J. Friese, N. R. Heckenberg, and H. Rubinsztein-Dunlop, Phys. Rev. Lett. 75, 826 (1995).
[Crossref]

Jesacher, A.

Jordan, P.

Laczik, Z.

Ladavac, K.

Lee, S.-H.

Leonardo, R. D.

S. Bianchi and R. D. Leonardo, Comput. Phys. Commun. 181, 1444 (2010).
[Crossref]

Maurer, C.

Mazilu, M.

J. Baumgartl, M. Mazilu, and K. Dholakia, Nat. Photonics 2, 675 (2008).
[Crossref]

Oddershede, L. B.

Padgett, M.

Reichert, M.

M. Reichert and H. Stark, J. Phys. 16, S4085 (2004).

Reihani, S. N. S.

Ritsch-Marte, M.

Rodrigo, J. A.

Roichman, Y.

S.-H. Lee, Y. Roichman, and D. G. Grier, Opt. Express 18, 6988 (2010).
[Crossref]

Y. Roichman, B. Sun, Y. Roichman, J. Amato-Grill, and D. G. Grier, Phys. Rev. Lett. 100, 013602 (2008).
[Crossref]

Y. Roichman, B. Sun, Y. Roichman, J. Amato-Grill, and D. G. Grier, Phys. Rev. Lett. 100, 013602 (2008).
[Crossref]

Y. Roichman and D. G. Grier, Proc. SPIE 6483, 64830F (2007).
[Crossref]

Y. Roichman, D. G. Grier, and G. Zaslavsky, Phys. Rev. E 75, 020401 (2007).

Romero, L. C. D.

T. Cizmar, L. C. D. Romero, K. Dholakia, and D. L. Andrews, J. Phys. B 43, 102001 (2010).
[Crossref]

Rubinsztein-Dunlop, H.

H. He, M. E. J. Friese, N. R. Heckenberg, and H. Rubinsztein-Dunlop, Phys. Rev. Lett. 75, 826 (1995).
[Crossref]

Shanblatt, E. R.

Sinclair, G.

Stark, H.

A. Grimm and H. Stark, Soft Matter 7, 3219 (2011).
[Crossref]

M. Reichert and H. Stark, J. Phys. 16, S4085 (2004).

Sukhov, S.

Sun, B.

Y. Roichman, B. Sun, Y. Roichman, J. Amato-Grill, and D. G. Grier, Phys. Rev. Lett. 100, 013602 (2008).
[Crossref]

Volke-Sepulveda, K.

K. Volke-Sepulveda, V. Garcés-Chávez, S. Chávez-Cerda, J. Arlt, and K. Dholakia, J. Opt. B 4, S82 (2002).
[Crossref]

Volostnikov, V. G.

E. G. Abramochkin and V. G. Volostnikov, Phys. Usp. 47, 1177 (2004).
[Crossref]

Zaslavsky, G.

Y. Roichman, D. G. Grier, and G. Zaslavsky, Phys. Rev. E 75, 020401 (2007).

Comput. Phys. Commun. (1)

S. Bianchi and R. D. Leonardo, Comput. Phys. Commun. 181, 1444 (2010).
[Crossref]

J. Opt. B (1)

K. Volke-Sepulveda, V. Garcés-Chávez, S. Chávez-Cerda, J. Arlt, and K. Dholakia, J. Opt. B 4, S82 (2002).
[Crossref]

J. Phys. (1)

M. Reichert and H. Stark, J. Phys. 16, S4085 (2004).

J. Phys. B (1)

T. Cizmar, L. C. D. Romero, K. Dholakia, and D. L. Andrews, J. Phys. B 43, 102001 (2010).
[Crossref]

Nat. Photonics (1)

J. Baumgartl, M. Mazilu, and K. Dholakia, Nat. Photonics 2, 675 (2008).
[Crossref]

Opt. Express (7)

Opt. Lett. (2)

Phys. Rev. E (1)

Y. Roichman, D. G. Grier, and G. Zaslavsky, Phys. Rev. E 75, 020401 (2007).

Phys. Rev. Lett. (2)

