Abstract

Optomechanical coupling in a nanocavity formed between two cantilevers is tuned through renormalization of the nanocavity field, allowing reconfiguration of the dominant optomechanical transduction mechanism and spatially selective optical readout of mechanical resonances. Tuning is mediated through evanescent interaction between the nanocavity and a fiber taper near-field probe that induces both dissipative and dispersive optomechanical coupling. Tunable optomechanical coupling can exceed 3 GHz/nm, and is shown to allow readout of out-of-plane cantilever nanomechanical resonances suitable for sensing applications.

© 2015 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Eichenfield, R. Camacho, J. Chan, K. J. Vahala, and O. Painter, “A picogram and nanometer scale photonic crystal opto-mechanical cavity,” Nature 459, 550–555 (2009).
    [Crossref]
  2. J. Chan, M. Eichenfield, R. Camacho, and O. Painter, “Optical and mechanical design of a zipper photonic crystal optomechanical cavity,” Opt. Express 17, 3802–3817 (2009).
    [Crossref]
  3. M. Eichenfield, J. Chan, R. Camacho, K. Vahala, and O. Painter, “Optomechanical crystals,” Nature 462, 78–82 (2009).
    [Crossref]
  4. P. Deotare, I. Bulu, I. W. Frank, Q. Quan, Y. Zhang, R. Ilic, and M. Lončar, “All optical reconfiguration of optomechanical filters,” Nat. Commun. 3, 846 (2012).
    [Crossref]
  5. X. Sun, J. Zhang, M. Poot, C. Wong, and H. Tang, “Femtogram doubly clamped nanomechanical resonators embedded in a high-Q two-dimensional photonic crystal nanocavity,” Nano Lett. 12, 2299–2305 (2012).
  6. E. Gavartin, R. Braive, I. Sagnes, O. Arcizet, A. Beveratos, T. Kippenberg, and I. Robert-Philip, “Optomechanical coupling in a two-dimensional photonic crystal defect cavity,” Phys. Rev. Lett. 106, 203902 (2011).
    [Crossref]
  7. G. Anetsberger, O. Arcizet, Q. Unterreithmeier, R. Rivière, A. Schliesser, E. Weig, J. Kotthaus, and T. Kippenberg, “Near-field cavity optomechanics with nanomechanical oscillators,” Nat. Phys. 5, 909–914 (2009).
    [Crossref]
  8. K. Srinivasan, H. Miao, M. Rakher, M. Davanço, and V. Aksyuk, “Optomechanical transduction of an integrated silicon cantilever probe using a microdisk resonator,” Nano Lett. 11, 791–797 (2011).
  9. A. G. Krause, M. Winger, T. D. Blasius, W. Lin, and O. Painter, “A high-resolution microchip optomechanical accelerometer,” Nat. Photonics 6, 768–772 (2012).
    [Crossref]
  10. P. Kim, C. Doolin, B. Hauer, A. MacDonald, M. Freeman, P. Barclay, and J. Davis, “Nanoscale torsional optomechanics,” Appl. Phys. Lett. 102, 053102 (2013).
    [Crossref]
  11. M. Wu, A. C. Hryciw, C. Healey, D. P. Lake, H. Jayakumar, M. R. Freeman, J. P. Davis, and P. E. Barclay, “Dissipative and dispersive optomechanics in a nanocavity torque sensor,” Phys. Rev. X 4, 021052 (2014).
    [Crossref]
  12. M. Bagheri, M. Poot, M. Li, W. Pernice, and H. Tang, “Dynamic manipulation of nanomechanical resonators in the high-amplitude regime and non-volatile mechanical memory operation,” Nat. Nanotechnol. 6, 726–732 (2011).
    [Crossref]
  13. M. Li, W. H. P. Pernice, and H. X. Tang, “Broadband all-photonic transduction of nanocantilevers,” Nat. Nanotechnol. 4, 377–382 (2009).
    [Crossref]
  14. J. Chan, T. P. M. Alegre, A. H. Safavi-Naeini, J. T. Hill, A. Krause, S. Groblacher, M. Aspelmeyer, and O. Painter, “Laser cooling of a nanomechanical oscillator into its quantum ground state,” Nature 478, 89–92 (2011).
    [Crossref]
  15. A. Safavi-Naeini, J. Chan, J. Hill, T. P. M. Alegre, A. Krause, and O. Painter, “Observation of quantum motion of a nanomechanical resonator,” Phys. Rev. Lett. 108, 033602 (2012).
