Abstract

Instantaneous frequency measurement (IFM) of microwave signals is a fundamental functionality for applications ranging from electronic warfare to biomedical technology. Photonic techniques, and nonlinear optical interactions in particular, have the potential to broaden the frequency measurement range beyond the limits of electronic IFM systems. The key lies in efficiently harnessing optical mixing in an integrated nonlinear platform, with low losses. In this work, we exploit the low loss of a 35 cm long, thick silicon waveguide to efficiently harness Kerr nonlinearity and demonstrate, to the best of our knowledge, the first on-chip four-wave mixing-based IFM system. We achieve a large, 40 GHz measurement bandwidth and a record-low measurement error. Finally, we discuss the future prospect of integrating the whole IFM system on a silicon chip to enable the first reconfigurable, broadband IFM receiver with low latency.

© 2015 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. L. Adamy, Introduction to Electronic Warfare Modeling and Simulation, 1st ed. (SciTech, 2006), Chap. 5.
  2. J. B. Y. Tsui, “Instantaneous frequency measurement system,” U.S. patent3,992,365 (November9, 1976).
  3. J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics 1, 319–330 (2007).
    [Crossref]
  4. J. Capmany and P. Munoz, “Integrated microwave photonics for radio access networks,” J. Lightwave Technol. 32, 2849–2861 (2014).
    [Crossref]
  5. L. Nguyen and D. Hunter, “A photonic technique for microwave frequency measurement,” IEEE Photon. Technol. Lett. 18, 1188–1190 (2006).
    [Crossref]
  6. H. Emami, N. Sarkhosh, L. A. Bui, and A. Mitchell, “Amplitude independent RF instantaneous frequency measurement system using photonic Hilbert transform,” Opt. Express 16, 13707–13712 (2008).
    [Crossref]
  7. L. A. Bui, M. D. Pelusi, T. D. Vo, N. Sarkhosh, H. Emami, B. J. Eggleton, and A. Mitchell, “Instantaneous frequency measurement system using optical mixing in highly nonlinear fiber,” Opt. Express 17, 22983–22991 (2009).
    [Crossref]
  8. M. V. Drummond, P. Monteiro, and R. N. Nogueira, “Photonic RF instantaneous frequency measurement system by means of a polarization-domain interferometer,” Opt. Express 17, 5433–5438 (2009).
    [Crossref]
  9. J. Zhou, S. Aditya, P. Shum, and J. Yao, “Instantaneous microwave frequency measurement using a photonic microwave filter with an infinite impulse response,” IEEE Photon. Technol. Lett. 22, 682–684 (2010).
    [Crossref]
  10. W. Li, N. H. Zhu, and L. X. Wang, “Brillouin-assisted microwave frequency measurement with adjustable measurement range and resolution,” Opt. Lett. 37, 166–168 (2012).
    [Crossref]
  11. D. Marpaung, “On-chip photonic-assisted instantaneous microwave frequency measurement system,” IEEE Photon. Technol. Lett. 25, 837–840 (2013).
    [Crossref]
  12. J. S. Fandiño and P. Muñoz, “Photonics-based microwave frequency measurement using a double-sideband suppressed-carrier modulation and an InP integrated ring-assisted Mach–Zehnder interferometer filter,” Opt. Lett. 38, 4316–4319 (2013).
    [Crossref]
  13. L. Liu, F. Jiang, S. Yan, S. Min, M. He, D. Gao, and J. Dong, “Photonic measurement of microwave frequency using a silicon microdisk resonator,” Opt. Commun. 335, 266–270 (2015).
    [Crossref]
  14. M. Burla, X. Wang, M. Li, L. Chrostowski, and J. Azana, “On-chip instantaneous microwave frequency measurement system based on a waveguide Bragg grating on silicon,” in Conference on Lasers and Electro-Optics (CLEO) (Optical Society of America, 2015), paper STh4F.7.
  15. D. Marpaung, C. Roeloffzen, R. Heideman, A. Leinse, S. Sales, and J. Capmany, “Integrated microwave photonics,” Laser Photon. Rev. 7, 506–538 (2013).
    [Crossref]
  16. L. A. Bui and A. Mitchell, “Amplitude independent instantaneous frequency measurement using all optical technique,” Opt. Express 21, 29601–29611 (2013).
    [Crossref]
  17. D. Marpaung, M. Pagani, B. Morrison, and B. Eggleton, “Nonlinear integrated microwave photonics,” J. Lightwave Technol. 32, 3421–3427 (2014).
    [Crossref]
  18. M. Cherchi, S. Ylinen, M. Harjanne, M. Kapulainen, and T. Aalto, “Dramatic size reduction of waveguide bends on a micron-scale silicon photonic platform,” Opt. Express 21, 17814–17823 (2013).
    [Crossref]
  19. J. Leuthold, C. Koos, and W. Freude, “Nonlinear silicon photonics,” Nat. Photonics 4, 535–544 (2010).
    [Crossref]
  20. L. R. Chen, J. Li, M. Spasojevic, and R. Adams, “Nanowires and sidewall Bragg gratings in silicon as enabling technologies for microwave photonic filters,” Opt. Express 21, 19624–19633 (2013).
    [Crossref]
  21. V. Ta’eed, D. Moss, B. Eggleton, D. Freeman, S. Madden, M. Samoc, B. Luther-Davies, S. Janz, and D. Xu, “Higher order mode conversion via focused ion beam milled Bragg gratings in silicon-on-insulator waveguides,” Opt. Express 12, 5274–5284 (2004).
    [Crossref]
  22. O. Boyraz, T. Indukuri, and B. Jalali, “Self-phase-modulation induced spectral broadening in silicon waveguides,” Opt. Express 12, 829–834 (2004).
    [Crossref]
  23. H. Guo, G. Xiao, N. Mrad, and J. Yao, “Measurement of microwave frequency using a monolithically integrated scannable echelle diffractive grating,” IEEE Photon. Technol. Lett. 21, 45–47 (2009).
    [Crossref]
  24. H. Emami, M. Ashourian, and M. Ebnali-Heidari, “Dynamically reconfigurable all optical frequency measurement system,” J. Lightwave Technol. 32, 4796–4802 (2014).
    [Crossref]
  25. R. Bonjour, S. A. Gebrewold, D. Hillerkuss, C. Hafner, and J. Leuthold, “Continuously tunable true-time delays with ultra-low settling time,” Opt. Express 23, 6952–6964 (2015).
    [Crossref]
  26. R. A. Soref, J. Schmidtchen, and K. Petermann, “Large single-mode rib waveguides in GeSi–Si and Si-on-SiO2,” IEEE J. Quantum Electron. 27, 1971–1974 (1991).
    [Crossref]
  27. N. Lindenmann, G. Balthasar, D. Hillerkuss, R. Schmogrow, M. Jordan, J. Leuthold, W. Freude, and C. Koos, “Photonic wire bonding: a novel concept for chip-scale interconnects,” Opt. Express 20, 17667–17677 (2012).
    [Crossref]
  28. N.-N. Feng, P. Dong, D. Zheng, S. Liao, H. Liang, R. Shafiiha, D. Feng, G. Li, J. E. Cunningham, A. V. Krishnamoorthy, and M. Asghari, “Vertical p-i-n germanium photodetector with high external responsivity integrated with large core Si waveguides,” Opt. Express 18, 96–101 (2010).
    [Crossref]
  29. M. Cherchi, S. Ylinen, M. Harjanne, M. Kapulainen, T. Vehmas, T. Aalto, G. T. Kanellos, D. Fitsios, and N. Pleros, “Fabrication-tolerant optical filters for dense integration on a micron-scale SOI platform,” Proc. SPIE 8990, 89900F (2014).
    [Crossref]
  30. X. Xiao, H. Xu, X. Li, Z. Li, T. Chu, Y. Yu, and J. Yu, “High-speed, low-loss silicon Mach–Zehnder modulators with doping optimization,” Opt. Express 21, 4116–4125 (2013).
    [Crossref]
  31. S. Pathak, M. Vanslembrouck, P. Dumon, D. Van Thourhout, P. Verheyen, G. Lepage, P. Absil, and W. Bogaerts, “Effect of mask discretization on performance of silicon arrayed waveguide gratings,” IEEE Photon. Technol. Lett. 26, 718–721 (2014).
    [Crossref]
  32. L. Alloatti, R. Palmer, S. Diebold, K. P. Pahl, B. Chen, R. Dinu, M. Fournier, J.-M. Fedeli, T. Zwick, W. Freude, C. Koos, and J. Leuthold, “100 GHz silicon–organic hybrid modulator,” Light Sci. Appl. 3, e173 (2014).
    [Crossref]

