Abstract

White top-emitting organic light-emitting devices (WTOLEDs), emitting white light through a transparent top metallic electrode, have emerged as promising candidates as energy-efficient solid-state lighting sources and full-color flat-panel displays. The microcavity effect due to usage of metallic electrodes results in emission enhancement solely at a particular color, and therefore sets an obstacle for WTOLEDs, where at least two colors with balanced intensity should be emitted. Current efforts solving the problem basically rely on the relaxation of the microcavity effect, resulting in sacrificed light outcoupling efficiency in the original resonance region. Here, we demonstrate that by integrating a photonic crystal structure upon the top metallic electrode, an additional emission enhancement peak other than the one determined by the microcavity resonance could be provided by the Tamm plasmon-polariton mode. Mode hybridization induced dual hybrid modes with comparable light outcoupling efficiency can then be excited, from which two colors with balanced intensity could be emitted. Both experimental and theoretical results demonstrate that the proposed mode hybridization strategy may pave the way for the realization of WTOELDs towards high white color quality, improved viewing characteristics, and electroluminescence efficiency.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Emission behavior of dual-side emissive transparent white organic light-emitting diodes

Wing Hong Choi, Hoi Lam Tam, Dongge Ma, and Furong Zhu
Opt. Express 23(11) A471-A479 (2015)

Highly efficient inverted top-emitting organic light-emitting diodes using a lead monoxide electron injection layer

Qiang Wang, Zhaoqi Deng, and Dongge Ma
Opt. Express 17(20) 17269-17278 (2009)

References

  • View by:
  • |
  • |
  • |

  1. S. Reineke, F. Lindner, G. Schwartz, N. Seidler, K. Walzer, B. Lüssem, and K. Leo, “White organic light-emitting diodes with fluorescent tube efficiency,” Nature 459, 234–238 (2009).
    [Crossref]
  2. J. Kido, M. Kimura, and K. Nagai, “Multilayer white light-emitting organic electroluminescent device,” Science 267, 1332–1334 (1995).
    [Crossref]
  3. S. Reineke, T. Thomschke, B. Lüssem, and K. Leo, “White organic light-emitting diodes: status and perspective,” Rev. Mod. Phys. 85, 1245–1293 (2013).
    [Crossref]
  4. Y. Sun, N. C. Giebink, H. Kanno, B. Ma, M. E. Thompson, and S. R. Forrest, “Management of singlet and triplet excitons for efficient white organic light-emitting devices,” Nature 440, 908–912 (2006).
    [Crossref]
  5. S. Chen, L. Deng, J. Xie, L. Peng, L. Xie, Q. Fan, and W. Huang, “Recent developments in top-emitting organic light-emitting diodes,” Adv. Mater. 22, 5227–5239 (2010).
    [Crossref]
  6. M. C. Gather, A. Köhnen, and K. Meerholz, “White organic light-emitting diodes,” Adv. Mater. 23, 233–248 (2011).
    [Crossref]
  7. S. Hofmann, M. Thomschke, B. Lüssem, and K. Leo, “Top-emitting organic light-emitting diodes,” Opt. Express 19, A1250–A1264 (2011).
    [Crossref]
  8. M. Thomschke, R. Nitsche, M. Furno, and K. Leo, “Optimized efficiency and angular emission characteristics of white top-emitting organic electroluminescent diodes,” Appl. Phys. Lett. 94, 083303 (2009).
    [Crossref]
  9. P. Freitag, S. Reineke, S. Olthof, M. Furno, B. Lüssem, and K. Leo, “White top-emitting organic light-emitting diodes with forward directed emission and high color quality,” Org. Electron. 11, 1676–1682 (2010).
    [Crossref]
  10. Y. F. Liu, J. Feng, D. Yin, H. F. Cui, X. L. Zhang, Y. G. Bi, D. D. Zhang, L. S. Liu, A. W. Li, J. F. Song, Q. D. Chen, and H. B. Sun, “Viewing-angle independence of white emission from microcavity top-emitting organic light-emitting devices with periodically and gradually changed cavity length,” Org. Electron. 14, 1597–1601 (2013).
    [Crossref]
  11. T. Schwab, S. Schubert, L. Müller-Meskamp, K. Leo, and M. C. Gather, “Eliminating micro-cavity effects in white top-emitting OLEDs by ultra-thin metallic top electrodes,” Adv. Opt. Mater. 1, 921–925 (2013).
  12. M. Thomschke, S. Reineke, B. Lüssem, and K. Leo, “Highly efficient white top-emitting organic light-emitting diodes comprising laminated microlens films,” Nano Lett. 12, 424–428 (2012).
  13. W. Ji, L. Zhang, T. Zhang, G. Liu, W. Xie, S. Liu, H. Zhang, L. Zhang, and B. Li, “Top-emitting white organic light-emitting devices with a one-dimensional metallic–dielectric photonic crystal anode,” Opt. Lett. 34, 2703–2705 (2009).
    [Crossref]
  14. C. Xiang, W. Koo, F. So, H. Sasabe, and J. Kido, “A systematic study on efficiency enhancements in phosphorescent green, red and blue microcavity organic light emitting devices,” Light 2, e74 (2013).
  15. M. Kaliteevski, I. Iorsh, S. Brand, R. A. Abram, J. M. Chamberlain, A. V. Kavokin, and I. A. Shelykh, “Tamm plasmon-polaritons: possible electromagnetic states at the interface of a metal and a dielectric Bragg mirror,” Phys. Rev. B 76, 165415 (2007).
  16. X. L. Zhang, J. F. Song, X. B. Li, J. Feng, and H. B. Sun, “Optical Tamm states enhanced broad-band absorption of organic solar cells,” Appl. Phys. Lett. 101, 243901 (2012).
    [Crossref]
  17. X. L. Zhang, J. F. Song, J. Feng, and H. B. Sun, “Spectral engineering by flexible tunings of optical Tamm states and Fabry–Perot cavity resonance,” Opt. Lett. 38, 4382–4385 (2013).
    [Crossref]
  18. P. Yeh, Optical Waves in Layered Media (Wiley, 2005).
  19. R. Ameling and H. Giessen, “Microcavity plasmonics: strong coupling of photonic cavities and plasmons,” Laser Photon. Rev. 7, 141–169 (2013).
  20. M. Kaliteevski, S. Brand, R. A. Abram, I. Iorsh, A. V. Kavokin, and I. A. Shelykh, “Hybrid states of Tamm plasmons and exciton polaritons,” Appl. Phys. Lett. 95, 251108 (2009).
    [Crossref]
  21. T. Peng, Y. Yang, H. Bi, Y. Liu, Z. Hou, and Y. Wang, “Highly efficient white organic electroluminescence device based on a phosphorescent orange material doped in a blue host emitter,” J. Mater. Chem. 21, 3551–3553 (2011).
    [Crossref]
  22. K. A. Neyts, “Simulation of light emission from thin-film microcavities,” J. Opt. Soc. Am. A 15, 962–971 (1998).
    [Crossref]
  23. S. Okamoto, K. Tanaka, Y. Izumi, H. Adachi, T. Yamaji, and T. Suzuki, “Simple measurement of quantum efficiency in organic electroluminescent devices,” Jpn. J. Appl. Phys. 40, 783–784 (2001).
  24. Y. Jin, J. Feng, X. L. Zhang, Y. G. Bi, Y. Bai, L. Chen, T. Lan, Y. F. Liu, Q. D. Chen, and H. B. Sun, “Solving efficiency–stability tradeoff in top-emitting organic light-emitting devices by employing periodically corrugated metallic cathode,” Adv. Mater. 24, 1187–1191 (2012).
    [Crossref]
  25. Y. G. Bi, J. Feng, Y. F. Li, X. L. Zhang, Y. F. Liu, Y. Jin, and H. B. Sun, “Broadband light extraction from white organic light-emitting devices by employing corrugated metallic electrodes with dual periodicity,” Adv. Mater. 25, 6969–6974 (2013).
    [Crossref]
  26. C. H. Shin, E. Y. Shin, M. H. Kim, J. H. Lee, and Y. Choi, “Nanoparticle scattering layer for improving light extraction efficiency of organic light emitting diodes,” Opt. Express 23, A133–A139 (2015).
    [Crossref]
  27. X. L. Zhang, J. Feng, J. F. Song, X. B. Li, and H. B. Sun, “Grating amplitude effect on electroluminescence enhancement of corrugated organic light-emitting devices,” Opt. Lett. 36, 3915–3917 (2011).
    [Crossref]
  28. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).