    [Crossref]
  16. M. Li, W. Pernice, and H. Tang, “Reactive cavity optical force on microdisk-coupled nanomechanical beam waveguides,” Phys. Rev. Lett. 103, 223901 (2009).
    [Crossref]
  17. F. Elste, S. Girvin, and A. Clerk, “Quantum noise interference and backaction cooling in cavity nanomechanics,” Phys. Rev. Lett. 102, 207209 (2009).
    [Crossref]
  18. T. Weiss and A. Nunnenkamp, “Quantum limit of laser cooling in dispersively and dissipatively coupled optomechanical systems,” Phys. Rev. A 88, 023850 (2013).
    [Crossref]
  19. Y. Liu, Y. Xiao, X. Luan, and C. Wong, “Dynamic dissipative cooling of a mechanical resonator in strong coupling optomechanics,” Phys. Rev. Lett. 110, 153606 (2013).
    [Crossref]
  20. A. Xuereb, R. Schnabel, and K. Hammerer, “Dissipative optomechanics in a Michelson-Sagnac interferometer,” Phys. Rev. Lett. 107, 213604 (2011).
    [Crossref]
  21. W.-J. Gu, G.-X. Li, and Y.-P. Yang, “Generation of squeezed states in a movable mirror via dissipative optomechanical coupling,” Phys. Rev. A 88, 013835 (2013).
    [Crossref]
  22. A. Bleszynski-Jayich, W. Shanks, B. Peadecerf, E. Ginossar, F. von Oppen, L. Glazman, and J. Harris, “Persistent currents in normal metal rings,” Science 326, 272–275 (2009).
    [Crossref]
  23. M. Aspelmeyer, T. Kippenberg, and C. Marquardt, “Cavity optomechanics,” arXiv:1303.0733 (2013).
  24. M. Li, W. H. P. Pernice, C. Xiong, T. Baehr-Jones, M. Hochberg, and H. X. Tang, “Harnessing optical forces in integrated photonic circuits,” Nature 456, 480–484 (2008).
    [Crossref]
  25. H.-C. Liu and A. Yariv, “Designing coupled-resonator optical waveguides based on high-Q tapered grating-defect resonators,” Opt. Express 20, 9249–9263 (2012).
    [Crossref]
  26. A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. Joannopoulos, and S. G. Johnson, “Meep: a flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181, 687–702 (2010).
    [Crossref]
  27. A. Hryciw and P. E. Barclay, “Optical design of split-beam photonic crystal nanocavities,” Opt. Lett. 38, 1612–1614 (2013).
    [Crossref]
  28. C. P. Michael, M. Borselli, T. J. Johnson, C. Chrystala, and O. Painter, “An optical fiber-taper probe for wafer-scale microphotonic device characterization,” Opt. Express 15, 4745–4752 (2007).
    [Crossref]
  29. S. G. Johnson, M. Ibanescu, M. A. Skorobogatiy, O. Weisberg, J. D. Joannopoulos, and Y. Fink, “Perturbation theory for Maxwell’s equations with shifting material boundaries,” Phys. Rev. E 65, 066611 (2002).
    [Crossref]
  30. S. P. Tarabrin, H. Kaufer, F. Y. Khalili, R. Schnabel, and K. Hammerer, “Anomalous dynamic backaction in interferomters,” Phys. Rev. A 88, 023809 (2013).
    [Crossref]
  31. I. Avrutsky, R. Gibson, J. Sears, G. Khitrova, H. M. Gibbs, and J. Hendrickson, “Linear systems approach to describing and classifying Fano resonances,” Phys. Rev. B 87, 125118 (2013).
  32. C. Manolatou, M. J. Khan, S. Fan, P. R. Villeneuve, H. A. Haus, and J. D. Joannopoulos, “Coupling of modes analysis of resonant channel add-drop filters,” IEEE J. Quantum Electron. 35, 1322–1331 (1999).
    [Crossref]
  33. M. Eichenfield, C. Michael, R. Perahia, and O. Painter, “Actuation of micro-optomechanical systems via cavity-enhanced optical dipole forces,” Nat. Photonics 1, 416–422 (2007).
    [Crossref]
  34. P. E. Barclay, K. Srinivasan, M. Borselli, and O. Painter, “Efficient input and output optical fiber coupling to a photonic crystal waveguide,” Opt. Lett. 29, 697–699 (2004).
    [Crossref]

