Abstract

Intense laser pulses can cause superheating of the near-surface volume of materials. This mechanism is widely used in applications such as laser micromachining, laser ablation, or laser assisted thin film deposition. The relaxation of the near solid density superheated material is not well understood, however. In this work, we investigate the relaxation dynamics of the superheated material formed in several dielectrics with widely differing physical properties. The results suggest that the relaxation process involves a number of distinct phases, which include the delayed explosive ejection of microscale particles starting after the pressure of the superheated material is reduced to about 4 GPa and for a time duration on the order of 1 μs. The appearance of a subset of collected ejected particles in fused silica is similar to that of micro-tektites and provides information about the state of the superheated material at the time of ejection. These results advance our understanding of a key aspect of the laser–material interaction pathway and can lead to optimization of associated applications ranging from material processing to laser surgery.

Full Article  |  PDF Article
OSA Recommended Articles
Dynamics of plasma formation, relaxation, and topography modification induced by femtosecond laser pulses in crystalline and amorphous dielectrics

D. Puerto, J. Siegel, W. Gawelda, M. Galvan-Sosa, L. Ehrentraut, J. Bonse, and J. Solis
J. Opt. Soc. Am. B 27(5) 1065-1076 (2010)

Mechanisms governing the interaction of metallic particles with nanosecond laser pulses

Stavros G. Demos, Raluca A. Negres, Rajesh N. Raman, Nan Shen, Alexander M. Rubenchik, and Manyalibo J. Matthews
Opt. Express 24(7) 7792-7815 (2016)

Time-resolved imaging of processes associated with exit-surface damage growth in fused silica following exposure to nanosecond laser pulses

Stavros G. Demos, Rajesh N. Raman, and Raluca A. Negres
Opt. Express 21(4) 4875-4888 (2013)

References

  • View by:
  • |
  • |
  • |

  1. K. Sokolowski-Tinten, J. Bialkowski, A. Cavalleri, D. von der Linde, A. Oparin, J. Meyer-ter-Vehn, and S. I. Anisimov, “Transient states of matter during short pulse laser ablation,” Phys. Rev. Lett. 81, 224–227 (1998).
    [Crossref]
  2. B. J. Siwick, J. R. Dwyer, R. E. Jordan, and R. J. D. Miller, “An atomic-level view of melting using femtosecond electron diffraction,” Science 302, 1382–1385 (2003).
    [Crossref]
  3. K. J. Gaffney and H. N. Chapman, “Imaging atomic structure and dynamics with ultrafast X-ray scattering,” Science 316, 1444–1448 (2007).
    [Crossref]
  4. N. Zhang, X. Zhu, J. Yang, X. Wang, and M. Wang, “Time-resolved shadowgraphs of material ejection in intense femtosecond laser ablation of aluminum,” Phys. Rev. Lett. 99, 167602 (2007).
    [Crossref]
  5. F. W. Dabby and U.-C. Peak, “High-intensity laser-induced vaporization and explosion of solid material,” IEEE J. Quantum Electron. 8, 106–111 (1972).
    [Crossref]
  6. A. Miotello and R. Kelly, “Laser-induced phase explosion: new physical problems when a condensed phase approaches the thermodynamic critical temperature,” Appl. Phys. A 69, S67–S73 (1999).
    [Crossref]
  7. N. M. Bulgakova and A. V. Bulgakov, “Pulsed laser ablation of solids: transition from normal vaporization to phase explosion,” Appl. Phys. A 73, 199–208 (2001).
    [Crossref]
  8. P. Lorazo, L. J. Lewis, and M. Meunier, “Thermo-dynamic pathways to melting, ablation, and solidification in absorbing solids under pulsed laser irradiation,” Phys. Rev. B 73, 134108 (2006).
    [Crossref]
  9. E. Leveugle, A. Sellinger, J. M. Fitz-Gerald, and L. V. Zhigilei, “Making molecular balloons in laser-induced explosive boiling of polymer solutions,” Phys. Rev. Lett. 98, 216101 (2007).
    [Crossref]
  10. R. F. Wood, K. R. Chen, J. N. Leboeuf, A. A. Puretzky, and D. B. Geohegan, “Dynamics of plume propagation and splitting during pulsed-laser ablation,” Phys. Rev. Lett. 79, 1571–1574 (1997).
    [Crossref]
  11. S. S. Harilal, C. V. Bindhu, M. S. Tillack, F. Najmabadi, and A. C. Gaeris, “Internal structure and expansion dynamics of laser ablation plumes into ambient gases,” J. Appl. Phys. 93, 2380–2388 (2003).
    [Crossref]
  12. Z. Chen and A. Bogaerts, “Laser ablation of Cu and plume expansion into 1 atm ambient gas,” J. Appl. Phys. 97, 063305 (2005).
    [Crossref]
  13. Q. Ma, V. Motto-Ros, X. Bai, and J. Yu, “Experimental investigation of the structure and the dynamics of nanosecond laser-induced plasma in 1-atm argon ambient gas,” Appl. Phys. Lett. 103, 204101 (2013).
    [Crossref]
  14. G. Callies, P. Berger, and H. Hugel, “Time-resolved observation of gas-dynamic discontinuities arising during excimer laser ablation and their interpretation,” J. Phys. D 28, 794–806 (1995).
  15. S. S. Harilal, G. V. Miloshevsky, P. K. Diwakar, N. L. LaHaye, and A. Hassanein, “Experimental and computational study of complex shockwave dynamics in laser ablation plumes in argon atmosphere,” Phys. Plasmas 19, 083504 (2012).
    [Crossref]
  16. C. Porneala and D. A. Willis, “Observation of nanosecond laser-induced phase explosion in aluminum,” Appl. Phys. Lett. 89, 211121 (2006).
    [Crossref]
  17. Q. Lu, S. S. Mao, X. Mao, and R. E. Russo, “Delayed phase explosion during high-power nanosecond laser ablation of silicon,” Appl. Phys. Lett. 80, 3072–3074 (2002).
    [Crossref]
  18. A. Kar and J. Mazumder, “Mathematical model for laser ablation to generate nanoscale and submicrometer-size particles,” Phys. Rev. E 49, 410–419 (1994).
    [Crossref]
  19. H. Ki, P. S. Mohanty, and J. Mazumder, “Modelling of high-density laser-material interaction using fast level set method,” J. Phys. D 34, 364–372 (2001).
    [Crossref]
  20. B. Wu and Y. C. Shin, “Modeling of nanosecond laser ablation with vapor plasma formation,” J. Appl. Phys. 99, 084310 (2006).
    [Crossref]
  21. R. N. Raman, R. A. Negres, and S. G. Demos, “Time-resolved microscope system to image material response following localized laser energy deposition: exit surface damage in fused silica as a case example,” Opt. Eng. 50, 013602 (2011).
    [Crossref]
  22. R. N. Raman, R. A. Negres, and S. G. Demos, “Kinetics of ejected particles during laser-induced breakdown in fused silica,” Appl. Phys. Lett. 98, 051901 (2011).
    [Crossref]
  23. D. Bauerle, Laser Processing and Chemistry (Spinger-Verlag, 2011).
  24. S. G. Demos, R. A. Negres, R. N. Raman, A. M. Rubenchik, and M. D. Feit, “Material response during nanosecond laser induced breakdown inside of the exit surface of fused silica,” Laser Photon. Rev 7, 444–452 (2013).
    [Crossref]
  25. S. G. Demos, R. A. Negres, and A. M. Rubenchik, “Dynamics of the plume containing nanometric-sized particles ejected into the atmospheric air following laser-induced breakdown on the exit surface of a CaF2 optical window,” Appl. Phys. Lett. 104, 031603 (2014).
    [Crossref]
  26. V. M. Sglavo and D. J. Green, “Fatigue limit in fused silica,” J. Eur. Ceram. Soc. 21, 561–567 (2001).
    [Crossref]
  27. J. Wong, J. L. Ferriera, E. F. Lindsey, D. L. Haupt, I. D. Hutcheon, and J. H. Kinney, “Morphology and microstructure in fused silica induced by high fluence ultraviolet 3 w (355 nm) laser pulses,” J. Non-Cryst. Solids 352, 255–272 (2006).
    [Crossref]
  28. R. N. Raman, S. Elhadj, R. A. Negres, M. J. Matthews, M. D. Feit, and S. G. Demos, “Characterization of ejected fused silica particles following surface breakdown with ns pulses,” Opt. Express 20, 27708–27724 (2012).
    [Crossref]
  29. A. Salleo, S. T. Taylor, M. C. Martin, W. R. Panero, R. Jeanloz, T. Sands, and F. Y. Genin, “Laser-driven formation of a high-pressure phase in amorphous silica,” Nat. Mater. 2, 796–800 (2003).
    [Crossref]
  30. Y. B. Zeldovich and Y. P. Raizer, Physics of Shock Waves and High Temperature Hydrodynamic Phenomena (Academic, 1967).
  31. C. R. Weber, A. W. Cook, and R. Bonazza, “Growth rate of a shocked mixing layer with known initial perturbations,” J. Fluid Mech. 725, 372–401 (2013).
    [Crossref]
  32. K. O. Mikaelian, “Effect of viscosity on Rayleigh-Taylor and Richtmyer-Meshkov instabilities,” Phys. Rev. E 47, 375–383 (1993).
    [Crossref]
  33. R. H. Doremus, “Viscosity of silica,” J. Appl. Phys. 92, 7619–7629 (2002).
    [Crossref]
  34. C. W. Carr, H. B. Radousky, A. M. Rubenchik, M. D. Feit, and S. G. Demos, “Localized dynamics during laser-induced damage in optical materials,” Phys. Rev. Lett. 92, 087401 (2004).
    [Crossref]
  35. B. Glass, “Microtektites in deep-sea sediments,” Nature 214, 372–374 (1967).
  36. S. V. Margolis, P. Claeys, and F. T. Kyte, “Microtektites, microkrystites, and spinels from a late pliocene asteroid impact in the southern ocean,” Science 251, 1594–1597 (1991).
    [Crossref]
  37. H. Faul, “Tektites are terrestrial,” Science 152, 1341–1345 (1966).
    [Crossref]

