Abstract

We demonstrate a new approach for pulse formation in mode-locked lasers, based on exciting intracavity solitons in a two-dimensionally patterned quasi-phase-matching (QPM) grating. Through an adiabatic following process enabled by an apodized QPM crystal, we transiently excite multicolor nonlinear states within the crystal, utilize their advantageous properties for pulse formation and stabilization, and then convert the energy back to the resonating laser pulse before the end of the crystal in order to suppress losses. This idea gives access to large nonlinearities that would otherwise be too lossy for use intracavity. In our case, the states accessed are self-defocusing Kerr-like nonlinearities based on phase-mismatched second-harmonic generation. The QPM device has an additional transverse gradient, for tuning the nonlinearity and to aid in laser self-starting. We demonstrate the technique in a semiconductor saturable absorber mirror mode-locked laser with Yb:CALGO as the gain medium, producing 100 fs pulses at 540 MHz repetition rate, with 760 mW of average output power. We present comprehensive theoretical and numerical modeling of the laser to understand the new mode-locking regime. Our approach offers a flexible and compact route to managing nonlinearities inside laser cavities while suppressing the losses that could otherwise prevent or deteriorate mode-locked operation, and is particularly interesting for highly compact bulk, fiber, and waveguide lasers with gigahertz repetition rates and operating wavelengths from the near- to mid-infrared spectral regions.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
SESAM modelocked Yb:CaGdAlO4 laser in the soliton modelocking regime with positive intracavity dispersion

C. R. Phillips, A. S. Mayer, A. Klenner, and U. Keller
Opt. Express 22(5) 6060-6077 (2014)

Parametric processes in quasi-phasematching gratings with random duty cycle errors

C. R. Phillips, J. S. Pelc, and M. M. Fejer
J. Opt. Soc. Am. B 30(4) 982-993 (2013)

Picosecond tunable mode locking of a Cr2+:ZnSe laser with a nonlinear mirror

Jean-Baptiste Dherbecourt, Adrien Denoeud, Jean-Michel Melkonian, Myriam Raybaut, Antoine Godard, Michel Lefebvre, and Emmanuel Rosencher
Opt. Lett. 36(5) 751-753 (2011)

