Abstract

When a laser pump beam of sufficient intensity is incident on a Raman-active medium such as hydrogen gas, a strong Stokes signal, redshifted by the Raman transition frequency ΩR, is generated. This is accompanied by the creation of a “coherence wave” of synchronized molecular oscillations with wave vector Δβ determined by the optical dispersion. Within its lifetime, this coherence wave can be used to shift by ΩR the frequency of a third “mixing” signal, provided phase matching is satisfied, i.e., Δβ is matched. Conventionally, this can be arranged using noncollinear beams or higher-order waveguide modes. Here we report the collinear phase-matched frequency shifting of an arbitrary mixing signal using only the fundamental LP01 modes of a hydrogen-filled hollow-core photonic crystal fiber. This is made possible by the S-shaped dispersion curve that occurs around the pressure-tunable zero dispersion point. Phase-matched frequency shifting by 125 THz is possible from the UV to the near IR. Long interaction lengths and tight modal confinement reduce the peak intensities required, allowing conversion efficiencies in excess of 70%. The system is of great interest in coherent anti-Stokes Raman spectroscopy and for wavelength conversion of broadband laser sources.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Intermodal stimulated Raman scattering in hydrogen-filled hollow-core photonic crystal fiber

M. Ziemienczuk, A. M. Walser, A. Abdolvand, and P. St. J. Russell
J. Opt. Soc. Am. B 29(7) 1563-1568 (2012)

Broadband high-resolution multi-species CARS in gas-filled hollow-core photonic crystal fiber

Barbara M. Trabold, Robert J. R. Hupfer, Amir Abdolvand, and Philip St.J. Russell
Opt. Lett. 42(17) 3283-3286 (2017)

Generation of a vacuum ultraviolet to visible Raman frequency comb in H2-filled kagomé photonic crystal fiber

M. K. Mridha, D. Novoa, S. T. Bauerschmidt, A. Abdolvand, and P. St.J. Russell
Opt. Lett. 41(12) 2811-2814 (2016)

References

  • View by:
  • |
  • |
  • |

  1. S. E. Harris, A. V. Sokolov, Phys. Rev. Lett. 81, 2894 (1998).
    [Crossref]
  2. A. Nazarkin, G. Korn, M. Wittmann, T. Elsaesser, Phys. Rev. Lett. 83, 2560 (1999).
    [Crossref]
  3. J. Q. Liang, M. Katsuragawa, F. L. Kien, K. Hakuta, Phys. Rev. Lett. 85, 2474 (2000).
    [Crossref]
  4. J. J. Weber, J. T. Green, D. D. Yavuz, Phys. Rev. A 85, 013805 (2012).
    [Crossref]
  5. S. T. Bauerschmidt, D. Novoa, B. M. Trabold, A. Abdolvand, P. St.J. Russell, Opt. Express 22, 20566 (2014).
    [Crossref]
  6. S. Baker, I. A. Walmsley, J. W. G. Tisch, J. P. Marangos, Nat. Photonics 5, 664 (2011).
    [Crossref]
  7. A. C. Eckbreth, Appl. Phys. Lett. 32, 421 (1978).
    [Crossref]
  8. T. Wilhelm, J. Piel, E. Riedle, Opt. Lett. 22, 1494 (1997).
    [Crossref]
  9. J. Demas, P. Steinvurzel, B. Tai, L. Rishøj, Y. Chen, S. Ramachandran, Optica 2, 14 (2015).
    [Crossref]
  10. P. St.J. Russell, P. Holzer, W. Chang, A. Abdolvand, J. C. Travers, Nat. Photonics 8, 278 (2014).
    [Crossref]
  11. M. Finger, N. Y. Joly, T. Weiss, P. St.J. Russell, Opt. Lett. 39, 821 (2014).
    [Crossref]
  12. W. K. Bischel, M. J. Dyer, J. Opt. Soc. Am. B 3, 677 (1986).
    [Crossref]
  13. M. G. Raymer, I. A. Walmsley, Progress in Optics, E. Wolf, ed. (Elsevier, 1990), p. 181.

2015 (1)

2014 (3)

2012 (1)

J. J. Weber, J. T. Green, D. D. Yavuz, Phys. Rev. A 85, 013805 (2012).
[Crossref]

2011 (1)

S. Baker, I. A. Walmsley, J. W. G. Tisch, J. P. Marangos, Nat. Photonics 5, 664 (2011).
[Crossref]

2000 (1)

J. Q. Liang, M. Katsuragawa, F. L. Kien, K. Hakuta, Phys. Rev. Lett. 85, 2474 (2000).
[Crossref]

1999 (1)

A. Nazarkin, G. Korn, M. Wittmann, T. Elsaesser, Phys. Rev. Lett. 83, 2560 (1999).
[Crossref]

1998 (1)

S. E. Harris, A. V. Sokolov, Phys. Rev. Lett. 81, 2894 (1998).
[Crossref]

1997 (1)

1986 (1)

1978 (1)

A. C. Eckbreth, Appl. Phys. Lett. 32, 421 (1978).
[Crossref]

Abdolvand, A.