2014 (1)

S. G. Demos, R. A. Negres, and A. M. Rubenchik, “Dynamics of the plume containing nanometric-sized particles ejected into the atmospheric air following laser-induced breakdown on the exit surface of a CaF2 optical window,” Appl. Phys. Lett. 104, 031603 (2014).
[Crossref]

2013 (3)

S. G. Demos, R. A. Negres, R. N. Raman, A. M. Rubenchik, and M. D. Feit, “Material response during nanosecond laser induced breakdown inside of the exit surface of fused silica,” Laser Photon. Rev 7, 444–452 (2013).
[Crossref]

C. R. Weber, A. W. Cook, and R. Bonazza, “Growth rate of a shocked mixing layer with known initial perturbations,” J. Fluid Mech. 725, 372–401 (2013).
[Crossref]

Q. Ma, V. Motto-Ros, X. Bai, and J. Yu, “Experimental investigation of the structure and the dynamics of nanosecond laser-induced plasma in 1-atm argon ambient gas,” Appl. Phys. Lett. 103, 204101 (2013).
[Crossref]

2012 (2)

S. S. Harilal, G. V. Miloshevsky, P. K. Diwakar, N. L. LaHaye, and A. Hassanein, “Experimental and computational study of complex shockwave dynamics in laser ablation plumes in argon atmosphere,” Phys. Plasmas 19, 083504 (2012).
[Crossref]

R. N. Raman, S. Elhadj, R. A. Negres, M. J. Matthews, M. D. Feit, and S. G. Demos, “Characterization of ejected fused silica particles following surface breakdown with ns pulses,” Opt. Express 20, 27708–27724 (2012).
[Crossref]

2011 (2)

R. N. Raman, R. A. Negres, and S. G. Demos, “Time-resolved microscope system to image material response following localized laser energy deposition: exit surface damage in fused silica as a case example,” Opt. Eng. 50, 013602 (2011).
[Crossref]

R. N. Raman, R. A. Negres, and S. G. Demos, “Kinetics of ejected particles during laser-induced breakdown in fused silica,” Appl. Phys. Lett. 98, 051901 (2011).
[Crossref]

2007 (3)

K. J. Gaffney and H. N. Chapman, “Imaging atomic structure and dynamics with ultrafast X-ray scattering,” Science 316, 1444–1448 (2007).
[Crossref]

N. Zhang, X. Zhu, J. Yang, X. Wang, and M. Wang, “Time-resolved shadowgraphs of material ejection in intense femtosecond laser ablation of aluminum,” Phys. Rev. Lett. 99, 167602 (2007).
[Crossref]

E. Leveugle, A. Sellinger, J. M. Fitz-Gerald, and L. V. Zhigilei, “Making molecular balloons in laser-induced explosive boiling of polymer solutions,” Phys. Rev. Lett. 98, 216101 (2007).
[Crossref]

2006 (4)

C. Porneala and D. A. Willis, “Observation of nanosecond laser-induced phase explosion in aluminum,” Appl. Phys. Lett. 89, 211121 (2006).
[Crossref]

P. Lorazo, L. J. Lewis, and M. Meunier, “Thermo-dynamic pathways to melting, ablation, and solidification in absorbing solids under pulsed laser irradiation,” Phys. Rev. B 73, 134108 (2006).
[Crossref]

B. Wu and Y. C. Shin, “Modeling of nanosecond laser ablation with vapor plasma formation,” J. Appl. Phys. 99, 084310 (2006).
[Crossref]

J. Wong, J. L. Ferriera, E. F. Lindsey, D. L. Haupt, I. D. Hutcheon, and J. H. Kinney, “Morphology and microstructure in fused silica induced by high fluence ultraviolet 3 w (355 nm) laser pulses,” J. Non-Cryst. Solids 352, 255–272 (2006).
[Crossref]

2005 (1)

Z. Chen and A. Bogaerts, “Laser ablation of Cu and plume expansion into 1 atm ambient gas,” J. Appl. Phys. 97, 063305 (2005).
[Crossref]

2004 (1)

C. W. Carr, H. B. Radousky, A. M. Rubenchik, M. D. Feit, and S. G. Demos, “Localized dynamics during laser-induced damage in optical materials,” Phys. Rev. Lett. 92, 087401 (2004).
[Crossref]

2003 (3)

A. Salleo, S. T. Taylor, M. C. Martin, W. R. Panero, R. Jeanloz, T. Sands, and F. Y. Genin, “Laser-driven formation of a high-pressure phase in amorphous silica,” Nat. Mater. 2, 796–800 (2003).
[Crossref]

S. S. Harilal, C. V. Bindhu, M. S. Tillack, F. Najmabadi, and A. C. Gaeris, “Internal structure and expansion dynamics of laser ablation plumes into ambient gases,” J. Appl. Phys. 93, 2380–2388 (2003).
[Crossref]