References

  • View by:
  • |
  • |
  • |

  1. U. Keller, “Ultrafast solid-state laser oscillators: a success story for the last 20 years with no end in sight,” Appl. Phys. B 100, 15–28 (2010).
    [Crossref]
  2. M. E. Fermann and I. Hartl, “Ultrafast fibre lasers,” Nat. Photonics 7, 868–874 (2013).
    [Crossref]
  3. T. Herr, V. Brasch, J. Jost, C. Wang, N. Kondratiev, M. Gorodetsky, and T. Kippenberg, “Temporal solitons in optical microresonators,” Nat. Photonics 8, 145–152 (2014).
    [Crossref]
  4. U. Keller, K. Weingarten, F. Kartner, D. Kopf, B. Braun, I. Jung, R. Fluck, C. Honninger, N. Matuschek, and J. Aus der Au, “Semiconductor saturable absorber mirrors (SESAM’s) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2, 435–453 (1996).
    [Crossref]
  5. F. Kartner, I. Jung, and U. Keller, “Soliton mode-locking with saturable absorbers,” IEEE J. Sel. Top. Quantum Electron. 2, 540–556 (1996).
    [Crossref]
  6. J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135–1184 (2006).
    [Crossref]
  7. S. A. Diddams, “The evolving optical frequency comb,” J. Opt. Soc. Am. B 27, B51–B62 (2010).
    [Crossref]
  8. D. N. Christodoulides, I. C. Khoo, G. J. Salamo, G. I. Stegeman, and E. W. Van Stryland, “Nonlinear refraction and absorption: mechanisms and magnitudes,” Adv. Opt. Photon. 2, 60–200 (2010).
    [Crossref]
  9. C. Hönninger, R. Paschotta, F. Morier-Genoud, M. Moser, and U. Keller, “Q-switching stability limits of continuous-wave passive mode locking,” J. Opt. Soc. Am. B 16, 46–56 (1999).
    [Crossref]
  10. R. Schiek, “Nonlinear refraction caused by cascaded second-order nonlinearity in optical waveguide structures,” J. Opt. Soc. Am. B 10, 1848–1855 (1993).
    [Crossref]
  11. G. I. Stegeman, D. J. Hagan, and L. Torner, “χ(2) cascading phenomena and their applications to all-optical signal processing, mode-locking, pulse compression and solitons,” Opt. Quantum Electron. 28, 1691–1740 (1996).
    [Crossref]
  12. X. Liu, L. Qian, and F. Wise, “High-energy pulse compression by use of negative phase shifts produced by the cascade χ(2):χ(2) nonlinearity,” Opt. Lett. 24, 1777–1779 (1999).
    [Crossref]
  13. S. Ashihara, J. Nishina, T. Shimura, and K. Kuroda, “Soliton compression of femtosecond pulses in quadratic media,” J. Opt. Soc. Am. B 19, 2505–2510 (2002).
    [Crossref]
  14. F. O. Ilday, K. Beckwitt, Y.-F. Chen, H. Lim, and F. W. Wise, “Controllable Raman-like nonlinearities from nonstationary, cascaded quadratic processes,” J. Opt. Soc. Am. B 21, 376–383 (2004).
    [Crossref]
  15. B. Zhou, A. Chong, F. Wise, and M. Bache, “Ultrafast and octave-spanning optical nonlinearities from strongly phase-mismatched quadratic interactions,” Phys. Rev. Lett. 109, 043902 (2012).
    [Crossref]
  16. C. Langrock, M. M. Fejer, I. Hartl, and M. E. Fermann, “Generation of octave-spanning spectra inside reverse-proton-exchanged periodically poled lithium niobate waveguides,” Opt. Lett. 32, 2478–2480 (2007).
    [Crossref]
  17. C. R. Phillips, C. Langrock, J. S. Pelc, M. M. Fejer, I. Hartl, and M. E. Fermann, “Supercontinuum generation in quasi-phasematched waveguides,” Opt. Express 19, 18754–18773 (2011).
    [Crossref]
  18. H. Suchowski, V. Prabhudesai, D. Oron, A. Arie, and Y. Silberberg, “Robust adiabatic sum frequency conversion,” Opt. Express 17, 12731–12740 (2009).
    [Crossref]
  19. C. R. Phillips, C. Langrock, D. Chang, Y. W. Lin, L. Gallmann, and M. M. Fejer, “Apodization of chirped quasi-phasematching devices,” J. Opt. Soc. Am. B 30, 1551–1568 (2013).
    [Crossref]
  20. G. Cerullo, S. D. Silvestri, A. Monguzzi, D. Segala, and V. Magni, “Self-starting mode locking of a cw Nd:YAG laser using cascaded second-order nonlinearities,” Opt. Lett. 20, 746–748 (1995).
    [Crossref]
  21. M. Zavelani-Rossi, G. Cerullo, and V. Magni, “Mode locking by cascading of second-order nonlinearities,” IEEE J. Quantum Electron. 34, 61–70 (1998).
    [Crossref]
  22. L. Qian, X. Liu, and F. Wise, “Femtosecond Kerr-lens mode locking with negative nonlinear phase shifts,” Opt. Lett. 24, 166–168 (1999).
    [Crossref]
  23. S. Holmgren, V. Pasiskevicius, and F. Laurell, “Generation of 2.8  ps pulses by mode-locking a Nd:GdVO4 laser with defocusing cascaded Kerr lensing in periodically poled KTP,” Opt. Express 13, 5270–5278 (2005).
    [Crossref]
  24. A. Agnesi, A. Guandalini, and G. Reali, “Self-stabilized and dispersion-compensated passively mode-locked Yb:yttrium aluminum garnet laser,” Appl. Phys. Lett. 86, 171105 (2005).
    [Crossref]
  25. H. Iliev, I. Buchvarov, S. Kurimura, and V. Petrov, “1.34-μm Nd:YVO4 laser mode-locked by SHG-lens formation in periodically-poled stoichiometric lithium tantalate,” Opt. Express 19, 21754–21759 (2011).
    [Crossref]
  26. C. Schäfer, C. Fries, C. Theobald, and J. A. L’Huillier, “Parametric Kerr lens mode-locked, 888  nm pumped Nd:YVO4 laser,” Opt. Lett. 36, 2674–2676 (2011).
    [Crossref]
  27. N. Meiser, K. Seger, V. Pasiskevicius, A. Zukauskas, C. Canalias, and F. Laurell, “Cascaded mode-locking of a spectrally controlled Yb:KYW laser,” Appl. Phys. B 116, 493–499 (2014).
    [Crossref]
  28. C. R. Phillips, A. S. Mayer, A. Klenner, and U. Keller, ”SESAM modelocked Yb:CaGdAlO4 laser in the soliton modelocking regime with positive intracavity dispersion,” Opt. Express 22, 6060–6077 (2014).
    [Crossref]
  29. L. Torner, C. B. Clausen, and M. M. Fejer, “Adiabatic shaping of quadratic solitons,” Opt. Lett. 23, 903–905 (1998).
    [Crossref]
  30. L. Torner, “Amplification of quadratic solitons,” Opt. Commun. 154, 59–64 (1998).
    [Crossref]
  31. F. O. Ilday and F. W. Wise, “Nonlinearity management: a route to high-energy soliton fiber lasers,” J. Opt. Soc. Am. B 19, 470–476 (2002).
    [Crossref]
  32. P. E. Powers, T. J. Kulp, and S. E. Bisson, “Continuous tuning of a continuous-wave periodically poled lithium niobate optical parametric oscillator by use of a fan-out grating design,” Opt. Lett. 23, 159–161 (1998).
    [Crossref]
  33. A. V. Buryak, P. D. Trapani, D. V. Skryabin, and S. Trillo, “Optical solitons due to quadratic nonlinearities: from basic physics to futuristic applications,” Phys. Rep. 370, 63–235 (2002).
    [Crossref]
  34. R. Grange, M. Haiml, R. Paschotta, G. Spühler, L. Krainer, M. Golling, O. Ostinelli, and U. Keller, “New regime of inverse saturable absorption for self-stabilizing passively mode-locked lasers,” Appl. Phys. B 80, 151–158 (2005).
    [Crossref]
  35. J. Petit, P. Goldner, and B. Viana, “Laser emission with low quantum defect in Yb:CaGdAlO4,” Opt. Lett. 30, 1345–1347 (2005).
    [Crossref]
  36. C. R. Phillips and M. M. Fejer, “Efficiency and phase of optical parametric amplification in chirped quasi-phase-matched gratings,” Opt. Lett. 35, 3093–3095 (2010).
    [Crossref]
  37. O. Yaakobi, M. Clerici, L. Caspani, F. Vidal, and R. Morandotti, “Complete pump depletion by autoresonant second harmonic generation in a nonuniform medium,” J. Opt. Soc. Am. B 30, 1637–1642 (2013).
    [Crossref]
  38. C. R. Phillips, J. S. Pelc, and M. M. Fejer, “Parametric processes in quasi-phasematching gratings with random duty cycle errors,” J. Opt. Soc. Am. B 30, 982–993 (2013).
    [Crossref]
  39. J. P. Gordon, “Theory of the soliton self-frequency shift,” Opt. Lett. 11, 662–664 (1986).
    [Crossref]
  40. U. Keller and A. C. Tropper, “Passively modelocked surface-emitting semiconductor lasers,” Phys. Rep. 429, 67–120 (2006).
    [Crossref]