2015 (1)

2013 (7)

Y. G. Bi, J. Feng, Y. F. Li, X. L. Zhang, Y. F. Liu, Y. Jin, and H. B. Sun, “Broadband light extraction from white organic light-emitting devices by employing corrugated metallic electrodes with dual periodicity,” Adv. Mater. 25, 6969–6974 (2013).
[Crossref]

S. Reineke, T. Thomschke, B. Lüssem, and K. Leo, “White organic light-emitting diodes: status and perspective,” Rev. Mod. Phys. 85, 1245–1293 (2013).
[Crossref]

Y. F. Liu, J. Feng, D. Yin, H. F. Cui, X. L. Zhang, Y. G. Bi, D. D. Zhang, L. S. Liu, A. W. Li, J. F. Song, Q. D. Chen, and H. B. Sun, “Viewing-angle independence of white emission from microcavity top-emitting organic light-emitting devices with periodically and gradually changed cavity length,” Org. Electron. 14, 1597–1601 (2013).
[Crossref]

T. Schwab, S. Schubert, L. Müller-Meskamp, K. Leo, and M. C. Gather, “Eliminating micro-cavity effects in white top-emitting OLEDs by ultra-thin metallic top electrodes,” Adv. Opt. Mater. 1, 921–925 (2013).

C. Xiang, W. Koo, F. So, H. Sasabe, and J. Kido, “A systematic study on efficiency enhancements in phosphorescent green, red and blue microcavity organic light emitting devices,” Light 2, e74 (2013).

X. L. Zhang, J. F. Song, J. Feng, and H. B. Sun, “Spectral engineering by flexible tunings of optical Tamm states and Fabry–Perot cavity resonance,” Opt. Lett. 38, 4382–4385 (2013).
[Crossref]

R. Ameling and H. Giessen, “Microcavity plasmonics: strong coupling of photonic cavities and plasmons,” Laser Photon. Rev. 7, 141–169 (2013).

2012 (3)

M. Thomschke, S. Reineke, B. Lüssem, and K. Leo, “Highly efficient white top-emitting organic light-emitting diodes comprising laminated microlens films,” Nano Lett. 12, 424–428 (2012).

Y. Jin, J. Feng, X. L. Zhang, Y. G. Bi, Y. Bai, L. Chen, T. Lan, Y. F. Liu, Q. D. Chen, and H. B. Sun, “Solving efficiency–stability tradeoff in top-emitting organic light-emitting devices by employing periodically corrugated metallic cathode,” Adv. Mater. 24, 1187–1191 (2012).
[Crossref]

X. L. Zhang, J. F. Song, X. B. Li, J. Feng, and H. B. Sun, “Optical Tamm states enhanced broad-band absorption of organic solar cells,” Appl. Phys. Lett. 101, 243901 (2012).
[Crossref]

2011 (4)

T. Peng, Y. Yang, H. Bi, Y. Liu, Z. Hou, and Y. Wang, “Highly efficient white organic electroluminescence device based on a phosphorescent orange material doped in a blue host emitter,” J. Mater. Chem. 21, 3551–3553 (2011).
[Crossref]

X. L. Zhang, J. Feng, J. F. Song, X. B. Li, and H. B. Sun, “Grating amplitude effect on electroluminescence enhancement of corrugated organic light-emitting devices,” Opt. Lett. 36, 3915–3917 (2011).
[Crossref]

M. C. Gather, A. Köhnen, and K. Meerholz, “White organic light-emitting diodes,” Adv. Mater. 23, 233–248 (2011).
[Crossref]

S. Hofmann, M. Thomschke, B. Lüssem, and K. Leo, “Top-emitting organic light-emitting diodes,” Opt. Express 19, A1250–A1264 (2011).
[Crossref]

2010 (2)

S. Chen, L. Deng, J. Xie, L. Peng, L. Xie, Q. Fan, and W. Huang, “Recent developments in top-emitting organic light-emitting diodes,” Adv. Mater. 22, 5227–5239 (2010).
[Crossref]

P. Freitag, S. Reineke, S. Olthof, M. Furno, B. Lüssem, and K. Leo, “White top-emitting organic light-emitting diodes with forward directed emission and high color quality,” Org. Electron. 11, 1676–1682 (2010).
[Crossref]

2009 (4)

M. Thomschke, R. Nitsche, M. Furno, and K. Leo, “Optimized efficiency and angular emission characteristics of white top-emitting organic electroluminescent diodes,” Appl. Phys. Lett. 94, 083303 (2009).
[Crossref]

S. Reineke, F. Lindner, G. Schwartz, N. Seidler, K. Walzer, B. Lüssem, and K. Leo, “White organic light-emitting diodes with fluorescent tube efficiency,” Nature 459, 234–238 (2009).
[Crossref]

W. Ji, L. Zhang, T. Zhang, G. Liu, W. Xie, S. Liu, H. Zhang, L. Zhang, and B. Li, “Top-emitting white organic light-emitting devices with a one-dimensional metallic–dielectric photonic crystal anode,” Opt. Lett. 34, 2703–2705 (2009).
[Crossref]

M. Kaliteevski, S. Brand, R. A. Abram, I. Iorsh, A. V. Kavokin, and I. A. Shelykh, “Hybrid states of Tamm plasmons and exciton polaritons,” Appl. Phys. Lett. 95, 251108 (2009).
[Crossref]

2007 (1)

M. Kaliteevski, I. Iorsh, S. Brand, R. A. Abram, J. M. Chamberlain, A. V. Kavokin, and I. A. Shelykh, “Tamm plasmon-polaritons: possible electromagnetic states at the interface of a metal and a dielectric Bragg mirror,” Phys. Rev. B 76, 165415 (2007).

2006 (1)

Y. Sun, N. C. Giebink, H. Kanno, B. Ma, M. E. Thompson, and S. R. Forrest, “Management of singlet and triplet excitons for efficient white organic light-emitting devices,” Nature 440, 908–912 (2006).
[Crossref]

2001 (1)

S. Okamoto, K. Tanaka, Y. Izumi, H. Adachi, T. Yamaji, and T. Suzuki, “Simple measurement of quantum efficiency in organic electroluminescent devices,” Jpn. J. Appl. Phys. 40, 783–784 (2001).

1998 (1)

1995 (1)

J. Kido, M. Kimura, and K. Nagai, “Multilayer white light-emitting organic electroluminescent device,” Science 267, 1332–1334 (1995).
[Crossref]

1972 (1)

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).

Abram, R. A.

M. Kaliteevski, S. Brand, R. A. Abram, I. Iorsh, A. V. Kavokin, and I. A. Shelykh, “Hybrid states of Tamm plasmons and exciton polaritons,” Appl. Phys. Lett. 95, 251108 (2009).
[Crossref]

M. Kaliteevski, I. Iorsh, S. Brand, R. A. Abram, J. M. Chamberlain, A. V. Kavokin, and I. A. Shelykh, “Tamm plasmon-polaritons: possible electromagnetic states at the interface of a metal and a dielectric Bragg mirror,” Phys. Rev. B 76, 165415 (2007).

