Abstract

Transparent conducting oxides have recently gained great attention as CMOS-compatible materials for applications in nanophotonics due to their low optical loss, metal-like behavior, versatile/tailorable optical properties, and established fabrication procedures. In particular, aluminum-doped zinc oxide (AZO) is very attractive because its dielectric permittivity can be engineered over a broad range in the near-IR and IR. However, despite all these beneficial features, the slow (>100ps) electron-hole recombination time typical of these compounds still represents a fundamental limitation impeding ultrafast optical modulation. Here we report the first epsilon-near-zero AZO thin films that simultaneously exhibit ultrafast carrier dynamics (excitation and recombination time below 1 ps) and an outstanding reflectance modulation up to 40% for very low pump fluence levels (<4mJ/cm2) at a telecom wavelength of 1.3 μm. The unique properties of the demonstrated AZO thin films are the result of a low-temperature fabrication procedure promoting deep-level defects within the film and an ultrahigh carrier concentration.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Plasmonic behaviors of metallic AZO thin film and AZO nanodisk array

Jia-Yu Lin, Kun-Da Zhong, and Po-Tsung Lee
Opt. Express 24(5) 5125-5135 (2016)

Picosecond carrier lifetime and large optical nonlinearities in InGaAsP grown by He-plasma-assisted molecular beam epitaxy

L. Qian, S. D. Benjamin, P. W. E. Smith, B. J. Robinson, and D. A. Thompson
Opt. Lett. 22(2) 108-110 (1997)

Large-scale high aspect ratio Al-doped ZnO nanopillars arrays as anisotropic metamaterials

E. Shkondin, O. Takayama, M. E. Aryaee Panah, P. Liu, P. V. Larsen, M. D. Mar, F. Jensen, and A. V. Lavrinenko
Opt. Mater. Express 7(5) 1606-1627 (2017)

References

  • View by:
  • |
  • |
  • |

  1. K. Nomura, H. Ohta, A. Takagi, T. Kamiya, M. Hirano, and H. Hosono, “Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors,” Nature 432, 488–492 (2004).
    [Crossref]
  2. H. Schmidt, H. Flugge, T. Winkler, T. Bulow, T. Riedl, and W. Kowalsky, “Efficient semitransparent inverted organic solar cells with indium tin oxide top electrode,” Appl. Phys. Lett. 94, 243302 (2009).
    [Crossref]
  3. D. H. Levy, A. C. Scuderi, and L. M. Irving, “Methods of making thin film transistors comprising zinc-oxide-based semiconductor materials and transistors made thereby,” U.S. patent7,691,666 B2 (Apr. 6, 2010), Eastman Kodak Company.
  4. Y. Li and B. S. Ong, “Thin film transistor using an oriented zinc oxide layer,” European patent EP1921681 A2 (May 14, 2008), Xerox Corporation.
  5. M. Pinarbasi and J. Freitag, “Method of forming transparent zinc oxide layers for high efficiency photovoltaic cells,” U.S. patent application2011/0108099 A1 (11November2009), Solopower, Inc.
  6. T. C. Gorjanc, D. Leong, C. Py, and D. Roth, “Room temperature deposition of ITO using r.f. magnetron sputtering,” Thin Solid Films 413, 181–185 (2002).
    [Crossref]
  7. A. Frolich and M. Wegener, “Spectroscopic characterization of highly doped ZnO films grown by atomic-layer deposition for three-dimensional infrared metamaterials,” Opt. Mater. Express 1, 883–889 (2011).
    [Crossref]
  8. A. K. Pradhan, R. M. Mundle, K. Santiago, J. R. Skuza, B. Xiao, K. D. Song, M. Bahoura, R. Cheaito, and P. E. Hopkins, “Extreme tunability in aluminum doped zinc oxide plasmonic materials for near-infrared applications,” Sci. Rep. 4, 6415 (2014).
    [Crossref]
  9. D. N. Pier, C. F. Gay, R. D. Wieting, and H. J. Langeberg, “Solar cells incorporating transparent electrodes comprising hazy zinc oxide,” U.S. patent5,078,803 A (7January 1992), Siemens Solar Industries L.P.
  10. S. H. Brewer and S. Franzen, “Indium tin oxide plasma frequency dependence on sheet resistance and surface adlayers determined by reflectance FTIR spectroscopy,” J. Phys. Chem. B 106, 12986–12992 (2002).
    [Crossref]
  11. S. Q. Li, P. Guo, L. Zhang, W. Zhou, T. W. Odom, T. Seideman, J. B. Ketterson, and R. P. H. Chang, “Infrared plasmonics with indium-tin-oxide nanorod arrays,” ACS Nano 5, 9161–9170 (2011).
    [Crossref]
  12. E. Feigenbaum, K. Diest, and H. A. Atwater, “Unity-order index change in transparent conducting oxides at visible frequencies,” Nano Lett. 10, 2111–2116 (2010).
  13. M. A. Noginov, L. Gu, J. Livenere, G. Zhu, A. K. Pradhan, R. Mundle, M. Bahoura, Y. A. Barnakov, and V. A. Podolskiy, “Transparent conductive oxides: plasmonic materials for telecom wavelengths,” Appl. Phys. Lett. 99, 021101 (2011).
    [Crossref]
  14. M. Abb, B. Sepulveda, H. M. H. Chong, and O. L. Muskens, “Transparent conducting oxides for active hybrid metamaterial devices,” J. Opt. 14, 114007 (2012).
    [Crossref]
  15. J. Kim, G. Naik, N. Emani, U. Guler, and A. Boltasseva, “Plasmonic resonances in nanostructured transparent conducting oxide films,” IEEE J. Sel. Top. Quantum Electron. 19, 1 (2013).
    [Crossref]
  16. G. Naik, J. Kim, and A. Boltasseva, “Oxides and nitrides as alternative plasmonic materials in the optical range,” Opt. Mater. Express 1, 1090–1099 (2011).
    [Crossref]
  17. T. R. Gordon, T. Paik, D. R. Klein, G. V. Naik, H. Caglayan, A. Boltasseva, and C. B. Murray, “Shape-dependent plasmonic response and directed self-assembly in a new semiconductor building block, indium-doped cadmium oxide (ICO),” Nano Lett. 13, 2857–2863 (2013).
  18. M. Kanehara, H. Koike, T. Yoshinaga, and T. Teranishi, “Indium tin oxide nanoparticles with compositionally tunable surface plasmon resonance frequencies in the near-IR region,” J. Am. Chem. Soc. 131, 17736–17737 (2009).
    [Crossref]
  19. G. Garcia, R. Buonsanti, E. L. Runnerstrom, R. J. Mendelsberg, A. Llordes, A. Anders, T. J. Richardson, and D. J. Milliron, “Dynamically modulating the surface plasmon resonance of doped semiconductor nanocrystals,” Nano Lett. 11, 4415–4420 (2011).
  20. G. V. Naik, V. M. Shalaev, and A. Boltasseva, “Alternative plasmonic materials: beyond gold and silver,” Adv. Mater. 25, 3264–3294 (2013).
    [Crossref]
  21. C. Rhodes, S. Franzen, J.-P. Maria, M. Losego, D. N. Leonard, B. Laughlin, G. Duscher, and S. Weibel, “Surface plasmon resonance in conducting metal oxides,” J. Opt. A Pure Appl. Opt. 100, 054905 (2006).
  22. H. Chen, R. J. Lamond, S. K. Pickus, L. Zhuo Ran, and V. J. Sorger, “A sub-lambda-size modulator beyond the efficiency-loss limit,” IEEE Photon. J. 5, 2202411 (2013).
    [Crossref]
  23. V. Babicheva, N. Kinsey, G. V. Naik, M. Ferrera, A. V. Lavrinenko, V. M. Shalaev, and A. Boltasseva, “Towards CMOS-compatible nanophotonics: ultra-compact modulators using alternative plasmonic materials,” Opt. Express 21, 27326–27337 (2013).
    [Crossref]
  24. D. B. Tice, S. Q. Li, M. Tagliazucchi, D. B. Buchholz, E. A. Weiss, and R. P. H. Chang, “Ultrafast modulation of the plasma frequency of vertically aligned indium tin oxide rods,” Nano Lett. 14, 1120–1126 (2014).
  25. M. Abb, P. Albella, J. Aizpurua, and O. L. Muskens, “All-optical control of a single plasmonic nanoantenna-ITO hybrid,” Nano Lett. 11, 2457–2463 (2011).
  26. V. J. Sorger, N. D. Lanzillotti-Kimura, R. Ma, and X. Zhang, “Ultra-compact silicon nanophotonic modulator with broadband response,” Nanophotonics 1, 17–22 (2012).
    [Crossref]
  27. H. W. Lee, G. Papadakis, S. P. Burgos, K. Chander, A. Kriesch, R. Pala, U. Peschel, and H. A. Atwater, “Nanoscale conducting oxide PlasMOStor,” Nano Lett. 14, 6463–6468 (2014).
  28. A. J. Sabbah and D. M. Riffe, “Femtosecond pump-probe reflectivity study of silicon carrier dynamics,” Phys. Rev. B 66, 165217 (2002).
  29. V. Van, T. A. Ibrahim, K. Ritter, P. P. Absil, F. G. Johnson, R. Grover, J. Goldhar, and P. T. Ho, “All-optical nonlinear switching in GaAs-AlGaAs microring resonators,” IEEE Photon. Technol. Lett. 14, 74–76 (2002).
    [Crossref]
  30. D. A. Neamen, Semiconductor Physics and Devices Basic Principles (McGraw-Hill, 2003).
  31. E. S. Harmon, M. R. Melloch, J. M. Woodall, D. D. Nolte, N. Otsuka, and C. L. Chang, “Carrier lifetime versus anneal in low temperature growth GaAs,” Appl. Phys. Lett. 63, 2248–2250 (1993).
    [Crossref]
  32. N. P. Wells, P. M. Belden, J. R. Demers, and W. T. Lotshaw, “Transient reflectivity as a probe of ultrafast carrier dynamics in semiconductors: a revised model for low-temperature grown GaAs,” J. Opt. A Pure Appl. Opt. 116, 073506 (2014).
  33. S. Gupta, M. Y. Frankel, J. A. Valdmanis, J. F. Whitaker, G. A. Mourou, F. W. Smith, and A. R. Calawa, “Subpicosecond carrier lifetime in GaAs grown by molecular beam epitaxy at low temperatures,” Appl. Phys. Lett. 59, 3276–3278 (1991).
    [Crossref]
  34. S. Gupta, J. F. Whitaker, and G. A. Mourou, “Ultrafast carrier dynamics in III-V semiconductors grown by molecular-beam epitaxy at very low substrate temperatures,” IEEE J. Quantum Electron. 28, 2464–2472 (1992).
    [Crossref]
  35. L. Nevou, J. Mangeney, M. Tchernycheva, F. H. Julien, F. Guillot, and E. Monroy, “Ultrafast relaxation and optical saturation of intraband absorption of GaN/AlN quantum dots,” Appl. Phys. Lett. 94, 132104 (2009).
    [Crossref]
  36. N. Iizuka, K. Kaneko, and N. Suzuki, “Near-infrared intersubband absorption in GaN/AlN quantum wells grown by molecular beam epitaxy,” Appl. Phys. Lett. 81, 1803–1805 (2002).
    [Crossref]
  37. N. Iizuka, K. Kaneko, and N. Suzuki, “All-optical switch utilizing intersubband transition in GaN quantum wells,” IEEE J. Quantum Electron. 42, 765–771 (2006).
    [Crossref]
  38. V. Ortiz, J. Nagle, and A. Alexandrou, “Influence of the hole population on the transient reflectivity signal of annealed low-temperature-grown GaAs,” Appl. Phys. Lett. 80, 2505–2509 (2002).
    [Crossref]
  39. C. H. Lee, A. Antonetti, and G. Mourou, “Measurements on the photoconductive lifetime of carriers in GaAs by optoelectronic gating technique,” Opt. Commun. 21, 158–161 (1977).
    [Crossref]
  40. K. F. Lamprecht, S. Juen, L. Palmetshofer, and R. A. Hopfel, “Ultrashort carrier lifetimes in H+ bombarded InP,” Appl. Phys. Lett. 59, 926–928 (1991).
    [Crossref]
  41. F. E. Doany, D. Grischkowsky, and C. C. Chi, “Carrier lifetime versus ion-implantation dose in silicon on sapphire,” Appl. Phys. Lett. 50, 460–462 (1987).
    [Crossref]
  42. D. H. Auston, P. Lavallard, N. Sol, and D. Kaplan, “An amorphous silicon photodetector for picosecond pulses,” Appl. Phys. Lett. 36, 66–68 (1980).
    [Crossref]
  43. A. Esser, K. Seibert, H. Kurz, G. N. Parsons, C. Wang, B. N. Davidson, G. Lucovsky, and R. J. Nemanich, “Ultrafast recombination and trapping in amorphous silicon,” Phys. Rev. B 41, 2879–2884 (1990).
  44. A. M. Mahmoud and N. Engheta, “Wave-matter interactions in epsilon-and-mu-near-zero structures,” Nat. Commun. 5, 5638 (2014).
    [Crossref]
  45. D. Traviss, R. Bruck, B. Mills, M. Abb, and O. L. Muskens, “Ultrafast plasmonics using transparent conductive oxide hybrids in the epsilon-near-zero regime,” Appl. Phys. Lett. 102, 121112 (2013).
    [Crossref]
  46. M. G. Silveirinha and N. Engheta, “Theory of supercoupling, squeezing wave energy, and field confinement in narrow channels and tight bends using ε near-zero metamaterials,” Phys. Rev. B 76, 245109 (2007).
  47. G. Naik and A. Boltasseva, “Plasmonics and metamaterials: looking beyond gold and silver,” SPIE Newsroom (30January2012), doi: 10.1117/2.1201201.004077.
  48. A. V. Singh, R. M. Mehra, N. Buthrath, A. Wakahara, and A. Yoshida, “Highly conductive and transparent aluminum-doped zinc oxide thin films prepared by pulsed laser deposition in oxygen ambient,” J. Opt. A Pure Appl. Opt. 90, 5661–5665 (2001).
  49. H. Kim, J. S. Horwitz, S. B. Qadri, and D. B. Chrisey, “Epitaxial growth of Al-doped ZnO thin films grown by pulsed laser deposition,” Thin Solid Films 420, 107–111 (2002).
    [Crossref]
  50. D. Ashkenasi, M. Lorenz, and A. Rosenfeld, “Surface damage threshold and structuring of dielectrics using femtosecond laser pulses: the role of incubation,” Appl. Surf. Sci. 150, 101–106 (1999).
    [Crossref]
  51. R. Boyd, Nonlinear Optics (Elsevier, 2008).
  52. A. Janotti and C. G. V. de Walle, “Oxygen vacancies in ZnO,” Appl. Phys. Lett. 87, 122102 (2005).
    [Crossref]
  53. J. Kim, G. V. Naik, A. V. Gavrilenko, K. Dondapati, V. I. Gavrilenko, S. M. Prokes, O. J. Glembocki, V. M. Shalaev, and A. Boltasseva, “Optical properties of gallium-doped zinc oxide—a low-loss plasmonic material: first-principles theory and experiment,” Phys. Rev. X 3, 041037 (2013).
    [Crossref]
  54. L. Alloatti, R. Palmer, S. Diebold, K. P. Pahl, B. Chen, R. Dinu, M. Fournier, J. M. Fedeli, T. Zwick, W. Freude, C. Koos, and J. Leuthold, “100  GHz silicon-organic hybrid modulator,” Light Sci. Appl. 3, e173–e177 (2014).
  55. M. R. Watts, W. A. Zortman, D. C. Trotter, R. W. Young, and A. L. Lentine, “Vertical junction silicon microdisk modulators and switches,” Opt. Express 19, 21989–22003 (2011).
    [Crossref]
  56. E. Timurdogan, C. M. Sorace-Agaskar, J. Sun, E. S. Hosseini, A. Biberman, and M. R. Watts, “An ultralow power athermal silicon modulator,” Nat. Commun. 5, 4008 (2014).
    [Crossref]
  57. Q. Xu, S. Manipatruni, B. Schmidt, J. Shakya, and M. Lipson, “12.5  Gbit/s carrier-injection-based silicon micro-ring silicon modulators,” Opt. Express 15, 430–436 (2007).
    [Crossref]