B. J. Siwick, J. R. Dwyer, R. E. Jordan, and R. J. D. Miller, “An atomic-level view of melting using femtosecond electron diffraction,” Science 302, 1382–1385 (2003).
[Crossref]

2002 (2)

Q. Lu, S. S. Mao, X. Mao, and R. E. Russo, “Delayed phase explosion during high-power nanosecond laser ablation of silicon,” Appl. Phys. Lett. 80, 3072–3074 (2002).
[Crossref]

R. H. Doremus, “Viscosity of silica,” J. Appl. Phys. 92, 7619–7629 (2002).
[Crossref]

2001 (3)

N. M. Bulgakova and A. V. Bulgakov, “Pulsed laser ablation of solids: transition from normal vaporization to phase explosion,” Appl. Phys. A 73, 199–208 (2001).
[Crossref]

H. Ki, P. S. Mohanty, and J. Mazumder, “Modelling of high-density laser-material interaction using fast level set method,” J. Phys. D 34, 364–372 (2001).
[Crossref]

V. M. Sglavo and D. J. Green, “Fatigue limit in fused silica,” J. Eur. Ceram. Soc. 21, 561–567 (2001).
[Crossref]

1999 (1)

A. Miotello and R. Kelly, “Laser-induced phase explosion: new physical problems when a condensed phase approaches the thermodynamic critical temperature,” Appl. Phys. A 69, S67–S73 (1999).
[Crossref]

1998 (1)

K. Sokolowski-Tinten, J. Bialkowski, A. Cavalleri, D. von der Linde, A. Oparin, J. Meyer-ter-Vehn, and S. I. Anisimov, “Transient states of matter during short pulse laser ablation,” Phys. Rev. Lett. 81, 224–227 (1998).
[Crossref]

1997 (1)

R. F. Wood, K. R. Chen, J. N. Leboeuf, A. A. Puretzky, and D. B. Geohegan, “Dynamics of plume propagation and splitting during pulsed-laser ablation,” Phys. Rev. Lett. 79, 1571–1574 (1997).
[Crossref]

1995 (1)

G. Callies, P. Berger, and H. Hugel, “Time-resolved observation of gas-dynamic discontinuities arising during excimer laser ablation and their interpretation,” J. Phys. D 28, 794–806 (1995).

1994 (1)

A. Kar and J. Mazumder, “Mathematical model for laser ablation to generate nanoscale and submicrometer-size particles,” Phys. Rev. E 49, 410–419 (1994).
[Crossref]

1993 (1)

K. O. Mikaelian, “Effect of viscosity on Rayleigh-Taylor and Richtmyer-Meshkov instabilities,” Phys. Rev. E 47, 375–383 (1993).
[Crossref]

1991 (1)

S. V. Margolis, P. Claeys, and F. T. Kyte, “Microtektites, microkrystites, and spinels from a late pliocene asteroid impact in the southern ocean,” Science 251, 1594–1597 (1991).
[Crossref]

1972 (1)

F. W. Dabby and U.-C. Peak, “High-intensity laser-induced vaporization and explosion of solid material,” IEEE J. Quantum Electron. 8, 106–111 (1972).
[Crossref]

1967 (1)

B. Glass, “Microtektites in deep-sea sediments,” Nature 214, 372–374 (1967).

1966 (1)

H. Faul, “Tektites are terrestrial,” Science 152, 1341–1345 (1966).
[Crossref]

Anisimov, S. I.

K. Sokolowski-Tinten, J. Bialkowski, A. Cavalleri, D. von der Linde, A. Oparin, J. Meyer-ter-Vehn, and S. I. Anisimov, “Transient states of matter during short pulse laser ablation,” Phys. Rev. Lett. 81, 224–227 (1998).
[Crossref]

Bai, X.

Q. Ma, V. Motto-Ros, X. Bai, and J. Yu, “Experimental investigation of the structure and the dynamics of nanosecond laser-induced plasma in 1-atm argon ambient gas,” Appl. Phys. Lett. 103, 204101 (2013).
[Crossref]

Bauerle, D.

D. Bauerle, Laser Processing and Chemistry (Spinger-Verlag, 2011).

Berger, P.

G. Callies, P. Berger, and H. Hugel, “Time-resolved observation of gas-dynamic discontinuities arising during excimer laser ablation and their interpretation,” J. Phys. D 28, 794–806 (1995).

Bialkowski, J.

K. Sokolowski-Tinten, J. Bialkowski, A. Cavalleri, D. von der Linde, A. Oparin, J. Meyer-ter-Vehn, and S. I. Anisimov, “Transient states of matter during short pulse laser ablation,” Phys. Rev. Lett. 81, 224–227 (1998).
[Crossref]

Bindhu, C. V.

S. S. Harilal, C. V. Bindhu, M. S. Tillack, F. Najmabadi, and A. C. Gaeris, “Internal structure and expansion dynamics of laser ablation plumes into ambient gases,” J. Appl. Phys. 93, 2380–2388 (2003).
[Crossref]

Bogaerts, A.

Z. Chen and A. Bogaerts, “Laser ablation of Cu and plume expansion into 1 atm ambient gas,” J. Appl. Phys. 97, 063305 (2005).
[Crossref]

Bonazza, R.

C. R. Weber, A. W. Cook, and R. Bonazza, “Growth rate of a shocked mixing layer with known initial perturbations,” J. Fluid Mech. 725, 372–401 (2013).
[Crossref]

Bulgakov, A. V.

N. M. Bulgakova and A. V. Bulgakov, “Pulsed laser ablation of solids: transition from normal vaporization to phase explosion,” Appl. Phys. A 73, 199–208 (2001).
[Crossref]

Bulgakova, N. M.

N. M. Bulgakova and A. V. Bulgakov, “Pulsed laser ablation of solids: transition from normal vaporization to phase explosion,” Appl. Phys. A 73, 199–208 (2001).
[Crossref]

Callies, G.

G. Callies, P. Berger, and H. Hugel, “Time-resolved observation of gas-dynamic discontinuities arising during excimer laser ablation and their interpretation,” J. Phys. D 28, 794–806 (1995).

Carr, C. W.

C. W. Carr, H. B. Radousky, A. M. Rubenchik, M. D. Feit, and S. G. Demos, “Localized dynamics during laser-induced damage in optical materials,” Phys. Rev. Lett. 92, 087401 (2004).
[Crossref]

Cavalleri, A.

K. Sokolowski-Tinten, J. Bialkowski, A. Cavalleri, D. von der Linde, A. Oparin, J. Meyer-ter-Vehn, and S. I. Anisimov, “Transient states of matter during short pulse laser ablation,” Phys. Rev. Lett. 81, 224–227 (1998).
[Crossref]

Chapman, H. N.

K. J. Gaffney and H. N. Chapman, “Imaging atomic structure and dynamics with ultrafast X-ray scattering,” Science 316, 1444–1448 (2007).
[Crossref]

Chen, K. R.

R. F. Wood, K. R. Chen, J. N. Leboeuf, A. A. Puretzky, and D. B. Geohegan, “Dynamics of plume propagation and splitting during pulsed-laser ablation,” Phys. Rev. Lett. 79, 1571–1574 (1997).
[Crossref]

Chen, Z.

Z. Chen and A. Bogaerts, “Laser ablation of Cu and plume expansion into 1 atm ambient gas,” J. Appl. Phys. 97, 063305 (2005).
[Crossref]

Claeys, P.

S. V. Margolis, P. Claeys, and F. T. Kyte, “Microtektites, microkrystites, and spinels from a late pliocene asteroid impact in the southern ocean,” Science 251, 1594–1597 (1991).
[Crossref]

Cook, A. W.

