Abstract

Photonic-chip-based time-bin entanglement has attracted significant attention because of its potential for quantum communication and computation. Useful time-bin entanglement systems must be able to generate, manipulate, and analyze entangled photons on a photonic chip for stable, scalable, and reconfigurable operation. Here we report the first time-bin entanglement photonic chip that integrates pump time-bin preparation, wavelength demultiplexing, and entanglement analysis. A two-photon interference fringe with 88.4% visibility is measured (without subtracting any noise), indicating the high performance of the chip. Our approach, based on a silicon nitride photonic circuit, which combines low loss and tight integration features, paves the way for scalable real-world quantum information processors.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Integrated silicon nitride time-bin entanglement circuits

Xiang Zhang, Bryn A. Bell, Andri Mahendra, Chunle Xiong, Philip H. W. Leong, and Benjamin J. Eggleton
Opt. Lett. 43(15) 3469-3472 (2018)

50-GHz-spaced comb of high-dimensional frequency-bin entangled photons from an on-chip silicon nitride microresonator

Poolad Imany, Jose A. Jaramillo-Villegas, Ogaga D. Odele, Kyunghun Han, Daniel E. Leaird, Joseph M. Lukens, Pavel Lougovski, Minghao Qi, and Andrew M. Weiner
Opt. Express 26(2) 1825-1840 (2018)

Generation of 10-GHz clock sequential time-bin entanglement

Qiang Zhang, Carsten Langrock, Hiroki Takesue, Xiuping Xie, Martin Fejer, and Yoshihisa Yamamoto
Opt. Express 16(5) 3293-3298 (2008)

References

  • View by:
  • |
  • |
  • |

  1. I. Marcikic, H. de Riedmatten, W. Tittel, H. Zbinden, and N. Gisin, Nature 421, 509 (2003).
    [Crossref]
  2. I. Afek, O. Ambar, and Y. Silberberg, Science 328, 879 (2010).
    [Crossref]
  3. D. Gottesman and I. L. Chuang, Nature 402, 390 (1999).
    [Crossref]
  4. N. Matsuda, H. Le Jeannic, H. T. Fukuda, W. J. Munro, K. Shimizu, K. Yamada, Y. Tokura, and H. Takesue, Sci. Rep. 2, 817 (2012).
  5. L. Olislager, J. Safioui, S. Clemmen, K. P. Huy, W. Bogaerts, R. Baets, P. Emplit, and S. Massar, Opt. Lett. 38, 1960 (2013).
    [Crossref]
  6. J. W. Silverstone, R. Santagati, D. Bonneau, M. J. Strain, M. Sorel, J. L. O’Brien, and M. G. Thompson, “Qubit entanglement on a silicon photonic chip,” arXiv:1410.8332v4 (2014).
  7. B. J. Metcalf, J. B. Spring, P. C. Humphreys, N. Thomas-Peter, M. Barbieri, W. S. Kolthammer, X.-M. Jin, N. K. Langford, D. Kundys, J. C. Gates, B. J. Smith, P. G. R. Smith, and I. A. Walmsley, Nat. Photonics 8, 770 (2014).
    [Crossref]
  8. H. De Riedmatten, I. Marcikic, H. Zbinden, and N. Gisin, Quantum Inf. Comput. 2, 425 (2002).
  9. K. Harada, H. Takesue, H. Fukuda, T. Tsuchizawa, T. Watanabe, K. Yamada, Y. Tokura, and S. Itabashi, Opt. Express 16, 20368 (2008).
    [Crossref]
  10. R. Wakabayashi, M. Fujiwara, K. Yoshino, Y. Nambu, M. Sasaki, and T. Aoki, Opt. Express 23, 1103 (2015).
    [Crossref]
  11. L. Zhuang, D. Marpaung, M. Burla, W. Beeker, A. Leinse, and C. Roeloffzen, Opt. Express 19, 23162 (2011).
    [Crossref]
  12. K. Wörhoff, R. G. Heideman, A. Leinse, and M. Hoekman, Adv. Opt. Technol. 4, 189 (2015).
  13. P. G. Kwiat, A. M. Steinberg, and R. Y. Chiao, Phys. Rev. A 47, R2472 (1993).
    [Crossref]
  14. J. Zhang, R. Thew, J.-D. Gautier, N. Gisin, and H. Zbinden, IEEE J. Quantum Electron. 45, 792 (2009).
    [Crossref]
  15. X. Zhang, I. Jizan, J. He, A. S. Clark, D.-Y. Choi, C. J. Chae, B. J. Eggleton, and C. Xiong, Opt. Lett. 40, 2489 (2015).
    [Crossref]
  16. S. Ramelow, A. Farsi, S. Clemmen, K. Luke, M. Lipson, and A. L. Gaeta, “Monolithic source of tunable narrowband photons for future quantum networks,” in Conference on Lasers and Electro-Optics (2015), paper FM2A.7.
  17. J. P. Epping, M. Hoekman, R. Mateman, A. Leinse, R. G. Heideman, A. van Rees, P. J. M. van der Slot, C. J. Lee, and K. J. Boller, Opt. Express 23, 642 (2015).
    [Crossref]
  18. N. Hosseini, R. Dekker, M. Hoekman, M. Dekkers, J. Bos, A. Leinse, and R. Heideman, Opt. Express 23, 14018 (2015).
    [Crossref]