2014 (7)

A. K. Pradhan, R. M. Mundle, K. Santiago, J. R. Skuza, B. Xiao, K. D. Song, M. Bahoura, R. Cheaito, and P. E. Hopkins, “Extreme tunability in aluminum doped zinc oxide plasmonic materials for near-infrared applications,” Sci. Rep. 4, 6415 (2014).
[Crossref]

D. B. Tice, S. Q. Li, M. Tagliazucchi, D. B. Buchholz, E. A. Weiss, and R. P. H. Chang, “Ultrafast modulation of the plasma frequency of vertically aligned indium tin oxide rods,” Nano Lett. 14, 1120–1126 (2014).

H. W. Lee, G. Papadakis, S. P. Burgos, K. Chander, A. Kriesch, R. Pala, U. Peschel, and H. A. Atwater, “Nanoscale conducting oxide PlasMOStor,” Nano Lett. 14, 6463–6468 (2014).

N. P. Wells, P. M. Belden, J. R. Demers, and W. T. Lotshaw, “Transient reflectivity as a probe of ultrafast carrier dynamics in semiconductors: a revised model for low-temperature grown GaAs,” J. Opt. A Pure Appl. Opt. 116, 073506 (2014).

A. M. Mahmoud and N. Engheta, “Wave-matter interactions in epsilon-and-mu-near-zero structures,” Nat. Commun. 5, 5638 (2014).
[Crossref]

L. Alloatti, R. Palmer, S. Diebold, K. P. Pahl, B. Chen, R. Dinu, M. Fournier, J. M. Fedeli, T. Zwick, W. Freude, C. Koos, and J. Leuthold, “100  GHz silicon-organic hybrid modulator,” Light Sci. Appl. 3, e173–e177 (2014).

E. Timurdogan, C. M. Sorace-Agaskar, J. Sun, E. S. Hosseini, A. Biberman, and M. R. Watts, “An ultralow power athermal silicon modulator,” Nat. Commun. 5, 4008 (2014).
[Crossref]

2013 (7)

J. Kim, G. V. Naik, A. V. Gavrilenko, K. Dondapati, V. I. Gavrilenko, S. M. Prokes, O. J. Glembocki, V. M. Shalaev, and A. Boltasseva, “Optical properties of gallium-doped zinc oxide—a low-loss plasmonic material: first-principles theory and experiment,” Phys. Rev. X 3, 041037 (2013).
[Crossref]

D. Traviss, R. Bruck, B. Mills, M. Abb, and O. L. Muskens, “Ultrafast plasmonics using transparent conductive oxide hybrids in the epsilon-near-zero regime,” Appl. Phys. Lett. 102, 121112 (2013).
[Crossref]

H. Chen, R. J. Lamond, S. K. Pickus, L. Zhuo Ran, and V. J. Sorger, “A sub-lambda-size modulator beyond the efficiency-loss limit,” IEEE Photon. J. 5, 2202411 (2013).
[Crossref]

V. Babicheva, N. Kinsey, G. V. Naik, M. Ferrera, A. V. Lavrinenko, V. M. Shalaev, and A. Boltasseva, “Towards CMOS-compatible nanophotonics: ultra-compact modulators using alternative plasmonic materials,” Opt. Express 21, 27326–27337 (2013).
[Crossref]

J. Kim, G. Naik, N. Emani, U. Guler, and A. Boltasseva, “Plasmonic resonances in nanostructured transparent conducting oxide films,” IEEE J. Sel. Top. Quantum Electron. 19, 1 (2013).
[Crossref]

T. R. Gordon, T. Paik, D. R. Klein, G. V. Naik, H. Caglayan, A. Boltasseva, and C. B. Murray, “Shape-dependent plasmonic response and directed self-assembly in a new semiconductor building block, indium-doped cadmium oxide (ICO),” Nano Lett. 13, 2857–2863 (2013).

G. V. Naik, V. M. Shalaev, and A. Boltasseva, “Alternative plasmonic materials: beyond gold and silver,” Adv. Mater. 25, 3264–3294 (2013).
[Crossref]

2012 (2)

M. Abb, B. Sepulveda, H. M. H. Chong, and O. L. Muskens, “Transparent conducting oxides for active hybrid metamaterial devices,” J. Opt. 14, 114007 (2012).
[Crossref]

V. J. Sorger, N. D. Lanzillotti-Kimura, R. Ma, and X. Zhang, “Ultra-compact silicon nanophotonic modulator with broadband response,” Nanophotonics 1, 17–22 (2012).
[Crossref]

2011 (7)

G. Garcia, R. Buonsanti, E. L. Runnerstrom, R. J. Mendelsberg, A. Llordes, A. Anders, T. J. Richardson, and D. J. Milliron, “Dynamically modulating the surface plasmon resonance of doped semiconductor nanocrystals,” Nano Lett. 11, 4415–4420 (2011).

M. Abb, P. Albella, J. Aizpurua, and O. L. Muskens, “All-optical control of a single plasmonic nanoantenna-ITO hybrid,” Nano Lett. 11, 2457–2463 (2011).

M. A. Noginov, L. Gu, J. Livenere, G. Zhu, A. K. Pradhan, R. Mundle, M. Bahoura, Y. A. Barnakov, and V. A. Podolskiy, “Transparent conductive oxides: plasmonic materials for telecom wavelengths,” Appl. Phys. Lett. 99, 021101 (2011).
[Crossref]

G. Naik, J. Kim, and A. Boltasseva, “Oxides and nitrides as alternative plasmonic materials in the optical range,” Opt. Mater. Express 1, 1090–1099 (2011).
[Crossref]

S. Q. Li, P. Guo, L. Zhang, W. Zhou, T. W. Odom, T. Seideman, J. B. Ketterson, and R. P. H. Chang, “Infrared plasmonics with indium-tin-oxide nanorod arrays,” ACS Nano 5, 9161–9170 (2011).
[Crossref]

A. Frolich and M. Wegener, “Spectroscopic characterization of highly doped ZnO films grown by atomic-layer deposition for three-dimensional infrared metamaterials,” Opt. Mater. Express 1, 883–889 (2011).
[Crossref]

M. R. Watts, W. A. Zortman, D. C. Trotter, R. W. Young, and A. L. Lentine, “Vertical junction silicon microdisk modulators and switches,” Opt. Express 19, 21989–22003 (2011).
[Crossref]

2010 (1)

E. Feigenbaum, K. Diest, and H. A. Atwater, “Unity-order index change in transparent conducting oxides at visible frequencies,” Nano Lett. 10, 2111–2116 (2010).

2009 (3)

H. Schmidt, H. Flugge, T. Winkler, T. Bulow, T. Riedl, and W. Kowalsky, “Efficient semitransparent inverted organic solar cells with indium tin oxide top electrode,” Appl. Phys. Lett. 94, 243302 (2009).
[Crossref]

M. Kanehara, H. Koike, T. Yoshinaga, and T. Teranishi, “Indium tin oxide nanoparticles with compositionally tunable surface plasmon resonance frequencies in the near-IR region,” J. Am. Chem. Soc. 131, 17736–17737 (2009).
[Crossref]

L. Nevou, J. Mangeney, M. Tchernycheva, F. H. Julien, F. Guillot, and E. Monroy, “Ultrafast relaxation and optical saturation of intraband absorption of GaN/AlN quantum dots,” Appl. Phys. Lett. 94, 132104 (2009).
[Crossref]

2007 (2)

Q. Xu, S. Manipatruni, B. Schmidt, J. Shakya, and M. Lipson, “12.5  Gbit/s carrier-injection-based silicon micro-ring silicon modulators,” Opt. Express 15, 430–436 (2007).
[Crossref]

M. G. Silveirinha and N. Engheta, “Theory of supercoupling, squeezing wave energy, and field confinement in narrow channels and tight bends using ε near-zero metamaterials,” Phys. Rev. B 76, 245109 (2007).

2006 (2)

N. Iizuka, K. Kaneko, and N. Suzuki, “All-optical switch utilizing intersubband transition in GaN quantum wells,” IEEE J. Quantum Electron. 42, 765–771 (2006).
[Crossref]

C. Rhodes, S. Franzen, J.-P. Maria, M. Losego, D. N. Leonard, B. Laughlin, G. Duscher, and S. Weibel, “Surface plasmon resonance in conducting metal oxides,” J. Opt. A Pure Appl. Opt. 100, 054905 (2006).

2005 (1)

A. Janotti and C. G. V. de Walle, “Oxygen vacancies in ZnO,” Appl. Phys. Lett. 87, 122102 (2005).
[Crossref]

2004 (1)

K. Nomura, H. Ohta, A. Takagi, T. Kamiya, M. Hirano, and H. Hosono, “Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors,” Nature 432, 488–492 (2004).
[Crossref]

2002 (7)

T. C. Gorjanc, D. Leong, C. Py, and D. Roth, “Room temperature deposition of ITO using r.f. magnetron sputtering,” Thin Solid Films 413, 181–185 (2002).
[Crossref]

S. H. Brewer and S. Franzen, “Indium tin oxide plasma frequency dependence on sheet resistance and surface adlayers determined by reflectance FTIR spectroscopy,” J. Phys. Chem. B 106, 12986–12992 (2002).
[Crossref]

V. Ortiz, J. Nagle, and A. Alexandrou, “Influence of the hole population on the transient reflectivity signal of annealed low-temperature-grown GaAs,” Appl. Phys. Lett. 80, 2505–2509 (2002).
[Crossref]

N. Iizuka, K. Kaneko, and N. Suzuki, “Near-infrared intersubband absorption in GaN/AlN quantum wells grown by molecular beam epitaxy,” Appl. Phys. Lett. 81, 1803–1805 (2002).
[Crossref]

A. J. Sabbah and D. M. Riffe, “Femtosecond pump-probe reflectivity study of silicon carrier dynamics,” Phys. Rev. B 66, 165217 (2002).

V. Van, T. A. Ibrahim, K. Ritter, P. P. Absil, F. G. Johnson, R. Grover, J. Goldhar, and P. T. Ho, “All-optical nonlinear switching in GaAs-AlGaAs microring resonators,” IEEE Photon. Technol. Lett. 14, 74–76 (2002).
[Crossref]

H. Kim, J. S. Horwitz, S. B. Qadri, and D. B. Chrisey, “Epitaxial growth of Al-doped ZnO thin films grown by pulsed laser deposition,” Thin Solid Films 420, 107–111 (2002).
[Crossref]

2001 (1)

A. V. Singh, R. M. Mehra, N. Buthrath, A. Wakahara, and A. Yoshida, “Highly conductive and transparent aluminum-doped zinc oxide thin films prepared by pulsed laser deposition in oxygen ambient,” J. Opt. A Pure Appl. Opt. 90, 5661–5665 (2001).

1999 (1)

D. Ashkenasi, M. Lorenz, and A. Rosenfeld, “Surface damage threshold and structuring of dielectrics using femtosecond laser pulses: the role of incubation,” Appl. Surf. Sci. 150, 101–106 (1999).
[Crossref]

1993 (1)

E. S. Harmon, M. R. Melloch, J. M. Woodall, D. D. Nolte, N. Otsuka, and C. L. Chang, “Carrier lifetime versus anneal in low temperature growth GaAs,” Appl. Phys. Lett. 63, 2248–2250 (1993).
[Crossref]

1992 (1)

S. Gupta, J. F. Whitaker, and G. A. Mourou, “Ultrafast carrier dynamics in III-V semiconductors grown by molecular-beam epitaxy at very low substrate temperatures,” IEEE J. Quantum Electron. 28, 2464–2472 (1992).
[Crossref]

1991 (2)

K. F. Lamprecht, S. Juen, L. Palmetshofer, and R. A. Hopfel, “Ultrashort carrier lifetimes in H+ bombarded InP,” Appl. Phys. Lett. 59, 926–928 (1991).
[Crossref]

S. Gupta, M. Y. Frankel, J. A. Valdmanis, J. F. Whitaker, G. A. Mourou, F. W. Smith, and A. R. Calawa, “Subpicosecond carrier lifetime in GaAs grown by molecular beam epitaxy at low temperatures,” Appl. Phys. Lett. 59, 3276–3278 (1991).
[Crossref]

1990 (1)

A. Esser, K. Seibert, H. Kurz, G. N. Parsons, C. Wang, B. N. Davidson, G. Lucovsky, and R. J. Nemanich, “Ultrafast recombination and trapping in amorphous silicon,” Phys. Rev. B 41, 2879–2884 (1990).

1987 (1)

F. E. Doany, D. Grischkowsky, and C. C. Chi, “Carrier lifetime versus ion-implantation dose in silicon on sapphire,” Appl. Phys. Lett. 50, 460–462 (1987).
[Crossref]

1980 (1)

D. H. Auston, P. Lavallard, N. Sol, and D. Kaplan, “An amorphous silicon photodetector for picosecond pulses,” Appl. Phys. Lett. 36, 66–68 (1980).
[Crossref]

1977 (1)

C. H. Lee, A. Antonetti, and G. Mourou, “Measurements on the photoconductive lifetime of carriers in GaAs by optoelectronic gating technique,” Opt. Commun. 21, 158–161 (1977).
[Crossref]

Abb, M.

