Abstract

Tunability in metamaterials has added a new dimension to the functionality and application scope for light–matter interaction in the subwavelength regime. Microelectromechanical-systems-based microactuators have been reported as the most straightforward and efficient means of achieving tunable metamaterials, but so far can provide tunability of only a single electromagnetic property. This has greatly limited its usage in applications requiring either simultaneous or independent control of multiple parameters, such as linear polarization switching, actively controlled refractive indices, bandwidth tunable filters, and modulators. Here, we place an electrically isolated split ring resonator and an electrical split ring resonator in an interpixelated fashion to form a metamaterial super cell. The proposed metamaterial can be configured to have only magnetic resonance at 0.59 THz, only electrical resonance at 0.45 THz, or both magnetic and electrical resonances at 0.375 THz. The frequency at which magnetic and electrical resonance occurs is selectively changed by appropriately biasing the signaling lines of respective resonators. The proposed approach can be extended to have as many resonators as desired in a single complex metamolecule. Each of the unit cells is independently addressed and can be programmed, thereby enabling multiple functionalities using a single metamaterial in the terahertz spectral region. We believe that our proposed approach will enable the realization of a wide range of actively controlled EM properties, especially for active control of refractive indices and its potential applications. It will also aid in the realization of the ultimate form of tunable metamaterial, the “THz programmable metamaterial,” which will likely be a disruptive technology in the near future.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
MEMS reconfigurable metamaterial for terahertz switchable filter and modulator

Zhengli Han, Kenta Kohno, Hiroyuki Fujita, Kazuhiko Hirakawa, and Hiroshi Toshiyoshi
Opt. Express 22(18) 21326-21339 (2014)

Out-of-plane actuation with a sub-micron initial gap for reconfigurable terahertz micro-electro-mechanical systems metamaterials

Akihiro Isozaki, Tetsuo Kan, Hidetoshi Takahashi, Kiyoshi Matsumoto, and Isao Shimoyama
Opt. Express 23(20) 26243-26251 (2015)

Hybrid metamaterial design and fabrication for terahertz resonance response enhancement

C. S. Lim, M. H. Hong, Z. C. Chen, N. R. Han, B. Luk’yanchuk, and T. C. Chong
Opt. Express 18(12) 12421-12429 (2010)

References

  • View by:
  • |
  • |
  • |

  1. T. J. Yen, W. J. Padilla, N. Fang, D. C. Vier, D. R. Smith, J. B. Pendry, D. N. Basov, and X. Zhang, “Terahertz magnetic response from artificial materials,” Science 303, 1494–1496 (2004).
    [Crossref]
  2. D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84, 4184–4187 (2000).
    [Crossref]
  3. M. Choi, S. H. Lee, Y. Kim, S. B. Kang, J. Shin, M. H. Kwak, K.-Y. Kang, Y.-H. Lee, N. Park, and B. Min, “A terahertz metamaterial with unnaturally high refractive index,” Nature 470, 369–373 (2011).
    [Crossref]
  4. N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub–diffraction-limited optical imaging with a silver superlens,” Science 308, 534–537 (2005).
    [Crossref]
  5. N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100, 207402 (2008).
    [Crossref]
  6. J. Han, A. Lakhtakia, and C. W. Qiu, “Terahertz metamaterials with semiconductor split-ring resonators for magnetostatic tunability,” Opt. Express 16, 14390–14396 (2008).
    [Crossref]
  7. T. Driscoll, H. T. Kim, B. G. Chae, B. J. Kim, Y. W. Lee, N. M. Jokerst, S. Palit, D. R. Smith, M. Di Ventra, and D. N. Basov, “Memory metamaterials,” Science 325, 1518–1521 (2009).
    [Crossref]
  8. Z. Liu, C. Y. Huang, H. Liu, X. Zhang, and C. Lee, “Resonance enhancement of terahertz metamaterials by liquid crystals/indium tin oxide interfaces,” Opt. Express 21, 6519–6525 (2013).
    [Crossref]
  9. H. T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444, 597–600 (2006).
    [Crossref]
  10. H. T. Chen, J. F. O’Hara, A. K. Azad, A. J. Taylor, R. D. Averitt, D. B. Shrekenhamer, and W. J. Padilla, “Experimental demonstration of frequency-agile terahertz metamaterials,” Nat. Photonics 2, 295–298 (2008).
    [Crossref]
  11. W. L. Chan, H. T. Chen, A. J. Taylor, I. Brener, M. J. Cich, and D. M. Mittleman, “A spatial light modulator for terahertz beams,” Appl. Phys. Lett. 94, 213511 (2009).
    [Crossref]
  12. G. Kenanakis, R. Zhao, N. Katsarakis, M. Kafesaki, C. M. Soukoulis, and E. N. Economou, “Optically controllable THz chiral metamaterials,” Opt. Express 22, 12149–12159 (2014).
    [Crossref]
  13. S. Zhang, J. Zhou, Y. S. Park, J. Rho, R. Singh, S. Nam, A. K. Azad, H. T. Chen, X. Yin, A. J. Taylor, and X. Zhang, “Photoinduced handedness switching in terahertz chiral metamolecules,” Nat. Commun. 3, 942 (2012).
    [Crossref]
  14. D. Shrekenhamer, W. C. Chen, and W. J. Padilla, “Liquid crystal tunable metamaterial absorber,” Phys. Rev. Lett. 110, 177403 (2013).
    [Crossref]
  15. S. Savo, D. Shrekenhamer, and W. J. Padilla, “Liquid crystal metamaterial absorber spatial light modulator for THz applications,” Adv. Opt. Mater. 2, 275–279 (2014).
  16. H. R. Seren, G. R. Keiser, L. Cao, J. Zhang, A. C. Strikwerda, K. Fan, G. D. Metcalfe, M. Wraback, X. Zhang, and R. D. Averitt, “Optically modulated multiband terahertz perfect absorber,” Adv. Opt. Mater. 2, 1221–1226 (2014).
  17. F. Hu, Y. Qian, Z. Li, J. Niu, K. Nie, X. Xiong, W. Zhang, and Z. Peng, “Design of a tunable terahertz narrowband metamaterial absorber based on an electrostatically actuated MEMS cantilever and split ring resonator array,” J. Opt. 15, 055101 (2013).
    [Crossref]
  18. I. Chatzakis, P. Tassin, L. Luo, N. H. Shen, L. Zhang, J. Wang, T. Koschny, and C. M. Soukoulis, “One- and two-dimensional photo-imprinted diffraction gratings for manipulating terahertz waves,” Appl. Phys. Lett. 103, 043101 (2013).
    [Crossref]
  19. L. Luo, I. Chatzakis, J. Wang, F. B. P. Niesler, M. Wegener, T. Koschny, and C. M. Soukoulis, “Broadband terahertz generation from metamaterials,” Nat. Commun. 5, 3055 (2014).
  20. J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H. T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3, 1151 (2012).
    [Crossref]
  21. D. R. Chowdhury, R. Singh, A. J. Taylor, H. T. Chen, and A. K. Azad, “Ultrafast manipulation of near field coupling between bright and dark modes in terahertz metamaterial,” Appl. Phys. Lett. 102, 011122 (2013).
    [Crossref]
  22. F. Miyamaru, H. Morita, Y. Nishiyama, T. Nishida, T. Nakanishi, M. Kitano, and M. W. Takeda, “Ultrafast optical control of group delay of narrow-band terahertz waves,” Sci. Rep. 4, 4346 (2014).
    [Crossref]
  23. S. H. Lee, M. Choi, T. T. Kim, S. Lee, M. Liu, X. Yin, H. K. Choi, S. S. Lee, C. G. Choi, S. Y. Choi, X. Zhang, and B. Min, “Switching terahertz waves with gate-controlled active graphene metamaterials,” Nat. Mater. 11, 936–941 (2012).
    [Crossref]
  24. M. J. Dicken, K. Aydin, I. M. Pryce, L. A. Sweatlock, E. M. Boyd, S. Walavalkar, J. Ma, and H. A. Atwater, “Frequency tunable near-infrared metamaterials based on VO2 phase transition,” Opt. Express 17, 18330–18339 (2009).
    [Crossref]
  25. L. Kang, Q. Zhao, H. Zhao, and J. Zhou, “Magnetically tunable negative permeability metamaterial composed by split ring resonators and ferrite rods,” Opt. Express 16, 8825–8834 (2008).
    [Crossref]
  26. J. Wang, S. Liu, S. Guruswamy, and A. Nahata, “Reconfigurable liquid metal based terahertz metamaterials via selective erasure and refilling to the unit cell level,” Appl. Phys. Lett. 103, 221116 (2013).
    [Crossref]
  27. W. M. Zhu, A. Q. Liu, X. M. Zhang, D. P. Tsai, T. Bourouina, J. H. Teng, X. H. Zhang, H. C. Guo, H. Tanoto, T. Mei, G. Q. Lo, and D. L. Kwong, “Switchable magnetic metamaterials using micromachining processes,” Adv. Mater. 23, 1792–1796 (2011).
    [Crossref]
  28. W. M. Zhu, A. Q. Liu, W. Zhang, J. F. Tao, T. Bourouina, J. H. Teng, X. H. Zhang, Q. Y. Wu, H. Tanoto, H. C. Guo, G. Q. Lo, and D. L. Kwong, “Polarization dependent state to polarization independent state change in THz metamaterials,” Appl. Phys. Lett. 99, 221102 (2011).
    [Crossref]
  29. W. M. Zhu, A. Q. Liu, T. Bourouina, D. P. Tsai, J. H. Teng, X. H. Zhang, G. Q. Lo, D. L. Kwong, and N. I. Zheludev, “Microelectromechanical maltese-cross metamaterial with tunable terahertz anisotropy,” Nat. Commun. 3, 1274 (2012).
    [Crossref]
  30. X. Li, T. Yang, W. Zhu, and X. Li, “Continuously tunable terahertz metamaterial employing a thermal actuator,” Microsys. Technol. 19, 1145–1151 (2013).
  31. H. Tao, A. C. Strikwerda, K. Fan, W. J. Padilla, X. Zhang, and R. D. Averitt, “Reconfigurable terahertz metamaterials,” Phys. Rev. Lett. 103, 147401 (2009).
    [Crossref]
  32. Y. S. Lin, Y. Qian, F. Ma, Z. Liu, P. Kropelnicki, and C. Lee, “Development of stress-induced curved actuators for a tunable THz filter based on double split-ring resonators,” Appl. Phys. Lett. 102, 111908 (2013).
    [Crossref]
  33. F. Ma, Y. Qian, Y. S. Lin, H. Liu, X. H. Zhang, Z. Liu, J. M. L. Tsai, and C. Lee, “Polarization-sensitive microelectromechanical systems based tunable terahertz metamaterials using three dimensional electric split ring resonator arrays,” Appl. Phys. Lett. 102, 161912 (2013).
    [Crossref]
  34. Y. S. Lin, F. Ma, and C. Lee, “Three-dimensional movable metamaterials using electric split ring resonators,” Opt. Lett. 38, 3126–3128 (2013).
    [Crossref]
  35. F. Ma, Y. S. Lin, X. H. Zhang, and C. Lee, “Tunable multiband terahertz metamaterials using a reconfigurable electric split-ring resonator array,” Light: Sci. Appl. 3, e171 (2014).
  36. Z. Han, K. Kohno, H. Fujita, K. Hirakawa, and H. Toshiyoshi, “MEMS reconfigurable metamaterial for terahertz switchable filter and modulator,” Opt. Express 22, 21326–21339 (2014).
    [Crossref]
  37. Z. Han, K. Kohno, H. Fujita, K. Hirakawa, and H. Toshiyoshi, “Tunable terahertz filter and modulator based on electrostatic MEMS reconfigurable SRR array,” IEEE J. Sel. Top. Quantum Electron. 21, 1–9 (2015).
    [Crossref]
  38. M. Unlu, M. R. Hashemi, C. W. Berry, S. Li, S.-H. Yang, and M. Jarrahi, “Switchable scattering meta-surfaces for broadband terahertz modulation,” Sci. Rep. 4, 5708 (2014).
    [Crossref]
  39. M. Unlu and M. Jarrahi, “Miniature multi-contact MEMS switch for broadband terahertz modulation,” Opt. Express 22, 32245–32260 (2014).
    [Crossref]
  40. C. P. Ho, P. Pitchappa, Y. S. Lin, C. Y. Huang, P. Kropelnicki, and C. Lee, “Electrothermally actuated microelectromechanical systems based omega-ring terahertz metamaterial with polarization dependent characteristics,” Appl. Phys. Lett. 104, 161104 (2014).
    [Crossref]
  41. A. Lalas, N. Kantartzis, and T. Tsiboukis, “Tunable terahertz metamaterials by means of piezoelectric MEMS actuators,” Europhys. Lett. 107, 58004 (2014).
    [Crossref]
  42. P. Pitchappa, C. P. Ho, L. Dhakar, Y. Qian, N. Singh, and C. Lee, “Periodic array of subwavelength MEMS cantilevers for dynamic manipulation of terahertz waves,” J. Microelectromech. Syst. 24, 525–527 (2015).
  43. T. J. Cui, M. Q. Qi, X. Wan, L. Zhao, and Q. Cheng, “Coding metamaterials, digital metamaterials and programmable metamaterials,” Light: Sci. Appl. 3, e218 (2014).
    [Crossref]
  44. B. Florijn, C. Coulais, and M. Hecke, “Programmable mechanical metamaterials,” Phys. Rev. Lett. 113, 175503 (2014).
    [Crossref]
  45. A. Lalas, N. Kantartzis, and T. Tsiboukis, “Programmable terahertz metamaterials through V-beam electrothermal devices,” Appl. Phys. A 117, 433–438 (2014).
    [Crossref]
  46. Y. Yuan, C. Bingham, T. Tyler, S. Palit, T. H. Hand, W. J. Padilla, D. R. Smith, N. M. Jokerst, and S. A. Cummer, “Dual-band planar electric metamaterial in the terahertz regime,” Opt. Express 16, 9746–9752 (2008).
    [Crossref]
  47. J. Hendrickson, J. Guo, B. Zhang, W. Buchwald, and R. Soref, “Wideband perfect light absorber at midwave infrared using multiplexed metal structures,” Opt. Lett. 37, 371–373 (2012).
    [Crossref]
  48. B. Zhang, J. Hendrickson, and J. Guo, “Multispectral near-perfect metamaterial absorbers using spatially multiplexed plasmon resonance metal square structures,” J. Opt. Soc. Am. B 30, 656–662 (2013).
    [Crossref]
  49. N. Katsarakis, T. Koschny, M. Kafesaki, E. N. Economou, and C. M. Soukoulis, “Electric coupling to the magnetic resonance of split ring resonators,” Appl. Phys. Lett. 84, 2943–2945 (2004).
    [Crossref]
  50. C. M. Soukoulis, T. Koschny, J. Zhou, M. Kafesaki, and E. N. Economou, “Magnetic response of split ring resonators at terahertz frequencies,” Phys. Status Solidi B 244, 1181–1187 (2007).
    [Crossref]
  51. J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microwave Theory Technol. 47, 2075–2084 (1999).
    [Crossref]
  52. W. J. Padilla, M. T. Aronsson, C. Highstrete, M. Lee, A. J. Taylor, and R. D. Averitt, “Electrically resonant terahertz metamaterials: theoretical and experimental investigations,” Phys. Rev. B 75, 041102R (2007).
  53. J. F. O’Hara, E. Smirnova, H. T. Chen, A. J. Taylor, R. D. Averitt, C. Highstrete, M. Lee, and W. J. Padilla, “Properties of planar electric metamaterials for novel terahertz applications,” J. Nanoelectron. Optoelectron. 2, 90–95 (2007).
  54. C. M. Bingham, H. Tao, X. Liu, R. D. Averitt, X. Zhang, and W. J. Padilla, “Planar wallpaper group metamaterials for novel terahertz applications,” Opt. Express 16, 18565–18575 (2008).
    [Crossref]
  55. W. M. Zhang, G. Meng, and D. Chen, “Stability, nonlinearity and reliability of electrostatically actuated MEMS devices,” Sensors 7, 760–796 (2007).
    [Crossref]
  56. Y. Qian, L. Lou, M. L. J. Tsai, and C. Lee, “A dual-silicon-nanowires based U-shape nanoelectromechanical switch with low pull-in voltage,” Appl. Phys. Lett. 100, 113102 (2012).
    [Crossref]

2015 (2)

Z. Han, K. Kohno, H. Fujita, K. Hirakawa, and H. Toshiyoshi, “Tunable terahertz filter and modulator based on electrostatic MEMS reconfigurable SRR array,” IEEE J. Sel. Top. Quantum Electron. 21, 1–9 (2015).
[Crossref]

P. Pitchappa, C. P. Ho, L. Dhakar, Y. Qian, N. Singh, and C. Lee, “Periodic array of subwavelength MEMS cantilevers for dynamic manipulation of terahertz waves,” J. Microelectromech. Syst. 24, 525–527 (2015).