2015 (2)

L. Liu, F. Jiang, S. Yan, S. Min, M. He, D. Gao, and J. Dong, “Photonic measurement of microwave frequency using a silicon microdisk resonator,” Opt. Commun. 335, 266–270 (2015).
[Crossref]

R. Bonjour, S. A. Gebrewold, D. Hillerkuss, C. Hafner, and J. Leuthold, “Continuously tunable true-time delays with ultra-low settling time,” Opt. Express 23, 6952–6964 (2015).
[Crossref]

2014 (6)

J. Capmany and P. Munoz, “Integrated microwave photonics for radio access networks,” J. Lightwave Technol. 32, 2849–2861 (2014).
[Crossref]

D. Marpaung, M. Pagani, B. Morrison, and B. Eggleton, “Nonlinear integrated microwave photonics,” J. Lightwave Technol. 32, 3421–3427 (2014).
[Crossref]

M. Cherchi, S. Ylinen, M. Harjanne, M. Kapulainen, T. Vehmas, T. Aalto, G. T. Kanellos, D. Fitsios, and N. Pleros, “Fabrication-tolerant optical filters for dense integration on a micron-scale SOI platform,” Proc. SPIE 8990, 89900F (2014).
[Crossref]

S. Pathak, M. Vanslembrouck, P. Dumon, D. Van Thourhout, P. Verheyen, G. Lepage, P. Absil, and W. Bogaerts, “Effect of mask discretization on performance of silicon arrayed waveguide gratings,” IEEE Photon. Technol. Lett. 26, 718–721 (2014).
[Crossref]

L. Alloatti, R. Palmer, S. Diebold, K. P. Pahl, B. Chen, R. Dinu, M. Fournier, J.-M. Fedeli, T. Zwick, W. Freude, C. Koos, and J. Leuthold, “100 GHz silicon–organic hybrid modulator,” Light Sci. Appl. 3, e173 (2014).
[Crossref]

H. Emami, M. Ashourian, and M. Ebnali-Heidari, “Dynamically reconfigurable all optical frequency measurement system,” J. Lightwave Technol. 32, 4796–4802 (2014).
[Crossref]

2013 (7)

2012 (2)

2010 (3)

N.-N. Feng, P. Dong, D. Zheng, S. Liao, H. Liang, R. Shafiiha, D. Feng, G. Li, J. E. Cunningham, A. V. Krishnamoorthy, and M. Asghari, “Vertical p-i-n germanium photodetector with high external responsivity integrated with large core Si waveguides,” Opt. Express 18, 96–101 (2010).
[Crossref]

J. Zhou, S. Aditya, P. Shum, and J. Yao, “Instantaneous microwave frequency measurement using a photonic microwave filter with an infinite impulse response,” IEEE Photon. Technol. Lett. 22, 682–684 (2010).
[Crossref]

J. Leuthold, C. Koos, and W. Freude, “Nonlinear silicon photonics,” Nat. Photonics 4, 535–544 (2010).
[Crossref]

2009 (3)

2008 (1)

2007 (1)

J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics 1, 319–330 (2007).
[Crossref]

2006 (1)

L. Nguyen and D. Hunter, “A photonic technique for microwave frequency measurement,” IEEE Photon. Technol. Lett. 18, 1188–1190 (2006).
[Crossref]

2004 (2)

1991 (1)

R. A. Soref, J. Schmidtchen, and K. Petermann, “Large single-mode rib waveguides in GeSi–Si and Si-on-SiO2,” IEEE J. Quantum Electron. 27, 1971–1974 (1991).
[Crossref]

Aalto, T.