2015 (5)

2014 (1)

B. J. Metcalf, J. B. Spring, P. C. Humphreys, N. Thomas-Peter, M. Barbieri, W. S. Kolthammer, X.-M. Jin, N. K. Langford, D. Kundys, J. C. Gates, B. J. Smith, P. G. R. Smith, and I. A. Walmsley, Nat. Photonics 8, 770 (2014).
[Crossref]

2013 (1)

2012 (1)

N. Matsuda, H. Le Jeannic, H. T. Fukuda, W. J. Munro, K. Shimizu, K. Yamada, Y. Tokura, and H. Takesue, Sci. Rep. 2, 817 (2012).

2011 (1)

2010 (1)

I. Afek, O. Ambar, and Y. Silberberg, Science 328, 879 (2010).
[Crossref]

2009 (1)

J. Zhang, R. Thew, J.-D. Gautier, N. Gisin, and H. Zbinden, IEEE J. Quantum Electron. 45, 792 (2009).
[Crossref]

2008 (1)

2003 (1)

I. Marcikic, H. de Riedmatten, W. Tittel, H. Zbinden, and N. Gisin, Nature 421, 509 (2003).
[Crossref]

2002 (1)

H. De Riedmatten, I. Marcikic, H. Zbinden, and N. Gisin, Quantum Inf. Comput. 2, 425 (2002).

1999 (1)

D. Gottesman and I. L. Chuang, Nature 402, 390 (1999).
[Crossref]

1993 (1)

P. G. Kwiat, A. M. Steinberg, and R. Y. Chiao, Phys. Rev. A 47, R2472 (1993).
[Crossref]

Afek, I.

I. Afek, O. Ambar, and Y. Silberberg, Science 328, 879 (2010).
[Crossref]

Ambar, O.

I. Afek, O. Ambar, and Y. Silberberg, Science 328, 879 (2010).
[Crossref]

Aoki, T.

Baets, R.

Barbieri, M.

B. J. Metcalf, J. B. Spring, P. C. Humphreys, N. Thomas-Peter, M. Barbieri, W. S. Kolthammer, X.-M. Jin, N. K. Langford, D. Kundys, J. C. Gates, B. J. Smith, P. G. R. Smith, and I. A. Walmsley, Nat. Photonics 8, 770 (2014).
[Crossref]

Beeker, W.

Bogaerts, W.

Boller, K. J.

Bonneau, D.