D. Traviss, R. Bruck, B. Mills, M. Abb, and O. L. Muskens, “Ultrafast plasmonics using transparent conductive oxide hybrids in the epsilon-near-zero regime,” Appl. Phys. Lett. 102, 121112 (2013).
[Crossref]

M. Abb, B. Sepulveda, H. M. H. Chong, and O. L. Muskens, “Transparent conducting oxides for active hybrid metamaterial devices,” J. Opt. 14, 114007 (2012).
[Crossref]

M. Abb, P. Albella, J. Aizpurua, and O. L. Muskens, “All-optical control of a single plasmonic nanoantenna-ITO hybrid,” Nano Lett. 11, 2457–2463 (2011).

Absil, P. P.

V. Van, T. A. Ibrahim, K. Ritter, P. P. Absil, F. G. Johnson, R. Grover, J. Goldhar, and P. T. Ho, “All-optical nonlinear switching in GaAs-AlGaAs microring resonators,” IEEE Photon. Technol. Lett. 14, 74–76 (2002).
[Crossref]

Aizpurua, J.

M. Abb, P. Albella, J. Aizpurua, and O. L. Muskens, “All-optical control of a single plasmonic nanoantenna-ITO hybrid,” Nano Lett. 11, 2457–2463 (2011).

Albella, P.

M. Abb, P. Albella, J. Aizpurua, and O. L. Muskens, “All-optical control of a single plasmonic nanoantenna-ITO hybrid,” Nano Lett. 11, 2457–2463 (2011).

Alexandrou, A.

V. Ortiz, J. Nagle, and A. Alexandrou, “Influence of the hole population on the transient reflectivity signal of annealed low-temperature-grown GaAs,” Appl. Phys. Lett. 80, 2505–2509 (2002).
[Crossref]

Alloatti, L.

L. Alloatti, R. Palmer, S. Diebold, K. P. Pahl, B. Chen, R. Dinu, M. Fournier, J. M. Fedeli, T. Zwick, W. Freude, C. Koos, and J. Leuthold, “100  GHz silicon-organic hybrid modulator,” Light Sci. Appl. 3, e173–e177 (2014).

Anders, A.

G. Garcia, R. Buonsanti, E. L. Runnerstrom, R. J. Mendelsberg, A. Llordes, A. Anders, T. J. Richardson, and D. J. Milliron, “Dynamically modulating the surface plasmon resonance of doped semiconductor nanocrystals,” Nano Lett. 11, 4415–4420 (2011).

Antonetti, A.

C. H. Lee, A. Antonetti, and G. Mourou, “Measurements on the photoconductive lifetime of carriers in GaAs by optoelectronic gating technique,” Opt. Commun. 21, 158–161 (1977).
[Crossref]

Ashkenasi, D.

D. Ashkenasi, M. Lorenz, and A. Rosenfeld, “Surface damage threshold and structuring of dielectrics using femtosecond laser pulses: the role of incubation,” Appl. Surf. Sci. 150, 101–106 (1999).
[Crossref]

Atwater, H. A.

H. W. Lee, G. Papadakis, S. P. Burgos, K. Chander, A. Kriesch, R. Pala, U. Peschel, and H. A. Atwater, “Nanoscale conducting oxide PlasMOStor,” Nano Lett. 14, 6463–6468 (2014).

E. Feigenbaum, K. Diest, and H. A. Atwater, “Unity-order index change in transparent conducting oxides at visible frequencies,” Nano Lett. 10, 2111–2116 (2010).

Auston, D. H.

D. H. Auston, P. Lavallard, N. Sol, and D. Kaplan, “An amorphous silicon photodetector for picosecond pulses,” Appl. Phys. Lett. 36, 66–68 (1980).
[Crossref]

Babicheva, V.

Bahoura, M.

A. K. Pradhan, R. M. Mundle, K. Santiago, J. R. Skuza, B. Xiao, K. D. Song, M. Bahoura, R. Cheaito, and P. E. Hopkins, “Extreme tunability in aluminum doped zinc oxide plasmonic materials for near-infrared applications,” Sci. Rep. 4, 6415 (2014).
[Crossref]

M. A. Noginov, L. Gu, J. Livenere, G. Zhu, A. K. Pradhan, R. Mundle, M. Bahoura, Y. A. Barnakov, and V. A. Podolskiy, “Transparent conductive oxides: plasmonic materials for telecom wavelengths,” Appl. Phys. Lett. 99, 021101 (2011).
[Crossref]

Barnakov, Y. A.

M. A. Noginov, L. Gu, J. Livenere, G. Zhu, A. K. Pradhan, R. Mundle, M. Bahoura, Y. A. Barnakov, and V. A. Podolskiy, “Transparent conductive oxides: plasmonic materials for telecom wavelengths,” Appl. Phys. Lett. 99, 021101 (2011).
[Crossref]

Belden, P. M.

N. P. Wells, P. M. Belden, J. R. Demers, and W. T. Lotshaw, “Transient reflectivity as a probe of ultrafast carrier dynamics in semiconductors: a revised model for low-temperature grown GaAs,” J. Opt. A Pure Appl. Opt. 116, 073506 (2014).

Biberman, A.

E. Timurdogan, C. M. Sorace-Agaskar, J. Sun, E. S. Hosseini, A. Biberman, and M. R. Watts, “An ultralow power athermal silicon modulator,” Nat. Commun. 5, 4008 (2014).
[Crossref]

Boltasseva, A.

V. Babicheva, N. Kinsey, G. V. Naik, M. Ferrera, A. V. Lavrinenko, V. M. Shalaev, and A. Boltasseva, “Towards CMOS-compatible nanophotonics: ultra-compact modulators using alternative plasmonic materials,” Opt. Express 21, 27326–27337 (2013).
[Crossref]

J. Kim, G. Naik, N. Emani, U. Guler, and A. Boltasseva, “Plasmonic resonances in nanostructured transparent conducting oxide films,” IEEE J. Sel. Top. Quantum Electron. 19, 1 (2013).
[Crossref]

T. R. Gordon, T. Paik, D. R. Klein, G. V. Naik, H. Caglayan, A. Boltasseva, and C. B. Murray, “Shape-dependent plasmonic response and directed self-assembly in a new semiconductor building block, indium-doped cadmium oxide (ICO),” Nano Lett. 13, 2857–2863 (2013).

G. V. Naik, V. M. Shalaev, and A. Boltasseva, “Alternative plasmonic materials: beyond gold and silver,” Adv. Mater. 25, 3264–3294 (2013).
[Crossref]

J. Kim, G. V. Naik, A. V. Gavrilenko, K. Dondapati, V. I. Gavrilenko, S. M. Prokes, O. J. Glembocki, V. M. Shalaev, and A. Boltasseva, “Optical properties of gallium-doped zinc oxide—a low-loss plasmonic material: first-principles theory and experiment,” Phys. Rev. X 3, 041037 (2013).
[Crossref]

G. Naik, J. Kim, and A. Boltasseva, “Oxides and nitrides as alternative plasmonic materials in the optical range,” Opt. Mater. Express 1, 1090–1099 (2011).
[Crossref]

G. Naik and A. Boltasseva, “Plasmonics and metamaterials: looking beyond gold and silver,” SPIE Newsroom (30January2012), doi: 10.1117/2.1201201.004077.

Boyd, R.

R. Boyd, Nonlinear Optics (Elsevier, 2008).

Brewer, S. H.

S. H. Brewer and S. Franzen, “Indium tin oxide plasma frequency dependence on sheet resistance and surface adlayers determined by reflectance FTIR spectroscopy,” J. Phys. Chem. B 106, 12986–12992 (2002).
[Crossref]

Bruck, R.

D. Traviss, R. Bruck, B. Mills, M. Abb, and O. L. Muskens, “Ultrafast plasmonics using transparent conductive oxide hybrids in the epsilon-near-zero regime,” Appl. Phys. Lett. 102, 121112 (2013).
[Crossref]

Buchholz, D. B.

D. B. Tice, S. Q. Li, M. Tagliazucchi, D. B. Buchholz, E. A. Weiss, and R. P. H. Chang, “Ultrafast modulation of the plasma frequency of vertically aligned indium tin oxide rods,” Nano Lett. 14, 1120–1126 (2014).

Bulow, T.

H. Schmidt, H. Flugge, T. Winkler, T. Bulow, T. Riedl, and W. Kowalsky, “Efficient semitransparent inverted organic solar cells with indium tin oxide top electrode,” Appl. Phys. Lett. 94, 243302 (2009).
[Crossref]

Buonsanti, R.

G. Garcia, R. Buonsanti, E. L. Runnerstrom, R. J. Mendelsberg, A. Llordes, A. Anders, T. J. Richardson, and D. J. Milliron, “Dynamically modulating the surface plasmon resonance of doped semiconductor nanocrystals,” Nano Lett. 11, 4415–4420 (2011).

Burgos, S. P.

H. W. Lee, G. Papadakis, S. P. Burgos, K. Chander, A. Kriesch, R. Pala, U. Peschel, and H. A. Atwater, “Nanoscale conducting oxide PlasMOStor,” Nano Lett. 14, 6463–6468 (2014).

Buthrath, N.

A. V. Singh, R. M. Mehra, N. Buthrath, A. Wakahara, and A. Yoshida, “Highly conductive and transparent aluminum-doped zinc oxide thin films prepared by pulsed laser deposition in oxygen ambient,” J. Opt. A Pure Appl. Opt. 90, 5661–5665 (2001).

Caglayan, H.

T. R. Gordon, T. Paik, D. R. Klein, G. V. Naik, H. Caglayan, A. Boltasseva, and C. B. Murray, “Shape-dependent plasmonic response and directed self-assembly in a new semiconductor building block, indium-doped cadmium oxide (ICO),” Nano Lett. 13, 2857–2863 (2013).

Calawa, A. R.

S. Gupta, M. Y. Frankel, J. A. Valdmanis, J. F. Whitaker, G. A. Mourou, F. W. Smith, and A. R. Calawa, “Subpicosecond carrier lifetime in GaAs grown by molecular beam epitaxy at low temperatures,” Appl. Phys. Lett. 59, 3276–3278 (1991).
[Crossref]

Chander, K.

H. W. Lee, G. Papadakis, S. P. Burgos, K. Chander, A. Kriesch, R. Pala, U. Peschel, and H. A. Atwater, “Nanoscale conducting oxide PlasMOStor,” Nano Lett. 14, 6463–6468 (2014).

Chang, C. L.

E. S. Harmon, M. R. Melloch, J. M. Woodall, D. D. Nolte, N. Otsuka, and C. L. Chang, “Carrier lifetime versus anneal in low temperature growth GaAs,” Appl. Phys. Lett. 63, 2248–2250 (1993).
[Crossref]

Chang, R. P. H.

D. B. Tice, S. Q. Li, M. Tagliazucchi, D. B. Buchholz, E. A. Weiss, and R. P. H. Chang, “Ultrafast modulation of the plasma frequency of vertically aligned indium tin oxide rods,” Nano Lett. 14, 1120–1126 (2014).

S. Q. Li, P. Guo, L. Zhang, W. Zhou, T. W. Odom, T. Seideman, J. B. Ketterson, and R. P. H. Chang, “Infrared plasmonics with indium-tin-oxide nanorod arrays,” ACS Nano 5, 9161–9170 (2011).
[Crossref]

Cheaito, R.

A. K. Pradhan, R. M. Mundle, K. Santiago, J. R. Skuza, B. Xiao, K. D. Song, M. Bahoura, R. Cheaito, and P. E. Hopkins, “Extreme tunability in aluminum doped zinc oxide plasmonic materials for near-infrared applications,” Sci. Rep. 4, 6415 (2014).
[Crossref]

Chen, B.

L. Alloatti, R. Palmer, S. Diebold, K. P. Pahl, B. Chen, R. Dinu, M. Fournier, J. M. Fedeli, T. Zwick, W. Freude, C. Koos, and J. Leuthold, “100  GHz silicon-organic hybrid modulator,” Light Sci. Appl. 3, e173–e177 (2014).

Chen, H.

H. Chen, R. J. Lamond, S. K. Pickus, L. Zhuo Ran, and V. J. Sorger, “A sub-lambda-size modulator beyond the efficiency-loss limit,” IEEE Photon. J. 5, 2202411 (2013).
[Crossref]

Chi, C. C.

F. E. Doany, D. Grischkowsky, and C. C. Chi, “Carrier lifetime versus ion-implantation dose in silicon on sapphire,” Appl. Phys. Lett. 50, 460–462 (1987).
[Crossref]

Chong, H. M. H.

M. Abb, B. Sepulveda, H. M. H. Chong, and O. L. Muskens, “Transparent conducting oxides for active hybrid metamaterial devices,” J. Opt. 14, 114007 (2012).
[Crossref]

Chrisey, D. B.

H. Kim, J. S. Horwitz, S. B. Qadri, and D. B. Chrisey, “Epitaxial growth of Al-doped ZnO thin films grown by pulsed laser deposition,” Thin Solid Films 420, 107–111 (2002).
[Crossref]

Davidson, B. N.

A. Esser, K. Seibert, H. Kurz, G. N. Parsons, C. Wang, B. N. Davidson, G. Lucovsky, and R. J. Nemanich, “Ultrafast recombination and trapping in amorphous silicon,” Phys. Rev. B 41, 2879–2884 (1990).

de Walle, C. G. V.

A. Janotti and C. G. V. de Walle, “Oxygen vacancies in ZnO,” Appl. Phys. Lett. 87, 122102 (2005).
[Crossref]

Demers, J. R.

N. P. Wells, P. M. Belden, J. R. Demers, and W. T. Lotshaw, “Transient reflectivity as a probe of ultrafast carrier dynamics in semiconductors: a revised model for low-temperature grown GaAs,” J. Opt. A Pure Appl. Opt. 116, 073506 (2014).

Diebold, S.

L. Alloatti, R. Palmer, S. Diebold, K. P. Pahl, B. Chen, R. Dinu, M. Fournier, J. M. Fedeli, T. Zwick, W. Freude, C. Koos, and J. Leuthold, “100  GHz silicon-organic hybrid modulator,” Light Sci. Appl. 3, e173–e177 (2014).

Diest, K.

E. Feigenbaum, K. Diest, and H. A. Atwater, “Unity-order index change in transparent conducting oxides at visible frequencies,” Nano Lett. 10, 2111–2116 (2010).

Dinu, R.

L. Alloatti, R. Palmer, S. Diebold, K. P. Pahl, B. Chen, R. Dinu, M. Fournier, J. M. Fedeli, T. Zwick, W. Freude, C. Koos, and J. Leuthold, “100  GHz silicon-organic hybrid modulator,” Light Sci. Appl. 3, e173–e177 (2014).

Doany, F. E.

F. E. Doany, D. Grischkowsky, and C. C. Chi, “Carrier lifetime versus ion-implantation dose in silicon on sapphire,” Appl. Phys. Lett. 50, 460–462 (1987).
[Crossref]

Dondapati, K.