2014 (3)

T. Herr, V. Brasch, J. Jost, C. Wang, N. Kondratiev, M. Gorodetsky, and T. Kippenberg, “Temporal solitons in optical microresonators,” Nat. Photonics 8, 145–152 (2014).
[Crossref]

N. Meiser, K. Seger, V. Pasiskevicius, A. Zukauskas, C. Canalias, and F. Laurell, “Cascaded mode-locking of a spectrally controlled Yb:KYW laser,” Appl. Phys. B 116, 493–499 (2014).
[Crossref]

C. R. Phillips, A. S. Mayer, A. Klenner, and U. Keller, ”SESAM modelocked Yb:CaGdAlO4 laser in the soliton modelocking regime with positive intracavity dispersion,” Opt. Express 22, 6060–6077 (2014).
[Crossref]

2013 (4)

2012 (1)

B. Zhou, A. Chong, F. Wise, and M. Bache, “Ultrafast and octave-spanning optical nonlinearities from strongly phase-mismatched quadratic interactions,” Phys. Rev. Lett. 109, 043902 (2012).
[Crossref]

2011 (3)

2010 (4)

2009 (1)

2007 (1)

2006 (2)

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135–1184 (2006).
[Crossref]

U. Keller and A. C. Tropper, “Passively modelocked surface-emitting semiconductor lasers,” Phys. Rep. 429, 67–120 (2006).
[Crossref]

2005 (4)

R. Grange, M. Haiml, R. Paschotta, G. Spühler, L. Krainer, M. Golling, O. Ostinelli, and U. Keller, “New regime of inverse saturable absorption for self-stabilizing passively mode-locked lasers,” Appl. Phys. B 80, 151–158 (2005).
[Crossref]

J. Petit, P. Goldner, and B. Viana, “Laser emission with low quantum defect in Yb:CaGdAlO4,” Opt. Lett. 30, 1345–1347 (2005).
[Crossref]

S. Holmgren, V. Pasiskevicius, and F. Laurell, “Generation of 2.8  ps pulses by mode-locking a Nd:GdVO4 laser with defocusing cascaded Kerr lensing in periodically poled KTP,” Opt. Express 13, 5270–5278 (2005).
[Crossref]

A. Agnesi, A. Guandalini, and G. Reali, “Self-stabilized and dispersion-compensated passively mode-locked Yb:yttrium aluminum garnet laser,” Appl. Phys. Lett. 86, 171105 (2005).
[Crossref]

2004 (1)

2002 (3)

1999 (3)

1998 (4)

1996 (3)

U. Keller, K. Weingarten, F. Kartner, D. Kopf, B. Braun, I. Jung, R. Fluck, C. Honninger, N. Matuschek, and J. Aus der Au, “Semiconductor saturable absorber mirrors (SESAM’s) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2, 435–453 (1996).
[Crossref]

F. Kartner, I. Jung, and U. Keller, “Soliton mode-locking with saturable absorbers,” IEEE J. Sel. Top. Quantum Electron. 2, 540–556 (1996).
[Crossref]

G. I. Stegeman, D. J. Hagan, and L. Torner, “χ(2) cascading phenomena and their applications to all-optical signal processing, mode-locking, pulse compression and solitons,” Opt. Quantum Electron. 28, 1691–1740 (1996).
[Crossref]

1995 (1)

1993 (1)

1986 (1)

Agnesi, A.

A. Agnesi, A. Guandalini, and G. Reali, “Self-stabilized and dispersion-compensated passively mode-locked Yb:yttrium aluminum garnet laser,” Appl. Phys. Lett. 86, 171105 (2005).
[Crossref]

Arie, A.

Ashihara, S.

Aus der Au, J.

U. Keller, K. Weingarten, F. Kartner, D. Kopf, B. Braun, I. Jung, R. Fluck, C. Honninger, N. Matuschek, and J. Aus der Au, “Semiconductor saturable absorber mirrors (SESAM’s) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2, 435–453 (1996).
[Crossref]

Bache, M.

B. Zhou, A. Chong, F. Wise, and M. Bache, “Ultrafast and octave-spanning optical nonlinearities from strongly phase-mismatched quadratic interactions,” Phys. Rev. Lett. 109, 043902 (2012).
[Crossref]

Beckwitt, K.

Bisson, S. E.

Brasch, V.

T. Herr, V. Brasch, J. Jost, C. Wang, N. Kondratiev, M. Gorodetsky, and T. Kippenberg, “Temporal solitons in optical microresonators,” Nat. Photonics 8, 145–152 (2014).
[Crossref]

Braun, B.

U. Keller, K. Weingarten, F. Kartner, D. Kopf, B. Braun, I. Jung, R. Fluck, C. Honninger, N. Matuschek, and J. Aus der Au, “Semiconductor saturable absorber mirrors (SESAM’s) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2, 435–453 (1996).
[Crossref]

Buchvarov, I.

Buryak, A. V.

A. V. Buryak, P. D. Trapani, D. V. Skryabin, and S. Trillo, “Optical solitons due to quadratic nonlinearities: from basic physics to futuristic applications,” Phys. Rep. 370, 63–235 (2002).
[Crossref]

Canalias, C.

N. Meiser, K. Seger, V. Pasiskevicius, A. Zukauskas, C. Canalias, and F. Laurell, “Cascaded mode-locking of a spectrally controlled Yb:KYW laser,” Appl. Phys. B 116, 493–499 (2014).
[Crossref]

Caspani, L.

Cerullo, G.

M. Zavelani-Rossi, G. Cerullo, and V. Magni, “Mode locking by cascading of second-order nonlinearities,” IEEE J. Quantum Electron. 34, 61–70 (1998).
[Crossref]

G. Cerullo, S. D. Silvestri, A. Monguzzi, D. Segala, and V. Magni, “Self-starting mode locking of a cw Nd:YAG laser using cascaded second-order nonlinearities,” Opt. Lett. 20, 746–748 (1995).
[Crossref]

Chang, D.