M. Cherchi, S. Ylinen, M. Harjanne, M. Kapulainen, T. Vehmas, T. Aalto, G. T. Kanellos, D. Fitsios, and N. Pleros, “Fabrication-tolerant optical filters for dense integration on a micron-scale SOI platform,” Proc. SPIE 8990, 89900F (2014).
[Crossref]

M. Cherchi, S. Ylinen, M. Harjanne, M. Kapulainen, and T. Aalto, “Dramatic size reduction of waveguide bends on a micron-scale silicon photonic platform,” Opt. Express 21, 17814–17823 (2013).
[Crossref]

Absil, P.

S. Pathak, M. Vanslembrouck, P. Dumon, D. Van Thourhout, P. Verheyen, G. Lepage, P. Absil, and W. Bogaerts, “Effect of mask discretization on performance of silicon arrayed waveguide gratings,” IEEE Photon. Technol. Lett. 26, 718–721 (2014).
[Crossref]

Adams, R.

Adamy, D. L.

D. L. Adamy, Introduction to Electronic Warfare Modeling and Simulation, 1st ed. (SciTech, 2006), Chap. 5.

Aditya, S.

J. Zhou, S. Aditya, P. Shum, and J. Yao, “Instantaneous microwave frequency measurement using a photonic microwave filter with an infinite impulse response,” IEEE Photon. Technol. Lett. 22, 682–684 (2010).
[Crossref]

Alloatti, L.

L. Alloatti, R. Palmer, S. Diebold, K. P. Pahl, B. Chen, R. Dinu, M. Fournier, J.-M. Fedeli, T. Zwick, W. Freude, C. Koos, and J. Leuthold, “100 GHz silicon–organic hybrid modulator,” Light Sci. Appl. 3, e173 (2014).
[Crossref]

Asghari, M.

Ashourian, M.

H. Emami, M. Ashourian, and M. Ebnali-Heidari, “Dynamically reconfigurable all optical frequency measurement system,” J. Lightwave Technol. 32, 4796–4802 (2014).
[Crossref]

Azana, J.

M. Burla, X. Wang, M. Li, L. Chrostowski, and J. Azana, “On-chip instantaneous microwave frequency measurement system based on a waveguide Bragg grating on silicon,” in Conference on Lasers and Electro-Optics (CLEO) (Optical Society of America, 2015), paper STh4F.7.

Balthasar, G.

Bogaerts, W.

S. Pathak, M. Vanslembrouck, P. Dumon, D. Van Thourhout, P. Verheyen, G. Lepage, P. Absil, and W. Bogaerts, “Effect of mask discretization on performance of silicon arrayed waveguide gratings,” IEEE Photon. Technol. Lett. 26, 718–721 (2014).
[Crossref]

Bonjour, R.

Boyraz, O.

Bui, L. A.

Burla, M.

M. Burla, X. Wang, M. Li, L. Chrostowski, and J. Azana, “On-chip instantaneous microwave frequency measurement system based on a waveguide Bragg grating on silicon,” in Conference on Lasers and Electro-Optics (CLEO) (Optical Society of America, 2015), paper STh4F.7.

Capmany, J.

J. Capmany and P. Munoz, “Integrated microwave photonics for radio access networks,” J. Lightwave Technol. 32, 2849–2861 (2014).
[Crossref]

D. Marpaung, C. Roeloffzen, R. Heideman, A. Leinse, S. Sales, and J. Capmany, “Integrated microwave photonics,” Laser Photon. Rev. 7, 506–538 (2013).
[Crossref]

J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics 1, 319–330 (2007).
[Crossref]

Chen, B.

L. Alloatti, R. Palmer, S. Diebold, K. P. Pahl, B. Chen, R. Dinu, M. Fournier, J.-M. Fedeli, T. Zwick, W. Freude, C. Koos, and J. Leuthold, “100 GHz silicon–organic hybrid modulator,” Light Sci. Appl. 3, e173 (2014).
[Crossref]

Chen, L. R.

Cherchi, M.

M. Cherchi, S. Ylinen, M. Harjanne, M. Kapulainen, T. Vehmas, T. Aalto, G. T. Kanellos, D. Fitsios, and N. Pleros, “Fabrication-tolerant optical filters for dense integration on a micron-scale SOI platform,” Proc. SPIE 8990, 89900F (2014).
[Crossref]

M. Cherchi, S. Ylinen, M. Harjanne, M. Kapulainen, and T. Aalto, “Dramatic size reduction of waveguide bends on a micron-scale silicon photonic platform,” Opt. Express 21, 17814–17823 (2013).
[Crossref]

Chrostowski, L.

M. Burla, X. Wang, M. Li, L. Chrostowski, and J. Azana, “On-chip instantaneous microwave frequency measurement system based on a waveguide Bragg grating on silicon,” in Conference on Lasers and Electro-Optics (CLEO) (Optical Society of America, 2015), paper STh4F.7.

Chu, T.

Cunningham, J. E.

Diebold, S.