2014 (14)

T. J. Cui, M. Q. Qi, X. Wan, L. Zhao, and Q. Cheng, “Coding metamaterials, digital metamaterials and programmable metamaterials,” Light: Sci. Appl. 3, e218 (2014).
[Crossref]

B. Florijn, C. Coulais, and M. Hecke, “Programmable mechanical metamaterials,” Phys. Rev. Lett. 113, 175503 (2014).
[Crossref]

A. Lalas, N. Kantartzis, and T. Tsiboukis, “Programmable terahertz metamaterials through V-beam electrothermal devices,” Appl. Phys. A 117, 433–438 (2014).
[Crossref]

M. Unlu, M. R. Hashemi, C. W. Berry, S. Li, S.-H. Yang, and M. Jarrahi, “Switchable scattering meta-surfaces for broadband terahertz modulation,” Sci. Rep. 4, 5708 (2014).
[Crossref]

M. Unlu and M. Jarrahi, “Miniature multi-contact MEMS switch for broadband terahertz modulation,” Opt. Express 22, 32245–32260 (2014).
[Crossref]

C. P. Ho, P. Pitchappa, Y. S. Lin, C. Y. Huang, P. Kropelnicki, and C. Lee, “Electrothermally actuated microelectromechanical systems based omega-ring terahertz metamaterial with polarization dependent characteristics,” Appl. Phys. Lett. 104, 161104 (2014).
[Crossref]

A. Lalas, N. Kantartzis, and T. Tsiboukis, “Tunable terahertz metamaterials by means of piezoelectric MEMS actuators,” Europhys. Lett. 107, 58004 (2014).
[Crossref]

F. Ma, Y. S. Lin, X. H. Zhang, and C. Lee, “Tunable multiband terahertz metamaterials using a reconfigurable electric split-ring resonator array,” Light: Sci. Appl. 3, e171 (2014).

Z. Han, K. Kohno, H. Fujita, K. Hirakawa, and H. Toshiyoshi, “MEMS reconfigurable metamaterial for terahertz switchable filter and modulator,” Opt. Express 22, 21326–21339 (2014).
[Crossref]

G. Kenanakis, R. Zhao, N. Katsarakis, M. Kafesaki, C. M. Soukoulis, and E. N. Economou, “Optically controllable THz chiral metamaterials,” Opt. Express 22, 12149–12159 (2014).
[Crossref]

S. Savo, D. Shrekenhamer, and W. J. Padilla, “Liquid crystal metamaterial absorber spatial light modulator for THz applications,” Adv. Opt. Mater. 2, 275–279 (2014).

H. R. Seren, G. R. Keiser, L. Cao, J. Zhang, A. C. Strikwerda, K. Fan, G. D. Metcalfe, M. Wraback, X. Zhang, and R. D. Averitt, “Optically modulated multiband terahertz perfect absorber,” Adv. Opt. Mater. 2, 1221–1226 (2014).

L. Luo, I. Chatzakis, J. Wang, F. B. P. Niesler, M. Wegener, T. Koschny, and C. M. Soukoulis, “Broadband terahertz generation from metamaterials,” Nat. Commun. 5, 3055 (2014).

F. Miyamaru, H. Morita, Y. Nishiyama, T. Nishida, T. Nakanishi, M. Kitano, and M. W. Takeda, “Ultrafast optical control of group delay of narrow-band terahertz waves,” Sci. Rep. 4, 4346 (2014).
[Crossref]

2013 (11)

D. Shrekenhamer, W. C. Chen, and W. J. Padilla, “Liquid crystal tunable metamaterial absorber,” Phys. Rev. Lett. 110, 177403 (2013).
[Crossref]

J. Wang, S. Liu, S. Guruswamy, and A. Nahata, “Reconfigurable liquid metal based terahertz metamaterials via selective erasure and refilling to the unit cell level,” Appl. Phys. Lett. 103, 221116 (2013).
[Crossref]

D. R. Chowdhury, R. Singh, A. J. Taylor, H. T. Chen, and A. K. Azad, “Ultrafast manipulation of near field coupling between bright and dark modes in terahertz metamaterial,” Appl. Phys. Lett. 102, 011122 (2013).
[Crossref]

X. Li, T. Yang, W. Zhu, and X. Li, “Continuously tunable terahertz metamaterial employing a thermal actuator,” Microsys. Technol. 19, 1145–1151 (2013).

Y. S. Lin, Y. Qian, F. Ma, Z. Liu, P. Kropelnicki, and C. Lee, “Development of stress-induced curved actuators for a tunable THz filter based on double split-ring resonators,” Appl. Phys. Lett. 102, 111908 (2013).
[Crossref]

F. Ma, Y. Qian, Y. S. Lin, H. Liu, X. H. Zhang, Z. Liu, J. M. L. Tsai, and C. Lee, “Polarization-sensitive microelectromechanical systems based tunable terahertz metamaterials using three dimensional electric split ring resonator arrays,” Appl. Phys. Lett. 102, 161912 (2013).
[Crossref]

Y. S. Lin, F. Ma, and C. Lee, “Three-dimensional movable metamaterials using electric split ring resonators,” Opt. Lett. 38, 3126–3128 (2013).
[Crossref]

F. Hu, Y. Qian, Z. Li, J. Niu, K. Nie, X. Xiong, W. Zhang, and Z. Peng, “Design of a tunable terahertz narrowband metamaterial absorber based on an electrostatically actuated MEMS cantilever and split ring resonator array,” J. Opt. 15, 055101 (2013).
[Crossref]

I. Chatzakis, P. Tassin, L. Luo, N. H. Shen, L. Zhang, J. Wang, T. Koschny, and C. M. Soukoulis, “One- and two-dimensional photo-imprinted diffraction gratings for manipulating terahertz waves,” Appl. Phys. Lett. 103, 043101 (2013).
[Crossref]

Z. Liu, C. Y. Huang, H. Liu, X. Zhang, and C. Lee, “Resonance enhancement of terahertz metamaterials by liquid crystals/indium tin oxide interfaces,” Opt. Express 21, 6519–6525 (2013).
[Crossref]

B. Zhang, J. Hendrickson, and J. Guo, “Multispectral near-perfect metamaterial absorbers using spatially multiplexed plasmon resonance metal square structures,” J. Opt. Soc. Am. B 30, 656–662 (2013).
[Crossref]

2012 (6)

J. Hendrickson, J. Guo, B. Zhang, W. Buchwald, and R. Soref, “Wideband perfect light absorber at midwave infrared using multiplexed metal structures,” Opt. Lett. 37, 371–373 (2012).
[Crossref]

Y. Qian, L. Lou, M. L. J. Tsai, and C. Lee, “A dual-silicon-nanowires based U-shape nanoelectromechanical switch with low pull-in voltage,” Appl. Phys. Lett. 100, 113102 (2012).
[Crossref]

S. Zhang, J. Zhou, Y. S. Park, J. Rho, R. Singh, S. Nam, A. K. Azad, H. T. Chen, X. Yin, A. J. Taylor, and X. Zhang, “Photoinduced handedness switching in terahertz chiral metamolecules,” Nat. Commun. 3, 942 (2012).
[Crossref]

W. M. Zhu, A. Q. Liu, T. Bourouina, D. P. Tsai, J. H. Teng, X. H. Zhang, G. Q. Lo, D. L. Kwong, and N. I. Zheludev, “Microelectromechanical maltese-cross metamaterial with tunable terahertz anisotropy,” Nat. Commun. 3, 1274 (2012).
[Crossref]

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H. T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3, 1151 (2012).
[Crossref]

S. H. Lee, M. Choi, T. T. Kim, S. Lee, M. Liu, X. Yin, H. K. Choi, S. S. Lee, C. G. Choi, S. Y. Choi, X. Zhang, and B. Min, “Switching terahertz waves with gate-controlled active graphene metamaterials,” Nat. Mater. 11, 936–941 (2012).
[Crossref]

2011 (3)

W. M. Zhu, A. Q. Liu, X. M. Zhang, D. P. Tsai, T. Bourouina, J. H. Teng, X. H. Zhang, H. C. Guo, H. Tanoto, T. Mei, G. Q. Lo, and D. L. Kwong, “Switchable magnetic metamaterials using micromachining processes,” Adv. Mater. 23, 1792–1796 (2011).
[Crossref]

W. M. Zhu, A. Q. Liu, W. Zhang, J. F. Tao, T. Bourouina, J. H. Teng, X. H. Zhang, Q. Y. Wu, H. Tanoto, H. C. Guo, G. Q. Lo, and D. L. Kwong, “Polarization dependent state to polarization independent state change in THz metamaterials,” Appl. Phys. Lett. 99, 221102 (2011).
[Crossref]

M. Choi, S. H. Lee, Y. Kim, S. B. Kang, J. Shin, M. H. Kwak, K.-Y. Kang, Y.-H. Lee, N. Park, and B. Min, “A terahertz metamaterial with unnaturally high refractive index,” Nature 470, 369–373 (2011).
[Crossref]

2009 (4)

T. Driscoll, H. T. Kim, B. G. Chae, B. J. Kim, Y. W. Lee, N. M. Jokerst, S. Palit, D. R. Smith, M. Di Ventra, and D. N. Basov, “Memory metamaterials,” Science 325, 1518–1521 (2009).
[Crossref]

H. Tao, A. C. Strikwerda, K. Fan, W. J. Padilla, X. Zhang, and R. D. Averitt, “Reconfigurable terahertz metamaterials,” Phys. Rev. Lett. 103, 147401 (2009).
[Crossref]

M. J. Dicken, K. Aydin, I. M. Pryce, L. A. Sweatlock, E. M. Boyd, S. Walavalkar, J. Ma, and H. A. Atwater, “Frequency tunable near-infrared metamaterials based on VO2 phase transition,” Opt. Express 17, 18330–18339 (2009).
[Crossref]

W. L. Chan, H. T. Chen, A. J. Taylor, I. Brener, M. J. Cich, and D. M. Mittleman, “A spatial light modulator for terahertz beams,” Appl. Phys. Lett. 94, 213511 (2009).
[Crossref]

2008 (6)

2007 (4)

C. M. Soukoulis, T. Koschny, J. Zhou, M. Kafesaki, and E. N. Economou, “Magnetic response of split ring resonators at terahertz frequencies,” Phys. Status Solidi B 244, 1181–1187 (2007).
[Crossref]

W. J. Padilla, M. T. Aronsson, C. Highstrete, M. Lee, A. J. Taylor, and R. D. Averitt, “Electrically resonant terahertz metamaterials: theoretical and experimental investigations,” Phys. Rev. B 75, 041102R (2007).

J. F. O’Hara, E. Smirnova, H. T. Chen, A. J. Taylor, R. D. Averitt, C. Highstrete, M. Lee, and W. J. Padilla, “Properties of planar electric metamaterials for novel terahertz applications,” J. Nanoelectron. Optoelectron. 2, 90–95 (2007).

W. M. Zhang, G. Meng, and D. Chen, “Stability, nonlinearity and reliability of electrostatically actuated MEMS devices,” Sensors 7, 760–796 (2007).
[Crossref]

2006 (1)

H. T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444, 597–600 (2006).
[Crossref]

2005 (1)

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub–diffraction-limited optical imaging with a silver superlens,” Science 308, 534–537 (2005).
[Crossref]

2004 (2)

T. J. Yen, W. J. Padilla, N. Fang, D. C. Vier, D. R. Smith, J. B. Pendry, D. N. Basov, and X. Zhang, “Terahertz magnetic response from artificial materials,” Science 303, 1494–1496 (2004).
[Crossref]

N. Katsarakis, T. Koschny, M. Kafesaki, E. N. Economou, and C. M. Soukoulis, “Electric coupling to the magnetic resonance of split ring resonators,” Appl. Phys. Lett. 84, 2943–2945 (2004).
[Crossref]

2000 (1)

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84, 4184–4187 (2000).
[Crossref]

1999 (1)

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microwave Theory Technol. 47, 2075–2084 (1999).
[Crossref]

Aronsson, M. T.

W. J. Padilla, M. T. Aronsson, C. Highstrete, M. Lee, A. J. Taylor, and R. D. Averitt, “Electrically resonant terahertz metamaterials: theoretical and experimental investigations,” Phys. Rev. B 75, 041102R (2007).

Atwater, H. A.

Averitt, R. D.

H. R. Seren, G. R. Keiser, L. Cao, J. Zhang, A. C. Strikwerda, K. Fan, G. D. Metcalfe, M. Wraback, X. Zhang, and R. D. Averitt, “Optically modulated multiband terahertz perfect absorber,” Adv. Opt. Mater. 2, 1221–1226 (2014).

H. Tao, A. C. Strikwerda, K. Fan, W. J. Padilla, X. Zhang, and R. D. Averitt, “Reconfigurable terahertz metamaterials,” Phys. Rev. Lett. 103, 147401 (2009).
[Crossref]

H. T. Chen, J. F. O’Hara, A. K. Azad, A. J. Taylor, R. D. Averitt, D. B. Shrekenhamer, and W. J. Padilla, “Experimental demonstration of frequency-agile terahertz metamaterials,” Nat. Photonics 2, 295–298 (2008).
[Crossref]

C. M. Bingham, H. Tao, X. Liu, R. D. Averitt, X. Zhang, and W. J. Padilla, “Planar wallpaper group metamaterials for novel terahertz applications,” Opt. Express 16, 18565–18575 (2008).
[Crossref]

W. J. Padilla, M. T. Aronsson, C. Highstrete, M. Lee, A. J. Taylor, and R. D. Averitt, “Electrically resonant terahertz metamaterials: theoretical and experimental investigations,” Phys. Rev. B 75, 041102R (2007).

J. F. O’Hara, E. Smirnova, H. T. Chen, A. J. Taylor, R. D. Averitt, C. Highstrete, M. Lee, and W. J. Padilla, “Properties of planar electric metamaterials for novel terahertz applications,” J. Nanoelectron. Optoelectron. 2, 90–95 (2007).

H. T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444, 597–600 (2006).
[Crossref]

Aydin, K.

Azad, A. K.

D. R. Chowdhury, R. Singh, A. J. Taylor, H. T. Chen, and A. K. Azad, “Ultrafast manipulation of near field coupling between bright and dark modes in terahertz metamaterial,” Appl. Phys. Lett. 102, 011122 (2013).
[Crossref]

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H. T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3, 1151 (2012).
[Crossref]

S. Zhang, J. Zhou, Y. S. Park, J. Rho, R. Singh, S. Nam, A. K. Azad, H. T. Chen, X. Yin, A. J. Taylor, and X. Zhang, “Photoinduced handedness switching in terahertz chiral metamolecules,” Nat. Commun. 3, 942 (2012).
[Crossref]

H. T. Chen, J. F. O’Hara, A. K. Azad, A. J. Taylor, R. D. Averitt, D. B. Shrekenhamer, and W. J. Padilla, “Experimental demonstration of frequency-agile terahertz metamaterials,” Nat. Photonics 2, 295–298 (2008).
[Crossref]

Basov, D. N.

T. Driscoll, H. T. Kim, B. G. Chae, B. J. Kim, Y. W. Lee, N. M. Jokerst, S. Palit, D. R. Smith, M. Di Ventra, and D. N. Basov, “Memory metamaterials,” Science 325, 1518–1521 (2009).
[Crossref]

T. J. Yen, W. J. Padilla, N. Fang, D. C. Vier, D. R. Smith, J. B. Pendry, D. N. Basov, and X. Zhang, “Terahertz magnetic response from artificial materials,” Science 303, 1494–1496 (2004).
[Crossref]

Berry, C. W.

M. Unlu, M. R. Hashemi, C. W. Berry, S. Li, S.-H. Yang, and M. Jarrahi, “Switchable scattering meta-surfaces for broadband terahertz modulation,” Sci. Rep. 4, 5708 (2014).
[Crossref]

Bingham, C.

Bingham, C. M.

Bourouina, T.