C. R. Weber, A. W. Cook, and R. Bonazza, “Growth rate of a shocked mixing layer with known initial perturbations,” J. Fluid Mech. 725, 372–401 (2013).
[Crossref]

Dabby, F. W.

F. W. Dabby and U.-C. Peak, “High-intensity laser-induced vaporization and explosion of solid material,” IEEE J. Quantum Electron. 8, 106–111 (1972).
[Crossref]

Demos, S. G.

S. G. Demos, R. A. Negres, and A. M. Rubenchik, “Dynamics of the plume containing nanometric-sized particles ejected into the atmospheric air following laser-induced breakdown on the exit surface of a CaF2 optical window,” Appl. Phys. Lett. 104, 031603 (2014).
[Crossref]

S. G. Demos, R. A. Negres, R. N. Raman, A. M. Rubenchik, and M. D. Feit, “Material response during nanosecond laser induced breakdown inside of the exit surface of fused silica,” Laser Photon. Rev 7, 444–452 (2013).
[Crossref]

R. N. Raman, S. Elhadj, R. A. Negres, M. J. Matthews, M. D. Feit, and S. G. Demos, “Characterization of ejected fused silica particles following surface breakdown with ns pulses,” Opt. Express 20, 27708–27724 (2012).
[Crossref]

R. N. Raman, R. A. Negres, and S. G. Demos, “Time-resolved microscope system to image material response following localized laser energy deposition: exit surface damage in fused silica as a case example,” Opt. Eng. 50, 013602 (2011).
[Crossref]

R. N. Raman, R. A. Negres, and S. G. Demos, “Kinetics of ejected particles during laser-induced breakdown in fused silica,” Appl. Phys. Lett. 98, 051901 (2011).
[Crossref]

C. W. Carr, H. B. Radousky, A. M. Rubenchik, M. D. Feit, and S. G. Demos, “Localized dynamics during laser-induced damage in optical materials,” Phys. Rev. Lett. 92, 087401 (2004).
[Crossref]

Diwakar, P. K.

S. S. Harilal, G. V. Miloshevsky, P. K. Diwakar, N. L. LaHaye, and A. Hassanein, “Experimental and computational study of complex shockwave dynamics in laser ablation plumes in argon atmosphere,” Phys. Plasmas 19, 083504 (2012).
[Crossref]

Doremus, R. H.

R. H. Doremus, “Viscosity of silica,” J. Appl. Phys. 92, 7619–7629 (2002).
[Crossref]

Dwyer, J. R.

B. J. Siwick, J. R. Dwyer, R. E. Jordan, and R. J. D. Miller, “An atomic-level view of melting using femtosecond electron diffraction,” Science 302, 1382–1385 (2003).
[Crossref]

Elhadj, S.

Faul, H.

H. Faul, “Tektites are terrestrial,” Science 152, 1341–1345 (1966).
[Crossref]

Feit, M. D.

S. G. Demos, R. A. Negres, R. N. Raman, A. M. Rubenchik, and M. D. Feit, “Material response during nanosecond laser induced breakdown inside of the exit surface of fused silica,” Laser Photon. Rev 7, 444–452 (2013).
[Crossref]

R. N. Raman, S. Elhadj, R. A. Negres, M. J. Matthews, M. D. Feit, and S. G. Demos, “Characterization of ejected fused silica particles following surface breakdown with ns pulses,” Opt. Express 20, 27708–27724 (2012).
[Crossref]

C. W. Carr, H. B. Radousky, A. M. Rubenchik, M. D. Feit, and S. G. Demos, “Localized dynamics during laser-induced damage in optical materials,” Phys. Rev. Lett. 92, 087401 (2004).
[Crossref]

Ferriera, J. L.

J. Wong, J. L. Ferriera, E. F. Lindsey, D. L. Haupt, I. D. Hutcheon, and J. H. Kinney, “Morphology and microstructure in fused silica induced by high fluence ultraviolet 3 w (355 nm) laser pulses,” J. Non-Cryst. Solids 352, 255–272 (2006).
[Crossref]

Fitz-Gerald, J. M.

E. Leveugle, A. Sellinger, J. M. Fitz-Gerald, and L. V. Zhigilei, “Making molecular balloons in laser-induced explosive boiling of polymer solutions,” Phys. Rev. Lett. 98, 216101 (2007).
[Crossref]

Gaeris, A. C.

S. S. Harilal, C. V. Bindhu, M. S. Tillack, F. Najmabadi, and A. C. Gaeris, “Internal structure and expansion dynamics of laser ablation plumes into ambient gases,” J. Appl. Phys. 93, 2380–2388 (2003).
[Crossref]

Gaffney, K. J.

K. J. Gaffney and H. N. Chapman, “Imaging atomic structure and dynamics with ultrafast X-ray scattering,” Science 316, 1444–1448 (2007).
[Crossref]

Genin, F. Y.

A. Salleo, S. T. Taylor, M. C. Martin, W. R. Panero, R. Jeanloz, T. Sands, and F. Y. Genin, “Laser-driven formation of a high-pressure phase in amorphous silica,” Nat. Mater. 2, 796–800 (2003).
[Crossref]

Geohegan, D. B.

R. F. Wood, K. R. Chen, J. N. Leboeuf, A. A. Puretzky, and D. B. Geohegan, “Dynamics of plume propagation and splitting during pulsed-laser ablation,” Phys. Rev. Lett. 79, 1571–1574 (1997).
[Crossref]

Glass, B.

B. Glass, “Microtektites in deep-sea sediments,” Nature 214, 372–374 (1967).

Green, D. J.

V. M. Sglavo and D. J. Green, “Fatigue limit in fused silica,” J. Eur. Ceram. Soc. 21, 561–567 (2001).
[Crossref]

Harilal, S. S.

S. S. Harilal, G. V. Miloshevsky, P. K. Diwakar, N. L. LaHaye, and A. Hassanein, “Experimental and computational study of complex shockwave dynamics in laser ablation plumes in argon atmosphere,” Phys. Plasmas 19, 083504 (2012).
[Crossref]

S. S. Harilal, C. V. Bindhu, M. S. Tillack, F. Najmabadi, and A. C. Gaeris, “Internal structure and expansion dynamics of laser ablation plumes into ambient gases,” J. Appl. Phys. 93, 2380–2388 (2003).
[Crossref]

Hassanein, A.

S. S. Harilal, G. V. Miloshevsky, P. K. Diwakar, N. L. LaHaye, and A. Hassanein, “Experimental and computational study of complex shockwave dynamics in laser ablation plumes in argon atmosphere,” Phys. Plasmas 19, 083504 (2012).
[Crossref]

Haupt, D. L.

J. Wong, J. L. Ferriera, E. F. Lindsey, D. L. Haupt, I. D. Hutcheon, and J. H. Kinney, “Morphology and microstructure in fused silica induced by high fluence ultraviolet 3 w (355 nm) laser pulses,” J. Non-Cryst. Solids 352, 255–272 (2006).
[Crossref]

Hugel, H.

G. Callies, P. Berger, and H. Hugel, “Time-resolved observation of gas-dynamic discontinuities arising during excimer laser ablation and their interpretation,” J. Phys. D 28, 794–806 (1995).

Hutcheon, I. D.

J. Wong, J. L. Ferriera, E. F. Lindsey, D. L. Haupt, I. D. Hutcheon, and J. H. Kinney, “Morphology and microstructure in fused silica induced by high fluence ultraviolet 3 w (355 nm) laser pulses,” J. Non-Cryst. Solids 352, 255–272 (2006).
[Crossref]

Jeanloz, R.