L. Alloatti, R. Palmer, S. Diebold, K. P. Pahl, B. Chen, R. Dinu, M. Fournier, J.-M. Fedeli, T. Zwick, W. Freude, C. Koos, and J. Leuthold, “100 GHz silicon–organic hybrid modulator,” Light Sci. Appl. 3, e173 (2014).
[Crossref]

Dinu, R.

L. Alloatti, R. Palmer, S. Diebold, K. P. Pahl, B. Chen, R. Dinu, M. Fournier, J.-M. Fedeli, T. Zwick, W. Freude, C. Koos, and J. Leuthold, “100 GHz silicon–organic hybrid modulator,” Light Sci. Appl. 3, e173 (2014).
[Crossref]

Dong, J.

L. Liu, F. Jiang, S. Yan, S. Min, M. He, D. Gao, and J. Dong, “Photonic measurement of microwave frequency using a silicon microdisk resonator,” Opt. Commun. 335, 266–270 (2015).
[Crossref]

Dong, P.

Drummond, M. V.

Dumon, P.

S. Pathak, M. Vanslembrouck, P. Dumon, D. Van Thourhout, P. Verheyen, G. Lepage, P. Absil, and W. Bogaerts, “Effect of mask discretization on performance of silicon arrayed waveguide gratings,” IEEE Photon. Technol. Lett. 26, 718–721 (2014).
[Crossref]

Ebnali-Heidari, M.

H. Emami, M. Ashourian, and M. Ebnali-Heidari, “Dynamically reconfigurable all optical frequency measurement system,” J. Lightwave Technol. 32, 4796–4802 (2014).
[Crossref]

Eggleton, B.

Eggleton, B. J.

Emami, H.

Fandiño, J. S.

Fedeli, J.-M.

L. Alloatti, R. Palmer, S. Diebold, K. P. Pahl, B. Chen, R. Dinu, M. Fournier, J.-M. Fedeli, T. Zwick, W. Freude, C. Koos, and J. Leuthold, “100 GHz silicon–organic hybrid modulator,” Light Sci. Appl. 3, e173 (2014).
[Crossref]

Feng, D.

Feng, N.-N.

Fitsios, D.

M. Cherchi, S. Ylinen, M. Harjanne, M. Kapulainen, T. Vehmas, T. Aalto, G. T. Kanellos, D. Fitsios, and N. Pleros, “Fabrication-tolerant optical filters for dense integration on a micron-scale SOI platform,” Proc. SPIE 8990, 89900F (2014).
[Crossref]

Fournier, M.

L. Alloatti, R. Palmer, S. Diebold, K. P. Pahl, B. Chen, R. Dinu, M. Fournier, J.-M. Fedeli, T. Zwick, W. Freude, C. Koos, and J. Leuthold, “100 GHz silicon–organic hybrid modulator,” Light Sci. Appl. 3, e173 (2014).
[Crossref]

Freeman, D.

Freude, W.

L. Alloatti, R. Palmer, S. Diebold, K. P. Pahl, B. Chen, R. Dinu, M. Fournier, J.-M. Fedeli, T. Zwick, W. Freude, C. Koos, and J. Leuthold, “100 GHz silicon–organic hybrid modulator,” Light Sci. Appl. 3, e173 (2014).
[Crossref]

N. Lindenmann, G. Balthasar, D. Hillerkuss, R. Schmogrow, M. Jordan, J. Leuthold, W. Freude, and C. Koos, “Photonic wire bonding: a novel concept for chip-scale interconnects,” Opt. Express 20, 17667–17677 (2012).
[Crossref]

J. Leuthold, C. Koos, and W. Freude, “Nonlinear silicon photonics,” Nat. Photonics 4, 535–544 (2010).
[Crossref]

Gao, D.

L. Liu, F. Jiang, S. Yan, S. Min, M. He, D. Gao, and J. Dong, “Photonic measurement of microwave frequency using a silicon microdisk resonator,” Opt. Commun. 335, 266–270 (2015).
[Crossref]

Gebrewold, S. A.

Guo, H.

H. Guo, G. Xiao, N. Mrad, and J. Yao, “Measurement of microwave frequency using a monolithically integrated scannable echelle diffractive grating,” IEEE Photon. Technol. Lett. 21, 45–47 (2009).
[Crossref]

Hafner, C.

Harjanne, M.

M. Cherchi, S. Ylinen, M. Harjanne, M. Kapulainen, T. Vehmas, T. Aalto, G. T. Kanellos, D. Fitsios, and N. Pleros, “Fabrication-tolerant optical filters for dense integration on a micron-scale SOI platform,” Proc. SPIE 8990, 89900F (2014).
[Crossref]

M. Cherchi, S. Ylinen, M. Harjanne, M. Kapulainen, and T. Aalto, “Dramatic size reduction of waveguide bends on a micron-scale silicon photonic platform,” Opt. Express 21, 17814–17823 (2013).
[Crossref]

He, M.

L. Liu, F. Jiang, S. Yan, S. Min, M. He, D. Gao, and J. Dong, “Photonic measurement of microwave frequency using a silicon microdisk resonator,” Opt. Commun. 335, 266–270 (2015).
[Crossref]

Heideman, R.

D. Marpaung, C. Roeloffzen, R. Heideman, A. Leinse, S. Sales, and J. Capmany, “Integrated microwave photonics,” Laser Photon. Rev. 7, 506–538 (2013).
[Crossref]

Hillerkuss, D.

Hunter, D.

L. Nguyen and D. Hunter, “A photonic technique for microwave frequency measurement,” IEEE Photon. Technol. Lett. 18, 1188–1190 (2006).
[Crossref]

Indukuri, T.

Jalali, B.

Janz, S.

Jiang, F.

L. Liu, F. Jiang, S. Yan, S. Min, M. He, D. Gao, and J. Dong, “Photonic measurement of microwave frequency using a silicon microdisk resonator,” Opt. Commun. 335, 266–270 (2015).
[Crossref]

Jordan, M.