W. M. Zhu, A. Q. Liu, T. Bourouina, D. P. Tsai, J. H. Teng, X. H. Zhang, G. Q. Lo, D. L. Kwong, and N. I. Zheludev, “Microelectromechanical maltese-cross metamaterial with tunable terahertz anisotropy,” Nat. Commun. 3, 1274 (2012).
[Crossref]

W. M. Zhu, A. Q. Liu, W. Zhang, J. F. Tao, T. Bourouina, J. H. Teng, X. H. Zhang, Q. Y. Wu, H. Tanoto, H. C. Guo, G. Q. Lo, and D. L. Kwong, “Polarization dependent state to polarization independent state change in THz metamaterials,” Appl. Phys. Lett. 99, 221102 (2011).
[Crossref]

W. M. Zhu, A. Q. Liu, X. M. Zhang, D. P. Tsai, T. Bourouina, J. H. Teng, X. H. Zhang, H. C. Guo, H. Tanoto, T. Mei, G. Q. Lo, and D. L. Kwong, “Switchable magnetic metamaterials using micromachining processes,” Adv. Mater. 23, 1792–1796 (2011).
[Crossref]

Boyd, E. M.

Brener, I.

W. L. Chan, H. T. Chen, A. J. Taylor, I. Brener, M. J. Cich, and D. M. Mittleman, “A spatial light modulator for terahertz beams,” Appl. Phys. Lett. 94, 213511 (2009).
[Crossref]

Buchwald, W.

Cao, L.

H. R. Seren, G. R. Keiser, L. Cao, J. Zhang, A. C. Strikwerda, K. Fan, G. D. Metcalfe, M. Wraback, X. Zhang, and R. D. Averitt, “Optically modulated multiband terahertz perfect absorber,” Adv. Opt. Mater. 2, 1221–1226 (2014).

Chae, B. G.

T. Driscoll, H. T. Kim, B. G. Chae, B. J. Kim, Y. W. Lee, N. M. Jokerst, S. Palit, D. R. Smith, M. Di Ventra, and D. N. Basov, “Memory metamaterials,” Science 325, 1518–1521 (2009).
[Crossref]

Chan, W. L.

W. L. Chan, H. T. Chen, A. J. Taylor, I. Brener, M. J. Cich, and D. M. Mittleman, “A spatial light modulator for terahertz beams,” Appl. Phys. Lett. 94, 213511 (2009).
[Crossref]

Chatzakis, I.

L. Luo, I. Chatzakis, J. Wang, F. B. P. Niesler, M. Wegener, T. Koschny, and C. M. Soukoulis, “Broadband terahertz generation from metamaterials,” Nat. Commun. 5, 3055 (2014).

I. Chatzakis, P. Tassin, L. Luo, N. H. Shen, L. Zhang, J. Wang, T. Koschny, and C. M. Soukoulis, “One- and two-dimensional photo-imprinted diffraction gratings for manipulating terahertz waves,” Appl. Phys. Lett. 103, 043101 (2013).
[Crossref]

Chen, D.

W. M. Zhang, G. Meng, and D. Chen, “Stability, nonlinearity and reliability of electrostatically actuated MEMS devices,” Sensors 7, 760–796 (2007).
[Crossref]

Chen, H. T.

D. R. Chowdhury, R. Singh, A. J. Taylor, H. T. Chen, and A. K. Azad, “Ultrafast manipulation of near field coupling between bright and dark modes in terahertz metamaterial,” Appl. Phys. Lett. 102, 011122 (2013).
[Crossref]

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H. T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3, 1151 (2012).
[Crossref]

S. Zhang, J. Zhou, Y. S. Park, J. Rho, R. Singh, S. Nam, A. K. Azad, H. T. Chen, X. Yin, A. J. Taylor, and X. Zhang, “Photoinduced handedness switching in terahertz chiral metamolecules,” Nat. Commun. 3, 942 (2012).
[Crossref]

W. L. Chan, H. T. Chen, A. J. Taylor, I. Brener, M. J. Cich, and D. M. Mittleman, “A spatial light modulator for terahertz beams,” Appl. Phys. Lett. 94, 213511 (2009).
[Crossref]

H. T. Chen, J. F. O’Hara, A. K. Azad, A. J. Taylor, R. D. Averitt, D. B. Shrekenhamer, and W. J. Padilla, “Experimental demonstration of frequency-agile terahertz metamaterials,” Nat. Photonics 2, 295–298 (2008).
[Crossref]

J. F. O’Hara, E. Smirnova, H. T. Chen, A. J. Taylor, R. D. Averitt, C. Highstrete, M. Lee, and W. J. Padilla, “Properties of planar electric metamaterials for novel terahertz applications,” J. Nanoelectron. Optoelectron. 2, 90–95 (2007).

H. T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444, 597–600 (2006).
[Crossref]

Chen, W. C.

D. Shrekenhamer, W. C. Chen, and W. J. Padilla, “Liquid crystal tunable metamaterial absorber,” Phys. Rev. Lett. 110, 177403 (2013).
[Crossref]

Cheng, Q.

T. J. Cui, M. Q. Qi, X. Wan, L. Zhao, and Q. Cheng, “Coding metamaterials, digital metamaterials and programmable metamaterials,” Light: Sci. Appl. 3, e218 (2014).
[Crossref]

Choi, C. G.

S. H. Lee, M. Choi, T. T. Kim, S. Lee, M. Liu, X. Yin, H. K. Choi, S. S. Lee, C. G. Choi, S. Y. Choi, X. Zhang, and B. Min, “Switching terahertz waves with gate-controlled active graphene metamaterials,” Nat. Mater. 11, 936–941 (2012).
[Crossref]

Choi, H. K.

S. H. Lee, M. Choi, T. T. Kim, S. Lee, M. Liu, X. Yin, H. K. Choi, S. S. Lee, C. G. Choi, S. Y. Choi, X. Zhang, and B. Min, “Switching terahertz waves with gate-controlled active graphene metamaterials,” Nat. Mater. 11, 936–941 (2012).
[Crossref]

Choi, M.

S. H. Lee, M. Choi, T. T. Kim, S. Lee, M. Liu, X. Yin, H. K. Choi, S. S. Lee, C. G. Choi, S. Y. Choi, X. Zhang, and B. Min, “Switching terahertz waves with gate-controlled active graphene metamaterials,” Nat. Mater. 11, 936–941 (2012).
[Crossref]

M. Choi, S. H. Lee, Y. Kim, S. B. Kang, J. Shin, M. H. Kwak, K.-Y. Kang, Y.-H. Lee, N. Park, and B. Min, “A terahertz metamaterial with unnaturally high refractive index,” Nature 470, 369–373 (2011).
[Crossref]

Choi, S. Y.

S. H. Lee, M. Choi, T. T. Kim, S. Lee, M. Liu, X. Yin, H. K. Choi, S. S. Lee, C. G. Choi, S. Y. Choi, X. Zhang, and B. Min, “Switching terahertz waves with gate-controlled active graphene metamaterials,” Nat. Mater. 11, 936–941 (2012).
[Crossref]

Chowdhury, D. R.

D. R. Chowdhury, R. Singh, A. J. Taylor, H. T. Chen, and A. K. Azad, “Ultrafast manipulation of near field coupling between bright and dark modes in terahertz metamaterial,” Appl. Phys. Lett. 102, 011122 (2013).
[Crossref]

Cich, M. J.

W. L. Chan, H. T. Chen, A. J. Taylor, I. Brener, M. J. Cich, and D. M. Mittleman, “A spatial light modulator for terahertz beams,” Appl. Phys. Lett. 94, 213511 (2009).
[Crossref]

Coulais, C.

B. Florijn, C. Coulais, and M. Hecke, “Programmable mechanical metamaterials,” Phys. Rev. Lett. 113, 175503 (2014).
[Crossref]

Cui, T. J.

T. J. Cui, M. Q. Qi, X. Wan, L. Zhao, and Q. Cheng, “Coding metamaterials, digital metamaterials and programmable metamaterials,” Light: Sci. Appl. 3, e218 (2014).
[Crossref]

Cummer, S. A.

Dhakar, L.

P. Pitchappa, C. P. Ho, L. Dhakar, Y. Qian, N. Singh, and C. Lee, “Periodic array of subwavelength MEMS cantilevers for dynamic manipulation of terahertz waves,” J. Microelectromech. Syst. 24, 525–527 (2015).

Di Ventra, M.

T. Driscoll, H. T. Kim, B. G. Chae, B. J. Kim, Y. W. Lee, N. M. Jokerst, S. Palit, D. R. Smith, M. Di Ventra, and D. N. Basov, “Memory metamaterials,” Science 325, 1518–1521 (2009).
[Crossref]

Dicken, M. J.

Driscoll, T.

T. Driscoll, H. T. Kim, B. G. Chae, B. J. Kim, Y. W. Lee, N. M. Jokerst, S. Palit, D. R. Smith, M. Di Ventra, and D. N. Basov, “Memory metamaterials,” Science 325, 1518–1521 (2009).
[Crossref]

Economou, E. N.

G. Kenanakis, R. Zhao, N. Katsarakis, M. Kafesaki, C. M. Soukoulis, and E. N. Economou, “Optically controllable THz chiral metamaterials,” Opt. Express 22, 12149–12159 (2014).
[Crossref]

C. M. Soukoulis, T. Koschny, J. Zhou, M. Kafesaki, and E. N. Economou, “Magnetic response of split ring resonators at terahertz frequencies,” Phys. Status Solidi B 244, 1181–1187 (2007).
[Crossref]

N. Katsarakis, T. Koschny, M. Kafesaki, E. N. Economou, and C. M. Soukoulis, “Electric coupling to the magnetic resonance of split ring resonators,” Appl. Phys. Lett. 84, 2943–2945 (2004).
[Crossref]

Fan, K.

H. R. Seren, G. R. Keiser, L. Cao, J. Zhang, A. C. Strikwerda, K. Fan, G. D. Metcalfe, M. Wraback, X. Zhang, and R. D. Averitt, “Optically modulated multiband terahertz perfect absorber,” Adv. Opt. Mater. 2, 1221–1226 (2014).

H. Tao, A. C. Strikwerda, K. Fan, W. J. Padilla, X. Zhang, and R. D. Averitt, “Reconfigurable terahertz metamaterials,” Phys. Rev. Lett. 103, 147401 (2009).
[Crossref]

Fang, N.

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub–diffraction-limited optical imaging with a silver superlens,” Science 308, 534–537 (2005).
[Crossref]

T. J. Yen, W. J. Padilla, N. Fang, D. C. Vier, D. R. Smith, J. B. Pendry, D. N. Basov, and X. Zhang, “Terahertz magnetic response from artificial materials,” Science 303, 1494–1496 (2004).
[Crossref]

Florijn, B.

B. Florijn, C. Coulais, and M. Hecke, “Programmable mechanical metamaterials,” Phys. Rev. Lett. 113, 175503 (2014).
[Crossref]

Fujita, H.

Z. Han, K. Kohno, H. Fujita, K. Hirakawa, and H. Toshiyoshi, “Tunable terahertz filter and modulator based on electrostatic MEMS reconfigurable SRR array,” IEEE J. Sel. Top. Quantum Electron. 21, 1–9 (2015).
[Crossref]

Z. Han, K. Kohno, H. Fujita, K. Hirakawa, and H. Toshiyoshi, “MEMS reconfigurable metamaterial for terahertz switchable filter and modulator,” Opt. Express 22, 21326–21339 (2014).
[Crossref]

Gossard, A. C.

H. T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444, 597–600 (2006).
[Crossref]

Gu, J.

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H. T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3, 1151 (2012).
[Crossref]

Guo, H. C.

W. M. Zhu, A. Q. Liu, W. Zhang, J. F. Tao, T. Bourouina, J. H. Teng, X. H. Zhang, Q. Y. Wu, H. Tanoto, H. C. Guo, G. Q. Lo, and D. L. Kwong, “Polarization dependent state to polarization independent state change in THz metamaterials,” Appl. Phys. Lett. 99, 221102 (2011).
[Crossref]

W. M. Zhu, A. Q. Liu, X. M. Zhang, D. P. Tsai, T. Bourouina, J. H. Teng, X. H. Zhang, H. C. Guo, H. Tanoto, T. Mei, G. Q. Lo, and D. L. Kwong, “Switchable magnetic metamaterials using micromachining processes,” Adv. Mater. 23, 1792–1796 (2011).
[Crossref]

Guo, J.

Guruswamy, S.

J. Wang, S. Liu, S. Guruswamy, and A. Nahata, “Reconfigurable liquid metal based terahertz metamaterials via selective erasure and refilling to the unit cell level,” Appl. Phys. Lett. 103, 221116 (2013).
[Crossref]

Han, J.

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H. T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3, 1151 (2012).
[Crossref]

J. Han, A. Lakhtakia, and C. W. Qiu, “Terahertz metamaterials with semiconductor split-ring resonators for magnetostatic tunability,” Opt. Express 16, 14390–14396 (2008).
[Crossref]

Han, Z.

Z. Han, K. Kohno, H. Fujita, K. Hirakawa, and H. Toshiyoshi, “Tunable terahertz filter and modulator based on electrostatic MEMS reconfigurable SRR array,” IEEE J. Sel. Top. Quantum Electron. 21, 1–9 (2015).
[Crossref]

Z. Han, K. Kohno, H. Fujita, K. Hirakawa, and H. Toshiyoshi, “MEMS reconfigurable metamaterial for terahertz switchable filter and modulator,” Opt. Express 22, 21326–21339 (2014).
[Crossref]

Hand, T. H.

Hashemi, M. R.

M. Unlu, M. R. Hashemi, C. W. Berry, S. Li, S.-H. Yang, and M. Jarrahi, “Switchable scattering meta-surfaces for broadband terahertz modulation,” Sci. Rep. 4, 5708 (2014).
[Crossref]

Hecke, M.

B. Florijn, C. Coulais, and M. Hecke, “Programmable mechanical metamaterials,” Phys. Rev. Lett. 113, 175503 (2014).
[Crossref]

Hendrickson, J.

Highstrete, C.

J. F. O’Hara, E. Smirnova, H. T. Chen, A. J. Taylor, R. D. Averitt, C. Highstrete, M. Lee, and W. J. Padilla, “Properties of planar electric metamaterials for novel terahertz applications,” J. Nanoelectron. Optoelectron. 2, 90–95 (2007).

W. J. Padilla, M. T. Aronsson, C. Highstrete, M. Lee, A. J. Taylor, and R. D. Averitt, “Electrically resonant terahertz metamaterials: theoretical and experimental investigations,” Phys. Rev. B 75, 041102R (2007).

Hirakawa, K.

Z. Han, K. Kohno, H. Fujita, K. Hirakawa, and H. Toshiyoshi, “Tunable terahertz filter and modulator based on electrostatic MEMS reconfigurable SRR array,” IEEE J. Sel. Top. Quantum Electron. 21, 1–9 (2015).
[Crossref]

Z. Han, K. Kohno, H. Fujita, K. Hirakawa, and H. Toshiyoshi, “MEMS reconfigurable metamaterial for terahertz switchable filter and modulator,” Opt. Express 22, 21326–21339 (2014).
[Crossref]

Ho, C. P.

P. Pitchappa, C. P. Ho, L. Dhakar, Y. Qian, N. Singh, and C. Lee, “Periodic array of subwavelength MEMS cantilevers for dynamic manipulation of terahertz waves,” J. Microelectromech. Syst. 24, 525–527 (2015).

C. P. Ho, P. Pitchappa, Y. S. Lin, C. Y. Huang, P. Kropelnicki, and C. Lee, “Electrothermally actuated microelectromechanical systems based omega-ring terahertz metamaterial with polarization dependent characteristics,” Appl. Phys. Lett. 104, 161104 (2014).
[Crossref]

Holden, A. J.

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microwave Theory Technol. 47, 2075–2084 (1999).
[Crossref]

Hu, F.

F. Hu, Y. Qian, Z. Li, J. Niu, K. Nie, X. Xiong, W. Zhang, and Z. Peng, “Design of a tunable terahertz narrowband metamaterial absorber based on an electrostatically actuated MEMS cantilever and split ring resonator array,” J. Opt. 15, 055101 (2013).
[Crossref]

Huang, C. Y.

C. P. Ho, P. Pitchappa, Y. S. Lin, C. Y. Huang, P. Kropelnicki, and C. Lee, “Electrothermally actuated microelectromechanical systems based omega-ring terahertz metamaterial with polarization dependent characteristics,” Appl. Phys. Lett. 104, 161104 (2014).
[Crossref]

Z. Liu, C. Y. Huang, H. Liu, X. Zhang, and C. Lee, “Resonance enhancement of terahertz metamaterials by liquid crystals/indium tin oxide interfaces,” Opt. Express 21, 6519–6525 (2013).
[Crossref]

Jarrahi, M.