P. St.J. Russell, P. Holzer, W. Chang, A. Abdolvand, J. C. Travers, Nat. Photonics 8, 278 (2014).
[Crossref]

S. T. Bauerschmidt, D. Novoa, B. M. Trabold, A. Abdolvand, P. St.J. Russell, Opt. Express 22, 20566 (2014).
[Crossref]

Baker, S.

S. Baker, I. A. Walmsley, J. W. G. Tisch, J. P. Marangos, Nat. Photonics 5, 664 (2011).
[Crossref]

Bauerschmidt, S. T.

Bischel, W. K.

Chang, W.

P. St.J. Russell, P. Holzer, W. Chang, A. Abdolvand, J. C. Travers, Nat. Photonics 8, 278 (2014).
[Crossref]

Chen, Y.

Demas, J.

Dyer, M. J.

Eckbreth, A. C.

A. C. Eckbreth, Appl. Phys. Lett. 32, 421 (1978).
[Crossref]

Elsaesser, T.

A. Nazarkin, G. Korn, M. Wittmann, T. Elsaesser, Phys. Rev. Lett. 83, 2560 (1999).
[Crossref]

Finger, M.

Green, J. T.

J. J. Weber, J. T. Green, D. D. Yavuz, Phys. Rev. A 85, 013805 (2012).
[Crossref]

Hakuta, K.

J. Q. Liang, M. Katsuragawa, F. L. Kien, K. Hakuta, Phys. Rev. Lett. 85, 2474 (2000).
[Crossref]

Harris, S. E.

S. E. Harris, A. V. Sokolov, Phys. Rev. Lett. 81, 2894 (1998).
[Crossref]

Holzer, P.

P. St.J. Russell, P. Holzer, W. Chang, A. Abdolvand, J. C. Travers, Nat. Photonics 8, 278 (2014).
[Crossref]

Joly, N. Y.

Katsuragawa, M.

J. Q. Liang, M. Katsuragawa, F. L. Kien, K. Hakuta, Phys. Rev. Lett. 85, 2474 (2000).
[Crossref]

Kien, F. L.

J. Q. Liang, M. Katsuragawa, F. L. Kien, K. Hakuta, Phys. Rev. Lett. 85, 2474 (2000).
[Crossref]

Korn, G.

A. Nazarkin, G. Korn, M. Wittmann, T. Elsaesser, Phys. Rev. Lett. 83, 2560 (1999).
[Crossref]

Liang, J. Q.

J. Q. Liang, M. Katsuragawa, F. L. Kien, K. Hakuta, Phys. Rev. Lett. 85, 2474 (2000).
[Crossref]

Marangos, J. P.

S. Baker, I. A. Walmsley, J. W. G. Tisch, J. P. Marangos, Nat. Photonics 5, 664 (2011).
[Crossref]

Nazarkin, A.

A. Nazarkin, G. Korn, M. Wittmann, T. Elsaesser, Phys. Rev. Lett. 83, 2560 (1999).
[Crossref]

Novoa, D.

Piel, J.

Ramachandran, S.

Raymer, M. G.

M. G. Raymer, I. A. Walmsley, Progress in Optics, E. Wolf, ed. (Elsevier, 1990), p. 181.

Riedle, E.

Rishøj, L.

Russell, P. St.J.

Sokolov, A. V.

S. E. Harris, A. V. Sokolov, Phys. Rev. Lett. 81, 2894 (1998).
[Crossref]

Steinvurzel, P.

Tai, B.

Tisch, J. W. G.

S. Baker, I. A. Walmsley, J. W. G. Tisch, J. P. Marangos, Nat. Photonics 5, 664 (2011).
[Crossref]

Trabold, B. M.

Travers, J. C.

P. St.J. Russell, P. Holzer, W. Chang, A. Abdolvand, J. C. Travers, Nat. Photonics 8, 278 (2014).
[Crossref]

Walmsley, I. A.

S. Baker, I. A. Walmsley, J. W. G. Tisch, J. P. Marangos, Nat. Photonics 5, 664 (2011).
[Crossref]

M. G. Raymer, I. A. Walmsley, Progress in Optics, E. Wolf, ed. (Elsevier, 1990), p. 181.

Weber, J. J.

J. J. Weber, J. T. Green, D. D. Yavuz, Phys. Rev. A 85, 013805 (2012).
[Crossref]

Weiss, T.

Wilhelm, T.

Wittmann, M.

A. Nazarkin, G. Korn, M. Wittmann, T. Elsaesser, Phys. Rev. Lett. 83, 2560 (1999).
[Crossref]

Yavuz, D. D.