J. W. Silverstone, R. Santagati, D. Bonneau, M. J. Strain, M. Sorel, J. L. O’Brien, and M. G. Thompson, “Qubit entanglement on a silicon photonic chip,” arXiv:1410.8332v4 (2014).

Bos, J.

Burla, M.

Chae, C. J.

Chiao, R. Y.

P. G. Kwiat, A. M. Steinberg, and R. Y. Chiao, Phys. Rev. A 47, R2472 (1993).
[Crossref]

Choi, D.-Y.

Chuang, I. L.

D. Gottesman and I. L. Chuang, Nature 402, 390 (1999).
[Crossref]

Clark, A. S.

Clemmen, S.

L. Olislager, J. Safioui, S. Clemmen, K. P. Huy, W. Bogaerts, R. Baets, P. Emplit, and S. Massar, Opt. Lett. 38, 1960 (2013).
[Crossref]

S. Ramelow, A. Farsi, S. Clemmen, K. Luke, M. Lipson, and A. L. Gaeta, “Monolithic source of tunable narrowband photons for future quantum networks,” in Conference on Lasers and Electro-Optics (2015), paper FM2A.7.

de Riedmatten, H.

I. Marcikic, H. de Riedmatten, W. Tittel, H. Zbinden, and N. Gisin, Nature 421, 509 (2003).
[Crossref]

H. De Riedmatten, I. Marcikic, H. Zbinden, and N. Gisin, Quantum Inf. Comput. 2, 425 (2002).

Dekker, R.

Dekkers, M.

Eggleton, B. J.

Emplit, P.

Epping, J. P.

Farsi, A.

S. Ramelow, A. Farsi, S. Clemmen, K. Luke, M. Lipson, and A. L. Gaeta, “Monolithic source of tunable narrowband photons for future quantum networks,” in Conference on Lasers and Electro-Optics (2015), paper FM2A.7.

Fujiwara, M.

Fukuda, H.

Fukuda, H. T.

N. Matsuda, H. Le Jeannic, H. T. Fukuda, W. J. Munro, K. Shimizu, K. Yamada, Y. Tokura, and H. Takesue, Sci. Rep. 2, 817 (2012).

Gaeta, A. L.

S. Ramelow, A. Farsi, S. Clemmen, K. Luke, M. Lipson, and A. L. Gaeta, “Monolithic source of tunable narrowband photons for future quantum networks,” in Conference on Lasers and Electro-Optics (2015), paper FM2A.7.

Gates, J. C.

B. J. Metcalf, J. B. Spring, P. C. Humphreys, N. Thomas-Peter, M. Barbieri, W. S. Kolthammer, X.-M. Jin, N. K. Langford, D. Kundys, J. C. Gates, B. J. Smith, P. G. R. Smith, and I. A. Walmsley, Nat. Photonics 8, 770 (2014).
[Crossref]

Gautier, J.-D.

J. Zhang, R. Thew, J.-D. Gautier, N. Gisin, and H. Zbinden, IEEE J. Quantum Electron. 45, 792 (2009).
[Crossref]

Gisin, N.

J. Zhang, R. Thew, J.-D. Gautier, N. Gisin, and H. Zbinden, IEEE J. Quantum Electron. 45, 792 (2009).
[Crossref]

I. Marcikic, H. de Riedmatten, W. Tittel, H. Zbinden, and N. Gisin, Nature 421, 509 (2003).
[Crossref]

H. De Riedmatten, I. Marcikic, H. Zbinden, and N. Gisin, Quantum Inf. Comput. 2, 425 (2002).

Gottesman, D.

D. Gottesman and I. L. Chuang, Nature 402, 390 (1999).
[Crossref]

Harada, K.

He, J.

Heideman, R.

Heideman, R. G.

Hoekman, M.

Hosseini, N.

Humphreys, P. C.