A. Salleo, S. T. Taylor, M. C. Martin, W. R. Panero, R. Jeanloz, T. Sands, and F. Y. Genin, “Laser-driven formation of a high-pressure phase in amorphous silica,” Nat. Mater. 2, 796–800 (2003).
[Crossref]

Jordan, R. E.

B. J. Siwick, J. R. Dwyer, R. E. Jordan, and R. J. D. Miller, “An atomic-level view of melting using femtosecond electron diffraction,” Science 302, 1382–1385 (2003).
[Crossref]

Kar, A.

A. Kar and J. Mazumder, “Mathematical model for laser ablation to generate nanoscale and submicrometer-size particles,” Phys. Rev. E 49, 410–419 (1994).
[Crossref]

Kelly, R.

A. Miotello and R. Kelly, “Laser-induced phase explosion: new physical problems when a condensed phase approaches the thermodynamic critical temperature,” Appl. Phys. A 69, S67–S73 (1999).
[Crossref]

Ki, H.

H. Ki, P. S. Mohanty, and J. Mazumder, “Modelling of high-density laser-material interaction using fast level set method,” J. Phys. D 34, 364–372 (2001).
[Crossref]

Kinney, J. H.

J. Wong, J. L. Ferriera, E. F. Lindsey, D. L. Haupt, I. D. Hutcheon, and J. H. Kinney, “Morphology and microstructure in fused silica induced by high fluence ultraviolet 3 w (355 nm) laser pulses,” J. Non-Cryst. Solids 352, 255–272 (2006).
[Crossref]

Kyte, F. T.

S. V. Margolis, P. Claeys, and F. T. Kyte, “Microtektites, microkrystites, and spinels from a late pliocene asteroid impact in the southern ocean,” Science 251, 1594–1597 (1991).
[Crossref]

LaHaye, N. L.

S. S. Harilal, G. V. Miloshevsky, P. K. Diwakar, N. L. LaHaye, and A. Hassanein, “Experimental and computational study of complex shockwave dynamics in laser ablation plumes in argon atmosphere,” Phys. Plasmas 19, 083504 (2012).
[Crossref]

Leboeuf, J. N.

R. F. Wood, K. R. Chen, J. N. Leboeuf, A. A. Puretzky, and D. B. Geohegan, “Dynamics of plume propagation and splitting during pulsed-laser ablation,” Phys. Rev. Lett. 79, 1571–1574 (1997).
[Crossref]

Leveugle, E.

E. Leveugle, A. Sellinger, J. M. Fitz-Gerald, and L. V. Zhigilei, “Making molecular balloons in laser-induced explosive boiling of polymer solutions,” Phys. Rev. Lett. 98, 216101 (2007).
[Crossref]

Lewis, L. J.

P. Lorazo, L. J. Lewis, and M. Meunier, “Thermo-dynamic pathways to melting, ablation, and solidification in absorbing solids under pulsed laser irradiation,” Phys. Rev. B 73, 134108 (2006).
[Crossref]

Lindsey, E. F.

J. Wong, J. L. Ferriera, E. F. Lindsey, D. L. Haupt, I. D. Hutcheon, and J. H. Kinney, “Morphology and microstructure in fused silica induced by high fluence ultraviolet 3 w (355 nm) laser pulses,” J. Non-Cryst. Solids 352, 255–272 (2006).
[Crossref]

Lorazo, P.

P. Lorazo, L. J. Lewis, and M. Meunier, “Thermo-dynamic pathways to melting, ablation, and solidification in absorbing solids under pulsed laser irradiation,” Phys. Rev. B 73, 134108 (2006).
[Crossref]

Lu, Q.

Q. Lu, S. S. Mao, X. Mao, and R. E. Russo, “Delayed phase explosion during high-power nanosecond laser ablation of silicon,” Appl. Phys. Lett. 80, 3072–3074 (2002).
[Crossref]

Ma, Q.

Q. Ma, V. Motto-Ros, X. Bai, and J. Yu, “Experimental investigation of the structure and the dynamics of nanosecond laser-induced plasma in 1-atm argon ambient gas,” Appl. Phys. Lett. 103, 204101 (2013).
[Crossref]

Mao, S. S.

Q. Lu, S. S. Mao, X. Mao, and R. E. Russo, “Delayed phase explosion during high-power nanosecond laser ablation of silicon,” Appl. Phys. Lett. 80, 3072–3074 (2002).
[Crossref]

Mao, X.

Q. Lu, S. S. Mao, X. Mao, and R. E. Russo, “Delayed phase explosion during high-power nanosecond laser ablation of silicon,” Appl. Phys. Lett. 80, 3072–3074 (2002).
[Crossref]

Margolis, S. V.

S. V. Margolis, P. Claeys, and F. T. Kyte, “Microtektites, microkrystites, and spinels from a late pliocene asteroid impact in the southern ocean,” Science 251, 1594–1597 (1991).
[Crossref]

Martin, M. C.

A. Salleo, S. T. Taylor, M. C. Martin, W. R. Panero, R. Jeanloz, T. Sands, and F. Y. Genin, “Laser-driven formation of a high-pressure phase in amorphous silica,” Nat. Mater. 2, 796–800 (2003).
[Crossref]

Matthews, M. J.

Mazumder, J.

H. Ki, P. S. Mohanty, and J. Mazumder, “Modelling of high-density laser-material interaction using fast level set method,” J. Phys. D 34, 364–372 (2001).
[Crossref]

A. Kar and J. Mazumder, “Mathematical model for laser ablation to generate nanoscale and submicrometer-size particles,” Phys. Rev. E 49, 410–419 (1994).
[Crossref]

Meunier, M.

P. Lorazo, L. J. Lewis, and M. Meunier, “Thermo-dynamic pathways to melting, ablation, and solidification in absorbing solids under pulsed laser irradiation,” Phys. Rev. B 73, 134108 (2006).
[Crossref]

Meyer-ter-Vehn, J.

K. Sokolowski-Tinten, J. Bialkowski, A. Cavalleri, D. von der Linde, A. Oparin, J. Meyer-ter-Vehn, and S. I. Anisimov, “Transient states of matter during short pulse laser ablation,” Phys. Rev. Lett. 81, 224–227 (1998).
[Crossref]

Mikaelian, K. O.

K. O. Mikaelian, “Effect of viscosity on Rayleigh-Taylor and Richtmyer-Meshkov instabilities,” Phys. Rev. E 47, 375–383 (1993).
[Crossref]

Miller, R. J. D.

B. J. Siwick, J. R. Dwyer, R. E. Jordan, and R. J. D. Miller, “An atomic-level view of melting using femtosecond electron diffraction,” Science 302, 1382–1385 (2003).
[Crossref]

Miloshevsky, G. V.

S. S. Harilal, G. V. Miloshevsky, P. K. Diwakar, N. L. LaHaye, and A. Hassanein, “Experimental and computational study of complex shockwave dynamics in laser ablation plumes in argon atmosphere,” Phys. Plasmas 19, 083504 (2012).
[Crossref]

Miotello, A.

A. Miotello and R. Kelly, “Laser-induced phase explosion: new physical problems when a condensed phase approaches the thermodynamic critical temperature,” Appl. Phys. A 69, S67–S73 (1999).
[Crossref]

Mohanty, P. S.

H. Ki, P. S. Mohanty, and J. Mazumder, “Modelling of high-density laser-material interaction using fast level set method,” J. Phys. D 34, 364–372 (2001).
[Crossref]

Motto-Ros, V.