Chen, Y.-F.

Chong, A.

B. Zhou, A. Chong, F. Wise, and M. Bache, “Ultrafast and octave-spanning optical nonlinearities from strongly phase-mismatched quadratic interactions,” Phys. Rev. Lett. 109, 043902 (2012).
[Crossref]

Christodoulides, D. N.

Clausen, C. B.

Clerici, M.

Coen, S.

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135–1184 (2006).
[Crossref]

Diddams, S. A.

Dudley, J. M.

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135–1184 (2006).
[Crossref]

Fejer, M. M.

Fermann, M. E.

Fluck, R.

U. Keller, K. Weingarten, F. Kartner, D. Kopf, B. Braun, I. Jung, R. Fluck, C. Honninger, N. Matuschek, and J. Aus der Au, “Semiconductor saturable absorber mirrors (SESAM’s) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2, 435–453 (1996).
[Crossref]

Fries, C.

Gallmann, L.

Genty, G.

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135–1184 (2006).
[Crossref]

Goldner, P.

Golling, M.

R. Grange, M. Haiml, R. Paschotta, G. Spühler, L. Krainer, M. Golling, O. Ostinelli, and U. Keller, “New regime of inverse saturable absorption for self-stabilizing passively mode-locked lasers,” Appl. Phys. B 80, 151–158 (2005).
[Crossref]

Gordon, J. P.

Gorodetsky, M.

T. Herr, V. Brasch, J. Jost, C. Wang, N. Kondratiev, M. Gorodetsky, and T. Kippenberg, “Temporal solitons in optical microresonators,” Nat. Photonics 8, 145–152 (2014).
[Crossref]

Grange, R.

R. Grange, M. Haiml, R. Paschotta, G. Spühler, L. Krainer, M. Golling, O. Ostinelli, and U. Keller, “New regime of inverse saturable absorption for self-stabilizing passively mode-locked lasers,” Appl. Phys. B 80, 151–158 (2005).
[Crossref]

Guandalini, A.

A. Agnesi, A. Guandalini, and G. Reali, “Self-stabilized and dispersion-compensated passively mode-locked Yb:yttrium aluminum garnet laser,” Appl. Phys. Lett. 86, 171105 (2005).
[Crossref]

Hagan, D. J.

G. I. Stegeman, D. J. Hagan, and L. Torner, “χ(2) cascading phenomena and their applications to all-optical signal processing, mode-locking, pulse compression and solitons,” Opt. Quantum Electron. 28, 1691–1740 (1996).
[Crossref]

Haiml, M.

R. Grange, M. Haiml, R. Paschotta, G. Spühler, L. Krainer, M. Golling, O. Ostinelli, and U. Keller, “New regime of inverse saturable absorption for self-stabilizing passively mode-locked lasers,” Appl. Phys. B 80, 151–158 (2005).
[Crossref]

Hartl, I.

Herr, T.

T. Herr, V. Brasch, J. Jost, C. Wang, N. Kondratiev, M. Gorodetsky, and T. Kippenberg, “Temporal solitons in optical microresonators,” Nat. Photonics 8, 145–152 (2014).
[Crossref]

Holmgren, S.

Honninger, C.

U. Keller, K. Weingarten, F. Kartner, D. Kopf, B. Braun, I. Jung, R. Fluck, C. Honninger, N. Matuschek, and J. Aus der Au, “Semiconductor saturable absorber mirrors (SESAM’s) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2, 435–453 (1996).
[Crossref]

Hönninger, C.

Ilday, F. O.

Iliev, H.

Jost, J.

T. Herr, V. Brasch, J. Jost, C. Wang, N. Kondratiev, M. Gorodetsky, and T. Kippenberg, “Temporal solitons in optical microresonators,” Nat. Photonics 8, 145–152 (2014).
[Crossref]

Jung, I.

U. Keller, K. Weingarten, F. Kartner, D. Kopf, B. Braun, I. Jung, R. Fluck, C. Honninger, N. Matuschek, and J. Aus der Au, “Semiconductor saturable absorber mirrors (SESAM’s) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2, 435–453 (1996).
[Crossref]

F. Kartner, I. Jung, and U. Keller, “Soliton mode-locking with saturable absorbers,” IEEE J. Sel. Top. Quantum Electron. 2, 540–556 (1996).
[Crossref]

Kartner, F.

F. Kartner, I. Jung, and U. Keller, “Soliton mode-locking with saturable absorbers,” IEEE J. Sel. Top. Quantum Electron. 2, 540–556 (1996).
[Crossref]

U. Keller, K. Weingarten, F. Kartner, D. Kopf, B. Braun, I. Jung, R. Fluck, C. Honninger, N. Matuschek, and J. Aus der Au, “Semiconductor saturable absorber mirrors (SESAM’s) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2, 435–453 (1996).
[Crossref]

Keller, U.

C. R. Phillips, A. S. Mayer, A. Klenner, and U. Keller, ”SESAM modelocked Yb:CaGdAlO4 laser in the soliton modelocking regime with positive intracavity dispersion,” Opt. Express 22, 6060–6077 (2014).
[Crossref]

U. Keller, “Ultrafast solid-state laser oscillators: a success story for the last 20 years with no end in sight,” Appl. Phys. B 100, 15–28 (2010).
[Crossref]

U. Keller and A. C. Tropper, “Passively modelocked surface-emitting semiconductor lasers,” Phys. Rep. 429, 67–120 (2006).
[Crossref]

R. Grange, M. Haiml, R. Paschotta, G. Spühler, L. Krainer, M. Golling, O. Ostinelli, and U. Keller, “New regime of inverse saturable absorption for self-stabilizing passively mode-locked lasers,” Appl. Phys. B 80, 151–158 (2005).
[Crossref]

C. Hönninger, R. Paschotta, F. Morier-Genoud, M. Moser, and U. Keller, “Q-switching stability limits of continuous-wave passive mode locking,” J. Opt. Soc. Am. B 16, 46–56 (1999).
[Crossref]

U. Keller, K. Weingarten, F. Kartner, D. Kopf, B. Braun, I. Jung, R. Fluck, C. Honninger, N. Matuschek, and J. Aus der Au, “Semiconductor saturable absorber mirrors (SESAM’s) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2, 435–453 (1996).
[Crossref]

F. Kartner, I. Jung, and U. Keller, “Soliton mode-locking with saturable absorbers,” IEEE J. Sel. Top. Quantum Electron. 2, 540–556 (1996).
[Crossref]

Khoo, I. C.