J. Kim, G. V. Naik, A. V. Gavrilenko, K. Dondapati, V. I. Gavrilenko, S. M. Prokes, O. J. Glembocki, V. M. Shalaev, and A. Boltasseva, “Optical properties of gallium-doped zinc oxide—a low-loss plasmonic material: first-principles theory and experiment,” Phys. Rev. X 3, 041037 (2013).
[Crossref]

Duscher, G.

C. Rhodes, S. Franzen, J.-P. Maria, M. Losego, D. N. Leonard, B. Laughlin, G. Duscher, and S. Weibel, “Surface plasmon resonance in conducting metal oxides,” J. Opt. A Pure Appl. Opt. 100, 054905 (2006).

Emani, N.

J. Kim, G. Naik, N. Emani, U. Guler, and A. Boltasseva, “Plasmonic resonances in nanostructured transparent conducting oxide films,” IEEE J. Sel. Top. Quantum Electron. 19, 1 (2013).
[Crossref]

Engheta, N.

A. M. Mahmoud and N. Engheta, “Wave-matter interactions in epsilon-and-mu-near-zero structures,” Nat. Commun. 5, 5638 (2014).
[Crossref]

M. G. Silveirinha and N. Engheta, “Theory of supercoupling, squeezing wave energy, and field confinement in narrow channels and tight bends using ε near-zero metamaterials,” Phys. Rev. B 76, 245109 (2007).

Esser, A.

A. Esser, K. Seibert, H. Kurz, G. N. Parsons, C. Wang, B. N. Davidson, G. Lucovsky, and R. J. Nemanich, “Ultrafast recombination and trapping in amorphous silicon,” Phys. Rev. B 41, 2879–2884 (1990).

Fedeli, J. M.

L. Alloatti, R. Palmer, S. Diebold, K. P. Pahl, B. Chen, R. Dinu, M. Fournier, J. M. Fedeli, T. Zwick, W. Freude, C. Koos, and J. Leuthold, “100  GHz silicon-organic hybrid modulator,” Light Sci. Appl. 3, e173–e177 (2014).

Feigenbaum, E.

E. Feigenbaum, K. Diest, and H. A. Atwater, “Unity-order index change in transparent conducting oxides at visible frequencies,” Nano Lett. 10, 2111–2116 (2010).

Ferrera, M.

Flugge, H.

H. Schmidt, H. Flugge, T. Winkler, T. Bulow, T. Riedl, and W. Kowalsky, “Efficient semitransparent inverted organic solar cells with indium tin oxide top electrode,” Appl. Phys. Lett. 94, 243302 (2009).
[Crossref]

Fournier, M.

L. Alloatti, R. Palmer, S. Diebold, K. P. Pahl, B. Chen, R. Dinu, M. Fournier, J. M. Fedeli, T. Zwick, W. Freude, C. Koos, and J. Leuthold, “100  GHz silicon-organic hybrid modulator,” Light Sci. Appl. 3, e173–e177 (2014).

Frankel, M. Y.

S. Gupta, M. Y. Frankel, J. A. Valdmanis, J. F. Whitaker, G. A. Mourou, F. W. Smith, and A. R. Calawa, “Subpicosecond carrier lifetime in GaAs grown by molecular beam epitaxy at low temperatures,” Appl. Phys. Lett. 59, 3276–3278 (1991).
[Crossref]

Franzen, S.

C. Rhodes, S. Franzen, J.-P. Maria, M. Losego, D. N. Leonard, B. Laughlin, G. Duscher, and S. Weibel, “Surface plasmon resonance in conducting metal oxides,” J. Opt. A Pure Appl. Opt. 100, 054905 (2006).

S. H. Brewer and S. Franzen, “Indium tin oxide plasma frequency dependence on sheet resistance and surface adlayers determined by reflectance FTIR spectroscopy,” J. Phys. Chem. B 106, 12986–12992 (2002).
[Crossref]

Freitag, J.

M. Pinarbasi and J. Freitag, “Method of forming transparent zinc oxide layers for high efficiency photovoltaic cells,” U.S. patent application2011/0108099 A1 (11November2009), Solopower, Inc.

Freude, W.

L. Alloatti, R. Palmer, S. Diebold, K. P. Pahl, B. Chen, R. Dinu, M. Fournier, J. M. Fedeli, T. Zwick, W. Freude, C. Koos, and J. Leuthold, “100  GHz silicon-organic hybrid modulator,” Light Sci. Appl. 3, e173–e177 (2014).

Frolich, A.

Garcia, G.

G. Garcia, R. Buonsanti, E. L. Runnerstrom, R. J. Mendelsberg, A. Llordes, A. Anders, T. J. Richardson, and D. J. Milliron, “Dynamically modulating the surface plasmon resonance of doped semiconductor nanocrystals,” Nano Lett. 11, 4415–4420 (2011).

Gavrilenko, A. V.

J. Kim, G. V. Naik, A. V. Gavrilenko, K. Dondapati, V. I. Gavrilenko, S. M. Prokes, O. J. Glembocki, V. M. Shalaev, and A. Boltasseva, “Optical properties of gallium-doped zinc oxide—a low-loss plasmonic material: first-principles theory and experiment,” Phys. Rev. X 3, 041037 (2013).
[Crossref]

Gavrilenko, V. I.

J. Kim, G. V. Naik, A. V. Gavrilenko, K. Dondapati, V. I. Gavrilenko, S. M. Prokes, O. J. Glembocki, V. M. Shalaev, and A. Boltasseva, “Optical properties of gallium-doped zinc oxide—a low-loss plasmonic material: first-principles theory and experiment,” Phys. Rev. X 3, 041037 (2013).
[Crossref]

Gay, C. F.

D. N. Pier, C. F. Gay, R. D. Wieting, and H. J. Langeberg, “Solar cells incorporating transparent electrodes comprising hazy zinc oxide,” U.S. patent5,078,803 A (7January 1992), Siemens Solar Industries L.P.

Glembocki, O. J.

J. Kim, G. V. Naik, A. V. Gavrilenko, K. Dondapati, V. I. Gavrilenko, S. M. Prokes, O. J. Glembocki, V. M. Shalaev, and A. Boltasseva, “Optical properties of gallium-doped zinc oxide—a low-loss plasmonic material: first-principles theory and experiment,” Phys. Rev. X 3, 041037 (2013).
[Crossref]

Goldhar, J.

V. Van, T. A. Ibrahim, K. Ritter, P. P. Absil, F. G. Johnson, R. Grover, J. Goldhar, and P. T. Ho, “All-optical nonlinear switching in GaAs-AlGaAs microring resonators,” IEEE Photon. Technol. Lett. 14, 74–76 (2002).
[Crossref]

Gordon, T. R.

T. R. Gordon, T. Paik, D. R. Klein, G. V. Naik, H. Caglayan, A. Boltasseva, and C. B. Murray, “Shape-dependent plasmonic response and directed self-assembly in a new semiconductor building block, indium-doped cadmium oxide (ICO),” Nano Lett. 13, 2857–2863 (2013).

Gorjanc, T. C.

T. C. Gorjanc, D. Leong, C. Py, and D. Roth, “Room temperature deposition of ITO using r.f. magnetron sputtering,” Thin Solid Films 413, 181–185 (2002).
[Crossref]

Grischkowsky, D.

F. E. Doany, D. Grischkowsky, and C. C. Chi, “Carrier lifetime versus ion-implantation dose in silicon on sapphire,” Appl. Phys. Lett. 50, 460–462 (1987).
[Crossref]

Grover, R.

V. Van, T. A. Ibrahim, K. Ritter, P. P. Absil, F. G. Johnson, R. Grover, J. Goldhar, and P. T. Ho, “All-optical nonlinear switching in GaAs-AlGaAs microring resonators,” IEEE Photon. Technol. Lett. 14, 74–76 (2002).
[Crossref]

Gu, L.

M. A. Noginov, L. Gu, J. Livenere, G. Zhu, A. K. Pradhan, R. Mundle, M. Bahoura, Y. A. Barnakov, and V. A. Podolskiy, “Transparent conductive oxides: plasmonic materials for telecom wavelengths,” Appl. Phys. Lett. 99, 021101 (2011).
[Crossref]

Guillot, F.

L. Nevou, J. Mangeney, M. Tchernycheva, F. H. Julien, F. Guillot, and E. Monroy, “Ultrafast relaxation and optical saturation of intraband absorption of GaN/AlN quantum dots,” Appl. Phys. Lett. 94, 132104 (2009).
[Crossref]

Guler, U.

J. Kim, G. Naik, N. Emani, U. Guler, and A. Boltasseva, “Plasmonic resonances in nanostructured transparent conducting oxide films,” IEEE J. Sel. Top. Quantum Electron. 19, 1 (2013).
[Crossref]

Guo, P.

S. Q. Li, P. Guo, L. Zhang, W. Zhou, T. W. Odom, T. Seideman, J. B. Ketterson, and R. P. H. Chang, “Infrared plasmonics with indium-tin-oxide nanorod arrays,” ACS Nano 5, 9161–9170 (2011).
[Crossref]

Gupta, S.

S. Gupta, J. F. Whitaker, and G. A. Mourou, “Ultrafast carrier dynamics in III-V semiconductors grown by molecular-beam epitaxy at very low substrate temperatures,” IEEE J. Quantum Electron. 28, 2464–2472 (1992).
[Crossref]

S. Gupta, M. Y. Frankel, J. A. Valdmanis, J. F. Whitaker, G. A. Mourou, F. W. Smith, and A. R. Calawa, “Subpicosecond carrier lifetime in GaAs grown by molecular beam epitaxy at low temperatures,” Appl. Phys. Lett. 59, 3276–3278 (1991).
[Crossref]

Harmon, E. S.

E. S. Harmon, M. R. Melloch, J. M. Woodall, D. D. Nolte, N. Otsuka, and C. L. Chang, “Carrier lifetime versus anneal in low temperature growth GaAs,” Appl. Phys. Lett. 63, 2248–2250 (1993).
[Crossref]

Hirano, M.

K. Nomura, H. Ohta, A. Takagi, T. Kamiya, M. Hirano, and H. Hosono, “Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors,” Nature 432, 488–492 (2004).
[Crossref]

Ho, P. T.

V. Van, T. A. Ibrahim, K. Ritter, P. P. Absil, F. G. Johnson, R. Grover, J. Goldhar, and P. T. Ho, “All-optical nonlinear switching in GaAs-AlGaAs microring resonators,” IEEE Photon. Technol. Lett. 14, 74–76 (2002).
[Crossref]

Hopfel, R. A.

K. F. Lamprecht, S. Juen, L. Palmetshofer, and R. A. Hopfel, “Ultrashort carrier lifetimes in H+ bombarded InP,” Appl. Phys. Lett. 59, 926–928 (1991).
[Crossref]

Hopkins, P. E.

A. K. Pradhan, R. M. Mundle, K. Santiago, J. R. Skuza, B. Xiao, K. D. Song, M. Bahoura, R. Cheaito, and P. E. Hopkins, “Extreme tunability in aluminum doped zinc oxide plasmonic materials for near-infrared applications,” Sci. Rep. 4, 6415 (2014).
[Crossref]

Horwitz, J. S.

H. Kim, J. S. Horwitz, S. B. Qadri, and D. B. Chrisey, “Epitaxial growth of Al-doped ZnO thin films grown by pulsed laser deposition,” Thin Solid Films 420, 107–111 (2002).
[Crossref]

Hosono, H.

K. Nomura, H. Ohta, A. Takagi, T. Kamiya, M. Hirano, and H. Hosono, “Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors,” Nature 432, 488–492 (2004).
[Crossref]

Hosseini, E. S.

E. Timurdogan, C. M. Sorace-Agaskar, J. Sun, E. S. Hosseini, A. Biberman, and M. R. Watts, “An ultralow power athermal silicon modulator,” Nat. Commun. 5, 4008 (2014).
[Crossref]

Ibrahim, T. A.

V. Van, T. A. Ibrahim, K. Ritter, P. P. Absil, F. G. Johnson, R. Grover, J. Goldhar, and P. T. Ho, “All-optical nonlinear switching in GaAs-AlGaAs microring resonators,” IEEE Photon. Technol. Lett. 14, 74–76 (2002).
[Crossref]

Iizuka, N.

N. Iizuka, K. Kaneko, and N. Suzuki, “All-optical switch utilizing intersubband transition in GaN quantum wells,” IEEE J. Quantum Electron. 42, 765–771 (2006).
[Crossref]

N. Iizuka, K. Kaneko, and N. Suzuki, “Near-infrared intersubband absorption in GaN/AlN quantum wells grown by molecular beam epitaxy,” Appl. Phys. Lett. 81, 1803–1805 (2002).
[Crossref]

Irving, L. M.

D. H. Levy, A. C. Scuderi, and L. M. Irving, “Methods of making thin film transistors comprising zinc-oxide-based semiconductor materials and transistors made thereby,” U.S. patent7,691,666 B2 (Apr. 6, 2010), Eastman Kodak Company.

Janotti, A.

A. Janotti and C. G. V. de Walle, “Oxygen vacancies in ZnO,” Appl. Phys. Lett. 87, 122102 (2005).
[Crossref]

Johnson, F. G.

V. Van, T. A. Ibrahim, K. Ritter, P. P. Absil, F. G. Johnson, R. Grover, J. Goldhar, and P. T. Ho, “All-optical nonlinear switching in GaAs-AlGaAs microring resonators,” IEEE Photon. Technol. Lett. 14, 74–76 (2002).
[Crossref]

Juen, S.

K. F. Lamprecht, S. Juen, L. Palmetshofer, and R. A. Hopfel, “Ultrashort carrier lifetimes in H+ bombarded InP,” Appl. Phys. Lett. 59, 926–928 (1991).
[Crossref]

Julien, F. H.

L. Nevou, J. Mangeney, M. Tchernycheva, F. H. Julien, F. Guillot, and E. Monroy, “Ultrafast relaxation and optical saturation of intraband absorption of GaN/AlN quantum dots,” Appl. Phys. Lett. 94, 132104 (2009).
[Crossref]

Kamiya, T.

K. Nomura, H. Ohta, A. Takagi, T. Kamiya, M. Hirano, and H. Hosono, “Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors,” Nature 432, 488–492 (2004).
[Crossref]

Kanehara, M.

M. Kanehara, H. Koike, T. Yoshinaga, and T. Teranishi, “Indium tin oxide nanoparticles with compositionally tunable surface plasmon resonance frequencies in the near-IR region,” J. Am. Chem. Soc. 131, 17736–17737 (2009).
[Crossref]

Kaneko, K.