2014 (1)

M. Wu, A. C. Hryciw, C. Healey, D. P. Lake, H. Jayakumar, M. R. Freeman, J. P. Davis, and P. E. Barclay, “Dissipative and dispersive optomechanics in a nanocavity torque sensor,” Phys. Rev. X 4, 021052 (2014).
[Crossref]

2013 (7)

P. Kim, C. Doolin, B. Hauer, A. MacDonald, M. Freeman, P. Barclay, and J. Davis, “Nanoscale torsional optomechanics,” Appl. Phys. Lett. 102, 053102 (2013).
[Crossref]

T. Weiss and A. Nunnenkamp, “Quantum limit of laser cooling in dispersively and dissipatively coupled optomechanical systems,” Phys. Rev. A 88, 023850 (2013).
[Crossref]

Y. Liu, Y. Xiao, X. Luan, and C. Wong, “Dynamic dissipative cooling of a mechanical resonator in strong coupling optomechanics,” Phys. Rev. Lett. 110, 153606 (2013).
[Crossref]

W.-J. Gu, G.-X. Li, and Y.-P. Yang, “Generation of squeezed states in a movable mirror via dissipative optomechanical coupling,” Phys. Rev. A 88, 013835 (2013).
[Crossref]

A. Hryciw and P. E. Barclay, “Optical design of split-beam photonic crystal nanocavities,” Opt. Lett. 38, 1612–1614 (2013).
[Crossref]

S. P. Tarabrin, H. Kaufer, F. Y. Khalili, R. Schnabel, and K. Hammerer, “Anomalous dynamic backaction in interferomters,” Phys. Rev. A 88, 023809 (2013).
[Crossref]

I. Avrutsky, R. Gibson, J. Sears, G. Khitrova, H. M. Gibbs, and J. Hendrickson, “Linear systems approach to describing and classifying Fano resonances,” Phys. Rev. B 87, 125118 (2013).

2012 (5)

H.-C. Liu and A. Yariv, “Designing coupled-resonator optical waveguides based on high-Q tapered grating-defect resonators,” Opt. Express 20, 9249–9263 (2012).
[Crossref]

A. Safavi-Naeini, J. Chan, J. Hill, T. P. M. Alegre, A. Krause, and O. Painter, “Observation of quantum motion of a nanomechanical resonator,” Phys. Rev. Lett. 108, 033602 (2012).
[Crossref]

P. Deotare, I. Bulu, I. W. Frank, Q. Quan, Y. Zhang, R. Ilic, and M. Lončar, “All optical reconfiguration of optomechanical filters,” Nat. Commun. 3, 846 (2012).
[Crossref]

X. Sun, J. Zhang, M. Poot, C. Wong, and H. Tang, “Femtogram doubly clamped nanomechanical resonators embedded in a high-Q two-dimensional photonic crystal nanocavity,” Nano Lett. 12, 2299–2305 (2012).

A. G. Krause, M. Winger, T. D. Blasius, W. Lin, and O. Painter, “A high-resolution microchip optomechanical accelerometer,” Nat. Photonics 6, 768–772 (2012).
[Crossref]

2011 (5)

K. Srinivasan, H. Miao, M. Rakher, M. Davanço, and V. Aksyuk, “Optomechanical transduction of an integrated silicon cantilever probe using a microdisk resonator,” Nano Lett. 11, 791–797 (2011).