Q. Ma, V. Motto-Ros, X. Bai, and J. Yu, “Experimental investigation of the structure and the dynamics of nanosecond laser-induced plasma in 1-atm argon ambient gas,” Appl. Phys. Lett. 103, 204101 (2013).
[Crossref]

Najmabadi, F.

S. S. Harilal, C. V. Bindhu, M. S. Tillack, F. Najmabadi, and A. C. Gaeris, “Internal structure and expansion dynamics of laser ablation plumes into ambient gases,” J. Appl. Phys. 93, 2380–2388 (2003).
[Crossref]

Negres, R. A.

S. G. Demos, R. A. Negres, and A. M. Rubenchik, “Dynamics of the plume containing nanometric-sized particles ejected into the atmospheric air following laser-induced breakdown on the exit surface of a CaF2 optical window,” Appl. Phys. Lett. 104, 031603 (2014).
[Crossref]

S. G. Demos, R. A. Negres, R. N. Raman, A. M. Rubenchik, and M. D. Feit, “Material response during nanosecond laser induced breakdown inside of the exit surface of fused silica,” Laser Photon. Rev 7, 444–452 (2013).
[Crossref]

R. N. Raman, S. Elhadj, R. A. Negres, M. J. Matthews, M. D. Feit, and S. G. Demos, “Characterization of ejected fused silica particles following surface breakdown with ns pulses,” Opt. Express 20, 27708–27724 (2012).
[Crossref]

R. N. Raman, R. A. Negres, and S. G. Demos, “Kinetics of ejected particles during laser-induced breakdown in fused silica,” Appl. Phys. Lett. 98, 051901 (2011).
[Crossref]

R. N. Raman, R. A. Negres, and S. G. Demos, “Time-resolved microscope system to image material response following localized laser energy deposition: exit surface damage in fused silica as a case example,” Opt. Eng. 50, 013602 (2011).
[Crossref]

Oparin, A.

K. Sokolowski-Tinten, J. Bialkowski, A. Cavalleri, D. von der Linde, A. Oparin, J. Meyer-ter-Vehn, and S. I. Anisimov, “Transient states of matter during short pulse laser ablation,” Phys. Rev. Lett. 81, 224–227 (1998).
[Crossref]

Panero, W. R.

A. Salleo, S. T. Taylor, M. C. Martin, W. R. Panero, R. Jeanloz, T. Sands, and F. Y. Genin, “Laser-driven formation of a high-pressure phase in amorphous silica,” Nat. Mater. 2, 796–800 (2003).
[Crossref]

Peak, U.-C.

F. W. Dabby and U.-C. Peak, “High-intensity laser-induced vaporization and explosion of solid material,” IEEE J. Quantum Electron. 8, 106–111 (1972).
[Crossref]

Porneala, C.

C. Porneala and D. A. Willis, “Observation of nanosecond laser-induced phase explosion in aluminum,” Appl. Phys. Lett. 89, 211121 (2006).
[Crossref]

Puretzky, A. A.

R. F. Wood, K. R. Chen, J. N. Leboeuf, A. A. Puretzky, and D. B. Geohegan, “Dynamics of plume propagation and splitting during pulsed-laser ablation,” Phys. Rev. Lett. 79, 1571–1574 (1997).
[Crossref]

Radousky, H. B.

C. W. Carr, H. B. Radousky, A. M. Rubenchik, M. D. Feit, and S. G. Demos, “Localized dynamics during laser-induced damage in optical materials,” Phys. Rev. Lett. 92, 087401 (2004).
[Crossref]

Raizer, Y. P.

Y. B. Zeldovich and Y. P. Raizer, Physics of Shock Waves and High Temperature Hydrodynamic Phenomena (Academic, 1967).

Raman, R. N.

S. G. Demos, R. A. Negres, R. N. Raman, A. M. Rubenchik, and M. D. Feit, “Material response during nanosecond laser induced breakdown inside of the exit surface of fused silica,” Laser Photon. Rev 7, 444–452 (2013).
[Crossref]

R. N. Raman, S. Elhadj, R. A. Negres, M. J. Matthews, M. D. Feit, and S. G. Demos, “Characterization of ejected fused silica particles following surface breakdown with ns pulses,” Opt. Express 20, 27708–27724 (2012).
[Crossref]

R. N. Raman, R. A. Negres, and S. G. Demos, “Kinetics of ejected particles during laser-induced breakdown in fused silica,” Appl. Phys. Lett. 98, 051901 (2011).
[Crossref]

R. N. Raman, R. A. Negres, and S. G. Demos, “Time-resolved microscope system to image material response following localized laser energy deposition: exit surface damage in fused silica as a case example,” Opt. Eng. 50, 013602 (2011).
[Crossref]

Rubenchik, A. M.

S. G. Demos, R. A. Negres, and A. M. Rubenchik, “Dynamics of the plume containing nanometric-sized particles ejected into the atmospheric air following laser-induced breakdown on the exit surface of a CaF2 optical window,” Appl. Phys. Lett. 104, 031603 (2014).
[Crossref]

S. G. Demos, R. A. Negres, R. N. Raman, A. M. Rubenchik, and M. D. Feit, “Material response during nanosecond laser induced breakdown inside of the exit surface of fused silica,” Laser Photon. Rev 7, 444–452 (2013).
[Crossref]

C. W. Carr, H. B. Radousky, A. M. Rubenchik, M. D. Feit, and S. G. Demos, “Localized dynamics during laser-induced damage in optical materials,” Phys. Rev. Lett. 92, 087401 (2004).
[Crossref]

Russo, R. E.

Q. Lu, S. S. Mao, X. Mao, and R. E. Russo, “Delayed phase explosion during high-power nanosecond laser ablation of silicon,” Appl. Phys. Lett. 80, 3072–3074 (2002).
[Crossref]

Salleo, A.

A. Salleo, S. T. Taylor, M. C. Martin, W. R. Panero, R. Jeanloz, T. Sands, and F. Y. Genin, “Laser-driven formation of a high-pressure phase in amorphous silica,” Nat. Mater. 2, 796–800 (2003).
[Crossref]

Sands, T.

A. Salleo, S. T. Taylor, M. C. Martin, W. R. Panero, R. Jeanloz, T. Sands, and F. Y. Genin, “Laser-driven formation of a high-pressure phase in amorphous silica,” Nat. Mater. 2, 796–800 (2003).
[Crossref]

Sellinger, A.

E. Leveugle, A. Sellinger, J. M. Fitz-Gerald, and L. V. Zhigilei, “Making molecular balloons in laser-induced explosive boiling of polymer solutions,” Phys. Rev. Lett. 98, 216101 (2007).
[Crossref]

Sglavo, V. M.

V. M. Sglavo and D. J. Green, “Fatigue limit in fused silica,” J. Eur. Ceram. Soc. 21, 561–567 (2001).
[Crossref]

Shin, Y. C.

B. Wu and Y. C. Shin, “Modeling of nanosecond laser ablation with vapor plasma formation,” J. Appl. Phys. 99, 084310 (2006).
[Crossref]

Siwick, B. J.

B. J. Siwick, J. R. Dwyer, R. E. Jordan, and R. J. D. Miller, “An atomic-level view of melting using femtosecond electron diffraction,” Science 302, 1382–1385 (2003).
[Crossref]

Sokolowski-Tinten, K.