H. He, M. E. J. Friese, N. R. Heckenberg, and H. Rubinsztein-Dunlop, Phys. Rev. Lett. 75, 826 (1995).
[Crossref]

Y. Roichman, B. Sun, Y. Roichman, J. Amato-Grill, and D. G. Grier, Phys. Rev. Lett. 100, 013602 (2008).
[Crossref]

Phys. Usp. (1)

E. G. Abramochkin and V. G. Volostnikov, Phys. Usp. 47, 1177 (2004).
[Crossref]

Proc. SPIE (1)

Y. Roichman and D. G. Grier, Proc. SPIE 6483, 64830F (2007).
[Crossref]

Soft Matter (1)

A. Grimm and H. Stark, Soft Matter 7, 3219 (2011).
[Crossref]

Other (2)

A. Ashkin, Optical Trapping and Manipulation of Neutral Particles Using Lasers: A Reprint Volume with Commentaries (World Scientific, 2006).

M. J. Padgett, J. E. Molloy, and D. Mcgloin, eds., Optical Tweezers: Methods and Applications (CRC Press, 2010).

Supplementary Material (5)

NameDescription
» Visualization 1: MOV (2797 KB)      Video: Triangle-shaped laser trap (experimental results)
» Visualization 2: MOV (5610 KB)      Video: Square-shaped laser trap (experimental results)
» Visualization 3: MOV (3289 KB)      Video: Ring-shaped laser trap (experimental results)
» Visualization 4: MOV (5210 KB)      Video: Waved-ring laser traps (experimental results)
» Visualization 5: MOV (1659 KB)      Video: Toroidal-spiral laser trap (experimental results)

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Phase of the beam shaped in: (a) a ring and (b) a triangle with charges m = 30 and m = 34 , respectively. Zoom inset (b1) corresponds to the phase shown in (b). Black arrows displayed in the phase represent its gradient vector field. (c) Modulus of the phase gradient for the triangle beam. SP indicates a stationary point where the modulus of phase gradient is maximum (SP1) or minimum (SP2). The 3D intensity profiles under focusing are shown for cases (a) and (b) as well. (d) sketch of the trapping configuration (inverted microscope).

Fig. 2.
Fig. 2.

Experimental results, Visualization 1 and Visualization 2. Laser traps shaped in (a) a ring with R = 5 μm ; (b) a triangle; and (c) a square. A time-lapse image shows the flow of particles, revealing the beam shape. The ring (charge m = 30 ), triangle ( m = 34 ), and square ( m = 34 ) traps induce particle rotation with rates of 0.5, 0.25, and 0.14 Hz, respectively. The change of the vortex charge (phase gradient) does not alter the size or geometry of the trap; see Visualization 3.

Fig. 3.
Fig. 3.

Experimental results, Visualization 4. Laser 3D traps with radius R = 5 μm : (a) a ring tilted with z ( t ) = 1 μm sin ( t ) ; (b) a waved ring with z ( t ) = 1.5 μm sin ( 2 t ) ; and (c) a waved ring with z ( t ) = 1.5 μm sin ( 3 t ) . The particle rotation rate is about 0.5 Hz.

Fig. 4.
Fig. 4.

Experimental results, Visualization 5, of the optically induced particle motion in a 3D toroidal-spiral laser trap. The time-lapse image shows the particle flow revealing a starfish shape, which is in good agreement with the shape of the trapping beam (right panel). Top and bottom corners of the 3D toroidal-spiral curve are plotted in red and blue, respectively.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

H ( r | c 3 ( t ) , t [ 0 , T ] ) = 1 L 0 T Φ ( r , t ) φ ( r , t ) | c 2 ( t ) | d t
Φ ( r , t ) = exp ( i ρ 2 [ y x 0 ( t ) x y 0 ( t ) ] ) exp ( i 2 π m S ( T ) S ( t ) ) ,
φ ( r , t ) = exp ( i π [ x x 0 ( t ) ] 2 + [ y y 0 ( t ) ] 2 λ f 2 z 0 ( t ) ) ,

Metrics