N. Iizuka, K. Kaneko, and N. Suzuki, “All-optical switch utilizing intersubband transition in GaN quantum wells,” IEEE J. Quantum Electron. 42, 765–771 (2006).
[Crossref]

N. Iizuka, K. Kaneko, and N. Suzuki, “Near-infrared intersubband absorption in GaN/AlN quantum wells grown by molecular beam epitaxy,” Appl. Phys. Lett. 81, 1803–1805 (2002).
[Crossref]

Kaplan, D.

D. H. Auston, P. Lavallard, N. Sol, and D. Kaplan, “An amorphous silicon photodetector for picosecond pulses,” Appl. Phys. Lett. 36, 66–68 (1980).
[Crossref]

Ketterson, J. B.

S. Q. Li, P. Guo, L. Zhang, W. Zhou, T. W. Odom, T. Seideman, J. B. Ketterson, and R. P. H. Chang, “Infrared plasmonics with indium-tin-oxide nanorod arrays,” ACS Nano 5, 9161–9170 (2011).
[Crossref]

Kim, H.

H. Kim, J. S. Horwitz, S. B. Qadri, and D. B. Chrisey, “Epitaxial growth of Al-doped ZnO thin films grown by pulsed laser deposition,” Thin Solid Films 420, 107–111 (2002).
[Crossref]

Kim, J.

J. Kim, G. V. Naik, A. V. Gavrilenko, K. Dondapati, V. I. Gavrilenko, S. M. Prokes, O. J. Glembocki, V. M. Shalaev, and A. Boltasseva, “Optical properties of gallium-doped zinc oxide—a low-loss plasmonic material: first-principles theory and experiment,” Phys. Rev. X 3, 041037 (2013).
[Crossref]

J. Kim, G. Naik, N. Emani, U. Guler, and A. Boltasseva, “Plasmonic resonances in nanostructured transparent conducting oxide films,” IEEE J. Sel. Top. Quantum Electron. 19, 1 (2013).
[Crossref]

G. Naik, J. Kim, and A. Boltasseva, “Oxides and nitrides as alternative plasmonic materials in the optical range,” Opt. Mater. Express 1, 1090–1099 (2011).
[Crossref]

Kinsey, N.

Klein, D. R.

T. R. Gordon, T. Paik, D. R. Klein, G. V. Naik, H. Caglayan, A. Boltasseva, and C. B. Murray, “Shape-dependent plasmonic response and directed self-assembly in a new semiconductor building block, indium-doped cadmium oxide (ICO),” Nano Lett. 13, 2857–2863 (2013).

Koike, H.

M. Kanehara, H. Koike, T. Yoshinaga, and T. Teranishi, “Indium tin oxide nanoparticles with compositionally tunable surface plasmon resonance frequencies in the near-IR region,” J. Am. Chem. Soc. 131, 17736–17737 (2009).
[Crossref]

Koos, C.

L. Alloatti, R. Palmer, S. Diebold, K. P. Pahl, B. Chen, R. Dinu, M. Fournier, J. M. Fedeli, T. Zwick, W. Freude, C. Koos, and J. Leuthold, “100  GHz silicon-organic hybrid modulator,” Light Sci. Appl. 3, e173–e177 (2014).

Kowalsky, W.

H. Schmidt, H. Flugge, T. Winkler, T. Bulow, T. Riedl, and W. Kowalsky, “Efficient semitransparent inverted organic solar cells with indium tin oxide top electrode,” Appl. Phys. Lett. 94, 243302 (2009).
[Crossref]

Kriesch, A.

H. W. Lee, G. Papadakis, S. P. Burgos, K. Chander, A. Kriesch, R. Pala, U. Peschel, and H. A. Atwater, “Nanoscale conducting oxide PlasMOStor,” Nano Lett. 14, 6463–6468 (2014).

Kurz, H.

A. Esser, K. Seibert, H. Kurz, G. N. Parsons, C. Wang, B. N. Davidson, G. Lucovsky, and R. J. Nemanich, “Ultrafast recombination and trapping in amorphous silicon,” Phys. Rev. B 41, 2879–2884 (1990).

Lamond, R. J.

H. Chen, R. J. Lamond, S. K. Pickus, L. Zhuo Ran, and V. J. Sorger, “A sub-lambda-size modulator beyond the efficiency-loss limit,” IEEE Photon. J. 5, 2202411 (2013).
[Crossref]

Lamprecht, K. F.

K. F. Lamprecht, S. Juen, L. Palmetshofer, and R. A. Hopfel, “Ultrashort carrier lifetimes in H+ bombarded InP,” Appl. Phys. Lett. 59, 926–928 (1991).
[Crossref]

Langeberg, H. J.

D. N. Pier, C. F. Gay, R. D. Wieting, and H. J. Langeberg, “Solar cells incorporating transparent electrodes comprising hazy zinc oxide,” U.S. patent5,078,803 A (7January 1992), Siemens Solar Industries L.P.

Lanzillotti-Kimura, N. D.

V. J. Sorger, N. D. Lanzillotti-Kimura, R. Ma, and X. Zhang, “Ultra-compact silicon nanophotonic modulator with broadband response,” Nanophotonics 1, 17–22 (2012).
[Crossref]

Laughlin, B.

C. Rhodes, S. Franzen, J.-P. Maria, M. Losego, D. N. Leonard, B. Laughlin, G. Duscher, and S. Weibel, “Surface plasmon resonance in conducting metal oxides,” J. Opt. A Pure Appl. Opt. 100, 054905 (2006).

Lavallard, P.

D. H. Auston, P. Lavallard, N. Sol, and D. Kaplan, “An amorphous silicon photodetector for picosecond pulses,” Appl. Phys. Lett. 36, 66–68 (1980).
[Crossref]

Lavrinenko, A. V.

Lee, C. H.

C. H. Lee, A. Antonetti, and G. Mourou, “Measurements on the photoconductive lifetime of carriers in GaAs by optoelectronic gating technique,” Opt. Commun. 21, 158–161 (1977).
[Crossref]

Lee, H. W.

H. W. Lee, G. Papadakis, S. P. Burgos, K. Chander, A. Kriesch, R. Pala, U. Peschel, and H. A. Atwater, “Nanoscale conducting oxide PlasMOStor,” Nano Lett. 14, 6463–6468 (2014).

Lentine, A. L.

Leonard, D. N.

C. Rhodes, S. Franzen, J.-P. Maria, M. Losego, D. N. Leonard, B. Laughlin, G. Duscher, and S. Weibel, “Surface plasmon resonance in conducting metal oxides,” J. Opt. A Pure Appl. Opt. 100, 054905 (2006).

Leong, D.

T. C. Gorjanc, D. Leong, C. Py, and D. Roth, “Room temperature deposition of ITO using r.f. magnetron sputtering,” Thin Solid Films 413, 181–185 (2002).
[Crossref]

Leuthold, J.

L. Alloatti, R. Palmer, S. Diebold, K. P. Pahl, B. Chen, R. Dinu, M. Fournier, J. M. Fedeli, T. Zwick, W. Freude, C. Koos, and J. Leuthold, “100  GHz silicon-organic hybrid modulator,” Light Sci. Appl. 3, e173–e177 (2014).

Levy, D. H.

D. H. Levy, A. C. Scuderi, and L. M. Irving, “Methods of making thin film transistors comprising zinc-oxide-based semiconductor materials and transistors made thereby,” U.S. patent7,691,666 B2 (Apr. 6, 2010), Eastman Kodak Company.

Li, S. Q.

D. B. Tice, S. Q. Li, M. Tagliazucchi, D. B. Buchholz, E. A. Weiss, and R. P. H. Chang, “Ultrafast modulation of the plasma frequency of vertically aligned indium tin oxide rods,” Nano Lett. 14, 1120–1126 (2014).

S. Q. Li, P. Guo, L. Zhang, W. Zhou, T. W. Odom, T. Seideman, J. B. Ketterson, and R. P. H. Chang, “Infrared plasmonics with indium-tin-oxide nanorod arrays,” ACS Nano 5, 9161–9170 (2011).
[Crossref]

Li, Y.

Y. Li and B. S. Ong, “Thin film transistor using an oriented zinc oxide layer,” European patent EP1921681 A2 (May 14, 2008), Xerox Corporation.

Lipson, M.

Livenere, J.

M. A. Noginov, L. Gu, J. Livenere, G. Zhu, A. K. Pradhan, R. Mundle, M. Bahoura, Y. A. Barnakov, and V. A. Podolskiy, “Transparent conductive oxides: plasmonic materials for telecom wavelengths,” Appl. Phys. Lett. 99, 021101 (2011).
[Crossref]

Llordes, A.

G. Garcia, R. Buonsanti, E. L. Runnerstrom, R. J. Mendelsberg, A. Llordes, A. Anders, T. J. Richardson, and D. J. Milliron, “Dynamically modulating the surface plasmon resonance of doped semiconductor nanocrystals,” Nano Lett. 11, 4415–4420 (2011).

Lorenz, M.

D. Ashkenasi, M. Lorenz, and A. Rosenfeld, “Surface damage threshold and structuring of dielectrics using femtosecond laser pulses: the role of incubation,” Appl. Surf. Sci. 150, 101–106 (1999).
[Crossref]

Losego, M.

C. Rhodes, S. Franzen, J.-P. Maria, M. Losego, D. N. Leonard, B. Laughlin, G. Duscher, and S. Weibel, “Surface plasmon resonance in conducting metal oxides,” J. Opt. A Pure Appl. Opt. 100, 054905 (2006).

Lotshaw, W. T.

N. P. Wells, P. M. Belden, J. R. Demers, and W. T. Lotshaw, “Transient reflectivity as a probe of ultrafast carrier dynamics in semiconductors: a revised model for low-temperature grown GaAs,” J. Opt. A Pure Appl. Opt. 116, 073506 (2014).

Lucovsky, G.

A. Esser, K. Seibert, H. Kurz, G. N. Parsons, C. Wang, B. N. Davidson, G. Lucovsky, and R. J. Nemanich, “Ultrafast recombination and trapping in amorphous silicon,” Phys. Rev. B 41, 2879–2884 (1990).

Ma, R.

V. J. Sorger, N. D. Lanzillotti-Kimura, R. Ma, and X. Zhang, “Ultra-compact silicon nanophotonic modulator with broadband response,” Nanophotonics 1, 17–22 (2012).
[Crossref]

Mahmoud, A. M.

A. M. Mahmoud and N. Engheta, “Wave-matter interactions in epsilon-and-mu-near-zero structures,” Nat. Commun. 5, 5638 (2014).
[Crossref]

Mangeney, J.

L. Nevou, J. Mangeney, M. Tchernycheva, F. H. Julien, F. Guillot, and E. Monroy, “Ultrafast relaxation and optical saturation of intraband absorption of GaN/AlN quantum dots,” Appl. Phys. Lett. 94, 132104 (2009).
[Crossref]

Manipatruni, S.

Maria, J.-P.

C. Rhodes, S. Franzen, J.-P. Maria, M. Losego, D. N. Leonard, B. Laughlin, G. Duscher, and S. Weibel, “Surface plasmon resonance in conducting metal oxides,” J. Opt. A Pure Appl. Opt. 100, 054905 (2006).

Mehra, R. M.

A. V. Singh, R. M. Mehra, N. Buthrath, A. Wakahara, and A. Yoshida, “Highly conductive and transparent aluminum-doped zinc oxide thin films prepared by pulsed laser deposition in oxygen ambient,” J. Opt. A Pure Appl. Opt. 90, 5661–5665 (2001).

Melloch, M. R.

E. S. Harmon, M. R. Melloch, J. M. Woodall, D. D. Nolte, N. Otsuka, and C. L. Chang, “Carrier lifetime versus anneal in low temperature growth GaAs,” Appl. Phys. Lett. 63, 2248–2250 (1993).
[Crossref]

Mendelsberg, R. J.

G. Garcia, R. Buonsanti, E. L. Runnerstrom, R. J. Mendelsberg, A. Llordes, A. Anders, T. J. Richardson, and D. J. Milliron, “Dynamically modulating the surface plasmon resonance of doped semiconductor nanocrystals,” Nano Lett. 11, 4415–4420 (2011).

Milliron, D. J.

G. Garcia, R. Buonsanti, E. L. Runnerstrom, R. J. Mendelsberg, A. Llordes, A. Anders, T. J. Richardson, and D. J. Milliron, “Dynamically modulating the surface plasmon resonance of doped semiconductor nanocrystals,” Nano Lett. 11, 4415–4420 (2011).

Mills, B.

D. Traviss, R. Bruck, B. Mills, M. Abb, and O. L. Muskens, “Ultrafast plasmonics using transparent conductive oxide hybrids in the epsilon-near-zero regime,” Appl. Phys. Lett. 102, 121112 (2013).
[Crossref]

Monroy, E.

L. Nevou, J. Mangeney, M. Tchernycheva, F. H. Julien, F. Guillot, and E. Monroy, “Ultrafast relaxation and optical saturation of intraband absorption of GaN/AlN quantum dots,” Appl. Phys. Lett. 94, 132104 (2009).
[Crossref]

Mourou, G.

C. H. Lee, A. Antonetti, and G. Mourou, “Measurements on the photoconductive lifetime of carriers in GaAs by optoelectronic gating technique,” Opt. Commun. 21, 158–161 (1977).
[Crossref]

Mourou, G. A.

S. Gupta, J. F. Whitaker, and G. A. Mourou, “Ultrafast carrier dynamics in III-V semiconductors grown by molecular-beam epitaxy at very low substrate temperatures,” IEEE J. Quantum Electron. 28, 2464–2472 (1992).
[Crossref]

S. Gupta, M. Y. Frankel, J. A. Valdmanis, J. F. Whitaker, G. A. Mourou, F. W. Smith, and A. R. Calawa, “Subpicosecond carrier lifetime in GaAs grown by molecular beam epitaxy at low temperatures,” Appl. Phys. Lett. 59, 3276–3278 (1991).
[Crossref]

Mundle, R.

M. A. Noginov, L. Gu, J. Livenere, G. Zhu, A. K. Pradhan, R. Mundle, M. Bahoura, Y. A. Barnakov, and V. A. Podolskiy, “Transparent conductive oxides: plasmonic materials for telecom wavelengths,” Appl. Phys. Lett. 99, 021101 (2011).
[Crossref]

Mundle, R. M.

A. K. Pradhan, R. M. Mundle, K. Santiago, J. R. Skuza, B. Xiao, K. D. Song, M. Bahoura, R. Cheaito, and P. E. Hopkins, “Extreme tunability in aluminum doped zinc oxide plasmonic materials for near-infrared applications,” Sci. Rep. 4, 6415 (2014).
[Crossref]

Murray, C. B.

T. R. Gordon, T. Paik, D. R. Klein, G. V. Naik, H. Caglayan, A. Boltasseva, and C. B. Murray, “Shape-dependent plasmonic response and directed self-assembly in a new semiconductor building block, indium-doped cadmium oxide (ICO),” Nano Lett. 13, 2857–2863 (2013).