E. Gavartin, R. Braive, I. Sagnes, O. Arcizet, A. Beveratos, T. Kippenberg, and I. Robert-Philip, “Optomechanical coupling in a two-dimensional photonic crystal defect cavity,” Phys. Rev. Lett. 106, 203902 (2011).
[Crossref]

A. Xuereb, R. Schnabel, and K. Hammerer, “Dissipative optomechanics in a Michelson-Sagnac interferometer,” Phys. Rev. Lett. 107, 213604 (2011).
[Crossref]

J. Chan, T. P. M. Alegre, A. H. Safavi-Naeini, J. T. Hill, A. Krause, S. Groblacher, M. Aspelmeyer, and O. Painter, “Laser cooling of a nanomechanical oscillator into its quantum ground state,” Nature 478, 89–92 (2011).
[Crossref]

M. Bagheri, M. Poot, M. Li, W. Pernice, and H. Tang, “Dynamic manipulation of nanomechanical resonators in the high-amplitude regime and non-volatile mechanical memory operation,” Nat. Nanotechnol. 6, 726–732 (2011).
[Crossref]

2010 (1)

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. Joannopoulos, and S. G. Johnson, “Meep: a flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181, 687–702 (2010).
[Crossref]

2009 (8)

A. Bleszynski-Jayich, W. Shanks, B. Peadecerf, E. Ginossar, F. von Oppen, L. Glazman, and J. Harris, “Persistent currents in normal metal rings,” Science 326, 272–275 (2009).
[Crossref]

M. Li, W. H. P. Pernice, and H. X. Tang, “Broadband all-photonic transduction of nanocantilevers,” Nat. Nanotechnol. 4, 377–382 (2009).
[Crossref]

M. Li, W. Pernice, and H. Tang, “Reactive cavity optical force on microdisk-coupled nanomechanical beam waveguides,” Phys. Rev. Lett. 103, 223901 (2009).
[Crossref]

F. Elste, S. Girvin, and A. Clerk, “Quantum noise interference and backaction cooling in cavity nanomechanics,” Phys. Rev. Lett. 102, 207209 (2009).
[Crossref]

G. Anetsberger, O. Arcizet, Q. Unterreithmeier, R. Rivière, A. Schliesser, E. Weig, J. Kotthaus, and T. Kippenberg, “Near-field cavity optomechanics with nanomechanical oscillators,” Nat. Phys. 5, 909–914 (2009).
[Crossref]

M. Eichenfield, R. Camacho, J. Chan, K. J. Vahala, and O. Painter, “A picogram and nanometer scale photonic crystal opto-mechanical cavity,” Nature 459, 550–555 (2009).
[Crossref]

J. Chan, M. Eichenfield, R. Camacho, and O. Painter, “Optical and mechanical design of a zipper photonic crystal optomechanical cavity,” Opt. Express 17, 3802–3817 (2009).
[Crossref]

M. Eichenfield, J. Chan, R. Camacho, K. Vahala, and O. Painter, “Optomechanical crystals,” Nature 462, 78–82 (2009).
[Crossref]

2008 (1)

M. Li, W. H. P. Pernice, C. Xiong, T. Baehr-Jones, M. Hochberg, and H. X. Tang, “Harnessing optical forces in integrated photonic circuits,” Nature 456, 480–484 (2008).
[Crossref]

2007 (2)

C. P. Michael, M. Borselli, T. J. Johnson, C. Chrystala, and O. Painter, “An optical fiber-taper probe for wafer-scale microphotonic device characterization,” Opt. Express 15, 4745–4752 (2007).
[Crossref]

M. Eichenfield, C. Michael, R. Perahia, and O. Painter, “Actuation of micro-optomechanical systems via cavity-enhanced optical dipole forces,” Nat. Photonics 1, 416–422 (2007).
[Crossref]

2004 (1)

2002 (1)