Kippenberg, T.

T. Herr, V. Brasch, J. Jost, C. Wang, N. Kondratiev, M. Gorodetsky, and T. Kippenberg, “Temporal solitons in optical microresonators,” Nat. Photonics 8, 145–152 (2014).
[Crossref]

Klenner, A.

Kondratiev, N.

T. Herr, V. Brasch, J. Jost, C. Wang, N. Kondratiev, M. Gorodetsky, and T. Kippenberg, “Temporal solitons in optical microresonators,” Nat. Photonics 8, 145–152 (2014).
[Crossref]

Kopf, D.

U. Keller, K. Weingarten, F. Kartner, D. Kopf, B. Braun, I. Jung, R. Fluck, C. Honninger, N. Matuschek, and J. Aus der Au, “Semiconductor saturable absorber mirrors (SESAM’s) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2, 435–453 (1996).
[Crossref]

Krainer, L.

R. Grange, M. Haiml, R. Paschotta, G. Spühler, L. Krainer, M. Golling, O. Ostinelli, and U. Keller, “New regime of inverse saturable absorption for self-stabilizing passively mode-locked lasers,” Appl. Phys. B 80, 151–158 (2005).
[Crossref]

Kulp, T. J.

Kurimura, S.

Kuroda, K.

L’Huillier, J. A.

Langrock, C.

Laurell, F.

N. Meiser, K. Seger, V. Pasiskevicius, A. Zukauskas, C. Canalias, and F. Laurell, “Cascaded mode-locking of a spectrally controlled Yb:KYW laser,” Appl. Phys. B 116, 493–499 (2014).
[Crossref]

S. Holmgren, V. Pasiskevicius, and F. Laurell, “Generation of 2.8  ps pulses by mode-locking a Nd:GdVO4 laser with defocusing cascaded Kerr lensing in periodically poled KTP,” Opt. Express 13, 5270–5278 (2005).
[Crossref]

Lim, H.

Lin, Y. W.

Liu, X.

Magni, V.

M. Zavelani-Rossi, G. Cerullo, and V. Magni, “Mode locking by cascading of second-order nonlinearities,” IEEE J. Quantum Electron. 34, 61–70 (1998).
[Crossref]

G. Cerullo, S. D. Silvestri, A. Monguzzi, D. Segala, and V. Magni, “Self-starting mode locking of a cw Nd:YAG laser using cascaded second-order nonlinearities,” Opt. Lett. 20, 746–748 (1995).
[Crossref]

Matuschek, N.

U. Keller, K. Weingarten, F. Kartner, D. Kopf, B. Braun, I. Jung, R. Fluck, C. Honninger, N. Matuschek, and J. Aus der Au, “Semiconductor saturable absorber mirrors (SESAM’s) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2, 435–453 (1996).
[Crossref]

Mayer, A. S.

Meiser, N.

N. Meiser, K. Seger, V. Pasiskevicius, A. Zukauskas, C. Canalias, and F. Laurell, “Cascaded mode-locking of a spectrally controlled Yb:KYW laser,” Appl. Phys. B 116, 493–499 (2014).
[Crossref]

Monguzzi, A.

Morandotti, R.

Morier-Genoud, F.

Moser, M.

Nishina, J.

Oron, D.

Ostinelli, O.

R. Grange, M. Haiml, R. Paschotta, G. Spühler, L. Krainer, M. Golling, O. Ostinelli, and U. Keller, “New regime of inverse saturable absorption for self-stabilizing passively mode-locked lasers,” Appl. Phys. B 80, 151–158 (2005).
[Crossref]

Paschotta, R.

R. Grange, M. Haiml, R. Paschotta, G. Spühler, L. Krainer, M. Golling, O. Ostinelli, and U. Keller, “New regime of inverse saturable absorption for self-stabilizing passively mode-locked lasers,” Appl. Phys. B 80, 151–158 (2005).
[Crossref]

C. Hönninger, R. Paschotta, F. Morier-Genoud, M. Moser, and U. Keller, “Q-switching stability limits of continuous-wave passive mode locking,” J. Opt. Soc. Am. B 16, 46–56 (1999).
[Crossref]

Pasiskevicius, V.

N. Meiser, K. Seger, V. Pasiskevicius, A. Zukauskas, C. Canalias, and F. Laurell, “Cascaded mode-locking of a spectrally controlled Yb:KYW laser,” Appl. Phys. B 116, 493–499 (2014).
[Crossref]

S. Holmgren, V. Pasiskevicius, and F. Laurell, “Generation of 2.8  ps pulses by mode-locking a Nd:GdVO4 laser with defocusing cascaded Kerr lensing in periodically poled KTP,” Opt. Express 13, 5270–5278 (2005).
[Crossref]

Pelc, J. S.

Petit, J.

Petrov, V.

Phillips, C. R.

Powers, P. E.

Prabhudesai, V.

Qian, L.

Reali, G.