Adachi, H.

S. Okamoto, K. Tanaka, Y. Izumi, H. Adachi, T. Yamaji, and T. Suzuki, “Simple measurement of quantum efficiency in organic electroluminescent devices,” Jpn. J. Appl. Phys. 40, 783–784 (2001).

Ameling, R.

R. Ameling and H. Giessen, “Microcavity plasmonics: strong coupling of photonic cavities and plasmons,” Laser Photon. Rev. 7, 141–169 (2013).

Bai, Y.

Y. Jin, J. Feng, X. L. Zhang, Y. G. Bi, Y. Bai, L. Chen, T. Lan, Y. F. Liu, Q. D. Chen, and H. B. Sun, “Solving efficiency–stability tradeoff in top-emitting organic light-emitting devices by employing periodically corrugated metallic cathode,” Adv. Mater. 24, 1187–1191 (2012).
[Crossref]

Bi, H.

T. Peng, Y. Yang, H. Bi, Y. Liu, Z. Hou, and Y. Wang, “Highly efficient white organic electroluminescence device based on a phosphorescent orange material doped in a blue host emitter,” J. Mater. Chem. 21, 3551–3553 (2011).
[Crossref]

Bi, Y. G.

Y. G. Bi, J. Feng, Y. F. Li, X. L. Zhang, Y. F. Liu, Y. Jin, and H. B. Sun, “Broadband light extraction from white organic light-emitting devices by employing corrugated metallic electrodes with dual periodicity,” Adv. Mater. 25, 6969–6974 (2013).
[Crossref]

Y. F. Liu, J. Feng, D. Yin, H. F. Cui, X. L. Zhang, Y. G. Bi, D. D. Zhang, L. S. Liu, A. W. Li, J. F. Song, Q. D. Chen, and H. B. Sun, “Viewing-angle independence of white emission from microcavity top-emitting organic light-emitting devices with periodically and gradually changed cavity length,” Org. Electron. 14, 1597–1601 (2013).
[Crossref]

Y. Jin, J. Feng, X. L. Zhang, Y. G. Bi, Y. Bai, L. Chen, T. Lan, Y. F. Liu, Q. D. Chen, and H. B. Sun, “Solving efficiency–stability tradeoff in top-emitting organic light-emitting devices by employing periodically corrugated metallic cathode,” Adv. Mater. 24, 1187–1191 (2012).
[Crossref]

Brand, S.

M. Kaliteevski, S. Brand, R. A. Abram, I. Iorsh, A. V. Kavokin, and I. A. Shelykh, “Hybrid states of Tamm plasmons and exciton polaritons,” Appl. Phys. Lett. 95, 251108 (2009).
[Crossref]

M. Kaliteevski, I. Iorsh, S. Brand, R. A. Abram, J. M. Chamberlain, A. V. Kavokin, and I. A. Shelykh, “Tamm plasmon-polaritons: possible electromagnetic states at the interface of a metal and a dielectric Bragg mirror,” Phys. Rev. B 76, 165415 (2007).

Chamberlain, J. M.

M. Kaliteevski, I. Iorsh, S. Brand, R. A. Abram, J. M. Chamberlain, A. V. Kavokin, and I. A. Shelykh, “Tamm plasmon-polaritons: possible electromagnetic states at the interface of a metal and a dielectric Bragg mirror,” Phys. Rev. B 76, 165415 (2007).

Chen, L.

Y. Jin, J. Feng, X. L. Zhang, Y. G. Bi, Y. Bai, L. Chen, T. Lan, Y. F. Liu, Q. D. Chen, and H. B. Sun, “Solving efficiency–stability tradeoff in top-emitting organic light-emitting devices by employing periodically corrugated metallic cathode,” Adv. Mater. 24, 1187–1191 (2012).
[Crossref]

Chen, Q. D.

Y. F. Liu, J. Feng, D. Yin, H. F. Cui, X. L. Zhang, Y. G. Bi, D. D. Zhang, L. S. Liu, A. W. Li, J. F. Song, Q. D. Chen, and H. B. Sun, “Viewing-angle independence of white emission from microcavity top-emitting organic light-emitting devices with periodically and gradually changed cavity length,” Org. Electron. 14, 1597–1601 (2013).
[Crossref]

Y. Jin, J. Feng, X. L. Zhang, Y. G. Bi, Y. Bai, L. Chen, T. Lan, Y. F. Liu, Q. D. Chen, and H. B. Sun, “Solving efficiency–stability tradeoff in top-emitting organic light-emitting devices by employing periodically corrugated metallic cathode,” Adv. Mater. 24, 1187–1191 (2012).
[Crossref]

Chen, S.

S. Chen, L. Deng, J. Xie, L. Peng, L. Xie, Q. Fan, and W. Huang, “Recent developments in top-emitting organic light-emitting diodes,” Adv. Mater. 22, 5227–5239 (2010).
[Crossref]

Choi, Y.

Christy, R. W.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).

Cui, H. F.

Y. F. Liu, J. Feng, D. Yin, H. F. Cui, X. L. Zhang, Y. G. Bi, D. D. Zhang, L. S. Liu, A. W. Li, J. F. Song, Q. D. Chen, and H. B. Sun, “Viewing-angle independence of white emission from microcavity top-emitting organic light-emitting devices with periodically and gradually changed cavity length,” Org. Electron. 14, 1597–1601 (2013).
[Crossref]

Deng, L.

S. Chen, L. Deng, J. Xie, L. Peng, L. Xie, Q. Fan, and W. Huang, “Recent developments in top-emitting organic light-emitting diodes,” Adv. Mater. 22, 5227–5239 (2010).
[Crossref]

Fan, Q.

S. Chen, L. Deng, J. Xie, L. Peng, L. Xie, Q. Fan, and W. Huang, “Recent developments in top-emitting organic light-emitting diodes,” Adv. Mater. 22, 5227–5239 (2010).
[Crossref]

Feng, J.

Y. F. Liu, J. Feng, D. Yin, H. F. Cui, X. L. Zhang, Y. G. Bi, D. D. Zhang, L. S. Liu, A. W. Li, J. F. Song, Q. D. Chen, and H. B. Sun, “Viewing-angle independence of white emission from microcavity top-emitting organic light-emitting devices with periodically and gradually changed cavity length,” Org. Electron. 14, 1597–1601 (2013).
[Crossref]

Y. G. Bi, J. Feng, Y. F. Li, X. L. Zhang, Y. F. Liu, Y. Jin, and H. B. Sun, “Broadband light extraction from white organic light-emitting devices by employing corrugated metallic electrodes with dual periodicity,” Adv. Mater. 25, 6969–6974 (2013).
[Crossref]

X. L. Zhang, J. F. Song, J. Feng, and H. B. Sun, “Spectral engineering by flexible tunings of optical Tamm states and Fabry–Perot cavity resonance,” Opt. Lett. 38, 4382–4385 (2013).
[Crossref]

X. L. Zhang, J. F. Song, X. B. Li, J. Feng, and H. B. Sun, “Optical Tamm states enhanced broad-band absorption of organic solar cells,” Appl. Phys. Lett. 101, 243901 (2012).
[Crossref]

Y. Jin, J. Feng, X. L. Zhang, Y. G. Bi, Y. Bai, L. Chen, T. Lan, Y. F. Liu, Q. D. Chen, and H. B. Sun, “Solving efficiency–stability tradeoff in top-emitting organic light-emitting devices by employing periodically corrugated metallic cathode,” Adv. Mater. 24, 1187–1191 (2012).
[Crossref]

X. L. Zhang, J. Feng, J. F. Song, X. B. Li, and H. B. Sun, “Grating amplitude effect on electroluminescence enhancement of corrugated organic light-emitting devices,” Opt. Lett. 36, 3915–3917 (2011).
[Crossref]

Forrest, S. R.