J. J. Weber, J. T. Green, D. D. Yavuz, Phys. Rev. A 85, 013805 (2012).
[Crossref]

Appl. Phys. Lett. (1)

A. C. Eckbreth, Appl. Phys. Lett. 32, 421 (1978).
[Crossref]

J. Opt. Soc. Am. B (1)

Nat. Photonics (2)

S. Baker, I. A. Walmsley, J. W. G. Tisch, J. P. Marangos, Nat. Photonics 5, 664 (2011).
[Crossref]

P. St.J. Russell, P. Holzer, W. Chang, A. Abdolvand, J. C. Travers, Nat. Photonics 8, 278 (2014).
[Crossref]

Opt. Express (1)

Opt. Lett. (2)

Optica (1)

Phys. Rev. A (1)

J. J. Weber, J. T. Green, D. D. Yavuz, Phys. Rev. A 85, 013805 (2012).
[Crossref]

Phys. Rev. Lett. (3)

S. E. Harris, A. V. Sokolov, Phys. Rev. Lett. 81, 2894 (1998).
[Crossref]

A. Nazarkin, G. Korn, M. Wittmann, T. Elsaesser, Phys. Rev. Lett. 83, 2560 (1999).
[Crossref]

J. Q. Liang, M. Katsuragawa, F. L. Kien, K. Hakuta, Phys. Rev. Lett. 85, 2474 (2000).
[Crossref]

Other (1)

M. G. Raymer, I. A. Walmsley, Progress in Optics, E. Wolf, ed. (Elsevier, 1990), p. 181.

Supplementary Material (1)

» Supplement 1: PDF (879 KB)     

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1. (a) Sketch of the dispersion of a gas-filled kagomé-PCF in the vicinity of the ZDP (the gray dot at ω=ω0 and β=β0), assuming no dispersion terms higher than third order. The blue dashed lines indicate the coherence wave Cw excited by the writing signals W0 and W1. Cw is a four vector with frequency ΩR and wave vector Δβ given by the difference between the wave vectors of the writing signals. It can be used either to upshift the frequency of a mixing signal M0 placed at the position symmetric to W0 on the opposite side of the ZDP or to seed the downconversion of a signal placed at M1.
Fig. 2.
Fig. 2. (a) Dispersion curves of the LP01 mode for pressures of 3, 12, and 30 bar (see text). The notation is the same as in Fig. 1, and for clarity, only the 30 bar case is fully labeled. (b) Phase-matched frequency pairs (solid lines) and ZDPs (dotted line) as a function of pressure for a pump frequency (W0) of 563 THz (532 nm). The ZDPs for the three pressures in (a) are marked with gray dots.
Fig. 3.
Fig. 3. Schematic of the experimental setup. BS, beam splitter; DBS, dichroic BS; OAP, off-axis parabolic mirror; SC-PCF, solid-core photonic crystal fiber; DL, delay line; OSA, optical spectrum analyzer.
Fig. 4.
Fig. 4. Experimental and theoretical normalized photon rates of the various signals, plotted against increasing pressure. (a) Pump (W0), first (W1), and second (W2) Stokes waves for EP=20μJ. (b) Mixing (M0) and upshifted anti-Stokes (M1+M2) signals, coupled by the Cws created in (a). (c) Pump (W0), first (W1), and second (W2) Stokes waves for EP=30μJ. (d) Mixing (M0) and upshifted anti-Stokes (M1+M2) signals, coupled by the Cws created in (c). The green solid lines show the pressure dependence of the phase-match parameter ϑ. Note that the Cw generated by the W1W2 conversion creates a second phase-matching pressure at point B. Upshifting to M1 is most efficient at the phase-matching pressures (points A and B).
Fig. 5.
Fig. 5. Simulated spatiotemporal evolution of the normalized Cw amplitude |Q| and the normalized (M1+M2) photon rate for EP=30μJ at pressures of 12 bar (upper) and 27 bar (lower). The Cws created in the W0W1 process are marked with (I) and those created by the W1W2 process with (II). The inset in the upper right panel shows the normalized temporal profiles of the W0 and M0 pulses at the entrance to the fiber. Time is relative to a frame traveling at the group velocity of the W0 pulse. The origin of the periodic oscillations in the lower left panel is discussed in Supplement 1.
Fig. 6.
Fig. 6. Demonstration of broadband frequency shifting for 14.5 bar (upper panel) and 27.6 bar (lower panel). The broadband mixing signal M0 is frequency-upshifted to the first (M1) and second (M2) anti-Stokes bands. The original spectrum M00 (pump switched off) is depleted accordingly. The photon rates are normalized to the peak of the broadband mixing M00 signal at 1064 nm.
Fig. 7.
Fig. 7. Frequency-downshifted signal versus pressure. The dashed line represents the theoretical perfectly phase-matched frequencies.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

ϑ=Δβ(βM1βM0),
β01=k02ngas2(p,λ)u2/a2(λ),

Metrics