A. Agnesi, A. Guandalini, and G. Reali, “Self-stabilized and dispersion-compensated passively mode-locked Yb:yttrium aluminum garnet laser,” Appl. Phys. Lett. 86, 171105 (2005).
[Crossref]

Salamo, G. J.

Schäfer, C.

Schiek, R.

Segala, D.

Seger, K.

N. Meiser, K. Seger, V. Pasiskevicius, A. Zukauskas, C. Canalias, and F. Laurell, “Cascaded mode-locking of a spectrally controlled Yb:KYW laser,” Appl. Phys. B 116, 493–499 (2014).
[Crossref]

Shimura, T.

Silberberg, Y.

Silvestri, S. D.

Skryabin, D. V.

A. V. Buryak, P. D. Trapani, D. V. Skryabin, and S. Trillo, “Optical solitons due to quadratic nonlinearities: from basic physics to futuristic applications,” Phys. Rep. 370, 63–235 (2002).
[Crossref]

Spühler, G.

R. Grange, M. Haiml, R. Paschotta, G. Spühler, L. Krainer, M. Golling, O. Ostinelli, and U. Keller, “New regime of inverse saturable absorption for self-stabilizing passively mode-locked lasers,” Appl. Phys. B 80, 151–158 (2005).
[Crossref]

Stegeman, G. I.

D. N. Christodoulides, I. C. Khoo, G. J. Salamo, G. I. Stegeman, and E. W. Van Stryland, “Nonlinear refraction and absorption: mechanisms and magnitudes,” Adv. Opt. Photon. 2, 60–200 (2010).
[Crossref]

G. I. Stegeman, D. J. Hagan, and L. Torner, “χ(2) cascading phenomena and their applications to all-optical signal processing, mode-locking, pulse compression and solitons,” Opt. Quantum Electron. 28, 1691–1740 (1996).
[Crossref]

Suchowski, H.

Theobald, C.

Torner, L.

L. Torner, C. B. Clausen, and M. M. Fejer, “Adiabatic shaping of quadratic solitons,” Opt. Lett. 23, 903–905 (1998).
[Crossref]

L. Torner, “Amplification of quadratic solitons,” Opt. Commun. 154, 59–64 (1998).
[Crossref]

G. I. Stegeman, D. J. Hagan, and L. Torner, “χ(2) cascading phenomena and their applications to all-optical signal processing, mode-locking, pulse compression and solitons,” Opt. Quantum Electron. 28, 1691–1740 (1996).
[Crossref]

Trapani, P. D.

A. V. Buryak, P. D. Trapani, D. V. Skryabin, and S. Trillo, “Optical solitons due to quadratic nonlinearities: from basic physics to futuristic applications,” Phys. Rep. 370, 63–235 (2002).
[Crossref]

Trillo, S.

A. V. Buryak, P. D. Trapani, D. V. Skryabin, and S. Trillo, “Optical solitons due to quadratic nonlinearities: from basic physics to futuristic applications,” Phys. Rep. 370, 63–235 (2002).
[Crossref]

Tropper, A. C.

U. Keller and A. C. Tropper, “Passively modelocked surface-emitting semiconductor lasers,” Phys. Rep. 429, 67–120 (2006).
[Crossref]

Van Stryland, E. W.

Viana, B.

Vidal, F.

Wang, C.

T. Herr, V. Brasch, J. Jost, C. Wang, N. Kondratiev, M. Gorodetsky, and T. Kippenberg, “Temporal solitons in optical microresonators,” Nat. Photonics 8, 145–152 (2014).
[Crossref]

Weingarten, K.

U. Keller, K. Weingarten, F. Kartner, D. Kopf, B. Braun, I. Jung, R. Fluck, C. Honninger, N. Matuschek, and J. Aus der Au, “Semiconductor saturable absorber mirrors (SESAM’s) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2, 435–453 (1996).
[Crossref]

Wise, F.

Wise, F. W.

Yaakobi, O.

Zavelani-Rossi, M.

M. Zavelani-Rossi, G. Cerullo, and V. Magni, “Mode locking by cascading of second-order nonlinearities,” IEEE J. Quantum Electron. 34, 61–70 (1998).
[Crossref]

Zhou, B.

B. Zhou, A. Chong, F. Wise, and M. Bache, “Ultrafast and octave-spanning optical nonlinearities from strongly phase-mismatched quadratic interactions,” Phys. Rev. Lett. 109, 043902 (2012).
[Crossref]

Zukauskas, A.

N. Meiser, K. Seger, V. Pasiskevicius, A. Zukauskas, C. Canalias, and F. Laurell, “Cascaded mode-locking of a spectrally controlled Yb:KYW laser,” Appl. Phys. B 116, 493–499 (2014).
[Crossref]

Adv. Opt. Photon. (1)

Appl. Phys. B (3)

U. Keller, “Ultrafast solid-state laser oscillators: a success story for the last 20 years with no end in sight,” Appl. Phys. B 100, 15–28 (2010).
[Crossref]

N. Meiser, K. Seger, V. Pasiskevicius, A. Zukauskas, C. Canalias, and F. Laurell, “Cascaded mode-locking of a spectrally controlled Yb:KYW laser,” Appl. Phys. B 116, 493–499 (2014).
[Crossref]

R. Grange, M. Haiml, R. Paschotta, G. Spühler, L. Krainer, M. Golling, O. Ostinelli, and U. Keller, “New regime of inverse saturable absorption for self-stabilizing passively mode-locked lasers,” Appl. Phys. B 80, 151–158 (2005).
[Crossref]

Appl. Phys. Lett. (1)

A. Agnesi, A. Guandalini, and G. Reali, “Self-stabilized and dispersion-compensated passively mode-locked Yb:yttrium aluminum garnet laser,” Appl. Phys. Lett. 86, 171105 (2005).
[Crossref]

IEEE J. Quantum Electron. (1)