Y. Sun, N. C. Giebink, H. Kanno, B. Ma, M. E. Thompson, and S. R. Forrest, “Management of singlet and triplet excitons for efficient white organic light-emitting devices,” Nature 440, 908–912 (2006).
[Crossref]

Freitag, P.

P. Freitag, S. Reineke, S. Olthof, M. Furno, B. Lüssem, and K. Leo, “White top-emitting organic light-emitting diodes with forward directed emission and high color quality,” Org. Electron. 11, 1676–1682 (2010).
[Crossref]

Furno, M.

P. Freitag, S. Reineke, S. Olthof, M. Furno, B. Lüssem, and K. Leo, “White top-emitting organic light-emitting diodes with forward directed emission and high color quality,” Org. Electron. 11, 1676–1682 (2010).
[Crossref]

M. Thomschke, R. Nitsche, M. Furno, and K. Leo, “Optimized efficiency and angular emission characteristics of white top-emitting organic electroluminescent diodes,” Appl. Phys. Lett. 94, 083303 (2009).
[Crossref]

Gather, M. C.

T. Schwab, S. Schubert, L. Müller-Meskamp, K. Leo, and M. C. Gather, “Eliminating micro-cavity effects in white top-emitting OLEDs by ultra-thin metallic top electrodes,” Adv. Opt. Mater. 1, 921–925 (2013).

M. C. Gather, A. Köhnen, and K. Meerholz, “White organic light-emitting diodes,” Adv. Mater. 23, 233–248 (2011).
[Crossref]

Giebink, N. C.

Y. Sun, N. C. Giebink, H. Kanno, B. Ma, M. E. Thompson, and S. R. Forrest, “Management of singlet and triplet excitons for efficient white organic light-emitting devices,” Nature 440, 908–912 (2006).
[Crossref]

Giessen, H.

R. Ameling and H. Giessen, “Microcavity plasmonics: strong coupling of photonic cavities and plasmons,” Laser Photon. Rev. 7, 141–169 (2013).

Hofmann, S.

Hou, Z.

T. Peng, Y. Yang, H. Bi, Y. Liu, Z. Hou, and Y. Wang, “Highly efficient white organic electroluminescence device based on a phosphorescent orange material doped in a blue host emitter,” J. Mater. Chem. 21, 3551–3553 (2011).
[Crossref]

Huang, W.

S. Chen, L. Deng, J. Xie, L. Peng, L. Xie, Q. Fan, and W. Huang, “Recent developments in top-emitting organic light-emitting diodes,” Adv. Mater. 22, 5227–5239 (2010).
[Crossref]

Iorsh, I.

M. Kaliteevski, S. Brand, R. A. Abram, I. Iorsh, A. V. Kavokin, and I. A. Shelykh, “Hybrid states of Tamm plasmons and exciton polaritons,” Appl. Phys. Lett. 95, 251108 (2009).
[Crossref]

M. Kaliteevski, I. Iorsh, S. Brand, R. A. Abram, J. M. Chamberlain, A. V. Kavokin, and I. A. Shelykh, “Tamm plasmon-polaritons: possible electromagnetic states at the interface of a metal and a dielectric Bragg mirror,” Phys. Rev. B 76, 165415 (2007).

Izumi, Y.

S. Okamoto, K. Tanaka, Y. Izumi, H. Adachi, T. Yamaji, and T. Suzuki, “Simple measurement of quantum efficiency in organic electroluminescent devices,” Jpn. J. Appl. Phys. 40, 783–784 (2001).

Ji, W.

Jin, Y.

Y. G. Bi, J. Feng, Y. F. Li, X. L. Zhang, Y. F. Liu, Y. Jin, and H. B. Sun, “Broadband light extraction from white organic light-emitting devices by employing corrugated metallic electrodes with dual periodicity,” Adv. Mater. 25, 6969–6974 (2013).
[Crossref]

Y. Jin, J. Feng, X. L. Zhang, Y. G. Bi, Y. Bai, L. Chen, T. Lan, Y. F. Liu, Q. D. Chen, and H. B. Sun, “Solving efficiency–stability tradeoff in top-emitting organic light-emitting devices by employing periodically corrugated metallic cathode,” Adv. Mater. 24, 1187–1191 (2012).
[Crossref]

Johnson, P. B.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).

Kaliteevski, M.

M. Kaliteevski, S. Brand, R. A. Abram, I. Iorsh, A. V. Kavokin, and I. A. Shelykh, “Hybrid states of Tamm plasmons and exciton polaritons,” Appl. Phys. Lett. 95, 251108 (2009).
[Crossref]

M. Kaliteevski, I. Iorsh, S. Brand, R. A. Abram, J. M. Chamberlain, A. V. Kavokin, and I. A. Shelykh, “Tamm plasmon-polaritons: possible electromagnetic states at the interface of a metal and a dielectric Bragg mirror,” Phys. Rev. B 76, 165415 (2007).

Kanno, H.

Y. Sun, N. C. Giebink, H. Kanno, B. Ma, M. E. Thompson, and S. R. Forrest, “Management of singlet and triplet excitons for efficient white organic light-emitting devices,” Nature 440, 908–912 (2006).
[Crossref]

Kavokin, A. V.

M. Kaliteevski, S. Brand, R. A. Abram, I. Iorsh, A. V. Kavokin, and I. A. Shelykh, “Hybrid states of Tamm plasmons and exciton polaritons,” Appl. Phys. Lett. 95, 251108 (2009).
[Crossref]

M. Kaliteevski, I. Iorsh, S. Brand, R. A. Abram, J. M. Chamberlain, A. V. Kavokin, and I. A. Shelykh, “Tamm plasmon-polaritons: possible electromagnetic states at the interface of a metal and a dielectric Bragg mirror,” Phys. Rev. B 76, 165415 (2007).

Kido, J.

C. Xiang, W. Koo, F. So, H. Sasabe, and J. Kido, “A systematic study on efficiency enhancements in phosphorescent green, red and blue microcavity organic light emitting devices,” Light 2, e74 (2013).

J. Kido, M. Kimura, and K. Nagai, “Multilayer white light-emitting organic electroluminescent device,” Science 267, 1332–1334 (1995).
[Crossref]

Kim, M. H.

Kimura, M.

J. Kido, M. Kimura, and K. Nagai, “Multilayer white light-emitting organic electroluminescent device,” Science 267, 1332–1334 (1995).
[Crossref]

Köhnen, A.

M. C. Gather, A. Köhnen, and K. Meerholz, “White organic light-emitting diodes,” Adv. Mater. 23, 233–248 (2011).
[Crossref]

Koo, W.

C. Xiang, W. Koo, F. So, H. Sasabe, and J. Kido, “A systematic study on efficiency enhancements in phosphorescent green, red and blue microcavity organic light emitting devices,” Light 2, e74 (2013).

Lan, T.

Y. Jin, J. Feng, X. L. Zhang, Y. G. Bi, Y. Bai, L. Chen, T. Lan, Y. F. Liu, Q. D. Chen, and H. B. Sun, “Solving efficiency–stability tradeoff in top-emitting organic light-emitting devices by employing periodically corrugated metallic cathode,” Adv. Mater. 24, 1187–1191 (2012).
[Crossref]

Lee, J. H.

Leo, K.

T. Schwab, S. Schubert, L. Müller-Meskamp, K. Leo, and M. C. Gather, “Eliminating micro-cavity effects in white top-emitting OLEDs by ultra-thin metallic top electrodes,” Adv. Opt. Mater. 1, 921–925 (2013).