K. Sokolowski-Tinten, J. Bialkowski, A. Cavalleri, D. von der Linde, A. Oparin, J. Meyer-ter-Vehn, and S. I. Anisimov, “Transient states of matter during short pulse laser ablation,” Phys. Rev. Lett. 81, 224–227 (1998).
[Crossref]

Taylor, S. T.

A. Salleo, S. T. Taylor, M. C. Martin, W. R. Panero, R. Jeanloz, T. Sands, and F. Y. Genin, “Laser-driven formation of a high-pressure phase in amorphous silica,” Nat. Mater. 2, 796–800 (2003).
[Crossref]

Tillack, M. S.

S. S. Harilal, C. V. Bindhu, M. S. Tillack, F. Najmabadi, and A. C. Gaeris, “Internal structure and expansion dynamics of laser ablation plumes into ambient gases,” J. Appl. Phys. 93, 2380–2388 (2003).
[Crossref]

von der Linde, D.

K. Sokolowski-Tinten, J. Bialkowski, A. Cavalleri, D. von der Linde, A. Oparin, J. Meyer-ter-Vehn, and S. I. Anisimov, “Transient states of matter during short pulse laser ablation,” Phys. Rev. Lett. 81, 224–227 (1998).
[Crossref]

Wang, M.

N. Zhang, X. Zhu, J. Yang, X. Wang, and M. Wang, “Time-resolved shadowgraphs of material ejection in intense femtosecond laser ablation of aluminum,” Phys. Rev. Lett. 99, 167602 (2007).
[Crossref]

Wang, X.

N. Zhang, X. Zhu, J. Yang, X. Wang, and M. Wang, “Time-resolved shadowgraphs of material ejection in intense femtosecond laser ablation of aluminum,” Phys. Rev. Lett. 99, 167602 (2007).
[Crossref]

Weber, C. R.

C. R. Weber, A. W. Cook, and R. Bonazza, “Growth rate of a shocked mixing layer with known initial perturbations,” J. Fluid Mech. 725, 372–401 (2013).
[Crossref]

Willis, D. A.

C. Porneala and D. A. Willis, “Observation of nanosecond laser-induced phase explosion in aluminum,” Appl. Phys. Lett. 89, 211121 (2006).
[Crossref]

Wong, J.

J. Wong, J. L. Ferriera, E. F. Lindsey, D. L. Haupt, I. D. Hutcheon, and J. H. Kinney, “Morphology and microstructure in fused silica induced by high fluence ultraviolet 3 w (355 nm) laser pulses,” J. Non-Cryst. Solids 352, 255–272 (2006).
[Crossref]

Wood, R. F.

R. F. Wood, K. R. Chen, J. N. Leboeuf, A. A. Puretzky, and D. B. Geohegan, “Dynamics of plume propagation and splitting during pulsed-laser ablation,” Phys. Rev. Lett. 79, 1571–1574 (1997).
[Crossref]

Wu, B.

B. Wu and Y. C. Shin, “Modeling of nanosecond laser ablation with vapor plasma formation,” J. Appl. Phys. 99, 084310 (2006).
[Crossref]

Yang, J.

N. Zhang, X. Zhu, J. Yang, X. Wang, and M. Wang, “Time-resolved shadowgraphs of material ejection in intense femtosecond laser ablation of aluminum,” Phys. Rev. Lett. 99, 167602 (2007).
[Crossref]

Yu, J.

Q. Ma, V. Motto-Ros, X. Bai, and J. Yu, “Experimental investigation of the structure and the dynamics of nanosecond laser-induced plasma in 1-atm argon ambient gas,” Appl. Phys. Lett. 103, 204101 (2013).
[Crossref]

Zeldovich, Y. B.

Y. B. Zeldovich and Y. P. Raizer, Physics of Shock Waves and High Temperature Hydrodynamic Phenomena (Academic, 1967).

Zhang, N.

N. Zhang, X. Zhu, J. Yang, X. Wang, and M. Wang, “Time-resolved shadowgraphs of material ejection in intense femtosecond laser ablation of aluminum,” Phys. Rev. Lett. 99, 167602 (2007).
[Crossref]

Zhigilei, L. V.

E. Leveugle, A. Sellinger, J. M. Fitz-Gerald, and L. V. Zhigilei, “Making molecular balloons in laser-induced explosive boiling of polymer solutions,” Phys. Rev. Lett. 98, 216101 (2007).
[Crossref]

Zhu, X.

N. Zhang, X. Zhu, J. Yang, X. Wang, and M. Wang, “Time-resolved shadowgraphs of material ejection in intense femtosecond laser ablation of aluminum,” Phys. Rev. Lett. 99, 167602 (2007).
[Crossref]

Appl. Phys. A (2)

A. Miotello and R. Kelly, “Laser-induced phase explosion: new physical problems when a condensed phase approaches the thermodynamic critical temperature,” Appl. Phys. A 69, S67–S73 (1999).
[Crossref]

N. M. Bulgakova and A. V. Bulgakov, “Pulsed laser ablation of solids: transition from normal vaporization to phase explosion,” Appl. Phys. A 73, 199–208 (2001).
[Crossref]

Appl. Phys. Lett. (5)

Q. Ma, V. Motto-Ros, X. Bai, and J. Yu, “Experimental investigation of the structure and the dynamics of nanosecond laser-induced plasma in 1-atm argon ambient gas,” Appl. Phys. Lett. 103, 204101 (2013).
[Crossref]

C. Porneala and D. A. Willis, “Observation of nanosecond laser-induced phase explosion in aluminum,” Appl. Phys. Lett. 89, 211121 (2006).
[Crossref]

Q. Lu, S. S. Mao, X. Mao, and R. E. Russo, “Delayed phase explosion during high-power nanosecond laser ablation of silicon,” Appl. Phys. Lett. 80, 3072–3074 (2002).
[Crossref]

R. N. Raman, R. A. Negres, and S. G. Demos, “Kinetics of ejected particles during laser-induced breakdown in fused silica,” Appl. Phys. Lett. 98, 051901 (2011).
[Crossref]

S. G. Demos, R. A. Negres, and A. M. Rubenchik, “Dynamics of the plume containing nanometric-sized particles ejected into the atmospheric air following laser-induced breakdown on the exit surface of a CaF2 optical window,” Appl. Phys. Lett. 104, 031603 (2014).
[Crossref]

IEEE J. Quantum Electron. (1)

F. W. Dabby and U.-C. Peak, “High-intensity laser-induced vaporization and explosion of solid material,” IEEE J. Quantum Electron. 8, 106–111 (1972).
[Crossref]

J. Appl. Phys. (4)

B. Wu and Y. C. Shin, “Modeling of nanosecond laser ablation with vapor plasma formation,” J. Appl. Phys. 99, 084310 (2006).
[Crossref]

S. S. Harilal, C. V. Bindhu, M. S. Tillack, F. Najmabadi, and A. C. Gaeris, “Internal structure and expansion dynamics of laser ablation plumes into ambient gases,” J. Appl. Phys. 93, 2380–2388 (2003).
[Crossref]

Z. Chen and A. Bogaerts, “Laser ablation of Cu and plume expansion into 1 atm ambient gas,” J. Appl. Phys. 97, 063305 (2005).
[Crossref]

R. H. Doremus, “Viscosity of silica,” J. Appl. Phys. 92, 7619–7629 (2002).
[Crossref]

J. Eur. Ceram. Soc. (1)

V. M. Sglavo and D. J. Green, “Fatigue limit in fused silica,” J. Eur. Ceram. Soc. 21, 561–567 (2001).
[Crossref]

J. Fluid Mech. (1)

C. R. Weber, A. W. Cook, and R. Bonazza, “Growth rate of a shocked mixing layer with known initial perturbations,” J. Fluid Mech. 725, 372–401 (2013).
[Crossref]

J. Non-Cryst. Solids (1)

J. Wong, J. L. Ferriera, E. F. Lindsey, D. L. Haupt, I. D. Hutcheon, and J. H. Kinney, “Morphology and microstructure in fused silica induced by high fluence ultraviolet 3 w (355 nm) laser pulses,” J. Non-Cryst. Solids 352, 255–272 (2006).
[Crossref]

J. Phys. D (2)

H. Ki, P. S. Mohanty, and J. Mazumder, “Modelling of high-density laser-material interaction using fast level set method,” J. Phys. D 34, 364–372 (2001).
[Crossref]

G. Callies, P. Berger, and H. Hugel, “Time-resolved observation of gas-dynamic discontinuities arising during excimer laser ablation and their interpretation,” J. Phys. D 28, 794–806 (1995).