Kanellos, G. T.

M. Cherchi, S. Ylinen, M. Harjanne, M. Kapulainen, T. Vehmas, T. Aalto, G. T. Kanellos, D. Fitsios, and N. Pleros, “Fabrication-tolerant optical filters for dense integration on a micron-scale SOI platform,” Proc. SPIE 8990, 89900F (2014).
[Crossref]

Kapulainen, M.

M. Cherchi, S. Ylinen, M. Harjanne, M. Kapulainen, T. Vehmas, T. Aalto, G. T. Kanellos, D. Fitsios, and N. Pleros, “Fabrication-tolerant optical filters for dense integration on a micron-scale SOI platform,” Proc. SPIE 8990, 89900F (2014).
[Crossref]

M. Cherchi, S. Ylinen, M. Harjanne, M. Kapulainen, and T. Aalto, “Dramatic size reduction of waveguide bends on a micron-scale silicon photonic platform,” Opt. Express 21, 17814–17823 (2013).
[Crossref]

Koos, C.

L. Alloatti, R. Palmer, S. Diebold, K. P. Pahl, B. Chen, R. Dinu, M. Fournier, J.-M. Fedeli, T. Zwick, W. Freude, C. Koos, and J. Leuthold, “100 GHz silicon–organic hybrid modulator,” Light Sci. Appl. 3, e173 (2014).
[Crossref]

N. Lindenmann, G. Balthasar, D. Hillerkuss, R. Schmogrow, M. Jordan, J. Leuthold, W. Freude, and C. Koos, “Photonic wire bonding: a novel concept for chip-scale interconnects,” Opt. Express 20, 17667–17677 (2012).
[Crossref]

J. Leuthold, C. Koos, and W. Freude, “Nonlinear silicon photonics,” Nat. Photonics 4, 535–544 (2010).
[Crossref]

Krishnamoorthy, A. V.

Leinse, A.

D. Marpaung, C. Roeloffzen, R. Heideman, A. Leinse, S. Sales, and J. Capmany, “Integrated microwave photonics,” Laser Photon. Rev. 7, 506–538 (2013).
[Crossref]

Lepage, G.

S. Pathak, M. Vanslembrouck, P. Dumon, D. Van Thourhout, P. Verheyen, G. Lepage, P. Absil, and W. Bogaerts, “Effect of mask discretization on performance of silicon arrayed waveguide gratings,” IEEE Photon. Technol. Lett. 26, 718–721 (2014).
[Crossref]

Leuthold, J.

R. Bonjour, S. A. Gebrewold, D. Hillerkuss, C. Hafner, and J. Leuthold, “Continuously tunable true-time delays with ultra-low settling time,” Opt. Express 23, 6952–6964 (2015).
[Crossref]

L. Alloatti, R. Palmer, S. Diebold, K. P. Pahl, B. Chen, R. Dinu, M. Fournier, J.-M. Fedeli, T. Zwick, W. Freude, C. Koos, and J. Leuthold, “100 GHz silicon–organic hybrid modulator,” Light Sci. Appl. 3, e173 (2014).
[Crossref]

N. Lindenmann, G. Balthasar, D. Hillerkuss, R. Schmogrow, M. Jordan, J. Leuthold, W. Freude, and C. Koos, “Photonic wire bonding: a novel concept for chip-scale interconnects,” Opt. Express 20, 17667–17677 (2012).
[Crossref]

J. Leuthold, C. Koos, and W. Freude, “Nonlinear silicon photonics,” Nat. Photonics 4, 535–544 (2010).
[Crossref]

Li, G.

Li, J.

Li, M.

M. Burla, X. Wang, M. Li, L. Chrostowski, and J. Azana, “On-chip instantaneous microwave frequency measurement system based on a waveguide Bragg grating on silicon,” in Conference on Lasers and Electro-Optics (CLEO) (Optical Society of America, 2015), paper STh4F.7.

Li, W.

Li, X.

Li, Z.

Liang, H.

Liao, S.

Lindenmann, N.

Liu, L.

L. Liu, F. Jiang, S. Yan, S. Min, M. He, D. Gao, and J. Dong, “Photonic measurement of microwave frequency using a silicon microdisk resonator,” Opt. Commun. 335, 266–270 (2015).
[Crossref]

Luther-Davies, B.

Madden, S.

Marpaung, D.

D. Marpaung, M. Pagani, B. Morrison, and B. Eggleton, “Nonlinear integrated microwave photonics,” J. Lightwave Technol. 32, 3421–3427 (2014).
[Crossref]

D. Marpaung, C. Roeloffzen, R. Heideman, A. Leinse, S. Sales, and J. Capmany, “Integrated microwave photonics,” Laser Photon. Rev. 7, 506–538 (2013).
[Crossref]

D. Marpaung, “On-chip photonic-assisted instantaneous microwave frequency measurement system,” IEEE Photon. Technol. Lett. 25, 837–840 (2013).
[Crossref]

Min, S.

L. Liu, F. Jiang, S. Yan, S. Min, M. He, D. Gao, and J. Dong, “Photonic measurement of microwave frequency using a silicon microdisk resonator,” Opt. Commun. 335, 266–270 (2015).
[Crossref]

Mitchell, A.

Monteiro, P.

Morrison, B.

Moss, D.

Mrad, N.

H. Guo, G. Xiao, N. Mrad, and J. Yao, “Measurement of microwave frequency using a monolithically integrated scannable echelle diffractive grating,” IEEE Photon. Technol. Lett. 21, 45–47 (2009).
[Crossref]

Munoz, P.

Muñoz, P.

Nguyen, L.

L. Nguyen and D. Hunter, “A photonic technique for microwave frequency measurement,” IEEE Photon. Technol. Lett. 18, 1188–1190 (2006).
[Crossref]

Nogueira, R. N.