S. Reineke, T. Thomschke, B. Lüssem, and K. Leo, “White organic light-emitting diodes: status and perspective,” Rev. Mod. Phys. 85, 1245–1293 (2013).
[Crossref]

M. Thomschke, S. Reineke, B. Lüssem, and K. Leo, “Highly efficient white top-emitting organic light-emitting diodes comprising laminated microlens films,” Nano Lett. 12, 424–428 (2012).

S. Hofmann, M. Thomschke, B. Lüssem, and K. Leo, “Top-emitting organic light-emitting diodes,” Opt. Express 19, A1250–A1264 (2011).
[Crossref]

P. Freitag, S. Reineke, S. Olthof, M. Furno, B. Lüssem, and K. Leo, “White top-emitting organic light-emitting diodes with forward directed emission and high color quality,” Org. Electron. 11, 1676–1682 (2010).
[Crossref]

M. Thomschke, R. Nitsche, M. Furno, and K. Leo, “Optimized efficiency and angular emission characteristics of white top-emitting organic electroluminescent diodes,” Appl. Phys. Lett. 94, 083303 (2009).
[Crossref]

S. Reineke, F. Lindner, G. Schwartz, N. Seidler, K. Walzer, B. Lüssem, and K. Leo, “White organic light-emitting diodes with fluorescent tube efficiency,” Nature 459, 234–238 (2009).
[Crossref]

Li, A. W.

Y. F. Liu, J. Feng, D. Yin, H. F. Cui, X. L. Zhang, Y. G. Bi, D. D. Zhang, L. S. Liu, A. W. Li, J. F. Song, Q. D. Chen, and H. B. Sun, “Viewing-angle independence of white emission from microcavity top-emitting organic light-emitting devices with periodically and gradually changed cavity length,” Org. Electron. 14, 1597–1601 (2013).
[Crossref]

Li, B.

Li, X. B.

X. L. Zhang, J. F. Song, X. B. Li, J. Feng, and H. B. Sun, “Optical Tamm states enhanced broad-band absorption of organic solar cells,” Appl. Phys. Lett. 101, 243901 (2012).
[Crossref]

X. L. Zhang, J. Feng, J. F. Song, X. B. Li, and H. B. Sun, “Grating amplitude effect on electroluminescence enhancement of corrugated organic light-emitting devices,” Opt. Lett. 36, 3915–3917 (2011).
[Crossref]

Li, Y. F.

Y. G. Bi, J. Feng, Y. F. Li, X. L. Zhang, Y. F. Liu, Y. Jin, and H. B. Sun, “Broadband light extraction from white organic light-emitting devices by employing corrugated metallic electrodes with dual periodicity,” Adv. Mater. 25, 6969–6974 (2013).
[Crossref]

Lindner, F.

S. Reineke, F. Lindner, G. Schwartz, N. Seidler, K. Walzer, B. Lüssem, and K. Leo, “White organic light-emitting diodes with fluorescent tube efficiency,” Nature 459, 234–238 (2009).
[Crossref]

Liu, G.

Liu, L. S.

Y. F. Liu, J. Feng, D. Yin, H. F. Cui, X. L. Zhang, Y. G. Bi, D. D. Zhang, L. S. Liu, A. W. Li, J. F. Song, Q. D. Chen, and H. B. Sun, “Viewing-angle independence of white emission from microcavity top-emitting organic light-emitting devices with periodically and gradually changed cavity length,” Org. Electron. 14, 1597–1601 (2013).
[Crossref]

Liu, S.

Liu, Y.

T. Peng, Y. Yang, H. Bi, Y. Liu, Z. Hou, and Y. Wang, “Highly efficient white organic electroluminescence device based on a phosphorescent orange material doped in a blue host emitter,” J. Mater. Chem. 21, 3551–3553 (2011).
[Crossref]

Liu, Y. F.

Y. G. Bi, J. Feng, Y. F. Li, X. L. Zhang, Y. F. Liu, Y. Jin, and H. B. Sun, “Broadband light extraction from white organic light-emitting devices by employing corrugated metallic electrodes with dual periodicity,” Adv. Mater. 25, 6969–6974 (2013).
[Crossref]

Y. F. Liu, J. Feng, D. Yin, H. F. Cui, X. L. Zhang, Y. G. Bi, D. D. Zhang, L. S. Liu, A. W. Li, J. F. Song, Q. D. Chen, and H. B. Sun, “Viewing-angle independence of white emission from microcavity top-emitting organic light-emitting devices with periodically and gradually changed cavity length,” Org. Electron. 14, 1597–1601 (2013).
[Crossref]

Y. Jin, J. Feng, X. L. Zhang, Y. G. Bi, Y. Bai, L. Chen, T. Lan, Y. F. Liu, Q. D. Chen, and H. B. Sun, “Solving efficiency–stability tradeoff in top-emitting organic light-emitting devices by employing periodically corrugated metallic cathode,” Adv. Mater. 24, 1187–1191 (2012).
[Crossref]

Lüssem, B.

S. Reineke, T. Thomschke, B. Lüssem, and K. Leo, “White organic light-emitting diodes: status and perspective,” Rev. Mod. Phys. 85, 1245–1293 (2013).
[Crossref]

M. Thomschke, S. Reineke, B. Lüssem, and K. Leo, “Highly efficient white top-emitting organic light-emitting diodes comprising laminated microlens films,” Nano Lett. 12, 424–428 (2012).

S. Hofmann, M. Thomschke, B. Lüssem, and K. Leo, “Top-emitting organic light-emitting diodes,” Opt. Express 19, A1250–A1264 (2011).
[Crossref]

P. Freitag, S. Reineke, S. Olthof, M. Furno, B. Lüssem, and K. Leo, “White top-emitting organic light-emitting diodes with forward directed emission and high color quality,” Org. Electron. 11, 1676–1682 (2010).
[Crossref]

S. Reineke, F. Lindner, G. Schwartz, N. Seidler, K. Walzer, B. Lüssem, and K. Leo, “White organic light-emitting diodes with fluorescent tube efficiency,” Nature 459, 234–238 (2009).
[Crossref]

Ma, B.

Y. Sun, N. C. Giebink, H. Kanno, B. Ma, M. E. Thompson, and S. R. Forrest, “Management of singlet and triplet excitons for efficient white organic light-emitting devices,” Nature 440, 908–912 (2006).
[Crossref]

Meerholz, K.

M. C. Gather, A. Köhnen, and K. Meerholz, “White organic light-emitting diodes,” Adv. Mater. 23, 233–248 (2011).
[Crossref]

Müller-Meskamp, L.

T. Schwab, S. Schubert, L. Müller-Meskamp, K. Leo, and M. C. Gather, “Eliminating micro-cavity effects in white top-emitting OLEDs by ultra-thin metallic top electrodes,” Adv. Opt. Mater. 1, 921–925 (2013).

Nagai, K.

J. Kido, M. Kimura, and K. Nagai, “Multilayer white light-emitting organic electroluminescent device,” Science 267, 1332–1334 (1995).
[Crossref]

Neyts, K. A.

Nitsche, R.

M. Thomschke, R. Nitsche, M. Furno, and K. Leo, “Optimized efficiency and angular emission characteristics of white top-emitting organic electroluminescent diodes,” Appl. Phys. Lett. 94, 083303 (2009).
[Crossref]

Okamoto, S.

S. Okamoto, K. Tanaka, Y. Izumi, H. Adachi, T. Yamaji, and T. Suzuki, “Simple measurement of quantum efficiency in organic electroluminescent devices,” Jpn. J. Appl. Phys. 40, 783–784 (2001).

Olthof, S.

P. Freitag, S. Reineke, S. Olthof, M. Furno, B. Lüssem, and K. Leo, “White top-emitting organic light-emitting diodes with forward directed emission and high color quality,” Org. Electron. 11, 1676–1682 (2010).
[Crossref]

Peng, L.