M. Unlu and M. Jarrahi, “Miniature multi-contact MEMS switch for broadband terahertz modulation,” Opt. Express 22, 32245–32260 (2014).
[Crossref]

M. Unlu, M. R. Hashemi, C. W. Berry, S. Li, S.-H. Yang, and M. Jarrahi, “Switchable scattering meta-surfaces for broadband terahertz modulation,” Sci. Rep. 4, 5708 (2014).
[Crossref]

Jokerst, N. M.

T. Driscoll, H. T. Kim, B. G. Chae, B. J. Kim, Y. W. Lee, N. M. Jokerst, S. Palit, D. R. Smith, M. Di Ventra, and D. N. Basov, “Memory metamaterials,” Science 325, 1518–1521 (2009).
[Crossref]

Y. Yuan, C. Bingham, T. Tyler, S. Palit, T. H. Hand, W. J. Padilla, D. R. Smith, N. M. Jokerst, and S. A. Cummer, “Dual-band planar electric metamaterial in the terahertz regime,” Opt. Express 16, 9746–9752 (2008).
[Crossref]

Kafesaki, M.

G. Kenanakis, R. Zhao, N. Katsarakis, M. Kafesaki, C. M. Soukoulis, and E. N. Economou, “Optically controllable THz chiral metamaterials,” Opt. Express 22, 12149–12159 (2014).
[Crossref]

C. M. Soukoulis, T. Koschny, J. Zhou, M. Kafesaki, and E. N. Economou, “Magnetic response of split ring resonators at terahertz frequencies,” Phys. Status Solidi B 244, 1181–1187 (2007).
[Crossref]

N. Katsarakis, T. Koschny, M. Kafesaki, E. N. Economou, and C. M. Soukoulis, “Electric coupling to the magnetic resonance of split ring resonators,” Appl. Phys. Lett. 84, 2943–2945 (2004).
[Crossref]

Kang, K.-Y.

M. Choi, S. H. Lee, Y. Kim, S. B. Kang, J. Shin, M. H. Kwak, K.-Y. Kang, Y.-H. Lee, N. Park, and B. Min, “A terahertz metamaterial with unnaturally high refractive index,” Nature 470, 369–373 (2011).
[Crossref]

Kang, L.

Kang, S. B.

M. Choi, S. H. Lee, Y. Kim, S. B. Kang, J. Shin, M. H. Kwak, K.-Y. Kang, Y.-H. Lee, N. Park, and B. Min, “A terahertz metamaterial with unnaturally high refractive index,” Nature 470, 369–373 (2011).
[Crossref]

Kantartzis, N.

A. Lalas, N. Kantartzis, and T. Tsiboukis, “Programmable terahertz metamaterials through V-beam electrothermal devices,” Appl. Phys. A 117, 433–438 (2014).
[Crossref]

A. Lalas, N. Kantartzis, and T. Tsiboukis, “Tunable terahertz metamaterials by means of piezoelectric MEMS actuators,” Europhys. Lett. 107, 58004 (2014).
[Crossref]

Katsarakis, N.

G. Kenanakis, R. Zhao, N. Katsarakis, M. Kafesaki, C. M. Soukoulis, and E. N. Economou, “Optically controllable THz chiral metamaterials,” Opt. Express 22, 12149–12159 (2014).
[Crossref]

N. Katsarakis, T. Koschny, M. Kafesaki, E. N. Economou, and C. M. Soukoulis, “Electric coupling to the magnetic resonance of split ring resonators,” Appl. Phys. Lett. 84, 2943–2945 (2004).
[Crossref]

Keiser, G. R.

H. R. Seren, G. R. Keiser, L. Cao, J. Zhang, A. C. Strikwerda, K. Fan, G. D. Metcalfe, M. Wraback, X. Zhang, and R. D. Averitt, “Optically modulated multiband terahertz perfect absorber,” Adv. Opt. Mater. 2, 1221–1226 (2014).

Kenanakis, G.

Kim, B. J.

T. Driscoll, H. T. Kim, B. G. Chae, B. J. Kim, Y. W. Lee, N. M. Jokerst, S. Palit, D. R. Smith, M. Di Ventra, and D. N. Basov, “Memory metamaterials,” Science 325, 1518–1521 (2009).
[Crossref]

Kim, H. T.

T. Driscoll, H. T. Kim, B. G. Chae, B. J. Kim, Y. W. Lee, N. M. Jokerst, S. Palit, D. R. Smith, M. Di Ventra, and D. N. Basov, “Memory metamaterials,” Science 325, 1518–1521 (2009).
[Crossref]

Kim, T. T.

S. H. Lee, M. Choi, T. T. Kim, S. Lee, M. Liu, X. Yin, H. K. Choi, S. S. Lee, C. G. Choi, S. Y. Choi, X. Zhang, and B. Min, “Switching terahertz waves with gate-controlled active graphene metamaterials,” Nat. Mater. 11, 936–941 (2012).
[Crossref]

Kim, Y.

M. Choi, S. H. Lee, Y. Kim, S. B. Kang, J. Shin, M. H. Kwak, K.-Y. Kang, Y.-H. Lee, N. Park, and B. Min, “A terahertz metamaterial with unnaturally high refractive index,” Nature 470, 369–373 (2011).
[Crossref]

Kitano, M.

F. Miyamaru, H. Morita, Y. Nishiyama, T. Nishida, T. Nakanishi, M. Kitano, and M. W. Takeda, “Ultrafast optical control of group delay of narrow-band terahertz waves,” Sci. Rep. 4, 4346 (2014).
[Crossref]

Kohno, K.

Z. Han, K. Kohno, H. Fujita, K. Hirakawa, and H. Toshiyoshi, “Tunable terahertz filter and modulator based on electrostatic MEMS reconfigurable SRR array,” IEEE J. Sel. Top. Quantum Electron. 21, 1–9 (2015).
[Crossref]

Z. Han, K. Kohno, H. Fujita, K. Hirakawa, and H. Toshiyoshi, “MEMS reconfigurable metamaterial for terahertz switchable filter and modulator,” Opt. Express 22, 21326–21339 (2014).
[Crossref]

Koschny, T.

L. Luo, I. Chatzakis, J. Wang, F. B. P. Niesler, M. Wegener, T. Koschny, and C. M. Soukoulis, “Broadband terahertz generation from metamaterials,” Nat. Commun. 5, 3055 (2014).

I. Chatzakis, P. Tassin, L. Luo, N. H. Shen, L. Zhang, J. Wang, T. Koschny, and C. M. Soukoulis, “One- and two-dimensional photo-imprinted diffraction gratings for manipulating terahertz waves,” Appl. Phys. Lett. 103, 043101 (2013).
[Crossref]

C. M. Soukoulis, T. Koschny, J. Zhou, M. Kafesaki, and E. N. Economou, “Magnetic response of split ring resonators at terahertz frequencies,” Phys. Status Solidi B 244, 1181–1187 (2007).
[Crossref]

N. Katsarakis, T. Koschny, M. Kafesaki, E. N. Economou, and C. M. Soukoulis, “Electric coupling to the magnetic resonance of split ring resonators,” Appl. Phys. Lett. 84, 2943–2945 (2004).
[Crossref]

Kropelnicki, P.

C. P. Ho, P. Pitchappa, Y. S. Lin, C. Y. Huang, P. Kropelnicki, and C. Lee, “Electrothermally actuated microelectromechanical systems based omega-ring terahertz metamaterial with polarization dependent characteristics,” Appl. Phys. Lett. 104, 161104 (2014).
[Crossref]

Y. S. Lin, Y. Qian, F. Ma, Z. Liu, P. Kropelnicki, and C. Lee, “Development of stress-induced curved actuators for a tunable THz filter based on double split-ring resonators,” Appl. Phys. Lett. 102, 111908 (2013).
[Crossref]

Kwak, M. H.

M. Choi, S. H. Lee, Y. Kim, S. B. Kang, J. Shin, M. H. Kwak, K.-Y. Kang, Y.-H. Lee, N. Park, and B. Min, “A terahertz metamaterial with unnaturally high refractive index,” Nature 470, 369–373 (2011).
[Crossref]

Kwong, D. L.

W. M. Zhu, A. Q. Liu, T. Bourouina, D. P. Tsai, J. H. Teng, X. H. Zhang, G. Q. Lo, D. L. Kwong, and N. I. Zheludev, “Microelectromechanical maltese-cross metamaterial with tunable terahertz anisotropy,” Nat. Commun. 3, 1274 (2012).
[Crossref]

W. M. Zhu, A. Q. Liu, W. Zhang, J. F. Tao, T. Bourouina, J. H. Teng, X. H. Zhang, Q. Y. Wu, H. Tanoto, H. C. Guo, G. Q. Lo, and D. L. Kwong, “Polarization dependent state to polarization independent state change in THz metamaterials,” Appl. Phys. Lett. 99, 221102 (2011).
[Crossref]

W. M. Zhu, A. Q. Liu, X. M. Zhang, D. P. Tsai, T. Bourouina, J. H. Teng, X. H. Zhang, H. C. Guo, H. Tanoto, T. Mei, G. Q. Lo, and D. L. Kwong, “Switchable magnetic metamaterials using micromachining processes,” Adv. Mater. 23, 1792–1796 (2011).
[Crossref]

Lakhtakia, A.

Lalas, A.

A. Lalas, N. Kantartzis, and T. Tsiboukis, “Tunable terahertz metamaterials by means of piezoelectric MEMS actuators,” Europhys. Lett. 107, 58004 (2014).
[Crossref]

A. Lalas, N. Kantartzis, and T. Tsiboukis, “Programmable terahertz metamaterials through V-beam electrothermal devices,” Appl. Phys. A 117, 433–438 (2014).
[Crossref]

Landy, N. I.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100, 207402 (2008).
[Crossref]

Lee, C.

P. Pitchappa, C. P. Ho, L. Dhakar, Y. Qian, N. Singh, and C. Lee, “Periodic array of subwavelength MEMS cantilevers for dynamic manipulation of terahertz waves,” J. Microelectromech. Syst. 24, 525–527 (2015).

C. P. Ho, P. Pitchappa, Y. S. Lin, C. Y. Huang, P. Kropelnicki, and C. Lee, “Electrothermally actuated microelectromechanical systems based omega-ring terahertz metamaterial with polarization dependent characteristics,” Appl. Phys. Lett. 104, 161104 (2014).
[Crossref]

F. Ma, Y. S. Lin, X. H. Zhang, and C. Lee, “Tunable multiband terahertz metamaterials using a reconfigurable electric split-ring resonator array,” Light: Sci. Appl. 3, e171 (2014).

F. Ma, Y. Qian, Y. S. Lin, H. Liu, X. H. Zhang, Z. Liu, J. M. L. Tsai, and C. Lee, “Polarization-sensitive microelectromechanical systems based tunable terahertz metamaterials using three dimensional electric split ring resonator arrays,” Appl. Phys. Lett. 102, 161912 (2013).
[Crossref]

Y. S. Lin, Y. Qian, F. Ma, Z. Liu, P. Kropelnicki, and C. Lee, “Development of stress-induced curved actuators for a tunable THz filter based on double split-ring resonators,” Appl. Phys. Lett. 102, 111908 (2013).
[Crossref]

Y. S. Lin, F. Ma, and C. Lee, “Three-dimensional movable metamaterials using electric split ring resonators,” Opt. Lett. 38, 3126–3128 (2013).
[Crossref]

Z. Liu, C. Y. Huang, H. Liu, X. Zhang, and C. Lee, “Resonance enhancement of terahertz metamaterials by liquid crystals/indium tin oxide interfaces,” Opt. Express 21, 6519–6525 (2013).
[Crossref]

Y. Qian, L. Lou, M. L. J. Tsai, and C. Lee, “A dual-silicon-nanowires based U-shape nanoelectromechanical switch with low pull-in voltage,” Appl. Phys. Lett. 100, 113102 (2012).
[Crossref]

Lee, H.

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub–diffraction-limited optical imaging with a silver superlens,” Science 308, 534–537 (2005).
[Crossref]

Lee, M.

J. F. O’Hara, E. Smirnova, H. T. Chen, A. J. Taylor, R. D. Averitt, C. Highstrete, M. Lee, and W. J. Padilla, “Properties of planar electric metamaterials for novel terahertz applications,” J. Nanoelectron. Optoelectron. 2, 90–95 (2007).

W. J. Padilla, M. T. Aronsson, C. Highstrete, M. Lee, A. J. Taylor, and R. D. Averitt, “Electrically resonant terahertz metamaterials: theoretical and experimental investigations,” Phys. Rev. B 75, 041102R (2007).

Lee, S.

S. H. Lee, M. Choi, T. T. Kim, S. Lee, M. Liu, X. Yin, H. K. Choi, S. S. Lee, C. G. Choi, S. Y. Choi, X. Zhang, and B. Min, “Switching terahertz waves with gate-controlled active graphene metamaterials,” Nat. Mater. 11, 936–941 (2012).
[Crossref]

Lee, S. H.

S. H. Lee, M. Choi, T. T. Kim, S. Lee, M. Liu, X. Yin, H. K. Choi, S. S. Lee, C. G. Choi, S. Y. Choi, X. Zhang, and B. Min, “Switching terahertz waves with gate-controlled active graphene metamaterials,” Nat. Mater. 11, 936–941 (2012).
[Crossref]

M. Choi, S. H. Lee, Y. Kim, S. B. Kang, J. Shin, M. H. Kwak, K.-Y. Kang, Y.-H. Lee, N. Park, and B. Min, “A terahertz metamaterial with unnaturally high refractive index,” Nature 470, 369–373 (2011).
[Crossref]

Lee, S. S.

S. H. Lee, M. Choi, T. T. Kim, S. Lee, M. Liu, X. Yin, H. K. Choi, S. S. Lee, C. G. Choi, S. Y. Choi, X. Zhang, and B. Min, “Switching terahertz waves with gate-controlled active graphene metamaterials,” Nat. Mater. 11, 936–941 (2012).
[Crossref]

Lee, Y. W.

T. Driscoll, H. T. Kim, B. G. Chae, B. J. Kim, Y. W. Lee, N. M. Jokerst, S. Palit, D. R. Smith, M. Di Ventra, and D. N. Basov, “Memory metamaterials,” Science 325, 1518–1521 (2009).
[Crossref]

Lee, Y.-H.

M. Choi, S. H. Lee, Y. Kim, S. B. Kang, J. Shin, M. H. Kwak, K.-Y. Kang, Y.-H. Lee, N. Park, and B. Min, “A terahertz metamaterial with unnaturally high refractive index,” Nature 470, 369–373 (2011).
[Crossref]

Li, S.

M. Unlu, M. R. Hashemi, C. W. Berry, S. Li, S.-H. Yang, and M. Jarrahi, “Switchable scattering meta-surfaces for broadband terahertz modulation,” Sci. Rep. 4, 5708 (2014).
[Crossref]

Li, X.

X. Li, T. Yang, W. Zhu, and X. Li, “Continuously tunable terahertz metamaterial employing a thermal actuator,” Microsys. Technol. 19, 1145–1151 (2013).

X. Li, T. Yang, W. Zhu, and X. Li, “Continuously tunable terahertz metamaterial employing a thermal actuator,” Microsys. Technol. 19, 1145–1151 (2013).

Li, Z.

F. Hu, Y. Qian, Z. Li, J. Niu, K. Nie, X. Xiong, W. Zhang, and Z. Peng, “Design of a tunable terahertz narrowband metamaterial absorber based on an electrostatically actuated MEMS cantilever and split ring resonator array,” J. Opt. 15, 055101 (2013).
[Crossref]

Lin, Y. S.

C. P. Ho, P. Pitchappa, Y. S. Lin, C. Y. Huang, P. Kropelnicki, and C. Lee, “Electrothermally actuated microelectromechanical systems based omega-ring terahertz metamaterial with polarization dependent characteristics,” Appl. Phys. Lett. 104, 161104 (2014).
[Crossref]

F. Ma, Y. S. Lin, X. H. Zhang, and C. Lee, “Tunable multiband terahertz metamaterials using a reconfigurable electric split-ring resonator array,” Light: Sci. Appl. 3, e171 (2014).