M. Zavelani-Rossi, G. Cerullo, and V. Magni, “Mode locking by cascading of second-order nonlinearities,” IEEE J. Quantum Electron. 34, 61–70 (1998).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (2)

U. Keller, K. Weingarten, F. Kartner, D. Kopf, B. Braun, I. Jung, R. Fluck, C. Honninger, N. Matuschek, and J. Aus der Au, “Semiconductor saturable absorber mirrors (SESAM’s) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2, 435–453 (1996).
[Crossref]

F. Kartner, I. Jung, and U. Keller, “Soliton mode-locking with saturable absorbers,” IEEE J. Sel. Top. Quantum Electron. 2, 540–556 (1996).
[Crossref]

J. Opt. Soc. Am. B (9)

C. Hönninger, R. Paschotta, F. Morier-Genoud, M. Moser, and U. Keller, “Q-switching stability limits of continuous-wave passive mode locking,” J. Opt. Soc. Am. B 16, 46–56 (1999).
[Crossref]

R. Schiek, “Nonlinear refraction caused by cascaded second-order nonlinearity in optical waveguide structures,” J. Opt. Soc. Am. B 10, 1848–1855 (1993).
[Crossref]

S. A. Diddams, “The evolving optical frequency comb,” J. Opt. Soc. Am. B 27, B51–B62 (2010).
[Crossref]

S. Ashihara, J. Nishina, T. Shimura, and K. Kuroda, “Soliton compression of femtosecond pulses in quadratic media,” J. Opt. Soc. Am. B 19, 2505–2510 (2002).
[Crossref]

F. O. Ilday, K. Beckwitt, Y.-F. Chen, H. Lim, and F. W. Wise, “Controllable Raman-like nonlinearities from nonstationary, cascaded quadratic processes,” J. Opt. Soc. Am. B 21, 376–383 (2004).
[Crossref]

C. R. Phillips, C. Langrock, D. Chang, Y. W. Lin, L. Gallmann, and M. M. Fejer, “Apodization of chirped quasi-phasematching devices,” J. Opt. Soc. Am. B 30, 1551–1568 (2013).
[Crossref]

F. O. Ilday and F. W. Wise, “Nonlinearity management: a route to high-energy soliton fiber lasers,” J. Opt. Soc. Am. B 19, 470–476 (2002).
[Crossref]

O. Yaakobi, M. Clerici, L. Caspani, F. Vidal, and R. Morandotti, “Complete pump depletion by autoresonant second harmonic generation in a nonuniform medium,” J. Opt. Soc. Am. B 30, 1637–1642 (2013).
[Crossref]

C. R. Phillips, J. S. Pelc, and M. M. Fejer, “Parametric processes in quasi-phasematching gratings with random duty cycle errors,” J. Opt. Soc. Am. B 30, 982–993 (2013).
[Crossref]

Nat. Photonics (2)

M. E. Fermann and I. Hartl, “Ultrafast fibre lasers,” Nat. Photonics 7, 868–874 (2013).
[Crossref]

T. Herr, V. Brasch, J. Jost, C. Wang, N. Kondratiev, M. Gorodetsky, and T. Kippenberg, “Temporal solitons in optical microresonators,” Nat. Photonics 8, 145–152 (2014).
[Crossref]

Opt. Commun. (1)

L. Torner, “Amplification of quadratic solitons,” Opt. Commun. 154, 59–64 (1998).
[Crossref]

Opt. Express (5)

Opt. Lett. (10)

L. Torner, C. B. Clausen, and M. M. Fejer, “Adiabatic shaping of quadratic solitons,” Opt. Lett. 23, 903–905 (1998).
[Crossref]

C. Schäfer, C. Fries, C. Theobald, and J. A. L’Huillier, “Parametric Kerr lens mode-locked, 888  nm pumped Nd:YVO4 laser,” Opt. Lett. 36, 2674–2676 (2011).
[Crossref]

C. Langrock, M. M. Fejer, I. Hartl, and M. E. Fermann, “Generation of octave-spanning spectra inside reverse-proton-exchanged periodically poled lithium niobate waveguides,” Opt. Lett. 32, 2478–2480 (2007).
[Crossref]

L. Qian, X. Liu, and F. Wise, “Femtosecond Kerr-lens mode locking with negative nonlinear phase shifts,” Opt. Lett. 24, 166–168 (1999).
[Crossref]

J. P. Gordon, “Theory of the soliton self-frequency shift,” Opt. Lett. 11, 662–664 (1986).
[Crossref]

P. E. Powers, T. J. Kulp, and S. E. Bisson, “Continuous tuning of a continuous-wave periodically poled lithium niobate optical parametric oscillator by use of a fan-out grating design,” Opt. Lett. 23, 159–161 (1998).
[Crossref]

J. Petit, P. Goldner, and B. Viana, “Laser emission with low quantum defect in Yb:CaGdAlO4,” Opt. Lett. 30, 1345–1347 (2005).
[Crossref]

C. R. Phillips and M. M. Fejer, “Efficiency and phase of optical parametric amplification in chirped quasi-phase-matched gratings,” Opt. Lett. 35, 3093–3095 (2010).
[Crossref]

G. Cerullo, S. D. Silvestri, A. Monguzzi, D. Segala, and V. Magni, “Self-starting mode locking of a cw Nd:YAG laser using cascaded second-order nonlinearities,” Opt. Lett. 20, 746–748 (1995).
[Crossref]

X. Liu, L. Qian, and F. Wise, “High-energy pulse compression by use of negative phase shifts produced by the cascade χ(2):χ(2) nonlinearity,” Opt. Lett. 24, 1777–1779 (1999).
[Crossref]

Opt. Quantum Electron. (1)

G. I. Stegeman, D. J. Hagan, and L. Torner, “χ(2) cascading phenomena and their applications to all-optical signal processing, mode-locking, pulse compression and solitons,” Opt. Quantum Electron. 28, 1691–1740 (1996).
[Crossref]