S. Chen, L. Deng, J. Xie, L. Peng, L. Xie, Q. Fan, and W. Huang, “Recent developments in top-emitting organic light-emitting diodes,” Adv. Mater. 22, 5227–5239 (2010).
[Crossref]

Peng, T.

T. Peng, Y. Yang, H. Bi, Y. Liu, Z. Hou, and Y. Wang, “Highly efficient white organic electroluminescence device based on a phosphorescent orange material doped in a blue host emitter,” J. Mater. Chem. 21, 3551–3553 (2011).
[Crossref]

Reineke, S.

S. Reineke, T. Thomschke, B. Lüssem, and K. Leo, “White organic light-emitting diodes: status and perspective,” Rev. Mod. Phys. 85, 1245–1293 (2013).
[Crossref]

M. Thomschke, S. Reineke, B. Lüssem, and K. Leo, “Highly efficient white top-emitting organic light-emitting diodes comprising laminated microlens films,” Nano Lett. 12, 424–428 (2012).

P. Freitag, S. Reineke, S. Olthof, M. Furno, B. Lüssem, and K. Leo, “White top-emitting organic light-emitting diodes with forward directed emission and high color quality,” Org. Electron. 11, 1676–1682 (2010).
[Crossref]

S. Reineke, F. Lindner, G. Schwartz, N. Seidler, K. Walzer, B. Lüssem, and K. Leo, “White organic light-emitting diodes with fluorescent tube efficiency,” Nature 459, 234–238 (2009).
[Crossref]

Sasabe, H.

C. Xiang, W. Koo, F. So, H. Sasabe, and J. Kido, “A systematic study on efficiency enhancements in phosphorescent green, red and blue microcavity organic light emitting devices,” Light 2, e74 (2013).

Schubert, S.

T. Schwab, S. Schubert, L. Müller-Meskamp, K. Leo, and M. C. Gather, “Eliminating micro-cavity effects in white top-emitting OLEDs by ultra-thin metallic top electrodes,” Adv. Opt. Mater. 1, 921–925 (2013).

Schwab, T.

T. Schwab, S. Schubert, L. Müller-Meskamp, K. Leo, and M. C. Gather, “Eliminating micro-cavity effects in white top-emitting OLEDs by ultra-thin metallic top electrodes,” Adv. Opt. Mater. 1, 921–925 (2013).

Schwartz, G.

S. Reineke, F. Lindner, G. Schwartz, N. Seidler, K. Walzer, B. Lüssem, and K. Leo, “White organic light-emitting diodes with fluorescent tube efficiency,” Nature 459, 234–238 (2009).
[Crossref]

Seidler, N.

S. Reineke, F. Lindner, G. Schwartz, N. Seidler, K. Walzer, B. Lüssem, and K. Leo, “White organic light-emitting diodes with fluorescent tube efficiency,” Nature 459, 234–238 (2009).
[Crossref]

Shelykh, I. A.

M. Kaliteevski, S. Brand, R. A. Abram, I. Iorsh, A. V. Kavokin, and I. A. Shelykh, “Hybrid states of Tamm plasmons and exciton polaritons,” Appl. Phys. Lett. 95, 251108 (2009).
[Crossref]

M. Kaliteevski, I. Iorsh, S. Brand, R. A. Abram, J. M. Chamberlain, A. V. Kavokin, and I. A. Shelykh, “Tamm plasmon-polaritons: possible electromagnetic states at the interface of a metal and a dielectric Bragg mirror,” Phys. Rev. B 76, 165415 (2007).

Shin, C. H.

Shin, E. Y.

So, F.

C. Xiang, W. Koo, F. So, H. Sasabe, and J. Kido, “A systematic study on efficiency enhancements in phosphorescent green, red and blue microcavity organic light emitting devices,” Light 2, e74 (2013).

Song, J. F.

Y. F. Liu, J. Feng, D. Yin, H. F. Cui, X. L. Zhang, Y. G. Bi, D. D. Zhang, L. S. Liu, A. W. Li, J. F. Song, Q. D. Chen, and H. B. Sun, “Viewing-angle independence of white emission from microcavity top-emitting organic light-emitting devices with periodically and gradually changed cavity length,” Org. Electron. 14, 1597–1601 (2013).
[Crossref]

X. L. Zhang, J. F. Song, J. Feng, and H. B. Sun, “Spectral engineering by flexible tunings of optical Tamm states and Fabry–Perot cavity resonance,” Opt. Lett. 38, 4382–4385 (2013).
[Crossref]

X. L. Zhang, J. F. Song, X. B. Li, J. Feng, and H. B. Sun, “Optical Tamm states enhanced broad-band absorption of organic solar cells,” Appl. Phys. Lett. 101, 243901 (2012).
[Crossref]

X. L. Zhang, J. Feng, J. F. Song, X. B. Li, and H. B. Sun, “Grating amplitude effect on electroluminescence enhancement of corrugated organic light-emitting devices,” Opt. Lett. 36, 3915–3917 (2011).
[Crossref]

Sun, H. B.

Y. G. Bi, J. Feng, Y. F. Li, X. L. Zhang, Y. F. Liu, Y. Jin, and H. B. Sun, “Broadband light extraction from white organic light-emitting devices by employing corrugated metallic electrodes with dual periodicity,” Adv. Mater. 25, 6969–6974 (2013).
[Crossref]

Y. F. Liu, J. Feng, D. Yin, H. F. Cui, X. L. Zhang, Y. G. Bi, D. D. Zhang, L. S. Liu, A. W. Li, J. F. Song, Q. D. Chen, and H. B. Sun, “Viewing-angle independence of white emission from microcavity top-emitting organic light-emitting devices with periodically and gradually changed cavity length,” Org. Electron. 14, 1597–1601 (2013).
[Crossref]

X. L. Zhang, J. F. Song, J. Feng, and H. B. Sun, “Spectral engineering by flexible tunings of optical Tamm states and Fabry–Perot cavity resonance,” Opt. Lett. 38, 4382–4385 (2013).
[Crossref]

Y. Jin, J. Feng, X. L. Zhang, Y. G. Bi, Y. Bai, L. Chen, T. Lan, Y. F. Liu, Q. D. Chen, and H. B. Sun, “Solving efficiency–stability tradeoff in top-emitting organic light-emitting devices by employing periodically corrugated metallic cathode,” Adv. Mater. 24, 1187–1191 (2012).
[Crossref]

X. L. Zhang, J. F. Song, X. B. Li, J. Feng, and H. B. Sun, “Optical Tamm states enhanced broad-band absorption of organic solar cells,” Appl. Phys. Lett. 101, 243901 (2012).
[Crossref]

X. L. Zhang, J. Feng, J. F. Song, X. B. Li, and H. B. Sun, “Grating amplitude effect on electroluminescence enhancement of corrugated organic light-emitting devices,” Opt. Lett. 36, 3915–3917 (2011).
[Crossref]

Sun, Y.

Y. Sun, N. C. Giebink, H. Kanno, B. Ma, M. E. Thompson, and S. R. Forrest, “Management of singlet and triplet excitons for efficient white organic light-emitting devices,” Nature 440, 908–912 (2006).
[Crossref]

Suzuki, T.

S. Okamoto, K. Tanaka, Y. Izumi, H. Adachi, T. Yamaji, and T. Suzuki, “Simple measurement of quantum efficiency in organic electroluminescent devices,” Jpn. J. Appl. Phys. 40, 783–784 (2001).

Tanaka, K.

S. Okamoto, K. Tanaka, Y. Izumi, H. Adachi, T. Yamaji, and T. Suzuki, “Simple measurement of quantum efficiency in organic electroluminescent devices,” Jpn. J. Appl. Phys. 40, 783–784 (2001).

Thompson, M. E.