B. J. Metcalf, J. B. Spring, P. C. Humphreys, N. Thomas-Peter, M. Barbieri, W. S. Kolthammer, X.-M. Jin, N. K. Langford, D. Kundys, J. C. Gates, B. J. Smith, P. G. R. Smith, and I. A. Walmsley, Nat. Photonics 8, 770 (2014).
[Crossref]

Huy, K. P.

Itabashi, S.

Jin, X.-M.

B. J. Metcalf, J. B. Spring, P. C. Humphreys, N. Thomas-Peter, M. Barbieri, W. S. Kolthammer, X.-M. Jin, N. K. Langford, D. Kundys, J. C. Gates, B. J. Smith, P. G. R. Smith, and I. A. Walmsley, Nat. Photonics 8, 770 (2014).
[Crossref]

Jizan, I.

Kolthammer, W. S.

B. J. Metcalf, J. B. Spring, P. C. Humphreys, N. Thomas-Peter, M. Barbieri, W. S. Kolthammer, X.-M. Jin, N. K. Langford, D. Kundys, J. C. Gates, B. J. Smith, P. G. R. Smith, and I. A. Walmsley, Nat. Photonics 8, 770 (2014).
[Crossref]

Kundys, D.

B. J. Metcalf, J. B. Spring, P. C. Humphreys, N. Thomas-Peter, M. Barbieri, W. S. Kolthammer, X.-M. Jin, N. K. Langford, D. Kundys, J. C. Gates, B. J. Smith, P. G. R. Smith, and I. A. Walmsley, Nat. Photonics 8, 770 (2014).
[Crossref]

Kwiat, P. G.

P. G. Kwiat, A. M. Steinberg, and R. Y. Chiao, Phys. Rev. A 47, R2472 (1993).
[Crossref]

Langford, N. K.

B. J. Metcalf, J. B. Spring, P. C. Humphreys, N. Thomas-Peter, M. Barbieri, W. S. Kolthammer, X.-M. Jin, N. K. Langford, D. Kundys, J. C. Gates, B. J. Smith, P. G. R. Smith, and I. A. Walmsley, Nat. Photonics 8, 770 (2014).
[Crossref]

Le Jeannic, H.

N. Matsuda, H. Le Jeannic, H. T. Fukuda, W. J. Munro, K. Shimizu, K. Yamada, Y. Tokura, and H. Takesue, Sci. Rep. 2, 817 (2012).

Lee, C. J.

Leinse, A.

Lipson, M.

S. Ramelow, A. Farsi, S. Clemmen, K. Luke, M. Lipson, and A. L. Gaeta, “Monolithic source of tunable narrowband photons for future quantum networks,” in Conference on Lasers and Electro-Optics (2015), paper FM2A.7.

Luke, K.

S. Ramelow, A. Farsi, S. Clemmen, K. Luke, M. Lipson, and A. L. Gaeta, “Monolithic source of tunable narrowband photons for future quantum networks,” in Conference on Lasers and Electro-Optics (2015), paper FM2A.7.

Marcikic, I.

I. Marcikic, H. de Riedmatten, W. Tittel, H. Zbinden, and N. Gisin, Nature 421, 509 (2003).
[Crossref]

H. De Riedmatten, I. Marcikic, H. Zbinden, and N. Gisin, Quantum Inf. Comput. 2, 425 (2002).

Marpaung, D.

Massar, S.

Mateman, R.

Matsuda, N.

N. Matsuda, H. Le Jeannic, H. T. Fukuda, W. J. Munro, K. Shimizu, K. Yamada, Y. Tokura, and H. Takesue, Sci. Rep. 2, 817 (2012).

Metcalf, B. J.

B. J. Metcalf, J. B. Spring, P. C. Humphreys, N. Thomas-Peter, M. Barbieri, W. S. Kolthammer, X.-M. Jin, N. K. Langford, D. Kundys, J. C. Gates, B. J. Smith, P. G. R. Smith, and I. A. Walmsley, Nat. Photonics 8, 770 (2014).
[Crossref]

Munro, W. J.