Y. S. Lin, Y. Qian, F. Ma, Z. Liu, P. Kropelnicki, and C. Lee, “Development of stress-induced curved actuators for a tunable THz filter based on double split-ring resonators,” Appl. Phys. Lett. 102, 111908 (2013).
[Crossref]

F. Ma, Y. Qian, Y. S. Lin, H. Liu, X. H. Zhang, Z. Liu, J. M. L. Tsai, and C. Lee, “Polarization-sensitive microelectromechanical systems based tunable terahertz metamaterials using three dimensional electric split ring resonator arrays,” Appl. Phys. Lett. 102, 161912 (2013).
[Crossref]

Y. S. Lin, F. Ma, and C. Lee, “Three-dimensional movable metamaterials using electric split ring resonators,” Opt. Lett. 38, 3126–3128 (2013).
[Crossref]

Liu, A. Q.

W. M. Zhu, A. Q. Liu, T. Bourouina, D. P. Tsai, J. H. Teng, X. H. Zhang, G. Q. Lo, D. L. Kwong, and N. I. Zheludev, “Microelectromechanical maltese-cross metamaterial with tunable terahertz anisotropy,” Nat. Commun. 3, 1274 (2012).
[Crossref]

W. M. Zhu, A. Q. Liu, W. Zhang, J. F. Tao, T. Bourouina, J. H. Teng, X. H. Zhang, Q. Y. Wu, H. Tanoto, H. C. Guo, G. Q. Lo, and D. L. Kwong, “Polarization dependent state to polarization independent state change in THz metamaterials,” Appl. Phys. Lett. 99, 221102 (2011).
[Crossref]

W. M. Zhu, A. Q. Liu, X. M. Zhang, D. P. Tsai, T. Bourouina, J. H. Teng, X. H. Zhang, H. C. Guo, H. Tanoto, T. Mei, G. Q. Lo, and D. L. Kwong, “Switchable magnetic metamaterials using micromachining processes,” Adv. Mater. 23, 1792–1796 (2011).
[Crossref]

Liu, H.

F. Ma, Y. Qian, Y. S. Lin, H. Liu, X. H. Zhang, Z. Liu, J. M. L. Tsai, and C. Lee, “Polarization-sensitive microelectromechanical systems based tunable terahertz metamaterials using three dimensional electric split ring resonator arrays,” Appl. Phys. Lett. 102, 161912 (2013).
[Crossref]

Z. Liu, C. Y. Huang, H. Liu, X. Zhang, and C. Lee, “Resonance enhancement of terahertz metamaterials by liquid crystals/indium tin oxide interfaces,” Opt. Express 21, 6519–6525 (2013).
[Crossref]

Liu, M.

S. H. Lee, M. Choi, T. T. Kim, S. Lee, M. Liu, X. Yin, H. K. Choi, S. S. Lee, C. G. Choi, S. Y. Choi, X. Zhang, and B. Min, “Switching terahertz waves with gate-controlled active graphene metamaterials,” Nat. Mater. 11, 936–941 (2012).
[Crossref]

Liu, S.

J. Wang, S. Liu, S. Guruswamy, and A. Nahata, “Reconfigurable liquid metal based terahertz metamaterials via selective erasure and refilling to the unit cell level,” Appl. Phys. Lett. 103, 221116 (2013).
[Crossref]

Liu, X.

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H. T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3, 1151 (2012).
[Crossref]

C. M. Bingham, H. Tao, X. Liu, R. D. Averitt, X. Zhang, and W. J. Padilla, “Planar wallpaper group metamaterials for novel terahertz applications,” Opt. Express 16, 18565–18575 (2008).
[Crossref]

Liu, Z.

Z. Liu, C. Y. Huang, H. Liu, X. Zhang, and C. Lee, “Resonance enhancement of terahertz metamaterials by liquid crystals/indium tin oxide interfaces,” Opt. Express 21, 6519–6525 (2013).
[Crossref]

F. Ma, Y. Qian, Y. S. Lin, H. Liu, X. H. Zhang, Z. Liu, J. M. L. Tsai, and C. Lee, “Polarization-sensitive microelectromechanical systems based tunable terahertz metamaterials using three dimensional electric split ring resonator arrays,” Appl. Phys. Lett. 102, 161912 (2013).
[Crossref]

Y. S. Lin, Y. Qian, F. Ma, Z. Liu, P. Kropelnicki, and C. Lee, “Development of stress-induced curved actuators for a tunable THz filter based on double split-ring resonators,” Appl. Phys. Lett. 102, 111908 (2013).
[Crossref]

Lo, G. Q.

W. M. Zhu, A. Q. Liu, T. Bourouina, D. P. Tsai, J. H. Teng, X. H. Zhang, G. Q. Lo, D. L. Kwong, and N. I. Zheludev, “Microelectromechanical maltese-cross metamaterial with tunable terahertz anisotropy,” Nat. Commun. 3, 1274 (2012).
[Crossref]

W. M. Zhu, A. Q. Liu, W. Zhang, J. F. Tao, T. Bourouina, J. H. Teng, X. H. Zhang, Q. Y. Wu, H. Tanoto, H. C. Guo, G. Q. Lo, and D. L. Kwong, “Polarization dependent state to polarization independent state change in THz metamaterials,” Appl. Phys. Lett. 99, 221102 (2011).
[Crossref]

W. M. Zhu, A. Q. Liu, X. M. Zhang, D. P. Tsai, T. Bourouina, J. H. Teng, X. H. Zhang, H. C. Guo, H. Tanoto, T. Mei, G. Q. Lo, and D. L. Kwong, “Switchable magnetic metamaterials using micromachining processes,” Adv. Mater. 23, 1792–1796 (2011).
[Crossref]

Lou, L.

Y. Qian, L. Lou, M. L. J. Tsai, and C. Lee, “A dual-silicon-nanowires based U-shape nanoelectromechanical switch with low pull-in voltage,” Appl. Phys. Lett. 100, 113102 (2012).
[Crossref]

Luo, L.

L. Luo, I. Chatzakis, J. Wang, F. B. P. Niesler, M. Wegener, T. Koschny, and C. M. Soukoulis, “Broadband terahertz generation from metamaterials,” Nat. Commun. 5, 3055 (2014).

I. Chatzakis, P. Tassin, L. Luo, N. H. Shen, L. Zhang, J. Wang, T. Koschny, and C. M. Soukoulis, “One- and two-dimensional photo-imprinted diffraction gratings for manipulating terahertz waves,” Appl. Phys. Lett. 103, 043101 (2013).
[Crossref]

Ma, F.

F. Ma, Y. S. Lin, X. H. Zhang, and C. Lee, “Tunable multiband terahertz metamaterials using a reconfigurable electric split-ring resonator array,” Light: Sci. Appl. 3, e171 (2014).

Y. S. Lin, Y. Qian, F. Ma, Z. Liu, P. Kropelnicki, and C. Lee, “Development of stress-induced curved actuators for a tunable THz filter based on double split-ring resonators,” Appl. Phys. Lett. 102, 111908 (2013).
[Crossref]

F. Ma, Y. Qian, Y. S. Lin, H. Liu, X. H. Zhang, Z. Liu, J. M. L. Tsai, and C. Lee, “Polarization-sensitive microelectromechanical systems based tunable terahertz metamaterials using three dimensional electric split ring resonator arrays,” Appl. Phys. Lett. 102, 161912 (2013).
[Crossref]

Y. S. Lin, F. Ma, and C. Lee, “Three-dimensional movable metamaterials using electric split ring resonators,” Opt. Lett. 38, 3126–3128 (2013).
[Crossref]

Ma, J.

Ma, Y.

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H. T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3, 1151 (2012).
[Crossref]

Maier, S. A.

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H. T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3, 1151 (2012).
[Crossref]

Mei, T.

W. M. Zhu, A. Q. Liu, X. M. Zhang, D. P. Tsai, T. Bourouina, J. H. Teng, X. H. Zhang, H. C. Guo, H. Tanoto, T. Mei, G. Q. Lo, and D. L. Kwong, “Switchable magnetic metamaterials using micromachining processes,” Adv. Mater. 23, 1792–1796 (2011).
[Crossref]

Meng, G.

W. M. Zhang, G. Meng, and D. Chen, “Stability, nonlinearity and reliability of electrostatically actuated MEMS devices,” Sensors 7, 760–796 (2007).
[Crossref]

Metcalfe, G. D.

H. R. Seren, G. R. Keiser, L. Cao, J. Zhang, A. C. Strikwerda, K. Fan, G. D. Metcalfe, M. Wraback, X. Zhang, and R. D. Averitt, “Optically modulated multiband terahertz perfect absorber,” Adv. Opt. Mater. 2, 1221–1226 (2014).

Min, B.

S. H. Lee, M. Choi, T. T. Kim, S. Lee, M. Liu, X. Yin, H. K. Choi, S. S. Lee, C. G. Choi, S. Y. Choi, X. Zhang, and B. Min, “Switching terahertz waves with gate-controlled active graphene metamaterials,” Nat. Mater. 11, 936–941 (2012).
[Crossref]

M. Choi, S. H. Lee, Y. Kim, S. B. Kang, J. Shin, M. H. Kwak, K.-Y. Kang, Y.-H. Lee, N. Park, and B. Min, “A terahertz metamaterial with unnaturally high refractive index,” Nature 470, 369–373 (2011).
[Crossref]

Mittleman, D. M.

W. L. Chan, H. T. Chen, A. J. Taylor, I. Brener, M. J. Cich, and D. M. Mittleman, “A spatial light modulator for terahertz beams,” Appl. Phys. Lett. 94, 213511 (2009).
[Crossref]

Miyamaru, F.

F. Miyamaru, H. Morita, Y. Nishiyama, T. Nishida, T. Nakanishi, M. Kitano, and M. W. Takeda, “Ultrafast optical control of group delay of narrow-band terahertz waves,” Sci. Rep. 4, 4346 (2014).
[Crossref]

Mock, J. J.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100, 207402 (2008).
[Crossref]

Morita, H.

F. Miyamaru, H. Morita, Y. Nishiyama, T. Nishida, T. Nakanishi, M. Kitano, and M. W. Takeda, “Ultrafast optical control of group delay of narrow-band terahertz waves,” Sci. Rep. 4, 4346 (2014).
[Crossref]

Nahata, A.

J. Wang, S. Liu, S. Guruswamy, and A. Nahata, “Reconfigurable liquid metal based terahertz metamaterials via selective erasure and refilling to the unit cell level,” Appl. Phys. Lett. 103, 221116 (2013).
[Crossref]

Nakanishi, T.

F. Miyamaru, H. Morita, Y. Nishiyama, T. Nishida, T. Nakanishi, M. Kitano, and M. W. Takeda, “Ultrafast optical control of group delay of narrow-band terahertz waves,” Sci. Rep. 4, 4346 (2014).
[Crossref]

Nam, S.

S. Zhang, J. Zhou, Y. S. Park, J. Rho, R. Singh, S. Nam, A. K. Azad, H. T. Chen, X. Yin, A. J. Taylor, and X. Zhang, “Photoinduced handedness switching in terahertz chiral metamolecules,” Nat. Commun. 3, 942 (2012).
[Crossref]

Nemat-Nasser, S. C.

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84, 4184–4187 (2000).
[Crossref]

Nie, K.

F. Hu, Y. Qian, Z. Li, J. Niu, K. Nie, X. Xiong, W. Zhang, and Z. Peng, “Design of a tunable terahertz narrowband metamaterial absorber based on an electrostatically actuated MEMS cantilever and split ring resonator array,” J. Opt. 15, 055101 (2013).
[Crossref]

Niesler, F. B. P.

L. Luo, I. Chatzakis, J. Wang, F. B. P. Niesler, M. Wegener, T. Koschny, and C. M. Soukoulis, “Broadband terahertz generation from metamaterials,” Nat. Commun. 5, 3055 (2014).

Nishida, T.

F. Miyamaru, H. Morita, Y. Nishiyama, T. Nishida, T. Nakanishi, M. Kitano, and M. W. Takeda, “Ultrafast optical control of group delay of narrow-band terahertz waves,” Sci. Rep. 4, 4346 (2014).
[Crossref]

Nishiyama, Y.

F. Miyamaru, H. Morita, Y. Nishiyama, T. Nishida, T. Nakanishi, M. Kitano, and M. W. Takeda, “Ultrafast optical control of group delay of narrow-band terahertz waves,” Sci. Rep. 4, 4346 (2014).
[Crossref]

Niu, J.

F. Hu, Y. Qian, Z. Li, J. Niu, K. Nie, X. Xiong, W. Zhang, and Z. Peng, “Design of a tunable terahertz narrowband metamaterial absorber based on an electrostatically actuated MEMS cantilever and split ring resonator array,” J. Opt. 15, 055101 (2013).
[Crossref]

O’Hara, J. F.

H. T. Chen, J. F. O’Hara, A. K. Azad, A. J. Taylor, R. D. Averitt, D. B. Shrekenhamer, and W. J. Padilla, “Experimental demonstration of frequency-agile terahertz metamaterials,” Nat. Photonics 2, 295–298 (2008).
[Crossref]

J. F. O’Hara, E. Smirnova, H. T. Chen, A. J. Taylor, R. D. Averitt, C. Highstrete, M. Lee, and W. J. Padilla, “Properties of planar electric metamaterials for novel terahertz applications,” J. Nanoelectron. Optoelectron. 2, 90–95 (2007).

Padilla, W. J.

S. Savo, D. Shrekenhamer, and W. J. Padilla, “Liquid crystal metamaterial absorber spatial light modulator for THz applications,” Adv. Opt. Mater. 2, 275–279 (2014).

D. Shrekenhamer, W. C. Chen, and W. J. Padilla, “Liquid crystal tunable metamaterial absorber,” Phys. Rev. Lett. 110, 177403 (2013).
[Crossref]

H. Tao, A. C. Strikwerda, K. Fan, W. J. Padilla, X. Zhang, and R. D. Averitt, “Reconfigurable terahertz metamaterials,” Phys. Rev. Lett. 103, 147401 (2009).
[Crossref]

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100, 207402 (2008).
[Crossref]

H. T. Chen, J. F. O’Hara, A. K. Azad, A. J. Taylor, R. D. Averitt, D. B. Shrekenhamer, and W. J. Padilla, “Experimental demonstration of frequency-agile terahertz metamaterials,” Nat. Photonics 2, 295–298 (2008).
[Crossref]

C. M. Bingham, H. Tao, X. Liu, R. D. Averitt, X. Zhang, and W. J. Padilla, “Planar wallpaper group metamaterials for novel terahertz applications,” Opt. Express 16, 18565–18575 (2008).
[Crossref]

Y. Yuan, C. Bingham, T. Tyler, S. Palit, T. H. Hand, W. J. Padilla, D. R. Smith, N. M. Jokerst, and S. A. Cummer, “Dual-band planar electric metamaterial in the terahertz regime,” Opt. Express 16, 9746–9752 (2008).
[Crossref]

J. F. O’Hara, E. Smirnova, H. T. Chen, A. J. Taylor, R. D. Averitt, C. Highstrete, M. Lee, and W. J. Padilla, “Properties of planar electric metamaterials for novel terahertz applications,” J. Nanoelectron. Optoelectron. 2, 90–95 (2007).

W. J. Padilla, M. T. Aronsson, C. Highstrete, M. Lee, A. J. Taylor, and R. D. Averitt, “Electrically resonant terahertz metamaterials: theoretical and experimental investigations,” Phys. Rev. B 75, 041102R (2007).

H. T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444, 597–600 (2006).
[Crossref]

T. J. Yen, W. J. Padilla, N. Fang, D. C. Vier, D. R. Smith, J. B. Pendry, D. N. Basov, and X. Zhang, “Terahertz magnetic response from artificial materials,” Science 303, 1494–1496 (2004).
[Crossref]

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84, 4184–4187 (2000).
[Crossref]

Palit, S.

T. Driscoll, H. T. Kim, B. G. Chae, B. J. Kim, Y. W. Lee, N. M. Jokerst, S. Palit, D. R. Smith, M. Di Ventra, and D. N. Basov, “Memory metamaterials,” Science 325, 1518–1521 (2009).
[Crossref]

Y. Yuan, C. Bingham, T. Tyler, S. Palit, T. H. Hand, W. J. Padilla, D. R. Smith, N. M. Jokerst, and S. A. Cummer, “Dual-band planar electric metamaterial in the terahertz regime,” Opt. Express 16, 9746–9752 (2008).
[Crossref]

Park, N.

M. Choi, S. H. Lee, Y. Kim, S. B. Kang, J. Shin, M. H. Kwak, K.-Y. Kang, Y.-H. Lee, N. Park, and B. Min, “A terahertz metamaterial with unnaturally high refractive index,” Nature 470, 369–373 (2011).
[Crossref]

Park, Y. S.