Y. Sun, N. C. Giebink, H. Kanno, B. Ma, M. E. Thompson, and S. R. Forrest, “Management of singlet and triplet excitons for efficient white organic light-emitting devices,” Nature 440, 908–912 (2006).
[Crossref]

Thomschke, M.

M. Thomschke, S. Reineke, B. Lüssem, and K. Leo, “Highly efficient white top-emitting organic light-emitting diodes comprising laminated microlens films,” Nano Lett. 12, 424–428 (2012).

S. Hofmann, M. Thomschke, B. Lüssem, and K. Leo, “Top-emitting organic light-emitting diodes,” Opt. Express 19, A1250–A1264 (2011).
[Crossref]

M. Thomschke, R. Nitsche, M. Furno, and K. Leo, “Optimized efficiency and angular emission characteristics of white top-emitting organic electroluminescent diodes,” Appl. Phys. Lett. 94, 083303 (2009).
[Crossref]

Thomschke, T.

S. Reineke, T. Thomschke, B. Lüssem, and K. Leo, “White organic light-emitting diodes: status and perspective,” Rev. Mod. Phys. 85, 1245–1293 (2013).
[Crossref]

Walzer, K.

S. Reineke, F. Lindner, G. Schwartz, N. Seidler, K. Walzer, B. Lüssem, and K. Leo, “White organic light-emitting diodes with fluorescent tube efficiency,” Nature 459, 234–238 (2009).
[Crossref]

Wang, Y.

T. Peng, Y. Yang, H. Bi, Y. Liu, Z. Hou, and Y. Wang, “Highly efficient white organic electroluminescence device based on a phosphorescent orange material doped in a blue host emitter,” J. Mater. Chem. 21, 3551–3553 (2011).
[Crossref]

Xiang, C.

C. Xiang, W. Koo, F. So, H. Sasabe, and J. Kido, “A systematic study on efficiency enhancements in phosphorescent green, red and blue microcavity organic light emitting devices,” Light 2, e74 (2013).

Xie, J.

S. Chen, L. Deng, J. Xie, L. Peng, L. Xie, Q. Fan, and W. Huang, “Recent developments in top-emitting organic light-emitting diodes,” Adv. Mater. 22, 5227–5239 (2010).
[Crossref]

Xie, L.

S. Chen, L. Deng, J. Xie, L. Peng, L. Xie, Q. Fan, and W. Huang, “Recent developments in top-emitting organic light-emitting diodes,” Adv. Mater. 22, 5227–5239 (2010).
[Crossref]

Xie, W.

Yamaji, T.

S. Okamoto, K. Tanaka, Y. Izumi, H. Adachi, T. Yamaji, and T. Suzuki, “Simple measurement of quantum efficiency in organic electroluminescent devices,” Jpn. J. Appl. Phys. 40, 783–784 (2001).

Yang, Y.

T. Peng, Y. Yang, H. Bi, Y. Liu, Z. Hou, and Y. Wang, “Highly efficient white organic electroluminescence device based on a phosphorescent orange material doped in a blue host emitter,” J. Mater. Chem. 21, 3551–3553 (2011).
[Crossref]

Yeh, P.

P. Yeh, Optical Waves in Layered Media (Wiley, 2005).

Yin, D.

Y. F. Liu, J. Feng, D. Yin, H. F. Cui, X. L. Zhang, Y. G. Bi, D. D. Zhang, L. S. Liu, A. W. Li, J. F. Song, Q. D. Chen, and H. B. Sun, “Viewing-angle independence of white emission from microcavity top-emitting organic light-emitting devices with periodically and gradually changed cavity length,” Org. Electron. 14, 1597–1601 (2013).
[Crossref]

Zhang, D. D.

Y. F. Liu, J. Feng, D. Yin, H. F. Cui, X. L. Zhang, Y. G. Bi, D. D. Zhang, L. S. Liu, A. W. Li, J. F. Song, Q. D. Chen, and H. B. Sun, “Viewing-angle independence of white emission from microcavity top-emitting organic light-emitting devices with periodically and gradually changed cavity length,” Org. Electron. 14, 1597–1601 (2013).
[Crossref]

Zhang, H.

Zhang, L.

Zhang, T.

Zhang, X. L.

Y. G. Bi, J. Feng, Y. F. Li, X. L. Zhang, Y. F. Liu, Y. Jin, and H. B. Sun, “Broadband light extraction from white organic light-emitting devices by employing corrugated metallic electrodes with dual periodicity,” Adv. Mater. 25, 6969–6974 (2013).
[Crossref]

Y. F. Liu, J. Feng, D. Yin, H. F. Cui, X. L. Zhang, Y. G. Bi, D. D. Zhang, L. S. Liu, A. W. Li, J. F. Song, Q. D. Chen, and H. B. Sun, “Viewing-angle independence of white emission from microcavity top-emitting organic light-emitting devices with periodically and gradually changed cavity length,” Org. Electron. 14, 1597–1601 (2013).
[Crossref]

X. L. Zhang, J. F. Song, J. Feng, and H. B. Sun, “Spectral engineering by flexible tunings of optical Tamm states and Fabry–Perot cavity resonance,” Opt. Lett. 38, 4382–4385 (2013).
[Crossref]

X. L. Zhang, J. F. Song, X. B. Li, J. Feng, and H. B. Sun, “Optical Tamm states enhanced broad-band absorption of organic solar cells,” Appl. Phys. Lett. 101, 243901 (2012).
[Crossref]

Y. Jin, J. Feng, X. L. Zhang, Y. G. Bi, Y. Bai, L. Chen, T. Lan, Y. F. Liu, Q. D. Chen, and H. B. Sun, “Solving efficiency–stability tradeoff in top-emitting organic light-emitting devices by employing periodically corrugated metallic cathode,” Adv. Mater. 24, 1187–1191 (2012).
[Crossref]

X. L. Zhang, J. Feng, J. F. Song, X. B. Li, and H. B. Sun, “Grating amplitude effect on electroluminescence enhancement of corrugated organic light-emitting devices,” Opt. Lett. 36, 3915–3917 (2011).
[Crossref]

Adv. Mater. (4)

S. Chen, L. Deng, J. Xie, L. Peng, L. Xie, Q. Fan, and W. Huang, “Recent developments in top-emitting organic light-emitting diodes,” Adv. Mater. 22, 5227–5239 (2010).
[Crossref]

M. C. Gather, A. Köhnen, and K. Meerholz, “White organic light-emitting diodes,” Adv. Mater. 23, 233–248 (2011).
[Crossref]

Y. Jin, J. Feng, X. L. Zhang, Y. G. Bi, Y. Bai, L. Chen, T. Lan, Y. F. Liu, Q. D. Chen, and H. B. Sun, “Solving efficiency–stability tradeoff in top-emitting organic light-emitting devices by employing periodically corrugated metallic cathode,” Adv. Mater. 24, 1187–1191 (2012).
[Crossref]

Y. G. Bi, J. Feng, Y. F. Li, X. L. Zhang, Y. F. Liu, Y. Jin, and H. B. Sun, “Broadband light extraction from white organic light-emitting devices by employing corrugated metallic electrodes with dual periodicity,” Adv. Mater. 25, 6969–6974 (2013).
[Crossref]

Adv. Opt. Mater. (1)

T. Schwab, S. Schubert, L. Müller-Meskamp, K. Leo, and M. C. Gather, “Eliminating micro-cavity effects in white top-emitting OLEDs by ultra-thin metallic top electrodes,” Adv. Opt. Mater. 1, 921–925 (2013).