S. G. Johnson, M. Ibanescu, M. A. Skorobogatiy, O. Weisberg, J. D. Joannopoulos, and Y. Fink, “Perturbation theory for Maxwell’s equations with shifting material boundaries,” Phys. Rev. E 65, 066611 (2002).
[Crossref]

1999 (1)

C. Manolatou, M. J. Khan, S. Fan, P. R. Villeneuve, H. A. Haus, and J. D. Joannopoulos, “Coupling of modes analysis of resonant channel add-drop filters,” IEEE J. Quantum Electron. 35, 1322–1331 (1999).
[Crossref]

Aksyuk, V.

K. Srinivasan, H. Miao, M. Rakher, M. Davanço, and V. Aksyuk, “Optomechanical transduction of an integrated silicon cantilever probe using a microdisk resonator,” Nano Lett. 11, 791–797 (2011).

Alegre, T. P. M.

A. Safavi-Naeini, J. Chan, J. Hill, T. P. M. Alegre, A. Krause, and O. Painter, “Observation of quantum motion of a nanomechanical resonator,” Phys. Rev. Lett. 108, 033602 (2012).
[Crossref]

J. Chan, T. P. M. Alegre, A. H. Safavi-Naeini, J. T. Hill, A. Krause, S. Groblacher, M. Aspelmeyer, and O. Painter, “Laser cooling of a nanomechanical oscillator into its quantum ground state,” Nature 478, 89–92 (2011).
[Crossref]

Anetsberger, G.

G. Anetsberger, O. Arcizet, Q. Unterreithmeier, R. Rivière, A. Schliesser, E. Weig, J. Kotthaus, and T. Kippenberg, “Near-field cavity optomechanics with nanomechanical oscillators,” Nat. Phys. 5, 909–914 (2009).
[Crossref]

Arcizet, O.

E. Gavartin, R. Braive, I. Sagnes, O. Arcizet, A. Beveratos, T. Kippenberg, and I. Robert-Philip, “Optomechanical coupling in a two-dimensional photonic crystal defect cavity,” Phys. Rev. Lett. 106, 203902 (2011).
[Crossref]

G. Anetsberger, O. Arcizet, Q. Unterreithmeier, R. Rivière, A. Schliesser, E. Weig, J. Kotthaus, and T. Kippenberg, “Near-field cavity optomechanics with nanomechanical oscillators,” Nat. Phys. 5, 909–914 (2009).
[Crossref]

Aspelmeyer, M.

J. Chan, T. P. M. Alegre, A. H. Safavi-Naeini, J. T. Hill, A. Krause, S. Groblacher, M. Aspelmeyer, and O. Painter, “Laser cooling of a nanomechanical oscillator into its quantum ground state,” Nature 478, 89–92 (2011).
[Crossref]

M. Aspelmeyer, T. Kippenberg, and C. Marquardt, “Cavity optomechanics,” arXiv:1303.0733 (2013).

Avrutsky, I.

I. Avrutsky, R. Gibson, J. Sears, G. Khitrova, H. M. Gibbs, and J. Hendrickson, “Linear systems approach to describing and classifying Fano resonances,” Phys. Rev. B 87, 125118 (2013).

Baehr-Jones, T.

M. Li, W. H. P. Pernice, C. Xiong, T. Baehr-Jones, M. Hochberg, and H. X. Tang, “Harnessing optical forces in integrated photonic circuits,” Nature 456, 480–484 (2008).
[Crossref]

Bagheri, M.

M. Bagheri, M. Poot, M. Li, W. Pernice, and H. Tang, “Dynamic manipulation of nanomechanical resonators in the high-amplitude regime and non-volatile mechanical memory operation,” Nat. Nanotechnol. 6, 726–732 (2011).
[Crossref]

Barclay, P.

P. Kim, C. Doolin, B. Hauer, A. MacDonald, M. Freeman, P. Barclay, and J. Davis, “Nanoscale torsional optomechanics,” Appl. Phys. Lett. 102, 053102 (2013).
[Crossref]

Barclay, P. E.