Laser Photon. Rev (1)

S. G. Demos, R. A. Negres, R. N. Raman, A. M. Rubenchik, and M. D. Feit, “Material response during nanosecond laser induced breakdown inside of the exit surface of fused silica,” Laser Photon. Rev 7, 444–452 (2013).
[Crossref]

Nat. Mater. (1)

A. Salleo, S. T. Taylor, M. C. Martin, W. R. Panero, R. Jeanloz, T. Sands, and F. Y. Genin, “Laser-driven formation of a high-pressure phase in amorphous silica,” Nat. Mater. 2, 796–800 (2003).
[Crossref]

Nature (1)

B. Glass, “Microtektites in deep-sea sediments,” Nature 214, 372–374 (1967).

Opt. Eng. (1)

R. N. Raman, R. A. Negres, and S. G. Demos, “Time-resolved microscope system to image material response following localized laser energy deposition: exit surface damage in fused silica as a case example,” Opt. Eng. 50, 013602 (2011).
[Crossref]

Opt. Express (1)

Phys. Plasmas (1)

S. S. Harilal, G. V. Miloshevsky, P. K. Diwakar, N. L. LaHaye, and A. Hassanein, “Experimental and computational study of complex shockwave dynamics in laser ablation plumes in argon atmosphere,” Phys. Plasmas 19, 083504 (2012).
[Crossref]

Phys. Rev. B (1)

P. Lorazo, L. J. Lewis, and M. Meunier, “Thermo-dynamic pathways to melting, ablation, and solidification in absorbing solids under pulsed laser irradiation,” Phys. Rev. B 73, 134108 (2006).
[Crossref]

Phys. Rev. E (2)

A. Kar and J. Mazumder, “Mathematical model for laser ablation to generate nanoscale and submicrometer-size particles,” Phys. Rev. E 49, 410–419 (1994).
[Crossref]

K. O. Mikaelian, “Effect of viscosity on Rayleigh-Taylor and Richtmyer-Meshkov instabilities,” Phys. Rev. E 47, 375–383 (1993).
[Crossref]

Phys. Rev. Lett. (5)

C. W. Carr, H. B. Radousky, A. M. Rubenchik, M. D. Feit, and S. G. Demos, “Localized dynamics during laser-induced damage in optical materials,” Phys. Rev. Lett. 92, 087401 (2004).
[Crossref]

E. Leveugle, A. Sellinger, J. M. Fitz-Gerald, and L. V. Zhigilei, “Making molecular balloons in laser-induced explosive boiling of polymer solutions,” Phys. Rev. Lett. 98, 216101 (2007).
[Crossref]

R. F. Wood, K. R. Chen, J. N. Leboeuf, A. A. Puretzky, and D. B. Geohegan, “Dynamics of plume propagation and splitting during pulsed-laser ablation,” Phys. Rev. Lett. 79, 1571–1574 (1997).
[Crossref]

N. Zhang, X. Zhu, J. Yang, X. Wang, and M. Wang, “Time-resolved shadowgraphs of material ejection in intense femtosecond laser ablation of aluminum,” Phys. Rev. Lett. 99, 167602 (2007).
[Crossref]

K. Sokolowski-Tinten, J. Bialkowski, A. Cavalleri, D. von der Linde, A. Oparin, J. Meyer-ter-Vehn, and S. I. Anisimov, “Transient states of matter during short pulse laser ablation,” Phys. Rev. Lett. 81, 224–227 (1998).
[Crossref]

Science (4)

B. J. Siwick, J. R. Dwyer, R. E. Jordan, and R. J. D. Miller, “An atomic-level view of melting using femtosecond electron diffraction,” Science 302, 1382–1385 (2003).
[Crossref]

K. J. Gaffney and H. N. Chapman, “Imaging atomic structure and dynamics with ultrafast X-ray scattering,” Science 316, 1444–1448 (2007).
[Crossref]

S. V. Margolis, P. Claeys, and F. T. Kyte, “Microtektites, microkrystites, and spinels from a late pliocene asteroid impact in the southern ocean,” Science 251, 1594–1597 (1991).
[Crossref]

H. Faul, “Tektites are terrestrial,” Science 152, 1341–1345 (1966).
[Crossref]

Other (2)

Y. B. Zeldovich and Y. P. Raizer, Physics of Shock Waves and High Temperature Hydrodynamic Phenomena (Academic, 1967).

D. Bauerle, Laser Processing and Chemistry (Spinger-Verlag, 2011).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Schematic layout of the experimental system.

Fig. 2.
Fig. 2.

Representative images at 950 ns delay following laser-induced breakdown inside the exit surface of (a)  Al 2 O 3 and (b)  PbWO 4 . (c) Speed of the front edge (indicated by arrows) of the particle jet (solid circles) along with the estimated kinetic energy density (solid squares) as a function of mass density for each material.

Fig. 3.
Fig. 3.

Speed and kinetic energy density of ejected particles as a function of the estimated ejection time following laser-induced breakdown on the exit surface of fused silica. The line through the experimental data represents an empirical double exponential fit.

Fig. 4.
Fig. 4.

Time resolved images capturing the material ejection at 150 ns delay after exit surface breakdown under 1064-nm, 10-ns pulses with 250 J / cm 2 average fluence in (a)  CaF 2 , (b) DKDP, and (c)  SiO 2 . The arrows indicate the location of the shockwave (#1), the gaseous material (#2), the microscopic particles (#3), and the delayed secondary pressure wave (#4), as detected for each material case.

Fig. 5.
Fig. 5.

Particle jets captured at 450 ns delay following laser-induced breakdown on the exit surface of fused silica under laser exposure to (a) 1064 nm, 10 ns at FWHM, 300 J / cm 2 average fluence and (b) 355 nm, 8 ns at FWHM, 15 J / cm 2 average fluence. Arrows and vertical line indicate the location of the shock front and the front edge of the particle jet, respectively.

Fig. 6.
Fig. 6.

SEM images of particles ejected during laser breakdown at the exit surface of fused silica. These particles can be categorized into various types and are associated with ejection of superheated material during volume boiling [(a), (d), and (e)] or fracture of the surrounding material [(b) and (c)].

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

K = c 0 + c 1 × exp ( ( t t 0 ) τ 1 ) + c 2 × exp ( ( t t 0 ) τ 2 ) ,
c 0 = 4 × 10 5 J / m 2 , c 1 = 3.8 × 10 9 J / m 3 , c 2 = 9 × 10 7 J / m 3 , t 0 = 30 ns , τ 1 = 15 ns , τ 2 = 170 ns .

Metrics