Novak, D.

J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics 1, 319–330 (2007).
[Crossref]

Pagani, M.

Pahl, K. P.

L. Alloatti, R. Palmer, S. Diebold, K. P. Pahl, B. Chen, R. Dinu, M. Fournier, J.-M. Fedeli, T. Zwick, W. Freude, C. Koos, and J. Leuthold, “100 GHz silicon–organic hybrid modulator,” Light Sci. Appl. 3, e173 (2014).
[Crossref]

Palmer, R.

L. Alloatti, R. Palmer, S. Diebold, K. P. Pahl, B. Chen, R. Dinu, M. Fournier, J.-M. Fedeli, T. Zwick, W. Freude, C. Koos, and J. Leuthold, “100 GHz silicon–organic hybrid modulator,” Light Sci. Appl. 3, e173 (2014).
[Crossref]

Pathak, S.

S. Pathak, M. Vanslembrouck, P. Dumon, D. Van Thourhout, P. Verheyen, G. Lepage, P. Absil, and W. Bogaerts, “Effect of mask discretization on performance of silicon arrayed waveguide gratings,” IEEE Photon. Technol. Lett. 26, 718–721 (2014).
[Crossref]

Pelusi, M. D.

Petermann, K.

R. A. Soref, J. Schmidtchen, and K. Petermann, “Large single-mode rib waveguides in GeSi–Si and Si-on-SiO2,” IEEE J. Quantum Electron. 27, 1971–1974 (1991).
[Crossref]

Pleros, N.

M. Cherchi, S. Ylinen, M. Harjanne, M. Kapulainen, T. Vehmas, T. Aalto, G. T. Kanellos, D. Fitsios, and N. Pleros, “Fabrication-tolerant optical filters for dense integration on a micron-scale SOI platform,” Proc. SPIE 8990, 89900F (2014).
[Crossref]

Roeloffzen, C.

D. Marpaung, C. Roeloffzen, R. Heideman, A. Leinse, S. Sales, and J. Capmany, “Integrated microwave photonics,” Laser Photon. Rev. 7, 506–538 (2013).
[Crossref]

Sales, S.

D. Marpaung, C. Roeloffzen, R. Heideman, A. Leinse, S. Sales, and J. Capmany, “Integrated microwave photonics,” Laser Photon. Rev. 7, 506–538 (2013).
[Crossref]

Samoc, M.

Sarkhosh, N.

Schmidtchen, J.

R. A. Soref, J. Schmidtchen, and K. Petermann, “Large single-mode rib waveguides in GeSi–Si and Si-on-SiO2,” IEEE J. Quantum Electron. 27, 1971–1974 (1991).
[Crossref]

Schmogrow, R.

Shafiiha, R.

Shum, P.

J. Zhou, S. Aditya, P. Shum, and J. Yao, “Instantaneous microwave frequency measurement using a photonic microwave filter with an infinite impulse response,” IEEE Photon. Technol. Lett. 22, 682–684 (2010).
[Crossref]

Soref, R. A.

R. A. Soref, J. Schmidtchen, and K. Petermann, “Large single-mode rib waveguides in GeSi–Si and Si-on-SiO2,” IEEE J. Quantum Electron. 27, 1971–1974 (1991).
[Crossref]

Spasojevic, M.

Ta’eed, V.

Tsui, J. B. Y.

J. B. Y. Tsui, “Instantaneous frequency measurement system,” U.S. patent3,992,365 (November9, 1976).

Van Thourhout, D.

S. Pathak, M. Vanslembrouck, P. Dumon, D. Van Thourhout, P. Verheyen, G. Lepage, P. Absil, and W. Bogaerts, “Effect of mask discretization on performance of silicon arrayed waveguide gratings,” IEEE Photon. Technol. Lett. 26, 718–721 (2014).
[Crossref]

Vanslembrouck, M.

S. Pathak, M. Vanslembrouck, P. Dumon, D. Van Thourhout, P. Verheyen, G. Lepage, P. Absil, and W. Bogaerts, “Effect of mask discretization on performance of silicon arrayed waveguide gratings,” IEEE Photon. Technol. Lett. 26, 718–721 (2014).
[Crossref]

Vehmas, T.

M. Cherchi, S. Ylinen, M. Harjanne, M. Kapulainen, T. Vehmas, T. Aalto, G. T. Kanellos, D. Fitsios, and N. Pleros, “Fabrication-tolerant optical filters for dense integration on a micron-scale SOI platform,” Proc. SPIE 8990, 89900F (2014).
[Crossref]

Verheyen, P.

S. Pathak, M. Vanslembrouck, P. Dumon, D. Van Thourhout, P. Verheyen, G. Lepage, P. Absil, and W. Bogaerts, “Effect of mask discretization on performance of silicon arrayed waveguide gratings,” IEEE Photon. Technol. Lett. 26, 718–721 (2014).
[Crossref]

Vo, T. D.

Wang, L. X.

Wang, X.

M. Burla, X. Wang, M. Li, L. Chrostowski, and J. Azana, “On-chip instantaneous microwave frequency measurement system based on a waveguide Bragg grating on silicon,” in Conference on Lasers and Electro-Optics (CLEO) (Optical Society of America, 2015), paper STh4F.7.

Xiao, G.

H. Guo, G. Xiao, N. Mrad, and J. Yao, “Measurement of microwave frequency using a monolithically integrated scannable echelle diffractive grating,” IEEE Photon. Technol. Lett. 21, 45–47 (2009).
[Crossref]

Xiao, X.

Xu, D.

Xu, H.

Yan, S.

L. Liu, F. Jiang, S. Yan, S. Min, M. He, D. Gao, and J. Dong, “Photonic measurement of microwave frequency using a silicon microdisk resonator,” Opt. Commun. 335, 266–270 (2015).
[Crossref]

Yao, J.