Bermel, P.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. Joannopoulos, and S. G. Johnson, “Meep: a flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181, 687–702 (2010).
[Crossref]

Beveratos, A.

E. Gavartin, R. Braive, I. Sagnes, O. Arcizet, A. Beveratos, T. Kippenberg, and I. Robert-Philip, “Optomechanical coupling in a two-dimensional photonic crystal defect cavity,” Phys. Rev. Lett. 106, 203902 (2011).
[Crossref]

Blasius, T. D.

A. G. Krause, M. Winger, T. D. Blasius, W. Lin, and O. Painter, “A high-resolution microchip optomechanical accelerometer,” Nat. Photonics 6, 768–772 (2012).
[Crossref]

Bleszynski-Jayich, A.

A. Bleszynski-Jayich, W. Shanks, B. Peadecerf, E. Ginossar, F. von Oppen, L. Glazman, and J. Harris, “Persistent currents in normal metal rings,” Science 326, 272–275 (2009).
[Crossref]

Borselli, M.

Braive, R.

E. Gavartin, R. Braive, I. Sagnes, O. Arcizet, A. Beveratos, T. Kippenberg, and I. Robert-Philip, “Optomechanical coupling in a two-dimensional photonic crystal defect cavity,” Phys. Rev. Lett. 106, 203902 (2011).
[Crossref]

Bulu, I.

P. Deotare, I. Bulu, I. W. Frank, Q. Quan, Y. Zhang, R. Ilic, and M. Lončar, “All optical reconfiguration of optomechanical filters,” Nat. Commun. 3, 846 (2012).
[Crossref]

Camacho, R.

M. Eichenfield, J. Chan, R. Camacho, K. Vahala, and O. Painter, “Optomechanical crystals,” Nature 462, 78–82 (2009).
[Crossref]

M. Eichenfield, R. Camacho, J. Chan, K. J. Vahala, and O. Painter, “A picogram and nanometer scale photonic crystal opto-mechanical cavity,” Nature 459, 550–555 (2009).
[Crossref]

J. Chan, M. Eichenfield, R. Camacho, and O. Painter, “Optical and mechanical design of a zipper photonic crystal optomechanical cavity,” Opt. Express 17, 3802–3817 (2009).
[Crossref]

Chan, J.

A. Safavi-Naeini, J. Chan, J. Hill, T. P. M. Alegre, A. Krause, and O. Painter, “Observation of quantum motion of a nanomechanical resonator,” Phys. Rev. Lett. 108, 033602 (2012).
[Crossref]

J. Chan, T. P. M. Alegre, A. H. Safavi-Naeini, J. T. Hill, A. Krause, S. Groblacher, M. Aspelmeyer, and O. Painter, “Laser cooling of a nanomechanical oscillator into its quantum ground state,” Nature 478, 89–92 (2011).
[Crossref]

M. Eichenfield, J. Chan, R. Camacho, K. Vahala, and O. Painter, “Optomechanical crystals,” Nature 462, 78–82 (2009).
[Crossref]

M. Eichenfield, R. Camacho, J. Chan, K. J. Vahala, and O. Painter, “A picogram and nanometer scale photonic crystal opto-mechanical cavity,” Nature 459, 550–555 (2009).
[Crossref]

J. Chan, M. Eichenfield, R. Camacho, and O. Painter, “Optical and mechanical design of a zipper photonic crystal optomechanical cavity,” Opt. Express 17, 3802–3817 (2009).
[Crossref]

Chrystala, C.

Clerk, A.

F. Elste, S. Girvin, and A. Clerk, “Quantum noise interference and backaction cooling in cavity nanomechanics,” Phys. Rev. Lett. 102, 207209 (2009).
[Crossref]

Davanço, M.

K. Srinivasan, H. Miao, M. Rakher, M. Davanço, and V. Aksyuk, “Optomechanical transduction of an integrated silicon cantilever probe using a microdisk resonator,” Nano Lett. 11, 791–797 (2011).

Davis, J.