Muskens, O. L.

D. Traviss, R. Bruck, B. Mills, M. Abb, and O. L. Muskens, “Ultrafast plasmonics using transparent conductive oxide hybrids in the epsilon-near-zero regime,” Appl. Phys. Lett. 102, 121112 (2013).
[Crossref]

M. Abb, B. Sepulveda, H. M. H. Chong, and O. L. Muskens, “Transparent conducting oxides for active hybrid metamaterial devices,” J. Opt. 14, 114007 (2012).
[Crossref]

M. Abb, P. Albella, J. Aizpurua, and O. L. Muskens, “All-optical control of a single plasmonic nanoantenna-ITO hybrid,” Nano Lett. 11, 2457–2463 (2011).

Nagle, J.

V. Ortiz, J. Nagle, and A. Alexandrou, “Influence of the hole population on the transient reflectivity signal of annealed low-temperature-grown GaAs,” Appl. Phys. Lett. 80, 2505–2509 (2002).
[Crossref]

Naik, G.

J. Kim, G. Naik, N. Emani, U. Guler, and A. Boltasseva, “Plasmonic resonances in nanostructured transparent conducting oxide films,” IEEE J. Sel. Top. Quantum Electron. 19, 1 (2013).
[Crossref]

G. Naik, J. Kim, and A. Boltasseva, “Oxides and nitrides as alternative plasmonic materials in the optical range,” Opt. Mater. Express 1, 1090–1099 (2011).
[Crossref]

G. Naik and A. Boltasseva, “Plasmonics and metamaterials: looking beyond gold and silver,” SPIE Newsroom (30January2012), doi: 10.1117/2.1201201.004077.

Naik, G. V.

J. Kim, G. V. Naik, A. V. Gavrilenko, K. Dondapati, V. I. Gavrilenko, S. M. Prokes, O. J. Glembocki, V. M. Shalaev, and A. Boltasseva, “Optical properties of gallium-doped zinc oxide—a low-loss plasmonic material: first-principles theory and experiment,” Phys. Rev. X 3, 041037 (2013).
[Crossref]

V. Babicheva, N. Kinsey, G. V. Naik, M. Ferrera, A. V. Lavrinenko, V. M. Shalaev, and A. Boltasseva, “Towards CMOS-compatible nanophotonics: ultra-compact modulators using alternative plasmonic materials,” Opt. Express 21, 27326–27337 (2013).
[Crossref]

T. R. Gordon, T. Paik, D. R. Klein, G. V. Naik, H. Caglayan, A. Boltasseva, and C. B. Murray, “Shape-dependent plasmonic response and directed self-assembly in a new semiconductor building block, indium-doped cadmium oxide (ICO),” Nano Lett. 13, 2857–2863 (2013).

G. V. Naik, V. M. Shalaev, and A. Boltasseva, “Alternative plasmonic materials: beyond gold and silver,” Adv. Mater. 25, 3264–3294 (2013).
[Crossref]

Neamen, D. A.

D. A. Neamen, Semiconductor Physics and Devices Basic Principles (McGraw-Hill, 2003).

Nemanich, R. J.

A. Esser, K. Seibert, H. Kurz, G. N. Parsons, C. Wang, B. N. Davidson, G. Lucovsky, and R. J. Nemanich, “Ultrafast recombination and trapping in amorphous silicon,” Phys. Rev. B 41, 2879–2884 (1990).

Nevou, L.

L. Nevou, J. Mangeney, M. Tchernycheva, F. H. Julien, F. Guillot, and E. Monroy, “Ultrafast relaxation and optical saturation of intraband absorption of GaN/AlN quantum dots,” Appl. Phys. Lett. 94, 132104 (2009).
[Crossref]

Noginov, M. A.

M. A. Noginov, L. Gu, J. Livenere, G. Zhu, A. K. Pradhan, R. Mundle, M. Bahoura, Y. A. Barnakov, and V. A. Podolskiy, “Transparent conductive oxides: plasmonic materials for telecom wavelengths,” Appl. Phys. Lett. 99, 021101 (2011).
[Crossref]

Nolte, D. D.

E. S. Harmon, M. R. Melloch, J. M. Woodall, D. D. Nolte, N. Otsuka, and C. L. Chang, “Carrier lifetime versus anneal in low temperature growth GaAs,” Appl. Phys. Lett. 63, 2248–2250 (1993).
[Crossref]

Nomura, K.

K. Nomura, H. Ohta, A. Takagi, T. Kamiya, M. Hirano, and H. Hosono, “Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors,” Nature 432, 488–492 (2004).
[Crossref]

Odom, T. W.

S. Q. Li, P. Guo, L. Zhang, W. Zhou, T. W. Odom, T. Seideman, J. B. Ketterson, and R. P. H. Chang, “Infrared plasmonics with indium-tin-oxide nanorod arrays,” ACS Nano 5, 9161–9170 (2011).
[Crossref]

Ohta, H.

K. Nomura, H. Ohta, A. Takagi, T. Kamiya, M. Hirano, and H. Hosono, “Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors,” Nature 432, 488–492 (2004).
[Crossref]

Ong, B. S.

Y. Li and B. S. Ong, “Thin film transistor using an oriented zinc oxide layer,” European patent EP1921681 A2 (May 14, 2008), Xerox Corporation.

Ortiz, V.

V. Ortiz, J. Nagle, and A. Alexandrou, “Influence of the hole population on the transient reflectivity signal of annealed low-temperature-grown GaAs,” Appl. Phys. Lett. 80, 2505–2509 (2002).
[Crossref]

Otsuka, N.

E. S. Harmon, M. R. Melloch, J. M. Woodall, D. D. Nolte, N. Otsuka, and C. L. Chang, “Carrier lifetime versus anneal in low temperature growth GaAs,” Appl. Phys. Lett. 63, 2248–2250 (1993).
[Crossref]

Pahl, K. P.

L. Alloatti, R. Palmer, S. Diebold, K. P. Pahl, B. Chen, R. Dinu, M. Fournier, J. M. Fedeli, T. Zwick, W. Freude, C. Koos, and J. Leuthold, “100  GHz silicon-organic hybrid modulator,” Light Sci. Appl. 3, e173–e177 (2014).

Paik, T.

T. R. Gordon, T. Paik, D. R. Klein, G. V. Naik, H. Caglayan, A. Boltasseva, and C. B. Murray, “Shape-dependent plasmonic response and directed self-assembly in a new semiconductor building block, indium-doped cadmium oxide (ICO),” Nano Lett. 13, 2857–2863 (2013).

Pala, R.

H. W. Lee, G. Papadakis, S. P. Burgos, K. Chander, A. Kriesch, R. Pala, U. Peschel, and H. A. Atwater, “Nanoscale conducting oxide PlasMOStor,” Nano Lett. 14, 6463–6468 (2014).

Palmer, R.

L. Alloatti, R. Palmer, S. Diebold, K. P. Pahl, B. Chen, R. Dinu, M. Fournier, J. M. Fedeli, T. Zwick, W. Freude, C. Koos, and J. Leuthold, “100  GHz silicon-organic hybrid modulator,” Light Sci. Appl. 3, e173–e177 (2014).

Palmetshofer, L.

K. F. Lamprecht, S. Juen, L. Palmetshofer, and R. A. Hopfel, “Ultrashort carrier lifetimes in H+ bombarded InP,” Appl. Phys. Lett. 59, 926–928 (1991).
[Crossref]

Papadakis, G.

H. W. Lee, G. Papadakis, S. P. Burgos, K. Chander, A. Kriesch, R. Pala, U. Peschel, and H. A. Atwater, “Nanoscale conducting oxide PlasMOStor,” Nano Lett. 14, 6463–6468 (2014).

Parsons, G. N.

A. Esser, K. Seibert, H. Kurz, G. N. Parsons, C. Wang, B. N. Davidson, G. Lucovsky, and R. J. Nemanich, “Ultrafast recombination and trapping in amorphous silicon,” Phys. Rev. B 41, 2879–2884 (1990).

Peschel, U.

H. W. Lee, G. Papadakis, S. P. Burgos, K. Chander, A. Kriesch, R. Pala, U. Peschel, and H. A. Atwater, “Nanoscale conducting oxide PlasMOStor,” Nano Lett. 14, 6463–6468 (2014).

Pickus, S. K.

H. Chen, R. J. Lamond, S. K. Pickus, L. Zhuo Ran, and V. J. Sorger, “A sub-lambda-size modulator beyond the efficiency-loss limit,” IEEE Photon. J. 5, 2202411 (2013).
[Crossref]

Pier, D. N.

D. N. Pier, C. F. Gay, R. D. Wieting, and H. J. Langeberg, “Solar cells incorporating transparent electrodes comprising hazy zinc oxide,” U.S. patent5,078,803 A (7January 1992), Siemens Solar Industries L.P.

Pinarbasi, M.

M. Pinarbasi and J. Freitag, “Method of forming transparent zinc oxide layers for high efficiency photovoltaic cells,” U.S. patent application2011/0108099 A1 (11November2009), Solopower, Inc.

Podolskiy, V. A.

M. A. Noginov, L. Gu, J. Livenere, G. Zhu, A. K. Pradhan, R. Mundle, M. Bahoura, Y. A. Barnakov, and V. A. Podolskiy, “Transparent conductive oxides: plasmonic materials for telecom wavelengths,” Appl. Phys. Lett. 99, 021101 (2011).
[Crossref]

Pradhan, A. K.

A. K. Pradhan, R. M. Mundle, K. Santiago, J. R. Skuza, B. Xiao, K. D. Song, M. Bahoura, R. Cheaito, and P. E. Hopkins, “Extreme tunability in aluminum doped zinc oxide plasmonic materials for near-infrared applications,” Sci. Rep. 4, 6415 (2014).
[Crossref]

M. A. Noginov, L. Gu, J. Livenere, G. Zhu, A. K. Pradhan, R. Mundle, M. Bahoura, Y. A. Barnakov, and V. A. Podolskiy, “Transparent conductive oxides: plasmonic materials for telecom wavelengths,” Appl. Phys. Lett. 99, 021101 (2011).
[Crossref]

Prokes, S. M.

J. Kim, G. V. Naik, A. V. Gavrilenko, K. Dondapati, V. I. Gavrilenko, S. M. Prokes, O. J. Glembocki, V. M. Shalaev, and A. Boltasseva, “Optical properties of gallium-doped zinc oxide—a low-loss plasmonic material: first-principles theory and experiment,” Phys. Rev. X 3, 041037 (2013).
[Crossref]

Py, C.

T. C. Gorjanc, D. Leong, C. Py, and D. Roth, “Room temperature deposition of ITO using r.f. magnetron sputtering,” Thin Solid Films 413, 181–185 (2002).
[Crossref]

Qadri, S. B.

H. Kim, J. S. Horwitz, S. B. Qadri, and D. B. Chrisey, “Epitaxial growth of Al-doped ZnO thin films grown by pulsed laser deposition,” Thin Solid Films 420, 107–111 (2002).
[Crossref]

Rhodes, C.

C. Rhodes, S. Franzen, J.-P. Maria, M. Losego, D. N. Leonard, B. Laughlin, G. Duscher, and S. Weibel, “Surface plasmon resonance in conducting metal oxides,” J. Opt. A Pure Appl. Opt. 100, 054905 (2006).

Richardson, T. J.

G. Garcia, R. Buonsanti, E. L. Runnerstrom, R. J. Mendelsberg, A. Llordes, A. Anders, T. J. Richardson, and D. J. Milliron, “Dynamically modulating the surface plasmon resonance of doped semiconductor nanocrystals,” Nano Lett. 11, 4415–4420 (2011).

Riedl, T.

H. Schmidt, H. Flugge, T. Winkler, T. Bulow, T. Riedl, and W. Kowalsky, “Efficient semitransparent inverted organic solar cells with indium tin oxide top electrode,” Appl. Phys. Lett. 94, 243302 (2009).
[Crossref]

Riffe, D. M.

A. J. Sabbah and D. M. Riffe, “Femtosecond pump-probe reflectivity study of silicon carrier dynamics,” Phys. Rev. B 66, 165217 (2002).

Ritter, K.

V. Van, T. A. Ibrahim, K. Ritter, P. P. Absil, F. G. Johnson, R. Grover, J. Goldhar, and P. T. Ho, “All-optical nonlinear switching in GaAs-AlGaAs microring resonators,” IEEE Photon. Technol. Lett. 14, 74–76 (2002).
[Crossref]

Rosenfeld, A.

D. Ashkenasi, M. Lorenz, and A. Rosenfeld, “Surface damage threshold and structuring of dielectrics using femtosecond laser pulses: the role of incubation,” Appl. Surf. Sci. 150, 101–106 (1999).
[Crossref]

Roth, D.

T. C. Gorjanc, D. Leong, C. Py, and D. Roth, “Room temperature deposition of ITO using r.f. magnetron sputtering,” Thin Solid Films 413, 181–185 (2002).
[Crossref]

Runnerstrom, E. L.

G. Garcia, R. Buonsanti, E. L. Runnerstrom, R. J. Mendelsberg, A. Llordes, A. Anders, T. J. Richardson, and D. J. Milliron, “Dynamically modulating the surface plasmon resonance of doped semiconductor nanocrystals,” Nano Lett. 11, 4415–4420 (2011).

Sabbah, A. J.

A. J. Sabbah and D. M. Riffe, “Femtosecond pump-probe reflectivity study of silicon carrier dynamics,” Phys. Rev. B 66, 165217 (2002).

Santiago, K.

A. K. Pradhan, R. M. Mundle, K. Santiago, J. R. Skuza, B. Xiao, K. D. Song, M. Bahoura, R. Cheaito, and P. E. Hopkins, “Extreme tunability in aluminum doped zinc oxide plasmonic materials for near-infrared applications,” Sci. Rep. 4, 6415 (2014).
[Crossref]

Schmidt, B.

Schmidt, H.

H. Schmidt, H. Flugge, T. Winkler, T. Bulow, T. Riedl, and W. Kowalsky, “Efficient semitransparent inverted organic solar cells with indium tin oxide top electrode,” Appl. Phys. Lett. 94, 243302 (2009).
[Crossref]

Scuderi, A. C.

D. H. Levy, A. C. Scuderi, and L. M. Irving, “Methods of making thin film transistors comprising zinc-oxide-based semiconductor materials and transistors made thereby,” U.S. patent7,691,666 B2 (Apr. 6, 2010), Eastman Kodak Company.

Seibert, K.

A. Esser, K. Seibert, H. Kurz, G. N. Parsons, C. Wang, B. N. Davidson, G. Lucovsky, and R. J. Nemanich, “Ultrafast recombination and trapping in amorphous silicon,” Phys. Rev. B 41, 2879–2884 (1990).