N. Matsuda, H. Le Jeannic, H. T. Fukuda, W. J. Munro, K. Shimizu, K. Yamada, Y. Tokura, and H. Takesue, Sci. Rep. 2, 817 (2012).

Nambu, Y.

O’Brien, J. L.

J. W. Silverstone, R. Santagati, D. Bonneau, M. J. Strain, M. Sorel, J. L. O’Brien, and M. G. Thompson, “Qubit entanglement on a silicon photonic chip,” arXiv:1410.8332v4 (2014).

Olislager, L.

Ramelow, S.

S. Ramelow, A. Farsi, S. Clemmen, K. Luke, M. Lipson, and A. L. Gaeta, “Monolithic source of tunable narrowband photons for future quantum networks,” in Conference on Lasers and Electro-Optics (2015), paper FM2A.7.

Roeloffzen, C.

Safioui, J.

Santagati, R.

J. W. Silverstone, R. Santagati, D. Bonneau, M. J. Strain, M. Sorel, J. L. O’Brien, and M. G. Thompson, “Qubit entanglement on a silicon photonic chip,” arXiv:1410.8332v4 (2014).

Sasaki, M.

Shimizu, K.

N. Matsuda, H. Le Jeannic, H. T. Fukuda, W. J. Munro, K. Shimizu, K. Yamada, Y. Tokura, and H. Takesue, Sci. Rep. 2, 817 (2012).

Silberberg, Y.

I. Afek, O. Ambar, and Y. Silberberg, Science 328, 879 (2010).
[Crossref]

Silverstone, J. W.

J. W. Silverstone, R. Santagati, D. Bonneau, M. J. Strain, M. Sorel, J. L. O’Brien, and M. G. Thompson, “Qubit entanglement on a silicon photonic chip,” arXiv:1410.8332v4 (2014).

Smith, B. J.

B. J. Metcalf, J. B. Spring, P. C. Humphreys, N. Thomas-Peter, M. Barbieri, W. S. Kolthammer, X.-M. Jin, N. K. Langford, D. Kundys, J. C. Gates, B. J. Smith, P. G. R. Smith, and I. A. Walmsley, Nat. Photonics 8, 770 (2014).
[Crossref]

Smith, P. G. R.

B. J. Metcalf, J. B. Spring, P. C. Humphreys, N. Thomas-Peter, M. Barbieri, W. S. Kolthammer, X.-M. Jin, N. K. Langford, D. Kundys, J. C. Gates, B. J. Smith, P. G. R. Smith, and I. A. Walmsley, Nat. Photonics 8, 770 (2014).
[Crossref]

Sorel, M.

J. W. Silverstone, R. Santagati, D. Bonneau, M. J. Strain, M. Sorel, J. L. O’Brien, and M. G. Thompson, “Qubit entanglement on a silicon photonic chip,” arXiv:1410.8332v4 (2014).

Spring, J. B.

B. J. Metcalf, J. B. Spring, P. C. Humphreys, N. Thomas-Peter, M. Barbieri, W. S. Kolthammer, X.-M. Jin, N. K. Langford, D. Kundys, J. C. Gates, B. J. Smith, P. G. R. Smith, and I. A. Walmsley, Nat. Photonics 8, 770 (2014).
[Crossref]

Steinberg, A. M.

P. G. Kwiat, A. M. Steinberg, and R. Y. Chiao, Phys. Rev. A 47, R2472 (1993).
[Crossref]

Strain, M. J.

J. W. Silverstone, R. Santagati, D. Bonneau, M. J. Strain, M. Sorel, J. L. O’Brien, and M. G. Thompson, “Qubit entanglement on a silicon photonic chip,” arXiv:1410.8332v4 (2014).

Takesue, H.

N. Matsuda, H. Le Jeannic, H. T. Fukuda, W. J. Munro, K. Shimizu, K. Yamada, Y. Tokura, and H. Takesue, Sci. Rep. 2, 817 (2012).