S. Zhang, J. Zhou, Y. S. Park, J. Rho, R. Singh, S. Nam, A. K. Azad, H. T. Chen, X. Yin, A. J. Taylor, and X. Zhang, “Photoinduced handedness switching in terahertz chiral metamolecules,” Nat. Commun. 3, 942 (2012).
[Crossref]

Pendry, J. B.

T. J. Yen, W. J. Padilla, N. Fang, D. C. Vier, D. R. Smith, J. B. Pendry, D. N. Basov, and X. Zhang, “Terahertz magnetic response from artificial materials,” Science 303, 1494–1496 (2004).
[Crossref]

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microwave Theory Technol. 47, 2075–2084 (1999).
[Crossref]

Peng, Z.

F. Hu, Y. Qian, Z. Li, J. Niu, K. Nie, X. Xiong, W. Zhang, and Z. Peng, “Design of a tunable terahertz narrowband metamaterial absorber based on an electrostatically actuated MEMS cantilever and split ring resonator array,” J. Opt. 15, 055101 (2013).
[Crossref]

Pitchappa, P.

P. Pitchappa, C. P. Ho, L. Dhakar, Y. Qian, N. Singh, and C. Lee, “Periodic array of subwavelength MEMS cantilevers for dynamic manipulation of terahertz waves,” J. Microelectromech. Syst. 24, 525–527 (2015).

C. P. Ho, P. Pitchappa, Y. S. Lin, C. Y. Huang, P. Kropelnicki, and C. Lee, “Electrothermally actuated microelectromechanical systems based omega-ring terahertz metamaterial with polarization dependent characteristics,” Appl. Phys. Lett. 104, 161104 (2014).
[Crossref]

Pryce, I. M.

Qi, M. Q.

T. J. Cui, M. Q. Qi, X. Wan, L. Zhao, and Q. Cheng, “Coding metamaterials, digital metamaterials and programmable metamaterials,” Light: Sci. Appl. 3, e218 (2014).
[Crossref]

Qian, Y.

P. Pitchappa, C. P. Ho, L. Dhakar, Y. Qian, N. Singh, and C. Lee, “Periodic array of subwavelength MEMS cantilevers for dynamic manipulation of terahertz waves,” J. Microelectromech. Syst. 24, 525–527 (2015).

F. Hu, Y. Qian, Z. Li, J. Niu, K. Nie, X. Xiong, W. Zhang, and Z. Peng, “Design of a tunable terahertz narrowband metamaterial absorber based on an electrostatically actuated MEMS cantilever and split ring resonator array,” J. Opt. 15, 055101 (2013).
[Crossref]

Y. S. Lin, Y. Qian, F. Ma, Z. Liu, P. Kropelnicki, and C. Lee, “Development of stress-induced curved actuators for a tunable THz filter based on double split-ring resonators,” Appl. Phys. Lett. 102, 111908 (2013).
[Crossref]

F. Ma, Y. Qian, Y. S. Lin, H. Liu, X. H. Zhang, Z. Liu, J. M. L. Tsai, and C. Lee, “Polarization-sensitive microelectromechanical systems based tunable terahertz metamaterials using three dimensional electric split ring resonator arrays,” Appl. Phys. Lett. 102, 161912 (2013).
[Crossref]

Y. Qian, L. Lou, M. L. J. Tsai, and C. Lee, “A dual-silicon-nanowires based U-shape nanoelectromechanical switch with low pull-in voltage,” Appl. Phys. Lett. 100, 113102 (2012).
[Crossref]

Qiu, C. W.

Rho, J.

S. Zhang, J. Zhou, Y. S. Park, J. Rho, R. Singh, S. Nam, A. K. Azad, H. T. Chen, X. Yin, A. J. Taylor, and X. Zhang, “Photoinduced handedness switching in terahertz chiral metamolecules,” Nat. Commun. 3, 942 (2012).
[Crossref]

Robbins, D. J.

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microwave Theory Technol. 47, 2075–2084 (1999).
[Crossref]

Sajuyigbe, S.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100, 207402 (2008).
[Crossref]

Savo, S.

S. Savo, D. Shrekenhamer, and W. J. Padilla, “Liquid crystal metamaterial absorber spatial light modulator for THz applications,” Adv. Opt. Mater. 2, 275–279 (2014).

Schultz, S.

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84, 4184–4187 (2000).
[Crossref]

Seren, H. R.

H. R. Seren, G. R. Keiser, L. Cao, J. Zhang, A. C. Strikwerda, K. Fan, G. D. Metcalfe, M. Wraback, X. Zhang, and R. D. Averitt, “Optically modulated multiband terahertz perfect absorber,” Adv. Opt. Mater. 2, 1221–1226 (2014).

Shen, N. H.

I. Chatzakis, P. Tassin, L. Luo, N. H. Shen, L. Zhang, J. Wang, T. Koschny, and C. M. Soukoulis, “One- and two-dimensional photo-imprinted diffraction gratings for manipulating terahertz waves,” Appl. Phys. Lett. 103, 043101 (2013).
[Crossref]

Shin, J.

M. Choi, S. H. Lee, Y. Kim, S. B. Kang, J. Shin, M. H. Kwak, K.-Y. Kang, Y.-H. Lee, N. Park, and B. Min, “A terahertz metamaterial with unnaturally high refractive index,” Nature 470, 369–373 (2011).
[Crossref]

Shrekenhamer, D.

S. Savo, D. Shrekenhamer, and W. J. Padilla, “Liquid crystal metamaterial absorber spatial light modulator for THz applications,” Adv. Opt. Mater. 2, 275–279 (2014).

D. Shrekenhamer, W. C. Chen, and W. J. Padilla, “Liquid crystal tunable metamaterial absorber,” Phys. Rev. Lett. 110, 177403 (2013).
[Crossref]

Shrekenhamer, D. B.

H. T. Chen, J. F. O’Hara, A. K. Azad, A. J. Taylor, R. D. Averitt, D. B. Shrekenhamer, and W. J. Padilla, “Experimental demonstration of frequency-agile terahertz metamaterials,” Nat. Photonics 2, 295–298 (2008).
[Crossref]

Singh, N.

P. Pitchappa, C. P. Ho, L. Dhakar, Y. Qian, N. Singh, and C. Lee, “Periodic array of subwavelength MEMS cantilevers for dynamic manipulation of terahertz waves,” J. Microelectromech. Syst. 24, 525–527 (2015).

Singh, R.

D. R. Chowdhury, R. Singh, A. J. Taylor, H. T. Chen, and A. K. Azad, “Ultrafast manipulation of near field coupling between bright and dark modes in terahertz metamaterial,” Appl. Phys. Lett. 102, 011122 (2013).
[Crossref]

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H. T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3, 1151 (2012).
[Crossref]

S. Zhang, J. Zhou, Y. S. Park, J. Rho, R. Singh, S. Nam, A. K. Azad, H. T. Chen, X. Yin, A. J. Taylor, and X. Zhang, “Photoinduced handedness switching in terahertz chiral metamolecules,” Nat. Commun. 3, 942 (2012).
[Crossref]

Smirnova, E.

J. F. O’Hara, E. Smirnova, H. T. Chen, A. J. Taylor, R. D. Averitt, C. Highstrete, M. Lee, and W. J. Padilla, “Properties of planar electric metamaterials for novel terahertz applications,” J. Nanoelectron. Optoelectron. 2, 90–95 (2007).

Smith, D. R.

T. Driscoll, H. T. Kim, B. G. Chae, B. J. Kim, Y. W. Lee, N. M. Jokerst, S. Palit, D. R. Smith, M. Di Ventra, and D. N. Basov, “Memory metamaterials,” Science 325, 1518–1521 (2009).
[Crossref]

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100, 207402 (2008).
[Crossref]

Y. Yuan, C. Bingham, T. Tyler, S. Palit, T. H. Hand, W. J. Padilla, D. R. Smith, N. M. Jokerst, and S. A. Cummer, “Dual-band planar electric metamaterial in the terahertz regime,” Opt. Express 16, 9746–9752 (2008).
[Crossref]

T. J. Yen, W. J. Padilla, N. Fang, D. C. Vier, D. R. Smith, J. B. Pendry, D. N. Basov, and X. Zhang, “Terahertz magnetic response from artificial materials,” Science 303, 1494–1496 (2004).
[Crossref]

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84, 4184–4187 (2000).
[Crossref]

Soref, R.

Soukoulis, C. M.

G. Kenanakis, R. Zhao, N. Katsarakis, M. Kafesaki, C. M. Soukoulis, and E. N. Economou, “Optically controllable THz chiral metamaterials,” Opt. Express 22, 12149–12159 (2014).
[Crossref]

L. Luo, I. Chatzakis, J. Wang, F. B. P. Niesler, M. Wegener, T. Koschny, and C. M. Soukoulis, “Broadband terahertz generation from metamaterials,” Nat. Commun. 5, 3055 (2014).

I. Chatzakis, P. Tassin, L. Luo, N. H. Shen, L. Zhang, J. Wang, T. Koschny, and C. M. Soukoulis, “One- and two-dimensional photo-imprinted diffraction gratings for manipulating terahertz waves,” Appl. Phys. Lett. 103, 043101 (2013).
[Crossref]

C. M. Soukoulis, T. Koschny, J. Zhou, M. Kafesaki, and E. N. Economou, “Magnetic response of split ring resonators at terahertz frequencies,” Phys. Status Solidi B 244, 1181–1187 (2007).
[Crossref]

N. Katsarakis, T. Koschny, M. Kafesaki, E. N. Economou, and C. M. Soukoulis, “Electric coupling to the magnetic resonance of split ring resonators,” Appl. Phys. Lett. 84, 2943–2945 (2004).
[Crossref]

Stewart, W. J.

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microwave Theory Technol. 47, 2075–2084 (1999).
[Crossref]

Strikwerda, A. C.

H. R. Seren, G. R. Keiser, L. Cao, J. Zhang, A. C. Strikwerda, K. Fan, G. D. Metcalfe, M. Wraback, X. Zhang, and R. D. Averitt, “Optically modulated multiband terahertz perfect absorber,” Adv. Opt. Mater. 2, 1221–1226 (2014).

H. Tao, A. C. Strikwerda, K. Fan, W. J. Padilla, X. Zhang, and R. D. Averitt, “Reconfigurable terahertz metamaterials,” Phys. Rev. Lett. 103, 147401 (2009).
[Crossref]

Sun, C.

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub–diffraction-limited optical imaging with a silver superlens,” Science 308, 534–537 (2005).
[Crossref]

Sweatlock, L. A.

Takeda, M. W.

F. Miyamaru, H. Morita, Y. Nishiyama, T. Nishida, T. Nakanishi, M. Kitano, and M. W. Takeda, “Ultrafast optical control of group delay of narrow-band terahertz waves,” Sci. Rep. 4, 4346 (2014).
[Crossref]

Tanoto, H.

W. M. Zhu, A. Q. Liu, X. M. Zhang, D. P. Tsai, T. Bourouina, J. H. Teng, X. H. Zhang, H. C. Guo, H. Tanoto, T. Mei, G. Q. Lo, and D. L. Kwong, “Switchable magnetic metamaterials using micromachining processes,” Adv. Mater. 23, 1792–1796 (2011).
[Crossref]

W. M. Zhu, A. Q. Liu, W. Zhang, J. F. Tao, T. Bourouina, J. H. Teng, X. H. Zhang, Q. Y. Wu, H. Tanoto, H. C. Guo, G. Q. Lo, and D. L. Kwong, “Polarization dependent state to polarization independent state change in THz metamaterials,” Appl. Phys. Lett. 99, 221102 (2011).
[Crossref]

Tao, H.

H. Tao, A. C. Strikwerda, K. Fan, W. J. Padilla, X. Zhang, and R. D. Averitt, “Reconfigurable terahertz metamaterials,” Phys. Rev. Lett. 103, 147401 (2009).
[Crossref]

C. M. Bingham, H. Tao, X. Liu, R. D. Averitt, X. Zhang, and W. J. Padilla, “Planar wallpaper group metamaterials for novel terahertz applications,” Opt. Express 16, 18565–18575 (2008).
[Crossref]

Tao, J. F.

W. M. Zhu, A. Q. Liu, W. Zhang, J. F. Tao, T. Bourouina, J. H. Teng, X. H. Zhang, Q. Y. Wu, H. Tanoto, H. C. Guo, G. Q. Lo, and D. L. Kwong, “Polarization dependent state to polarization independent state change in THz metamaterials,” Appl. Phys. Lett. 99, 221102 (2011).
[Crossref]

Tassin, P.

I. Chatzakis, P. Tassin, L. Luo, N. H. Shen, L. Zhang, J. Wang, T. Koschny, and C. M. Soukoulis, “One- and two-dimensional photo-imprinted diffraction gratings for manipulating terahertz waves,” Appl. Phys. Lett. 103, 043101 (2013).
[Crossref]

Taylor, A. J.

D. R. Chowdhury, R. Singh, A. J. Taylor, H. T. Chen, and A. K. Azad, “Ultrafast manipulation of near field coupling between bright and dark modes in terahertz metamaterial,” Appl. Phys. Lett. 102, 011122 (2013).
[Crossref]

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H. T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3, 1151 (2012).
[Crossref]

S. Zhang, J. Zhou, Y. S. Park, J. Rho, R. Singh, S. Nam, A. K. Azad, H. T. Chen, X. Yin, A. J. Taylor, and X. Zhang, “Photoinduced handedness switching in terahertz chiral metamolecules,” Nat. Commun. 3, 942 (2012).
[Crossref]

W. L. Chan, H. T. Chen, A. J. Taylor, I. Brener, M. J. Cich, and D. M. Mittleman, “A spatial light modulator for terahertz beams,” Appl. Phys. Lett. 94, 213511 (2009).
[Crossref]

H. T. Chen, J. F. O’Hara, A. K. Azad, A. J. Taylor, R. D. Averitt, D. B. Shrekenhamer, and W. J. Padilla, “Experimental demonstration of frequency-agile terahertz metamaterials,” Nat. Photonics 2, 295–298 (2008).
[Crossref]

W. J. Padilla, M. T. Aronsson, C. Highstrete, M. Lee, A. J. Taylor, and R. D. Averitt, “Electrically resonant terahertz metamaterials: theoretical and experimental investigations,” Phys. Rev. B 75, 041102R (2007).

J. F. O’Hara, E. Smirnova, H. T. Chen, A. J. Taylor, R. D. Averitt, C. Highstrete, M. Lee, and W. J. Padilla, “Properties of planar electric metamaterials for novel terahertz applications,” J. Nanoelectron. Optoelectron. 2, 90–95 (2007).

H. T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444, 597–600 (2006).
[Crossref]

Teng, J. H.

W. M. Zhu, A. Q. Liu, T. Bourouina, D. P. Tsai, J. H. Teng, X. H. Zhang, G. Q. Lo, D. L. Kwong, and N. I. Zheludev, “Microelectromechanical maltese-cross metamaterial with tunable terahertz anisotropy,” Nat. Commun. 3, 1274 (2012).
[Crossref]

W. M. Zhu, A. Q. Liu, W. Zhang, J. F. Tao, T. Bourouina, J. H. Teng, X. H. Zhang, Q. Y. Wu, H. Tanoto, H. C. Guo, G. Q. Lo, and D. L. Kwong, “Polarization dependent state to polarization independent state change in THz metamaterials,” Appl. Phys. Lett. 99, 221102 (2011).
[Crossref]

W. M. Zhu, A. Q. Liu, X. M. Zhang, D. P. Tsai, T. Bourouina, J. H. Teng, X. H. Zhang, H. C. Guo, H. Tanoto, T. Mei, G. Q. Lo, and D. L. Kwong, “Switchable magnetic metamaterials using micromachining processes,” Adv. Mater. 23, 1792–1796 (2011).
[Crossref]

Tian, Z.

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H. T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3, 1151 (2012).
[Crossref]

Toshiyoshi, H.

Z. Han, K. Kohno, H. Fujita, K. Hirakawa, and H. Toshiyoshi, “Tunable terahertz filter and modulator based on electrostatic MEMS reconfigurable SRR array,” IEEE J. Sel. Top. Quantum Electron. 21, 1–9 (2015).
[Crossref]

Z. Han, K. Kohno, H. Fujita, K. Hirakawa, and H. Toshiyoshi, “MEMS reconfigurable metamaterial for terahertz switchable filter and modulator,” Opt. Express 22, 21326–21339 (2014).
[Crossref]

Tsai, D. P.