J. Zhou, S. Aditya, P. Shum, and J. Yao, “Instantaneous microwave frequency measurement using a photonic microwave filter with an infinite impulse response,” IEEE Photon. Technol. Lett. 22, 682–684 (2010).
[Crossref]

H. Guo, G. Xiao, N. Mrad, and J. Yao, “Measurement of microwave frequency using a monolithically integrated scannable echelle diffractive grating,” IEEE Photon. Technol. Lett. 21, 45–47 (2009).
[Crossref]

Ylinen, S.

M. Cherchi, S. Ylinen, M. Harjanne, M. Kapulainen, T. Vehmas, T. Aalto, G. T. Kanellos, D. Fitsios, and N. Pleros, “Fabrication-tolerant optical filters for dense integration on a micron-scale SOI platform,” Proc. SPIE 8990, 89900F (2014).
[Crossref]

M. Cherchi, S. Ylinen, M. Harjanne, M. Kapulainen, and T. Aalto, “Dramatic size reduction of waveguide bends on a micron-scale silicon photonic platform,” Opt. Express 21, 17814–17823 (2013).
[Crossref]

Yu, J.

Yu, Y.

Zheng, D.

Zhou, J.

J. Zhou, S. Aditya, P. Shum, and J. Yao, “Instantaneous microwave frequency measurement using a photonic microwave filter with an infinite impulse response,” IEEE Photon. Technol. Lett. 22, 682–684 (2010).
[Crossref]

Zhu, N. H.

Zwick, T.

L. Alloatti, R. Palmer, S. Diebold, K. P. Pahl, B. Chen, R. Dinu, M. Fournier, J.-M. Fedeli, T. Zwick, W. Freude, C. Koos, and J. Leuthold, “100 GHz silicon–organic hybrid modulator,” Light Sci. Appl. 3, e173 (2014).
[Crossref]

IEEE J. Quantum Electron. (1)

R. A. Soref, J. Schmidtchen, and K. Petermann, “Large single-mode rib waveguides in GeSi–Si and Si-on-SiO2,” IEEE J. Quantum Electron. 27, 1971–1974 (1991).
[Crossref]

IEEE Photon. Technol. Lett. (5)

S. Pathak, M. Vanslembrouck, P. Dumon, D. Van Thourhout, P. Verheyen, G. Lepage, P. Absil, and W. Bogaerts, “Effect of mask discretization on performance of silicon arrayed waveguide gratings,” IEEE Photon. Technol. Lett. 26, 718–721 (2014).
[Crossref]

H. Guo, G. Xiao, N. Mrad, and J. Yao, “Measurement of microwave frequency using a monolithically integrated scannable echelle diffractive grating,” IEEE Photon. Technol. Lett. 21, 45–47 (2009).
[Crossref]

L. Nguyen and D. Hunter, “A photonic technique for microwave frequency measurement,” IEEE Photon. Technol. Lett. 18, 1188–1190 (2006).
[Crossref]

J. Zhou, S. Aditya, P. Shum, and J. Yao, “Instantaneous microwave frequency measurement using a photonic microwave filter with an infinite impulse response,” IEEE Photon. Technol. Lett. 22, 682–684 (2010).
[Crossref]

D. Marpaung, “On-chip photonic-assisted instantaneous microwave frequency measurement system,” IEEE Photon. Technol. Lett. 25, 837–840 (2013).
[Crossref]

J. Lightwave Technol. (3)

Laser Photon. Rev. (1)

D. Marpaung, C. Roeloffzen, R. Heideman, A. Leinse, S. Sales, and J. Capmany, “Integrated microwave photonics,” Laser Photon. Rev. 7, 506–538 (2013).
[Crossref]

Light Sci. Appl. (1)

L. Alloatti, R. Palmer, S. Diebold, K. P. Pahl, B. Chen, R. Dinu, M. Fournier, J.-M. Fedeli, T. Zwick, W. Freude, C. Koos, and J. Leuthold, “100 GHz silicon–organic hybrid modulator,” Light Sci. Appl. 3, e173 (2014).
[Crossref]

Nat. Photonics (2)

J. Leuthold, C. Koos, and W. Freude, “Nonlinear silicon photonics,” Nat. Photonics 4, 535–544 (2010).
[Crossref]

J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics 1, 319–330 (2007).
[Crossref]

Opt. Commun. (1)

L. Liu, F. Jiang, S. Yan, S. Min, M. He, D. Gao, and J. Dong, “Photonic measurement of microwave frequency using a silicon microdisk resonator,” Opt. Commun. 335, 266–270 (2015).
[Crossref]

Opt. Express (12)

L. A. Bui and A. Mitchell, “Amplitude independent instantaneous frequency measurement using all optical technique,” Opt. Express 21, 29601–29611 (2013).
[Crossref]

H. Emami, N. Sarkhosh, L. A. Bui, and A. Mitchell, “Amplitude independent RF instantaneous frequency measurement system using photonic Hilbert transform,” Opt. Express 16, 13707–13712 (2008).
[Crossref]

L. A. Bui, M. D. Pelusi, T. D. Vo, N. Sarkhosh, H. Emami, B. J. Eggleton, and A. Mitchell, “Instantaneous frequency measurement system using optical mixing in highly nonlinear fiber,” Opt. Express 17, 22983–22991 (2009).
[Crossref]

M. V. Drummond, P. Monteiro, and R. N. Nogueira, “Photonic RF instantaneous frequency measurement system by means of a polarization-domain interferometer,” Opt. Express 17, 5433–5438 (2009).
[Crossref]

L. R. Chen, J. Li, M. Spasojevic, and R. Adams, “Nanowires and sidewall Bragg gratings in silicon as enabling technologies for microwave photonic filters,” Opt. Express 21, 19624–19633 (2013).
[Crossref]