Seideman, T.

S. Q. Li, P. Guo, L. Zhang, W. Zhou, T. W. Odom, T. Seideman, J. B. Ketterson, and R. P. H. Chang, “Infrared plasmonics with indium-tin-oxide nanorod arrays,” ACS Nano 5, 9161–9170 (2011).
[Crossref]

Sepulveda, B.

M. Abb, B. Sepulveda, H. M. H. Chong, and O. L. Muskens, “Transparent conducting oxides for active hybrid metamaterial devices,” J. Opt. 14, 114007 (2012).
[Crossref]

Shakya, J.

Shalaev, V. M.

V. Babicheva, N. Kinsey, G. V. Naik, M. Ferrera, A. V. Lavrinenko, V. M. Shalaev, and A. Boltasseva, “Towards CMOS-compatible nanophotonics: ultra-compact modulators using alternative plasmonic materials,” Opt. Express 21, 27326–27337 (2013).
[Crossref]

G. V. Naik, V. M. Shalaev, and A. Boltasseva, “Alternative plasmonic materials: beyond gold and silver,” Adv. Mater. 25, 3264–3294 (2013).
[Crossref]

J. Kim, G. V. Naik, A. V. Gavrilenko, K. Dondapati, V. I. Gavrilenko, S. M. Prokes, O. J. Glembocki, V. M. Shalaev, and A. Boltasseva, “Optical properties of gallium-doped zinc oxide—a low-loss plasmonic material: first-principles theory and experiment,” Phys. Rev. X 3, 041037 (2013).
[Crossref]

Silveirinha, M. G.

M. G. Silveirinha and N. Engheta, “Theory of supercoupling, squeezing wave energy, and field confinement in narrow channels and tight bends using ε near-zero metamaterials,” Phys. Rev. B 76, 245109 (2007).

Singh, A. V.

A. V. Singh, R. M. Mehra, N. Buthrath, A. Wakahara, and A. Yoshida, “Highly conductive and transparent aluminum-doped zinc oxide thin films prepared by pulsed laser deposition in oxygen ambient,” J. Opt. A Pure Appl. Opt. 90, 5661–5665 (2001).

Skuza, J. R.

A. K. Pradhan, R. M. Mundle, K. Santiago, J. R. Skuza, B. Xiao, K. D. Song, M. Bahoura, R. Cheaito, and P. E. Hopkins, “Extreme tunability in aluminum doped zinc oxide plasmonic materials for near-infrared applications,” Sci. Rep. 4, 6415 (2014).
[Crossref]

Smith, F. W.

S. Gupta, M. Y. Frankel, J. A. Valdmanis, J. F. Whitaker, G. A. Mourou, F. W. Smith, and A. R. Calawa, “Subpicosecond carrier lifetime in GaAs grown by molecular beam epitaxy at low temperatures,” Appl. Phys. Lett. 59, 3276–3278 (1991).
[Crossref]

Sol, N.

D. H. Auston, P. Lavallard, N. Sol, and D. Kaplan, “An amorphous silicon photodetector for picosecond pulses,” Appl. Phys. Lett. 36, 66–68 (1980).
[Crossref]

Song, K. D.

A. K. Pradhan, R. M. Mundle, K. Santiago, J. R. Skuza, B. Xiao, K. D. Song, M. Bahoura, R. Cheaito, and P. E. Hopkins, “Extreme tunability in aluminum doped zinc oxide plasmonic materials for near-infrared applications,” Sci. Rep. 4, 6415 (2014).
[Crossref]

Sorace-Agaskar, C. M.

E. Timurdogan, C. M. Sorace-Agaskar, J. Sun, E. S. Hosseini, A. Biberman, and M. R. Watts, “An ultralow power athermal silicon modulator,” Nat. Commun. 5, 4008 (2014).
[Crossref]

Sorger, V. J.

H. Chen, R. J. Lamond, S. K. Pickus, L. Zhuo Ran, and V. J. Sorger, “A sub-lambda-size modulator beyond the efficiency-loss limit,” IEEE Photon. J. 5, 2202411 (2013).
[Crossref]

V. J. Sorger, N. D. Lanzillotti-Kimura, R. Ma, and X. Zhang, “Ultra-compact silicon nanophotonic modulator with broadband response,” Nanophotonics 1, 17–22 (2012).
[Crossref]

Sun, J.

E. Timurdogan, C. M. Sorace-Agaskar, J. Sun, E. S. Hosseini, A. Biberman, and M. R. Watts, “An ultralow power athermal silicon modulator,” Nat. Commun. 5, 4008 (2014).
[Crossref]

Suzuki, N.

N. Iizuka, K. Kaneko, and N. Suzuki, “All-optical switch utilizing intersubband transition in GaN quantum wells,” IEEE J. Quantum Electron. 42, 765–771 (2006).
[Crossref]

N. Iizuka, K. Kaneko, and N. Suzuki, “Near-infrared intersubband absorption in GaN/AlN quantum wells grown by molecular beam epitaxy,” Appl. Phys. Lett. 81, 1803–1805 (2002).
[Crossref]

Tagliazucchi, M.

D. B. Tice, S. Q. Li, M. Tagliazucchi, D. B. Buchholz, E. A. Weiss, and R. P. H. Chang, “Ultrafast modulation of the plasma frequency of vertically aligned indium tin oxide rods,” Nano Lett. 14, 1120–1126 (2014).

Takagi, A.

K. Nomura, H. Ohta, A. Takagi, T. Kamiya, M. Hirano, and H. Hosono, “Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors,” Nature 432, 488–492 (2004).
[Crossref]

Tchernycheva, M.

L. Nevou, J. Mangeney, M. Tchernycheva, F. H. Julien, F. Guillot, and E. Monroy, “Ultrafast relaxation and optical saturation of intraband absorption of GaN/AlN quantum dots,” Appl. Phys. Lett. 94, 132104 (2009).
[Crossref]

Teranishi, T.

M. Kanehara, H. Koike, T. Yoshinaga, and T. Teranishi, “Indium tin oxide nanoparticles with compositionally tunable surface plasmon resonance frequencies in the near-IR region,” J. Am. Chem. Soc. 131, 17736–17737 (2009).
[Crossref]

Tice, D. B.

D. B. Tice, S. Q. Li, M. Tagliazucchi, D. B. Buchholz, E. A. Weiss, and R. P. H. Chang, “Ultrafast modulation of the plasma frequency of vertically aligned indium tin oxide rods,” Nano Lett. 14, 1120–1126 (2014).

Timurdogan, E.

E. Timurdogan, C. M. Sorace-Agaskar, J. Sun, E. S. Hosseini, A. Biberman, and M. R. Watts, “An ultralow power athermal silicon modulator,” Nat. Commun. 5, 4008 (2014).
[Crossref]

Traviss, D.

D. Traviss, R. Bruck, B. Mills, M. Abb, and O. L. Muskens, “Ultrafast plasmonics using transparent conductive oxide hybrids in the epsilon-near-zero regime,” Appl. Phys. Lett. 102, 121112 (2013).
[Crossref]

Trotter, D. C.

Valdmanis, J. A.

S. Gupta, M. Y. Frankel, J. A. Valdmanis, J. F. Whitaker, G. A. Mourou, F. W. Smith, and A. R. Calawa, “Subpicosecond carrier lifetime in GaAs grown by molecular beam epitaxy at low temperatures,” Appl. Phys. Lett. 59, 3276–3278 (1991).
[Crossref]

Van, V.

V. Van, T. A. Ibrahim, K. Ritter, P. P. Absil, F. G. Johnson, R. Grover, J. Goldhar, and P. T. Ho, “All-optical nonlinear switching in GaAs-AlGaAs microring resonators,” IEEE Photon. Technol. Lett. 14, 74–76 (2002).
[Crossref]

Wakahara, A.

A. V. Singh, R. M. Mehra, N. Buthrath, A. Wakahara, and A. Yoshida, “Highly conductive and transparent aluminum-doped zinc oxide thin films prepared by pulsed laser deposition in oxygen ambient,” J. Opt. A Pure Appl. Opt. 90, 5661–5665 (2001).

Wang, C.

A. Esser, K. Seibert, H. Kurz, G. N. Parsons, C. Wang, B. N. Davidson, G. Lucovsky, and R. J. Nemanich, “Ultrafast recombination and trapping in amorphous silicon,” Phys. Rev. B 41, 2879–2884 (1990).

Watts, M. R.

E. Timurdogan, C. M. Sorace-Agaskar, J. Sun, E. S. Hosseini, A. Biberman, and M. R. Watts, “An ultralow power athermal silicon modulator,” Nat. Commun. 5, 4008 (2014).
[Crossref]

M. R. Watts, W. A. Zortman, D. C. Trotter, R. W. Young, and A. L. Lentine, “Vertical junction silicon microdisk modulators and switches,” Opt. Express 19, 21989–22003 (2011).
[Crossref]

Wegener, M.

Weibel, S.

C. Rhodes, S. Franzen, J.-P. Maria, M. Losego, D. N. Leonard, B. Laughlin, G. Duscher, and S. Weibel, “Surface plasmon resonance in conducting metal oxides,” J. Opt. A Pure Appl. Opt. 100, 054905 (2006).

Weiss, E. A.

D. B. Tice, S. Q. Li, M. Tagliazucchi, D. B. Buchholz, E. A. Weiss, and R. P. H. Chang, “Ultrafast modulation of the plasma frequency of vertically aligned indium tin oxide rods,” Nano Lett. 14, 1120–1126 (2014).

Wells, N. P.

N. P. Wells, P. M. Belden, J. R. Demers, and W. T. Lotshaw, “Transient reflectivity as a probe of ultrafast carrier dynamics in semiconductors: a revised model for low-temperature grown GaAs,” J. Opt. A Pure Appl. Opt. 116, 073506 (2014).

Whitaker, J. F.

S. Gupta, J. F. Whitaker, and G. A. Mourou, “Ultrafast carrier dynamics in III-V semiconductors grown by molecular-beam epitaxy at very low substrate temperatures,” IEEE J. Quantum Electron. 28, 2464–2472 (1992).
[Crossref]

S. Gupta, M. Y. Frankel, J. A. Valdmanis, J. F. Whitaker, G. A. Mourou, F. W. Smith, and A. R. Calawa, “Subpicosecond carrier lifetime in GaAs grown by molecular beam epitaxy at low temperatures,” Appl. Phys. Lett. 59, 3276–3278 (1991).
[Crossref]

Wieting, R. D.

D. N. Pier, C. F. Gay, R. D. Wieting, and H. J. Langeberg, “Solar cells incorporating transparent electrodes comprising hazy zinc oxide,” U.S. patent5,078,803 A (7January 1992), Siemens Solar Industries L.P.

Winkler, T.

H. Schmidt, H. Flugge, T. Winkler, T. Bulow, T. Riedl, and W. Kowalsky, “Efficient semitransparent inverted organic solar cells with indium tin oxide top electrode,” Appl. Phys. Lett. 94, 243302 (2009).
[Crossref]

Woodall, J. M.

E. S. Harmon, M. R. Melloch, J. M. Woodall, D. D. Nolte, N. Otsuka, and C. L. Chang, “Carrier lifetime versus anneal in low temperature growth GaAs,” Appl. Phys. Lett. 63, 2248–2250 (1993).
[Crossref]

Xiao, B.

A. K. Pradhan, R. M. Mundle, K. Santiago, J. R. Skuza, B. Xiao, K. D. Song, M. Bahoura, R. Cheaito, and P. E. Hopkins, “Extreme tunability in aluminum doped zinc oxide plasmonic materials for near-infrared applications,” Sci. Rep. 4, 6415 (2014).
[Crossref]

Xu, Q.

Yoshida, A.

A. V. Singh, R. M. Mehra, N. Buthrath, A. Wakahara, and A. Yoshida, “Highly conductive and transparent aluminum-doped zinc oxide thin films prepared by pulsed laser deposition in oxygen ambient,” J. Opt. A Pure Appl. Opt. 90, 5661–5665 (2001).

Yoshinaga, T.

M. Kanehara, H. Koike, T. Yoshinaga, and T. Teranishi, “Indium tin oxide nanoparticles with compositionally tunable surface plasmon resonance frequencies in the near-IR region,” J. Am. Chem. Soc. 131, 17736–17737 (2009).
[Crossref]

Young, R. W.

Zhang, L.

S. Q. Li, P. Guo, L. Zhang, W. Zhou, T. W. Odom, T. Seideman, J. B. Ketterson, and R. P. H. Chang, “Infrared plasmonics with indium-tin-oxide nanorod arrays,” ACS Nano 5, 9161–9170 (2011).
[Crossref]

Zhang, X.

V. J. Sorger, N. D. Lanzillotti-Kimura, R. Ma, and X. Zhang, “Ultra-compact silicon nanophotonic modulator with broadband response,” Nanophotonics 1, 17–22 (2012).
[Crossref]

Zhou, W.

S. Q. Li, P. Guo, L. Zhang, W. Zhou, T. W. Odom, T. Seideman, J. B. Ketterson, and R. P. H. Chang, “Infrared plasmonics with indium-tin-oxide nanorod arrays,” ACS Nano 5, 9161–9170 (2011).
[Crossref]

Zhu, G.

M. A. Noginov, L. Gu, J. Livenere, G. Zhu, A. K. Pradhan, R. Mundle, M. Bahoura, Y. A. Barnakov, and V. A. Podolskiy, “Transparent conductive oxides: plasmonic materials for telecom wavelengths,” Appl. Phys. Lett. 99, 021101 (2011).
[Crossref]

Zhuo Ran, L.

H. Chen, R. J. Lamond, S. K. Pickus, L. Zhuo Ran, and V. J. Sorger, “A sub-lambda-size modulator beyond the efficiency-loss limit,” IEEE Photon. J. 5, 2202411 (2013).
[Crossref]

Zortman, W. A.

Zwick, T.

L. Alloatti, R. Palmer, S. Diebold, K. P. Pahl, B. Chen, R. Dinu, M. Fournier, J. M. Fedeli, T. Zwick, W. Freude, C. Koos, and J. Leuthold, “100  GHz silicon-organic hybrid modulator,” Light Sci. Appl. 3, e173–e177 (2014).