W. M. Zhu, A. Q. Liu, T. Bourouina, D. P. Tsai, J. H. Teng, X. H. Zhang, G. Q. Lo, D. L. Kwong, and N. I. Zheludev, “Microelectromechanical maltese-cross metamaterial with tunable terahertz anisotropy,” Nat. Commun. 3, 1274 (2012).
[Crossref]

W. M. Zhu, A. Q. Liu, X. M. Zhang, D. P. Tsai, T. Bourouina, J. H. Teng, X. H. Zhang, H. C. Guo, H. Tanoto, T. Mei, G. Q. Lo, and D. L. Kwong, “Switchable magnetic metamaterials using micromachining processes,” Adv. Mater. 23, 1792–1796 (2011).
[Crossref]

Tsai, J. M. L.

F. Ma, Y. Qian, Y. S. Lin, H. Liu, X. H. Zhang, Z. Liu, J. M. L. Tsai, and C. Lee, “Polarization-sensitive microelectromechanical systems based tunable terahertz metamaterials using three dimensional electric split ring resonator arrays,” Appl. Phys. Lett. 102, 161912 (2013).
[Crossref]

Tsai, M. L. J.

Y. Qian, L. Lou, M. L. J. Tsai, and C. Lee, “A dual-silicon-nanowires based U-shape nanoelectromechanical switch with low pull-in voltage,” Appl. Phys. Lett. 100, 113102 (2012).
[Crossref]

Tsiboukis, T.

A. Lalas, N. Kantartzis, and T. Tsiboukis, “Programmable terahertz metamaterials through V-beam electrothermal devices,” Appl. Phys. A 117, 433–438 (2014).
[Crossref]

A. Lalas, N. Kantartzis, and T. Tsiboukis, “Tunable terahertz metamaterials by means of piezoelectric MEMS actuators,” Europhys. Lett. 107, 58004 (2014).
[Crossref]

Tyler, T.

Unlu, M.

M. Unlu and M. Jarrahi, “Miniature multi-contact MEMS switch for broadband terahertz modulation,” Opt. Express 22, 32245–32260 (2014).
[Crossref]

M. Unlu, M. R. Hashemi, C. W. Berry, S. Li, S.-H. Yang, and M. Jarrahi, “Switchable scattering meta-surfaces for broadband terahertz modulation,” Sci. Rep. 4, 5708 (2014).
[Crossref]

Vier, D. C.

T. J. Yen, W. J. Padilla, N. Fang, D. C. Vier, D. R. Smith, J. B. Pendry, D. N. Basov, and X. Zhang, “Terahertz magnetic response from artificial materials,” Science 303, 1494–1496 (2004).
[Crossref]

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84, 4184–4187 (2000).
[Crossref]

Walavalkar, S.

Wan, X.

T. J. Cui, M. Q. Qi, X. Wan, L. Zhao, and Q. Cheng, “Coding metamaterials, digital metamaterials and programmable metamaterials,” Light: Sci. Appl. 3, e218 (2014).
[Crossref]

Wang, J.

L. Luo, I. Chatzakis, J. Wang, F. B. P. Niesler, M. Wegener, T. Koschny, and C. M. Soukoulis, “Broadband terahertz generation from metamaterials,” Nat. Commun. 5, 3055 (2014).

I. Chatzakis, P. Tassin, L. Luo, N. H. Shen, L. Zhang, J. Wang, T. Koschny, and C. M. Soukoulis, “One- and two-dimensional photo-imprinted diffraction gratings for manipulating terahertz waves,” Appl. Phys. Lett. 103, 043101 (2013).
[Crossref]

J. Wang, S. Liu, S. Guruswamy, and A. Nahata, “Reconfigurable liquid metal based terahertz metamaterials via selective erasure and refilling to the unit cell level,” Appl. Phys. Lett. 103, 221116 (2013).
[Crossref]

Wegener, M.

L. Luo, I. Chatzakis, J. Wang, F. B. P. Niesler, M. Wegener, T. Koschny, and C. M. Soukoulis, “Broadband terahertz generation from metamaterials,” Nat. Commun. 5, 3055 (2014).

Wraback, M.

H. R. Seren, G. R. Keiser, L. Cao, J. Zhang, A. C. Strikwerda, K. Fan, G. D. Metcalfe, M. Wraback, X. Zhang, and R. D. Averitt, “Optically modulated multiband terahertz perfect absorber,” Adv. Opt. Mater. 2, 1221–1226 (2014).

Wu, Q. Y.

W. M. Zhu, A. Q. Liu, W. Zhang, J. F. Tao, T. Bourouina, J. H. Teng, X. H. Zhang, Q. Y. Wu, H. Tanoto, H. C. Guo, G. Q. Lo, and D. L. Kwong, “Polarization dependent state to polarization independent state change in THz metamaterials,” Appl. Phys. Lett. 99, 221102 (2011).
[Crossref]

Xiong, X.

F. Hu, Y. Qian, Z. Li, J. Niu, K. Nie, X. Xiong, W. Zhang, and Z. Peng, “Design of a tunable terahertz narrowband metamaterial absorber based on an electrostatically actuated MEMS cantilever and split ring resonator array,” J. Opt. 15, 055101 (2013).
[Crossref]

Yang, S.-H.

M. Unlu, M. R. Hashemi, C. W. Berry, S. Li, S.-H. Yang, and M. Jarrahi, “Switchable scattering meta-surfaces for broadband terahertz modulation,” Sci. Rep. 4, 5708 (2014).
[Crossref]

Yang, T.

X. Li, T. Yang, W. Zhu, and X. Li, “Continuously tunable terahertz metamaterial employing a thermal actuator,” Microsys. Technol. 19, 1145–1151 (2013).

Yen, T. J.

T. J. Yen, W. J. Padilla, N. Fang, D. C. Vier, D. R. Smith, J. B. Pendry, D. N. Basov, and X. Zhang, “Terahertz magnetic response from artificial materials,” Science 303, 1494–1496 (2004).
[Crossref]

Yin, X.

S. H. Lee, M. Choi, T. T. Kim, S. Lee, M. Liu, X. Yin, H. K. Choi, S. S. Lee, C. G. Choi, S. Y. Choi, X. Zhang, and B. Min, “Switching terahertz waves with gate-controlled active graphene metamaterials,” Nat. Mater. 11, 936–941 (2012).
[Crossref]

S. Zhang, J. Zhou, Y. S. Park, J. Rho, R. Singh, S. Nam, A. K. Azad, H. T. Chen, X. Yin, A. J. Taylor, and X. Zhang, “Photoinduced handedness switching in terahertz chiral metamolecules,” Nat. Commun. 3, 942 (2012).
[Crossref]

Yuan, Y.

Zhang, B.

Zhang, J.

H. R. Seren, G. R. Keiser, L. Cao, J. Zhang, A. C. Strikwerda, K. Fan, G. D. Metcalfe, M. Wraback, X. Zhang, and R. D. Averitt, “Optically modulated multiband terahertz perfect absorber,” Adv. Opt. Mater. 2, 1221–1226 (2014).

Zhang, L.

I. Chatzakis, P. Tassin, L. Luo, N. H. Shen, L. Zhang, J. Wang, T. Koschny, and C. M. Soukoulis, “One- and two-dimensional photo-imprinted diffraction gratings for manipulating terahertz waves,” Appl. Phys. Lett. 103, 043101 (2013).
[Crossref]

Zhang, S.

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H. T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3, 1151 (2012).
[Crossref]

S. Zhang, J. Zhou, Y. S. Park, J. Rho, R. Singh, S. Nam, A. K. Azad, H. T. Chen, X. Yin, A. J. Taylor, and X. Zhang, “Photoinduced handedness switching in terahertz chiral metamolecules,” Nat. Commun. 3, 942 (2012).
[Crossref]

Zhang, W.

F. Hu, Y. Qian, Z. Li, J. Niu, K. Nie, X. Xiong, W. Zhang, and Z. Peng, “Design of a tunable terahertz narrowband metamaterial absorber based on an electrostatically actuated MEMS cantilever and split ring resonator array,” J. Opt. 15, 055101 (2013).
[Crossref]

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H. T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3, 1151 (2012).
[Crossref]

W. M. Zhu, A. Q. Liu, W. Zhang, J. F. Tao, T. Bourouina, J. H. Teng, X. H. Zhang, Q. Y. Wu, H. Tanoto, H. C. Guo, G. Q. Lo, and D. L. Kwong, “Polarization dependent state to polarization independent state change in THz metamaterials,” Appl. Phys. Lett. 99, 221102 (2011).
[Crossref]

Zhang, W. M.

W. M. Zhang, G. Meng, and D. Chen, “Stability, nonlinearity and reliability of electrostatically actuated MEMS devices,” Sensors 7, 760–796 (2007).
[Crossref]

Zhang, X.

H. R. Seren, G. R. Keiser, L. Cao, J. Zhang, A. C. Strikwerda, K. Fan, G. D. Metcalfe, M. Wraback, X. Zhang, and R. D. Averitt, “Optically modulated multiband terahertz perfect absorber,” Adv. Opt. Mater. 2, 1221–1226 (2014).

Z. Liu, C. Y. Huang, H. Liu, X. Zhang, and C. Lee, “Resonance enhancement of terahertz metamaterials by liquid crystals/indium tin oxide interfaces,” Opt. Express 21, 6519–6525 (2013).
[Crossref]

S. Zhang, J. Zhou, Y. S. Park, J. Rho, R. Singh, S. Nam, A. K. Azad, H. T. Chen, X. Yin, A. J. Taylor, and X. Zhang, “Photoinduced handedness switching in terahertz chiral metamolecules,” Nat. Commun. 3, 942 (2012).
[Crossref]

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H. T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3, 1151 (2012).
[Crossref]

S. H. Lee, M. Choi, T. T. Kim, S. Lee, M. Liu, X. Yin, H. K. Choi, S. S. Lee, C. G. Choi, S. Y. Choi, X. Zhang, and B. Min, “Switching terahertz waves with gate-controlled active graphene metamaterials,” Nat. Mater. 11, 936–941 (2012).
[Crossref]

H. Tao, A. C. Strikwerda, K. Fan, W. J. Padilla, X. Zhang, and R. D. Averitt, “Reconfigurable terahertz metamaterials,” Phys. Rev. Lett. 103, 147401 (2009).
[Crossref]

C. M. Bingham, H. Tao, X. Liu, R. D. Averitt, X. Zhang, and W. J. Padilla, “Planar wallpaper group metamaterials for novel terahertz applications,” Opt. Express 16, 18565–18575 (2008).
[Crossref]

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub–diffraction-limited optical imaging with a silver superlens,” Science 308, 534–537 (2005).
[Crossref]

T. J. Yen, W. J. Padilla, N. Fang, D. C. Vier, D. R. Smith, J. B. Pendry, D. N. Basov, and X. Zhang, “Terahertz magnetic response from artificial materials,” Science 303, 1494–1496 (2004).
[Crossref]

Zhang, X. H.

F. Ma, Y. S. Lin, X. H. Zhang, and C. Lee, “Tunable multiband terahertz metamaterials using a reconfigurable electric split-ring resonator array,” Light: Sci. Appl. 3, e171 (2014).

F. Ma, Y. Qian, Y. S. Lin, H. Liu, X. H. Zhang, Z. Liu, J. M. L. Tsai, and C. Lee, “Polarization-sensitive microelectromechanical systems based tunable terahertz metamaterials using three dimensional electric split ring resonator arrays,” Appl. Phys. Lett. 102, 161912 (2013).
[Crossref]

W. M. Zhu, A. Q. Liu, T. Bourouina, D. P. Tsai, J. H. Teng, X. H. Zhang, G. Q. Lo, D. L. Kwong, and N. I. Zheludev, “Microelectromechanical maltese-cross metamaterial with tunable terahertz anisotropy,” Nat. Commun. 3, 1274 (2012).
[Crossref]

W. M. Zhu, A. Q. Liu, W. Zhang, J. F. Tao, T. Bourouina, J. H. Teng, X. H. Zhang, Q. Y. Wu, H. Tanoto, H. C. Guo, G. Q. Lo, and D. L. Kwong, “Polarization dependent state to polarization independent state change in THz metamaterials,” Appl. Phys. Lett. 99, 221102 (2011).
[Crossref]

W. M. Zhu, A. Q. Liu, X. M. Zhang, D. P. Tsai, T. Bourouina, J. H. Teng, X. H. Zhang, H. C. Guo, H. Tanoto, T. Mei, G. Q. Lo, and D. L. Kwong, “Switchable magnetic metamaterials using micromachining processes,” Adv. Mater. 23, 1792–1796 (2011).
[Crossref]

Zhang, X. M.

W. M. Zhu, A. Q. Liu, X. M. Zhang, D. P. Tsai, T. Bourouina, J. H. Teng, X. H. Zhang, H. C. Guo, H. Tanoto, T. Mei, G. Q. Lo, and D. L. Kwong, “Switchable magnetic metamaterials using micromachining processes,” Adv. Mater. 23, 1792–1796 (2011).
[Crossref]

Zhao, H.

Zhao, L.

T. J. Cui, M. Q. Qi, X. Wan, L. Zhao, and Q. Cheng, “Coding metamaterials, digital metamaterials and programmable metamaterials,” Light: Sci. Appl. 3, e218 (2014).
[Crossref]

Zhao, Q.

Zhao, R.

Zheludev, N. I.

W. M. Zhu, A. Q. Liu, T. Bourouina, D. P. Tsai, J. H. Teng, X. H. Zhang, G. Q. Lo, D. L. Kwong, and N. I. Zheludev, “Microelectromechanical maltese-cross metamaterial with tunable terahertz anisotropy,” Nat. Commun. 3, 1274 (2012).
[Crossref]

Zhou, J.

S. Zhang, J. Zhou, Y. S. Park, J. Rho, R. Singh, S. Nam, A. K. Azad, H. T. Chen, X. Yin, A. J. Taylor, and X. Zhang, “Photoinduced handedness switching in terahertz chiral metamolecules,” Nat. Commun. 3, 942 (2012).
[Crossref]

L. Kang, Q. Zhao, H. Zhao, and J. Zhou, “Magnetically tunable negative permeability metamaterial composed by split ring resonators and ferrite rods,” Opt. Express 16, 8825–8834 (2008).
[Crossref]

C. M. Soukoulis, T. Koschny, J. Zhou, M. Kafesaki, and E. N. Economou, “Magnetic response of split ring resonators at terahertz frequencies,” Phys. Status Solidi B 244, 1181–1187 (2007).
[Crossref]

Zhu, W.

X. Li, T. Yang, W. Zhu, and X. Li, “Continuously tunable terahertz metamaterial employing a thermal actuator,” Microsys. Technol. 19, 1145–1151 (2013).

Zhu, W. M.

W. M. Zhu, A. Q. Liu, T. Bourouina, D. P. Tsai, J. H. Teng, X. H. Zhang, G. Q. Lo, D. L. Kwong, and N. I. Zheludev, “Microelectromechanical maltese-cross metamaterial with tunable terahertz anisotropy,” Nat. Commun. 3, 1274 (2012).
[Crossref]

W. M. Zhu, A. Q. Liu, X. M. Zhang, D. P. Tsai, T. Bourouina, J. H. Teng, X. H. Zhang, H. C. Guo, H. Tanoto, T. Mei, G. Q. Lo, and D. L. Kwong, “Switchable magnetic metamaterials using micromachining processes,” Adv. Mater. 23, 1792–1796 (2011).
[Crossref]

W. M. Zhu, A. Q. Liu, W. Zhang, J. F. Tao, T. Bourouina, J. H. Teng, X. H. Zhang, Q. Y. Wu, H. Tanoto, H. C. Guo, G. Q. Lo, and D. L. Kwong, “Polarization dependent state to polarization independent state change in THz metamaterials,” Appl. Phys. Lett. 99, 221102 (2011).
[Crossref]

Zide, J. M. O.

H. T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444, 597–600 (2006).
[Crossref]

Adv. Mater. (1)

W. M. Zhu, A. Q. Liu, X. M. Zhang, D. P. Tsai, T. Bourouina, J. H. Teng, X. H. Zhang, H. C. Guo, H. Tanoto, T. Mei, G. Q. Lo, and D. L. Kwong, “Switchable magnetic metamaterials using micromachining processes,” Adv. Mater. 23, 1792–1796 (2011).
[Crossref]

Adv. Opt. Mater. (2)

S. Savo, D. Shrekenhamer, and W. J. Padilla, “Liquid crystal metamaterial absorber spatial light modulator for THz applications,” Adv. Opt. Mater. 2, 275–279 (2014).

H. R. Seren, G. R. Keiser, L. Cao, J. Zhang, A. C. Strikwerda, K. Fan, G. D. Metcalfe, M. Wraback, X. Zhang, and R. D. Averitt, “Optically modulated multiband terahertz perfect absorber,” Adv. Opt. Mater. 2, 1221–1226 (2014).