K. Harada, H. Takesue, H. Fukuda, T. Tsuchizawa, T. Watanabe, K. Yamada, Y. Tokura, and S. Itabashi, Opt. Express 16, 20368 (2008).
[Crossref]

Thew, R.

J. Zhang, R. Thew, J.-D. Gautier, N. Gisin, and H. Zbinden, IEEE J. Quantum Electron. 45, 792 (2009).
[Crossref]

Thomas-Peter, N.

B. J. Metcalf, J. B. Spring, P. C. Humphreys, N. Thomas-Peter, M. Barbieri, W. S. Kolthammer, X.-M. Jin, N. K. Langford, D. Kundys, J. C. Gates, B. J. Smith, P. G. R. Smith, and I. A. Walmsley, Nat. Photonics 8, 770 (2014).
[Crossref]

Thompson, M. G.

J. W. Silverstone, R. Santagati, D. Bonneau, M. J. Strain, M. Sorel, J. L. O’Brien, and M. G. Thompson, “Qubit entanglement on a silicon photonic chip,” arXiv:1410.8332v4 (2014).

Tittel, W.

I. Marcikic, H. de Riedmatten, W. Tittel, H. Zbinden, and N. Gisin, Nature 421, 509 (2003).
[Crossref]

Tokura, Y.

N. Matsuda, H. Le Jeannic, H. T. Fukuda, W. J. Munro, K. Shimizu, K. Yamada, Y. Tokura, and H. Takesue, Sci. Rep. 2, 817 (2012).

K. Harada, H. Takesue, H. Fukuda, T. Tsuchizawa, T. Watanabe, K. Yamada, Y. Tokura, and S. Itabashi, Opt. Express 16, 20368 (2008).
[Crossref]

Tsuchizawa, T.

van der Slot, P. J. M.

van Rees, A.

Wakabayashi, R.

Walmsley, I. A.

B. J. Metcalf, J. B. Spring, P. C. Humphreys, N. Thomas-Peter, M. Barbieri, W. S. Kolthammer, X.-M. Jin, N. K. Langford, D. Kundys, J. C. Gates, B. J. Smith, P. G. R. Smith, and I. A. Walmsley, Nat. Photonics 8, 770 (2014).
[Crossref]

Watanabe, T.

Wörhoff, K.

K. Wörhoff, R. G. Heideman, A. Leinse, and M. Hoekman, Adv. Opt. Technol. 4, 189 (2015).

Xiong, C.

Yamada, K.

N. Matsuda, H. Le Jeannic, H. T. Fukuda, W. J. Munro, K. Shimizu, K. Yamada, Y. Tokura, and H. Takesue, Sci. Rep. 2, 817 (2012).

K. Harada, H. Takesue, H. Fukuda, T. Tsuchizawa, T. Watanabe, K. Yamada, Y. Tokura, and S. Itabashi, Opt. Express 16, 20368 (2008).
[Crossref]

Yoshino, K.

Zbinden, H.

J. Zhang, R. Thew, J.-D. Gautier, N. Gisin, and H. Zbinden, IEEE J. Quantum Electron. 45, 792 (2009).
[Crossref]

I. Marcikic, H. de Riedmatten, W. Tittel, H. Zbinden, and N. Gisin, Nature 421, 509 (2003).
[Crossref]

H. De Riedmatten, I. Marcikic, H. Zbinden, and N. Gisin, Quantum Inf. Comput. 2, 425 (2002).

Zhang, J.

J. Zhang, R. Thew, J.-D. Gautier, N. Gisin, and H. Zbinden, IEEE J. Quantum Electron. 45, 792 (2009).
[Crossref]

Zhang, X.

Zhuang, L.