Phys. Rep. (2)

A. V. Buryak, P. D. Trapani, D. V. Skryabin, and S. Trillo, “Optical solitons due to quadratic nonlinearities: from basic physics to futuristic applications,” Phys. Rep. 370, 63–235 (2002).
[Crossref]

U. Keller and A. C. Tropper, “Passively modelocked surface-emitting semiconductor lasers,” Phys. Rep. 429, 67–120 (2006).
[Crossref]

Phys. Rev. Lett. (1)

B. Zhou, A. Chong, F. Wise, and M. Bache, “Ultrafast and octave-spanning optical nonlinearities from strongly phase-mismatched quadratic interactions,” Phys. Rev. Lett. 109, 043902 (2012).
[Crossref]

Rev. Mod. Phys. (1)

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135–1184 (2006).
[Crossref]

Supplementary Material (1)

NameDescription
» Supplement 1: PDF (1278 KB)      Supplemental Document

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1. Illustration of the inverted domains in our fan-out, apodized QPM device implemented in MgO:LiNbO3. For clarity, the transverse profile of every 15th domain is shown (i.e., domains 1, 16, 31, …), and the thickness of the lines is not to scale (each domain is actually 3.5μm long). The illustration shows the two primary features. First, the fan-out profile, with period decreasing for larger transverse positions. Second, the apodization profile, where there is a large period at the input and output sides of the device (regions 1 and 3), and a smooth but rapid change to a shorter period within the middle part (region 2). To the right of the domain pattern, the time-dependent intensity of the laser and its SH are illustrated, indicating the small SH intensity in regions 1 and 3, and the moderate intensity in region 2.
Fig. 2.
Fig. 2. Eigenmodes of the coupled wave equations and their excitation. (a) Properties of the relevant eigenmodes for SHG. Blue curves, SH fraction of the eigenmode; red curves, rate of SPM for the first-harmonic part of the eigenmode. Dashed curves: large-Δk limit of the solid curves. (b) Example apodized QPM profile for adiabatic excitation of the desired eigenmode. (c) Green curve: trajectory of the relevant eigenmode given the QPM profile from (b), starting and ending with a very small SH component while having a smaller Δk in the middle to provide SPM. Blue curve: simulation of a plane- and continuous-wave SHG interaction, showing adiabatic following of the eigenmode. Red curve: conventional CQN interaction with Δk constant, exhibiting a larger peak SH intensity and strong oscillations. (d) Simulation of a pulsed plane-wave interaction relevant to our experimental conditions, illustrating how the ripples in (c) manifest as the two pulse components. (e) Output SH pulse profile from apodized and conventional (unapodized) QPM gratings; the apodized case corresponds to the output of (d).
Fig. 3.
Fig. 3. (a) Phase mismatch Δk(x,z)=Δk0(ω0)Kg(x,z) in the device used, assuming a wavelength λ0=2πc/ω0=1045nm. The apodization profile is designed according to [19], with additional buffer regions of constant and large Δk at the ends (regions outside the vertical dashed lines). (b) QPM profile 2π/Kg(xj,z) for three different transverse positions xj. The longitudinal coordinate is centered at 0 mm in this case to emphasize the symmetry. The grating k-vector required for phase-matched SHG at λ0=1045nm is Δk0953.5mm1, corresponding to the dashed horizontal line. The slope in grating k-vector Kg/x=40mm2. For the middle part of the grating (“Pos. 2”), the minimum grating k-vector is 894mm1.
Fig. 4.
Fig. 4. Soliton mode-locked Yb:CALGO laser setup: 3 mm Yb:CALGO crystal, a 2-mm-long fan-out apodized APPLN crystal, a 2-mm-thick fused silica Brewster plate (BP), a 200 mm radius mirror (M2), a 500 mm radius, 2% output coupling mirror (M3), and a SESAM (M4). M1–M4: laser cavity mirrors.
Fig. 5.
Fig. 5. Experimental results with mirror M2 configured as a GTI (500fs2 per reflection). (a) Measured optical spectrum. Inset: measured and sech2-fitted autocorrelation. The bandwidth is 11.8 nm (FWHM), and the autocorrelation indicates a pulse duration of 100 fs (FWHM) (1.01 times transform limit). (b) Microwave spectrum of the mode-locked laser (RBW 100 kHz; inset 1 kHz).
Fig. 6.
Fig. 6. Measured SH, indicating suppression of the normal cascading response in our APPLN device. (a) Spectrum from part of the beam coupled into an optical fiber. (b) Spectrum when translating the SH beam across the fiber collimator, to couple different parts of the beam; this indicates the presence of some spatiospectral coupling.
Fig. 7.
Fig. 7. Numerical simulations of the mode-locked laser, including the dynamics in the APPLN crystals (assuming Δk85mm1) and population dynamics in the Yb:CALGO crystal. The population dynamics are artificially accelerated by a factor of 1000 (see text). (a) Laser spectrum, in agreement with the experimentally measured spectrum shown in Fig. 5(a). Inset: intensity profile. (b) Evolution of the normalized population inversion β in the gain crystal. (c) and (d) Evolution of the laser spectrum and pulse profile over time, respectively (dB scales). The self-frequency shift is indicated in (c) by an arrow.
Fig. 8.
Fig. 8. Dependence of the (a) pulse duration and (b) center wavelength on output power for the configuration with mirror M2 as an HR. The output power corresponds to the total from both beams passing through the output coupler.
Fig. 9.
Fig. 9. SH spectra as a function of (a) laser power and (b) APPLN crystal position. The given range of the crystal position was read from the translation stage used to move the crystal. The laser was configured with mirror M2 as an HR.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

aNL(Δk(0)LNL)2+(Δk(L)LNL)2,
ϕSPM0L(Δk(z)LNL2)1dz,

Metrics