Appl. Phys. A (1)

A. Lalas, N. Kantartzis, and T. Tsiboukis, “Programmable terahertz metamaterials through V-beam electrothermal devices,” Appl. Phys. A 117, 433–438 (2014).
[Crossref]

Appl. Phys. Lett. (10)

J. Wang, S. Liu, S. Guruswamy, and A. Nahata, “Reconfigurable liquid metal based terahertz metamaterials via selective erasure and refilling to the unit cell level,” Appl. Phys. Lett. 103, 221116 (2013).
[Crossref]

C. P. Ho, P. Pitchappa, Y. S. Lin, C. Y. Huang, P. Kropelnicki, and C. Lee, “Electrothermally actuated microelectromechanical systems based omega-ring terahertz metamaterial with polarization dependent characteristics,” Appl. Phys. Lett. 104, 161104 (2014).
[Crossref]

N. Katsarakis, T. Koschny, M. Kafesaki, E. N. Economou, and C. M. Soukoulis, “Electric coupling to the magnetic resonance of split ring resonators,” Appl. Phys. Lett. 84, 2943–2945 (2004).
[Crossref]

Y. Qian, L. Lou, M. L. J. Tsai, and C. Lee, “A dual-silicon-nanowires based U-shape nanoelectromechanical switch with low pull-in voltage,” Appl. Phys. Lett. 100, 113102 (2012).
[Crossref]

W. L. Chan, H. T. Chen, A. J. Taylor, I. Brener, M. J. Cich, and D. M. Mittleman, “A spatial light modulator for terahertz beams,” Appl. Phys. Lett. 94, 213511 (2009).
[Crossref]

W. M. Zhu, A. Q. Liu, W. Zhang, J. F. Tao, T. Bourouina, J. H. Teng, X. H. Zhang, Q. Y. Wu, H. Tanoto, H. C. Guo, G. Q. Lo, and D. L. Kwong, “Polarization dependent state to polarization independent state change in THz metamaterials,” Appl. Phys. Lett. 99, 221102 (2011).
[Crossref]

I. Chatzakis, P. Tassin, L. Luo, N. H. Shen, L. Zhang, J. Wang, T. Koschny, and C. M. Soukoulis, “One- and two-dimensional photo-imprinted diffraction gratings for manipulating terahertz waves,” Appl. Phys. Lett. 103, 043101 (2013).
[Crossref]

D. R. Chowdhury, R. Singh, A. J. Taylor, H. T. Chen, and A. K. Azad, “Ultrafast manipulation of near field coupling between bright and dark modes in terahertz metamaterial,” Appl. Phys. Lett. 102, 011122 (2013).
[Crossref]

Y. S. Lin, Y. Qian, F. Ma, Z. Liu, P. Kropelnicki, and C. Lee, “Development of stress-induced curved actuators for a tunable THz filter based on double split-ring resonators,” Appl. Phys. Lett. 102, 111908 (2013).
[Crossref]

F. Ma, Y. Qian, Y. S. Lin, H. Liu, X. H. Zhang, Z. Liu, J. M. L. Tsai, and C. Lee, “Polarization-sensitive microelectromechanical systems based tunable terahertz metamaterials using three dimensional electric split ring resonator arrays,” Appl. Phys. Lett. 102, 161912 (2013).
[Crossref]

Europhys. Lett. (1)

A. Lalas, N. Kantartzis, and T. Tsiboukis, “Tunable terahertz metamaterials by means of piezoelectric MEMS actuators,” Europhys. Lett. 107, 58004 (2014).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

Z. Han, K. Kohno, H. Fujita, K. Hirakawa, and H. Toshiyoshi, “Tunable terahertz filter and modulator based on electrostatic MEMS reconfigurable SRR array,” IEEE J. Sel. Top. Quantum Electron. 21, 1–9 (2015).
[Crossref]

IEEE Trans. Microwave Theory Technol. (1)

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microwave Theory Technol. 47, 2075–2084 (1999).
[Crossref]

J. Microelectromech. Syst. (1)

P. Pitchappa, C. P. Ho, L. Dhakar, Y. Qian, N. Singh, and C. Lee, “Periodic array of subwavelength MEMS cantilevers for dynamic manipulation of terahertz waves,” J. Microelectromech. Syst. 24, 525–527 (2015).

J. Nanoelectron. Optoelectron. (1)

J. F. O’Hara, E. Smirnova, H. T. Chen, A. J. Taylor, R. D. Averitt, C. Highstrete, M. Lee, and W. J. Padilla, “Properties of planar electric metamaterials for novel terahertz applications,” J. Nanoelectron. Optoelectron. 2, 90–95 (2007).

J. Opt. (1)

F. Hu, Y. Qian, Z. Li, J. Niu, K. Nie, X. Xiong, W. Zhang, and Z. Peng, “Design of a tunable terahertz narrowband metamaterial absorber based on an electrostatically actuated MEMS cantilever and split ring resonator array,” J. Opt. 15, 055101 (2013).
[Crossref]

J. Opt. Soc. Am. B (1)

Light: Sci. Appl. (2)

T. J. Cui, M. Q. Qi, X. Wan, L. Zhao, and Q. Cheng, “Coding metamaterials, digital metamaterials and programmable metamaterials,” Light: Sci. Appl. 3, e218 (2014).
[Crossref]

F. Ma, Y. S. Lin, X. H. Zhang, and C. Lee, “Tunable multiband terahertz metamaterials using a reconfigurable electric split-ring resonator array,” Light: Sci. Appl. 3, e171 (2014).

Microsys. Technol. (1)

X. Li, T. Yang, W. Zhu, and X. Li, “Continuously tunable terahertz metamaterial employing a thermal actuator,” Microsys. Technol. 19, 1145–1151 (2013).

Nat. Commun. (4)

L. Luo, I. Chatzakis, J. Wang, F. B. P. Niesler, M. Wegener, T. Koschny, and C. M. Soukoulis, “Broadband terahertz generation from metamaterials,” Nat. Commun. 5, 3055 (2014).

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H. T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3, 1151 (2012).
[Crossref]

W. M. Zhu, A. Q. Liu, T. Bourouina, D. P. Tsai, J. H. Teng, X. H. Zhang, G. Q. Lo, D. L. Kwong, and N. I. Zheludev, “Microelectromechanical maltese-cross metamaterial with tunable terahertz anisotropy,” Nat. Commun. 3, 1274 (2012).
[Crossref]

S. Zhang, J. Zhou, Y. S. Park, J. Rho, R. Singh, S. Nam, A. K. Azad, H. T. Chen, X. Yin, A. J. Taylor, and X. Zhang, “Photoinduced handedness switching in terahertz chiral metamolecules,” Nat. Commun. 3, 942 (2012).
[Crossref]

Nat. Mater. (1)

S. H. Lee, M. Choi, T. T. Kim, S. Lee, M. Liu, X. Yin, H. K. Choi, S. S. Lee, C. G. Choi, S. Y. Choi, X. Zhang, and B. Min, “Switching terahertz waves with gate-controlled active graphene metamaterials,” Nat. Mater. 11, 936–941 (2012).
[Crossref]

Nat. Photonics (1)

H. T. Chen, J. F. O’Hara, A. K. Azad, A. J. Taylor, R. D. Averitt, D. B. Shrekenhamer, and W. J. Padilla, “Experimental demonstration of frequency-agile terahertz metamaterials,” Nat. Photonics 2, 295–298 (2008).
[Crossref]

Nature (2)

H. T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444, 597–600 (2006).
[Crossref]

M. Choi, S. H. Lee, Y. Kim, S. B. Kang, J. Shin, M. H. Kwak, K.-Y. Kang, Y.-H. Lee, N. Park, and B. Min, “A terahertz metamaterial with unnaturally high refractive index,” Nature 470, 369–373 (2011).
[Crossref]

Opt. Express (9)

J. Han, A. Lakhtakia, and C. W. Qiu, “Terahertz metamaterials with semiconductor split-ring resonators for magnetostatic tunability,” Opt. Express 16, 14390–14396 (2008).
[Crossref]

Z. Liu, C. Y. Huang, H. Liu, X. Zhang, and C. Lee, “Resonance enhancement of terahertz metamaterials by liquid crystals/indium tin oxide interfaces,” Opt. Express 21, 6519–6525 (2013).
[Crossref]

G. Kenanakis, R. Zhao, N. Katsarakis, M. Kafesaki, C. M. Soukoulis, and E. N. Economou, “Optically controllable THz chiral metamaterials,” Opt. Express 22, 12149–12159 (2014).
[Crossref]

M. J. Dicken, K. Aydin, I. M. Pryce, L. A. Sweatlock, E. M. Boyd, S. Walavalkar, J. Ma, and H. A. Atwater, “Frequency tunable near-infrared metamaterials based on VO2 phase transition,” Opt. Express 17, 18330–18339 (2009).
[Crossref]

L. Kang, Q. Zhao, H. Zhao, and J. Zhou, “Magnetically tunable negative permeability metamaterial composed by split ring resonators and ferrite rods,” Opt. Express 16, 8825–8834 (2008).
[Crossref]

Z. Han, K. Kohno, H. Fujita, K. Hirakawa, and H. Toshiyoshi, “MEMS reconfigurable metamaterial for terahertz switchable filter and modulator,” Opt. Express 22, 21326–21339 (2014).
[Crossref]

M. Unlu and M. Jarrahi, “Miniature multi-contact MEMS switch for broadband terahertz modulation,” Opt. Express 22, 32245–32260 (2014).
[Crossref]

Y. Yuan, C. Bingham, T. Tyler, S. Palit, T. H. Hand, W. J. Padilla, D. R. Smith, N. M. Jokerst, and S. A. Cummer, “Dual-band planar electric metamaterial in the terahertz regime,” Opt. Express 16, 9746–9752 (2008).
[Crossref]

C. M. Bingham, H. Tao, X. Liu, R. D. Averitt, X. Zhang, and W. J. Padilla, “Planar wallpaper group metamaterials for novel terahertz applications,” Opt. Express 16, 18565–18575 (2008).
[Crossref]

Opt. Lett. (2)

Phys. Rev. B (1)

W. J. Padilla, M. T. Aronsson, C. Highstrete, M. Lee, A. J. Taylor, and R. D. Averitt, “Electrically resonant terahertz metamaterials: theoretical and experimental investigations,” Phys. Rev. B 75, 041102R (2007).

Phys. Rev. Lett. (5)

B. Florijn, C. Coulais, and M. Hecke, “Programmable mechanical metamaterials,” Phys. Rev. Lett. 113, 175503 (2014).
[Crossref]

H. Tao, A. C. Strikwerda, K. Fan, W. J. Padilla, X. Zhang, and R. D. Averitt, “Reconfigurable terahertz metamaterials,” Phys. Rev. Lett. 103, 147401 (2009).
[Crossref]

D. Shrekenhamer, W. C. Chen, and W. J. Padilla, “Liquid crystal tunable metamaterial absorber,” Phys. Rev. Lett. 110, 177403 (2013).
[Crossref]

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100, 207402 (2008).
[Crossref]

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84, 4184–4187 (2000).
[Crossref]

Phys. Status Solidi B (1)

C. M. Soukoulis, T. Koschny, J. Zhou, M. Kafesaki, and E. N. Economou, “Magnetic response of split ring resonators at terahertz frequencies,” Phys. Status Solidi B 244, 1181–1187 (2007).
[Crossref]

Sci. Rep. (2)

M. Unlu, M. R. Hashemi, C. W. Berry, S. Li, S.-H. Yang, and M. Jarrahi, “Switchable scattering meta-surfaces for broadband terahertz modulation,” Sci. Rep. 4, 5708 (2014).
[Crossref]

F. Miyamaru, H. Morita, Y. Nishiyama, T. Nishida, T. Nakanishi, M. Kitano, and M. W. Takeda, “Ultrafast optical control of group delay of narrow-band terahertz waves,” Sci. Rep. 4, 4346 (2014).
[Crossref]

Science (3)

T. J. Yen, W. J. Padilla, N. Fang, D. C. Vier, D. R. Smith, J. B. Pendry, D. N. Basov, and X. Zhang, “Terahertz magnetic response from artificial materials,” Science 303, 1494–1496 (2004).
[Crossref]

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub–diffraction-limited optical imaging with a silver superlens,” Science 308, 534–537 (2005).
[Crossref]

T. Driscoll, H. T. Kim, B. G. Chae, B. J. Kim, Y. W. Lee, N. M. Jokerst, S. Palit, D. R. Smith, M. Di Ventra, and D. N. Basov, “Memory metamaterials,” Science 325, 1518–1521 (2009).
[Crossref]

Sensors (1)

W. M. Zhang, G. Meng, and D. Chen, “Stability, nonlinearity and reliability of electrostatically actuated MEMS devices,” Sensors 7, 760–796 (2007).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1. (a) Schematic of interpixelated MEMS metamaterial. The interpixelated metamaterial consists of SRR and eSRR unit cells with released parts. All the SRR meta-atoms are electrically connected but isolated from the interconnect that connects all the eSRR meta-atoms. The SRRs and eSRRs are independently controlled by selectively applying voltage VS and VE, respectively, with respect to the Si substrate. (b) Top view of interpixelated metamolecule and its geometrical parameter definition. Each metamolecule is made of two SRR and two eSRR meta-atoms placed diagonally. The dark-orange part of the meta-atoms refers to the fixed part, while the light-orange part refers to the movable part that is electrostatically actuated. The THz wave with electric field (Ex) along the direction parallel to the gap-bearing side of the SRR and eSRR is normally incident at all times.
Fig. 2.
Fig. 2. (a) OM image of the fabricated interpixelated MEMS metamaterial. The gradient of color along the SRR and eSRR unit cells confirms the out-of-plane deformation of the released cantilevers. Owing to the longer release length of SRR cantilevers, the out-of-plane displacement is higher than the eSRR cantilevers as seen qualitatively from the OM image. (b) SEM image of the fabricated metamolecule. The out-of-plane deformation of released cantilevers shows the continuously changing contrast from the fixed part to the tip of released cantilevers.
Fig. 3.
Fig. 3. Schematics of four possible configuration states for the interpixelated MEMS metamaterial: (a) S_OFF/E_OFF; (b) S_OFF/E_ON; (c) S_ON/E_OFF; and (d) S_ON/E_ON.
Fig. 4.
Fig. 4. (a) The simulated (black-solid) and measured (red-dot) transmission spectra for the interpixelated MEMS metamaterial in S-OFF/E-OFF configuration. The inset shows the OM image of the fabricated metamaterial in the corresponding S-OFF/E-OFF configuration. (b) Simulated surface current at 0.45 THz shows the excitation in the eSRR meta-atom, thereby confirming the electrical LC resonance. (c) Simulated surface current at 0.59 THz is excited majorly in the SRR meta-atom, thereby suggesting magnetic LC resonance.
Fig. 5.
Fig. 5. (a) Simulated (black-solid) and measured (red-dot) transmission spectra for the interpixelated MEMS metamaterial in S-ON/E-OFF configuration. The inset shows the OM image of the fabricated device in the corresponding S-ON/E-OFF configuration. (b) Simulated surface current at 0.35 THz shows the excitation in SRR meta-atom, hence confirming the switching of magnetic resonance to 0.35 THz. (c) Simulated surface current at 0.45 THz is in eSRR meta-atom, and hence confirms that the electrical resonance is unaffected with SRR switching.
Fig. 6.
Fig. 6. (a) Simulated (black-solid) and measured (red-dot) transmission spectra for the interpixelated MEMS metamaterial in S-OFF/E-ON configuration. The inset shows the OM image of the fabricated device in the corresponding S-OFF/E-ON configuration. (b) Simulated surface current at 0.37 THz shows the excitation in eSRR meta-atom, hence confirming the switching of electrical LC resonance to 0.37 THz. (c) Simulated surface current at 0.59 THz is in SRR meta-atom, and hence confirms that the magnetic resonance is unaffected with switching of eSRR cantilevers.
Fig. 7.
Fig. 7. (a) Simulated (black-solid) and measured (red-dot) transmission spectra for the interpixelated MEMS metamaterial in S-ON/E-ON configuration. (b) OM image of the fabricated metamolecule in S-ON/E-ON configuration. All the features of SRR and eSRR meta-atoms are in focus and thus show that they are snapped down to the Si substrate. (c) Simulated surface current for S-ON/E-ON configuration at 0.375 THz. Both the SRR and eSRR meta-atoms are excited and hence cause the magnetic and electrical resonance to coincide at the same frequency.

Metrics