Appl. Phys. Lett. (3)

M. Kaliteevski, S. Brand, R. A. Abram, I. Iorsh, A. V. Kavokin, and I. A. Shelykh, “Hybrid states of Tamm plasmons and exciton polaritons,” Appl. Phys. Lett. 95, 251108 (2009).
[Crossref]

M. Thomschke, R. Nitsche, M. Furno, and K. Leo, “Optimized efficiency and angular emission characteristics of white top-emitting organic electroluminescent diodes,” Appl. Phys. Lett. 94, 083303 (2009).
[Crossref]

X. L. Zhang, J. F. Song, X. B. Li, J. Feng, and H. B. Sun, “Optical Tamm states enhanced broad-band absorption of organic solar cells,” Appl. Phys. Lett. 101, 243901 (2012).
[Crossref]

J. Mater. Chem. (1)

T. Peng, Y. Yang, H. Bi, Y. Liu, Z. Hou, and Y. Wang, “Highly efficient white organic electroluminescence device based on a phosphorescent orange material doped in a blue host emitter,” J. Mater. Chem. 21, 3551–3553 (2011).
[Crossref]

J. Opt. Soc. Am. A (1)

Jpn. J. Appl. Phys. (1)

S. Okamoto, K. Tanaka, Y. Izumi, H. Adachi, T. Yamaji, and T. Suzuki, “Simple measurement of quantum efficiency in organic electroluminescent devices,” Jpn. J. Appl. Phys. 40, 783–784 (2001).

Laser Photon. Rev. (1)

R. Ameling and H. Giessen, “Microcavity plasmonics: strong coupling of photonic cavities and plasmons,” Laser Photon. Rev. 7, 141–169 (2013).

Light (1)

C. Xiang, W. Koo, F. So, H. Sasabe, and J. Kido, “A systematic study on efficiency enhancements in phosphorescent green, red and blue microcavity organic light emitting devices,” Light 2, e74 (2013).

Nano Lett. (1)

M. Thomschke, S. Reineke, B. Lüssem, and K. Leo, “Highly efficient white top-emitting organic light-emitting diodes comprising laminated microlens films,” Nano Lett. 12, 424–428 (2012).

Nature (2)

S. Reineke, F. Lindner, G. Schwartz, N. Seidler, K. Walzer, B. Lüssem, and K. Leo, “White organic light-emitting diodes with fluorescent tube efficiency,” Nature 459, 234–238 (2009).
[Crossref]

Y. Sun, N. C. Giebink, H. Kanno, B. Ma, M. E. Thompson, and S. R. Forrest, “Management of singlet and triplet excitons for efficient white organic light-emitting devices,” Nature 440, 908–912 (2006).
[Crossref]

Opt. Express (2)

Opt. Lett. (3)

Org. Electron. (2)

P. Freitag, S. Reineke, S. Olthof, M. Furno, B. Lüssem, and K. Leo, “White top-emitting organic light-emitting diodes with forward directed emission and high color quality,” Org. Electron. 11, 1676–1682 (2010).
[Crossref]

Y. F. Liu, J. Feng, D. Yin, H. F. Cui, X. L. Zhang, Y. G. Bi, D. D. Zhang, L. S. Liu, A. W. Li, J. F. Song, Q. D. Chen, and H. B. Sun, “Viewing-angle independence of white emission from microcavity top-emitting organic light-emitting devices with periodically and gradually changed cavity length,” Org. Electron. 14, 1597–1601 (2013).
[Crossref]

Phys. Rev. B (2)

M. Kaliteevski, I. Iorsh, S. Brand, R. A. Abram, J. M. Chamberlain, A. V. Kavokin, and I. A. Shelykh, “Tamm plasmon-polaritons: possible electromagnetic states at the interface of a metal and a dielectric Bragg mirror,” Phys. Rev. B 76, 165415 (2007).

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).

Rev. Mod. Phys. (1)

S. Reineke, T. Thomschke, B. Lüssem, and K. Leo, “White organic light-emitting diodes: status and perspective,” Rev. Mod. Phys. 85, 1245–1293 (2013).
[Crossref]

Science (1)

J. Kido, M. Kimura, and K. Nagai, “Multilayer white light-emitting organic electroluminescent device,” Science 267, 1332–1334 (1995).
[Crossref]

Other (1)

P. Yeh, Optical Waves in Layered Media (Wiley, 2005).

Supplementary Material (1)

» Supplement 1: PDF (3025 KB)     

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1. Schematic of the mode hybridization strategy for the WTOLEDs. Both the introduced TPP mode in the TPP structure (left top) and the intrinsic MC resonance in the MC structure (left bottom) are first designed to be excited in the green emission region by tuning the structure parameters. The two bare modes can then be coupled, inducing two TPP-MC hybrid modes under the on-resonance condition in the TPP-MC structure (right side). They exhibit comparable light outcoupling efficiency, and the corresponding resonant wavelengths match the blue and orange emission regions fairly well, which helps to realize two-complementary-color-based WTOLEDs towards simultaneous improvement in viewing characteristics and EL efficiency.
Fig. 2.
Fig. 2. (a) Schematic of the investigated TPP-MC structure. (b) Experimental reflectivity spectra in the normal direction with various cavity lengths. (c) Simulated TE-polarized reflectivity dispersion diagram of the TPP-MC structure in the normal direction, where the two dashed lines correspond to the dispersions of the bare MC resonance in the MC structure and the bare TPP mode in the TPP structure (see Supplement 1). The symbols in the inset indicate the reflection dips extracted from experimental results in (b). (d) and (e) Simulated profiles of the electric-field-intensity enhancement with cavity lengths of 100 and 140 nm, corresponding to the on-resonance and off-resonance conditions, respectively.
Fig. 3.
Fig. 3. Schematic structure of the investigated WOLEDs, including device R, MC, TPP-MC, and C-MC.
Fig. 4.
Fig. 4. Experimental reflectivity spectra in the normal direction of the device MC and TPP-MC under (a) on-resonance condition and (b) off-resonance condition. The reflection dips will be extracted and used in Figs. 5(a) and 5(d).
Fig. 5.
Fig. 5. (a) Simulated reflectivity dispersion diagram of the device TPP-MC, where the dispersions of the bare MC resonance (in the device MC) and the bare TPP mode (in the virtual device TPP) are also shown by the two white lines, indicating that the on-resonance condition occurs. The symbols in the inset indicate the reflection dips extracted from experimental results in Fig. 4(a). (b) Simulated spectral radiant intensity of the device MC, TPP-MC, and virtual device TPP in the normal direction. (c) EL spectra of the device R, MC, and TPP-MC in the normal direction, where the white color quality of device TPP-MC is as good as that of device R. These EL spectra are normalized to have the same intensity around 570 nm. (d)–(f) The items shown are the same as those in (a)–(c), except with a slight variation of the thicknesses of some layers (indicated in the text). In this case, the device TPP-MC works under the off-resonance condition, resulting in a yellow–white emission in the device TPP-MC.
Fig. 6.
Fig. 6. CIE coordinates of the device MC and TPP-MC under the on-resonance and off-resonance conditions. The photographs of the operating devices are shown in the inset.
Fig. 7.
Fig. 7. (a) EL spectra of the device TPP-MC and (b) C-MC with various viewing angles. The normalized spectra are shown in each inset. (c) CIE coordinates of the device R, MC, TPP-MC, and C-MC with various viewing angles. Emission photographs of the device MC (surrounded by green boxes) and device TPP-MC (surrounded by red boxes) with viewing angles of 0° and 60° are shown in the inset. (d) Simulated spectral radiant intensity of the device TPP-MC and C-MC with viewing angles of 0°, 30°, and 60°.
Fig. 8.
Fig. 8. (a) Current density-luminance and (b) luminance–power efficiency characteristics of the device R, MC, TPP-MC, and C-MC. The device TPP-MC with the proposed mode hybridization strategy shows the highest EL efficiency. The corresponding EQE results are also indicated in the inset of (b).

Metrics