V. Ta’eed, D. Moss, B. Eggleton, D. Freeman, S. Madden, M. Samoc, B. Luther-Davies, S. Janz, and D. Xu, “Higher order mode conversion via focused ion beam milled Bragg gratings in silicon-on-insulator waveguides,” Opt. Express 12, 5274–5284 (2004).
[Crossref]

O. Boyraz, T. Indukuri, and B. Jalali, “Self-phase-modulation induced spectral broadening in silicon waveguides,” Opt. Express 12, 829–834 (2004).
[Crossref]

M. Cherchi, S. Ylinen, M. Harjanne, M. Kapulainen, and T. Aalto, “Dramatic size reduction of waveguide bends on a micron-scale silicon photonic platform,” Opt. Express 21, 17814–17823 (2013).
[Crossref]

R. Bonjour, S. A. Gebrewold, D. Hillerkuss, C. Hafner, and J. Leuthold, “Continuously tunable true-time delays with ultra-low settling time,” Opt. Express 23, 6952–6964 (2015).
[Crossref]

X. Xiao, H. Xu, X. Li, Z. Li, T. Chu, Y. Yu, and J. Yu, “High-speed, low-loss silicon Mach–Zehnder modulators with doping optimization,” Opt. Express 21, 4116–4125 (2013).
[Crossref]

N. Lindenmann, G. Balthasar, D. Hillerkuss, R. Schmogrow, M. Jordan, J. Leuthold, W. Freude, and C. Koos, “Photonic wire bonding: a novel concept for chip-scale interconnects,” Opt. Express 20, 17667–17677 (2012).
[Crossref]

N.-N. Feng, P. Dong, D. Zheng, S. Liao, H. Liang, R. Shafiiha, D. Feng, G. Li, J. E. Cunningham, A. V. Krishnamoorthy, and M. Asghari, “Vertical p-i-n germanium photodetector with high external responsivity integrated with large core Si waveguides,” Opt. Express 18, 96–101 (2010).
[Crossref]

Opt. Lett. (2)

Proc. SPIE (1)

M. Cherchi, S. Ylinen, M. Harjanne, M. Kapulainen, T. Vehmas, T. Aalto, G. T. Kanellos, D. Fitsios, and N. Pleros, “Fabrication-tolerant optical filters for dense integration on a micron-scale SOI platform,” Proc. SPIE 8990, 89900F (2014).
[Crossref]

Other (3)

M. Burla, X. Wang, M. Li, L. Chrostowski, and J. Azana, “On-chip instantaneous microwave frequency measurement system based on a waveguide Bragg grating on silicon,” in Conference on Lasers and Electro-Optics (CLEO) (Optical Society of America, 2015), paper STh4F.7.

D. L. Adamy, Introduction to Electronic Warfare Modeling and Simulation, 1st ed. (SciTech, 2006), Chap. 5.

J. B. Y. Tsui, “Instantaneous frequency measurement system,” U.S. patent3,992,365 (November9, 1976).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

(a) Schematic of the on-chip FWM-based IFM system. EOM, electro-optic modulator; CWDM, coarse wavelength-division multiplexer; Δt, tunable delay element; BPF, optical bandpass filter. (b) Degenerate (DFWM) and nondegenerate (NDFWM) mixing processes between the two channels.

Fig. 2.
Fig. 2.

(a) Top view of the 35 cm long, thick silicon spiral. (b) Simulation of the fundamental mode for the 3μm×1.875μm silicon strip waveguide. (c) Rib-to-strip converter for coupling to the fundamental mode.

Fig. 3.
Fig. 3.

Experimental setup for the FWM-based IFM system, including DFB, distributed feedback lasers; PC, polarization controllers; MZM, Mach–Zehnder modulator; EDFA, erbium-doped fiber amplifier; CWDM, coarse wavelength division multiplexer; TDL, tunable delay line; BPF, bandpass filter; and PD, photodetector.

Fig. 4.
Fig. 4.

Optical spectra at the output of the silicon waveguide for two different Δt values. The 10 dB power difference between the idler sidebands is a manifestation of the interference effect between the idlers generated through DFWM and NDFWM.

Fig. 5.
Fig. 5.

(a) IFM RF system response with Δt=8.3ps. (b) Frequency estimation measurement over a single 40 GHz frequency band (inset, histogram of the frequency measurement error; rms value=318.9MHz).

Fig. 6.
Fig. 6.

Reconfiguration of the IFM system response between (a) a high-bandwidth/error state (low Δt) and (b) a low-bandwidth/error state (high Δt).

Fig. 7.
Fig. 7.

(a) IFM system response with Δt=69.4ps. (b) Frequency estimation measurement for six separate 7.2 GHz frequency bands (inset, histogram of the frequency measurement error; rms value=40.2MHz).

Fig. 8.
Fig. 8.

Future vision of the SOI integrated FWM-based IFM system. The chip is divided into thin and thick silicon sections. The RF input signal is applied to the intensity modulator. The tunable time delay unit consists of an optical delay interferometer and a phase modulator [25]. Tuning of Δt is achieved by varying the voltage input to the phase modulator. The PD outputs a DC voltage proportional to the idler power, which is then mapped to an estimate for the RF input signal frequency.

Tables (1)

Tables Icon

Table 1. Performance Comparison of IMWP IFM Systems

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

EDFWM(t)3ejω1t·ejω1t·ej(ω2Ω)(tΔt).
ENDFWM(t)6ejω1t·ej(ω1+Ω)t·ejω2(tΔt).
Eidler(t)=EDFWM(t)+ENDFWM(t)(3ejΩΔt+6)ej(2ω1ω2+Ω)t,
Pidler=A+Bcos(ΩΔt),

Metrics