ACS Nano (1)

S. Q. Li, P. Guo, L. Zhang, W. Zhou, T. W. Odom, T. Seideman, J. B. Ketterson, and R. P. H. Chang, “Infrared plasmonics with indium-tin-oxide nanorod arrays,” ACS Nano 5, 9161–9170 (2011).
[Crossref]

Adv. Mater. (1)

G. V. Naik, V. M. Shalaev, and A. Boltasseva, “Alternative plasmonic materials: beyond gold and silver,” Adv. Mater. 25, 3264–3294 (2013).
[Crossref]

Appl. Phys. Lett. (12)

M. A. Noginov, L. Gu, J. Livenere, G. Zhu, A. K. Pradhan, R. Mundle, M. Bahoura, Y. A. Barnakov, and V. A. Podolskiy, “Transparent conductive oxides: plasmonic materials for telecom wavelengths,” Appl. Phys. Lett. 99, 021101 (2011).
[Crossref]

H. Schmidt, H. Flugge, T. Winkler, T. Bulow, T. Riedl, and W. Kowalsky, “Efficient semitransparent inverted organic solar cells with indium tin oxide top electrode,” Appl. Phys. Lett. 94, 243302 (2009).
[Crossref]

A. Janotti and C. G. V. de Walle, “Oxygen vacancies in ZnO,” Appl. Phys. Lett. 87, 122102 (2005).
[Crossref]

V. Ortiz, J. Nagle, and A. Alexandrou, “Influence of the hole population on the transient reflectivity signal of annealed low-temperature-grown GaAs,” Appl. Phys. Lett. 80, 2505–2509 (2002).
[Crossref]

D. Traviss, R. Bruck, B. Mills, M. Abb, and O. L. Muskens, “Ultrafast plasmonics using transparent conductive oxide hybrids in the epsilon-near-zero regime,” Appl. Phys. Lett. 102, 121112 (2013).
[Crossref]

E. S. Harmon, M. R. Melloch, J. M. Woodall, D. D. Nolte, N. Otsuka, and C. L. Chang, “Carrier lifetime versus anneal in low temperature growth GaAs,” Appl. Phys. Lett. 63, 2248–2250 (1993).
[Crossref]

S. Gupta, M. Y. Frankel, J. A. Valdmanis, J. F. Whitaker, G. A. Mourou, F. W. Smith, and A. R. Calawa, “Subpicosecond carrier lifetime in GaAs grown by molecular beam epitaxy at low temperatures,” Appl. Phys. Lett. 59, 3276–3278 (1991).
[Crossref]

L. Nevou, J. Mangeney, M. Tchernycheva, F. H. Julien, F. Guillot, and E. Monroy, “Ultrafast relaxation and optical saturation of intraband absorption of GaN/AlN quantum dots,” Appl. Phys. Lett. 94, 132104 (2009).
[Crossref]

N. Iizuka, K. Kaneko, and N. Suzuki, “Near-infrared intersubband absorption in GaN/AlN quantum wells grown by molecular beam epitaxy,” Appl. Phys. Lett. 81, 1803–1805 (2002).
[Crossref]

K. F. Lamprecht, S. Juen, L. Palmetshofer, and R. A. Hopfel, “Ultrashort carrier lifetimes in H+ bombarded InP,” Appl. Phys. Lett. 59, 926–928 (1991).
[Crossref]

F. E. Doany, D. Grischkowsky, and C. C. Chi, “Carrier lifetime versus ion-implantation dose in silicon on sapphire,” Appl. Phys. Lett. 50, 460–462 (1987).
[Crossref]

D. H. Auston, P. Lavallard, N. Sol, and D. Kaplan, “An amorphous silicon photodetector for picosecond pulses,” Appl. Phys. Lett. 36, 66–68 (1980).
[Crossref]

Appl. Surf. Sci. (1)

D. Ashkenasi, M. Lorenz, and A. Rosenfeld, “Surface damage threshold and structuring of dielectrics using femtosecond laser pulses: the role of incubation,” Appl. Surf. Sci. 150, 101–106 (1999).
[Crossref]

IEEE J. Quantum Electron. (2)

N. Iizuka, K. Kaneko, and N. Suzuki, “All-optical switch utilizing intersubband transition in GaN quantum wells,” IEEE J. Quantum Electron. 42, 765–771 (2006).
[Crossref]

S. Gupta, J. F. Whitaker, and G. A. Mourou, “Ultrafast carrier dynamics in III-V semiconductors grown by molecular-beam epitaxy at very low substrate temperatures,” IEEE J. Quantum Electron. 28, 2464–2472 (1992).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

J. Kim, G. Naik, N. Emani, U. Guler, and A. Boltasseva, “Plasmonic resonances in nanostructured transparent conducting oxide films,” IEEE J. Sel. Top. Quantum Electron. 19, 1 (2013).
[Crossref]

IEEE Photon. J. (1)

H. Chen, R. J. Lamond, S. K. Pickus, L. Zhuo Ran, and V. J. Sorger, “A sub-lambda-size modulator beyond the efficiency-loss limit,” IEEE Photon. J. 5, 2202411 (2013).
[Crossref]

IEEE Photon. Technol. Lett. (1)

V. Van, T. A. Ibrahim, K. Ritter, P. P. Absil, F. G. Johnson, R. Grover, J. Goldhar, and P. T. Ho, “All-optical nonlinear switching in GaAs-AlGaAs microring resonators,” IEEE Photon. Technol. Lett. 14, 74–76 (2002).
[Crossref]

J. Am. Chem. Soc. (1)

M. Kanehara, H. Koike, T. Yoshinaga, and T. Teranishi, “Indium tin oxide nanoparticles with compositionally tunable surface plasmon resonance frequencies in the near-IR region,” J. Am. Chem. Soc. 131, 17736–17737 (2009).
[Crossref]

J. Opt. (1)

M. Abb, B. Sepulveda, H. M. H. Chong, and O. L. Muskens, “Transparent conducting oxides for active hybrid metamaterial devices,” J. Opt. 14, 114007 (2012).
[Crossref]

J. Opt. A Pure Appl. Opt. (3)

C. Rhodes, S. Franzen, J.-P. Maria, M. Losego, D. N. Leonard, B. Laughlin, G. Duscher, and S. Weibel, “Surface plasmon resonance in conducting metal oxides,” J. Opt. A Pure Appl. Opt. 100, 054905 (2006).

N. P. Wells, P. M. Belden, J. R. Demers, and W. T. Lotshaw, “Transient reflectivity as a probe of ultrafast carrier dynamics in semiconductors: a revised model for low-temperature grown GaAs,” J. Opt. A Pure Appl. Opt. 116, 073506 (2014).

A. V. Singh, R. M. Mehra, N. Buthrath, A. Wakahara, and A. Yoshida, “Highly conductive and transparent aluminum-doped zinc oxide thin films prepared by pulsed laser deposition in oxygen ambient,” J. Opt. A Pure Appl. Opt. 90, 5661–5665 (2001).

J. Phys. Chem. B (1)

S. H. Brewer and S. Franzen, “Indium tin oxide plasma frequency dependence on sheet resistance and surface adlayers determined by reflectance FTIR spectroscopy,” J. Phys. Chem. B 106, 12986–12992 (2002).
[Crossref]

Light Sci. Appl. (1)

L. Alloatti, R. Palmer, S. Diebold, K. P. Pahl, B. Chen, R. Dinu, M. Fournier, J. M. Fedeli, T. Zwick, W. Freude, C. Koos, and J. Leuthold, “100  GHz silicon-organic hybrid modulator,” Light Sci. Appl. 3, e173–e177 (2014).

Nano Lett. (6)

E. Feigenbaum, K. Diest, and H. A. Atwater, “Unity-order index change in transparent conducting oxides at visible frequencies,” Nano Lett. 10, 2111–2116 (2010).

D. B. Tice, S. Q. Li, M. Tagliazucchi, D. B. Buchholz, E. A. Weiss, and R. P. H. Chang, “Ultrafast modulation of the plasma frequency of vertically aligned indium tin oxide rods,” Nano Lett. 14, 1120–1126 (2014).

M. Abb, P. Albella, J. Aizpurua, and O. L. Muskens, “All-optical control of a single plasmonic nanoantenna-ITO hybrid,” Nano Lett. 11, 2457–2463 (2011).

H. W. Lee, G. Papadakis, S. P. Burgos, K. Chander, A. Kriesch, R. Pala, U. Peschel, and H. A. Atwater, “Nanoscale conducting oxide PlasMOStor,” Nano Lett. 14, 6463–6468 (2014).

G. Garcia, R. Buonsanti, E. L. Runnerstrom, R. J. Mendelsberg, A. Llordes, A. Anders, T. J. Richardson, and D. J. Milliron, “Dynamically modulating the surface plasmon resonance of doped semiconductor nanocrystals,” Nano Lett. 11, 4415–4420 (2011).

T. R. Gordon, T. Paik, D. R. Klein, G. V. Naik, H. Caglayan, A. Boltasseva, and C. B. Murray, “Shape-dependent plasmonic response and directed self-assembly in a new semiconductor building block, indium-doped cadmium oxide (ICO),” Nano Lett. 13, 2857–2863 (2013).

Nanophotonics (1)

V. J. Sorger, N. D. Lanzillotti-Kimura, R. Ma, and X. Zhang, “Ultra-compact silicon nanophotonic modulator with broadband response,” Nanophotonics 1, 17–22 (2012).
[Crossref]

Nat. Commun. (2)

A. M. Mahmoud and N. Engheta, “Wave-matter interactions in epsilon-and-mu-near-zero structures,” Nat. Commun. 5, 5638 (2014).
[Crossref]

E. Timurdogan, C. M. Sorace-Agaskar, J. Sun, E. S. Hosseini, A. Biberman, and M. R. Watts, “An ultralow power athermal silicon modulator,” Nat. Commun. 5, 4008 (2014).
[Crossref]

Nature (1)

K. Nomura, H. Ohta, A. Takagi, T. Kamiya, M. Hirano, and H. Hosono, “Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors,” Nature 432, 488–492 (2004).
[Crossref]

Opt. Commun. (1)

C. H. Lee, A. Antonetti, and G. Mourou, “Measurements on the photoconductive lifetime of carriers in GaAs by optoelectronic gating technique,” Opt. Commun. 21, 158–161 (1977).
[Crossref]

Opt. Express (3)

Opt. Mater. Express (2)

Phys. Rev. B (3)

M. G. Silveirinha and N. Engheta, “Theory of supercoupling, squeezing wave energy, and field confinement in narrow channels and tight bends using ε near-zero metamaterials,” Phys. Rev. B 76, 245109 (2007).

A. J. Sabbah and D. M. Riffe, “Femtosecond pump-probe reflectivity study of silicon carrier dynamics,” Phys. Rev. B 66, 165217 (2002).

A. Esser, K. Seibert, H. Kurz, G. N. Parsons, C. Wang, B. N. Davidson, G. Lucovsky, and R. J. Nemanich, “Ultrafast recombination and trapping in amorphous silicon,” Phys. Rev. B 41, 2879–2884 (1990).

Phys. Rev. X (1)

J. Kim, G. V. Naik, A. V. Gavrilenko, K. Dondapati, V. I. Gavrilenko, S. M. Prokes, O. J. Glembocki, V. M. Shalaev, and A. Boltasseva, “Optical properties of gallium-doped zinc oxide—a low-loss plasmonic material: first-principles theory and experiment,” Phys. Rev. X 3, 041037 (2013).
[Crossref]

Sci. Rep. (1)

A. K. Pradhan, R. M. Mundle, K. Santiago, J. R. Skuza, B. Xiao, K. D. Song, M. Bahoura, R. Cheaito, and P. E. Hopkins, “Extreme tunability in aluminum doped zinc oxide plasmonic materials for near-infrared applications,” Sci. Rep. 4, 6415 (2014).
[Crossref]

Thin Solid Films (2)

H. Kim, J. S. Horwitz, S. B. Qadri, and D. B. Chrisey, “Epitaxial growth of Al-doped ZnO thin films grown by pulsed laser deposition,” Thin Solid Films 420, 107–111 (2002).
[Crossref]

T. C. Gorjanc, D. Leong, C. Py, and D. Roth, “Room temperature deposition of ITO using r.f. magnetron sputtering,” Thin Solid Films 413, 181–185 (2002).
[Crossref]

Other (7)

D. H. Levy, A. C. Scuderi, and L. M. Irving, “Methods of making thin film transistors comprising zinc-oxide-based semiconductor materials and transistors made thereby,” U.S. patent7,691,666 B2 (Apr. 6, 2010), Eastman Kodak Company.

Y. Li and B. S. Ong, “Thin film transistor using an oriented zinc oxide layer,” European patent EP1921681 A2 (May 14, 2008), Xerox Corporation.

M. Pinarbasi and J. Freitag, “Method of forming transparent zinc oxide layers for high efficiency photovoltaic cells,” U.S. patent application2011/0108099 A1 (11November2009), Solopower, Inc.

R. Boyd, Nonlinear Optics (Elsevier, 2008).

G. Naik and A. Boltasseva, “Plasmonics and metamaterials: looking beyond gold and silver,” SPIE Newsroom (30January2012), doi: 10.1117/2.1201201.004077.

D. N. Pier, C. F. Gay, R. D. Wieting, and H. J. Langeberg, “Solar cells incorporating transparent electrodes comprising hazy zinc oxide,” U.S. patent5,078,803 A (7January 1992), Siemens Solar Industries L.P.

D. A. Neamen, Semiconductor Physics and Devices Basic Principles (McGraw-Hill, 2003).

Supplementary Material (1)

» Supplement 1: PDF (1186 KB)     

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Absolute change in the reflection of a purely real (i.e., Im { n } = 0 ) material versus base refractive index provided an index change of Δ n = 0.1 . The magnitude of reflection is calculated using the Fresnel equations at a single interface between air ( n o = 1 ) and the material assuming normal incidence. Note that operating in the epsilon-near-zero regime (i.e., n < 1 ) provides larger absolute changes in the reflection for the same change in the refractive index.

Fig. 2.
Fig. 2.

(a) Complex permittivity of the 350 nm as-grown AZO film as extracted from spectroscopic ellipsometry. The green shaded area represents wavelengths above the band edge of the AZO, and the red shaded area represents the ENZ regime, i.e., | n | < 1 . The permittivities of the AZO at the two test wavelengths are given for reference. (b) Transmission spectrum of the 350 nm AZO film obtained using a spectrophotometer.

Fig. 3.
Fig. 3.

(a) Schematic of the pump-probe setup. Filter F1 transmits 1.3 μm and reflects 650 nm light. F3 removes residual 650 nm. R provides a delay line. Lenses L1 and L2 focus the light onto BBO to generate 325 nm light. Filter F2 removes residual 650 nm. Lenses L3 and L5 focus light onto the sample. F4 filters any stray light for detector D1. Normalized change in the (b) reflected power and (c) transmitted power as a function of the delay time between the pump and probe pulses. The absolute reflection (transmission) of the AZO sample without pumping is 25% (40%) at 1.3 μm.

Fig. 4.
Fig. 4.

Fitted change in (a) reflection and (b) transmission for the 350 nm thick as-grown AZO film under a fluence of 3.9 mJ / cm 2 .

Tables (1)

Tables Icon

Table 1. Summary of the Extracted Properties of the 350 nm As-Grown AZO Sample Including the Intrinsic Concentration a

Metrics