Adv. Opt. Technol. (1)

K. Wörhoff, R. G. Heideman, A. Leinse, and M. Hoekman, Adv. Opt. Technol. 4, 189 (2015).

IEEE J. Quantum Electron. (1)

J. Zhang, R. Thew, J.-D. Gautier, N. Gisin, and H. Zbinden, IEEE J. Quantum Electron. 45, 792 (2009).
[Crossref]

Nat. Photonics (1)

B. J. Metcalf, J. B. Spring, P. C. Humphreys, N. Thomas-Peter, M. Barbieri, W. S. Kolthammer, X.-M. Jin, N. K. Langford, D. Kundys, J. C. Gates, B. J. Smith, P. G. R. Smith, and I. A. Walmsley, Nat. Photonics 8, 770 (2014).
[Crossref]

Nature (2)

I. Marcikic, H. de Riedmatten, W. Tittel, H. Zbinden, and N. Gisin, Nature 421, 509 (2003).
[Crossref]

D. Gottesman and I. L. Chuang, Nature 402, 390 (1999).
[Crossref]

Opt. Express (5)

Opt. Lett. (2)

Phys. Rev. A (1)

P. G. Kwiat, A. M. Steinberg, and R. Y. Chiao, Phys. Rev. A 47, R2472 (1993).
[Crossref]

Quantum Inf. Comput. (1)

H. De Riedmatten, I. Marcikic, H. Zbinden, and N. Gisin, Quantum Inf. Comput. 2, 425 (2002).

Sci. Rep. (1)

N. Matsuda, H. Le Jeannic, H. T. Fukuda, W. J. Munro, K. Shimizu, K. Yamada, Y. Tokura, and H. Takesue, Sci. Rep. 2, 817 (2012).

Science (1)

I. Afek, O. Ambar, and Y. Silberberg, Science 328, 879 (2010).
[Crossref]

Other (2)

J. W. Silverstone, R. Santagati, D. Bonneau, M. J. Strain, M. Sorel, J. L. O’Brien, and M. G. Thompson, “Qubit entanglement on a silicon photonic chip,” arXiv:1410.8332v4 (2014).

S. Ramelow, A. Farsi, S. Clemmen, K. Luke, M. Lipson, and A. L. Gaeta, “Monolithic source of tunable narrowband photons for future quantum networks,” in Conference on Lasers and Electro-Optics (2015), paper FM2A.7.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1. (a) Principle of time-bin entanglement generation, (b) the cross section of the Si3N4 waveguides, (c) a photograph of the Si3N4-based time-bin entanglement chip. The yellow parts are wire bonds for heaters, and the green parts are printed circuit boards for providing voltage to the heaters. On the left-hand side is the pigtailed fiber array. (d) The schematic structure of the photonic circuit on the chip. The white lines represent the Si3N4 waveguides, and the yellow lines are the resistive heaters. Only heaters for pump, signal and idler phase shift, and wavelength demultiplexing are shown. Each tunable coupler consists of a balanced MZI with a heater in one arm (not shown). In total there are 15 heaters on the chip. The numbers label the ports.
Fig. 2.
Fig. 2. Characterization of the wavelength demultiplexers. The black, blue, and red traces are the transmission spectra of three 0.5 nm bandpass filters (BPFs), indicating the signal, pump, and idler wavelengths used in our experiments. The pink trace shows the rejection of pump at the photon pair channel from demultiplexer 1, and the green trace shows the signal channel from demultiplexer 2.
Fig. 3.
Fig. 3. Experimental setup. Blue solid lines are optical fibers, and black dashed lines are electric cables. BPF, bandpass filter; TIA, time-interval analyzer; SPD, single-photon detector.
Fig. 4.
Fig. 4. Coincidences as a function of the square of the applied voltage to the heater of the UMZI in the signal photon channel. Black squares and red dots represent two nonorthogonal measurements when the voltage applied to the heater of the UMZI in the idler channel was set at 0 and 4 V, respectively. The dashed lines are cosine fits. Poisson error bars are used.
Fig. 5.
Fig. 5. Measured singles for the signal (blue diamonds) and idler (red dots) channels at different applied voltages to the signal channel heater. Poisson error bars are used.

Metrics