P. Kim, C. Doolin, B. Hauer, A. MacDonald, M. Freeman, P. Barclay, and J. Davis, “Nanoscale torsional optomechanics,” Appl. Phys. Lett. 102, 053102 (2013).
[Crossref]

Davis, J. P.

M. Wu, A. C. Hryciw, C. Healey, D. P. Lake, H. Jayakumar, M. R. Freeman, J. P. Davis, and P. E. Barclay, “Dissipative and dispersive optomechanics in a nanocavity torque sensor,” Phys. Rev. X 4, 021052 (2014).
[Crossref]

Deotare, P.

P. Deotare, I. Bulu, I. W. Frank, Q. Quan, Y. Zhang, R. Ilic, and M. Lončar, “All optical reconfiguration of optomechanical filters,” Nat. Commun. 3, 846 (2012).
[Crossref]

Doolin, C.

P. Kim, C. Doolin, B. Hauer, A. MacDonald, M. Freeman, P. Barclay, and J. Davis, “Nanoscale torsional optomechanics,” Appl. Phys. Lett. 102, 053102 (2013).
[Crossref]

Eichenfield, M.

M. Eichenfield, J. Chan, R. Camacho, K. Vahala, and O. Painter, “Optomechanical crystals,” Nature 462, 78–82 (2009).
[Crossref]

M. Eichenfield, R. Camacho, J. Chan, K. J. Vahala, and O. Painter, “A picogram and nanometer scale photonic crystal opto-mechanical cavity,” Nature 459, 550–555 (2009).
[Crossref]

J. Chan, M. Eichenfield, R. Camacho, and O. Painter, “Optical and mechanical design of a zipper photonic crystal optomechanical cavity,” Opt. Express 17, 3802–3817 (2009).
[Crossref]

M. Eichenfield, C. Michael, R. Perahia, and O. Painter, “Actuation of micro-optomechanical systems via cavity-enhanced optical dipole forces,” Nat. Photonics 1, 416–422 (2007).
[Crossref]

Elste, F.

F. Elste, S. Girvin, and A. Clerk, “Quantum noise interference and backaction cooling in cavity nanomechanics,” Phys. Rev. Lett. 102, 207209 (2009).
[Crossref]

Fan, S.

C. Manolatou, M. J. Khan, S. Fan, P. R. Villeneuve, H. A. Haus, and J. D. Joannopoulos, “Coupling of modes analysis of resonant channel add-drop filters,” IEEE J. Quantum Electron. 35, 1322–1331 (1999).
[Crossref]

Fink, Y.

S. G. Johnson, M. Ibanescu, M. A. Skorobogatiy, O. Weisberg, J. D. Joannopoulos, and Y. Fink, “Perturbation theory for Maxwell’s equations with shifting material boundaries,” Phys. Rev. E 65, 066611 (2002).
[Crossref]

Frank, I. W.

P. Deotare, I. Bulu, I. W. Frank, Q. Quan, Y. Zhang, R. Ilic, and M. Lončar, “All optical reconfiguration of optomechanical filters,” Nat. Commun. 3, 846 (2012).
[Crossref]

Freeman, M.

P. Kim, C. Doolin, B. Hauer, A. MacDonald, M. Freeman, P. Barclay, and J. Davis, “Nanoscale torsional optomechanics,” Appl. Phys. Lett. 102, 053102 (2013).
[Crossref]

Freeman, M. R.

M. Wu, A. C. Hryciw, C. Healey, D. P. Lake, H. Jayakumar, M. R. Freeman, J. P. Davis, and P. E. Barclay, “Dissipative and dispersive optomechanics in a nanocavity torque sensor,” Phys. Rev. X 4, 021052 (2014).
[Crossref]

Gavartin, E.

E. Gavartin, R. Braive, I. Sagnes, O. Arcizet, A. Beveratos, T. Kippenberg, and I. Robert-Philip, “Optomechanical coupling in a two-dimensional photonic crystal defect cavity,” Phys. Rev. Lett. 106, 203902 (2011).
[Crossref]

Gibbs, H. M.

I. Avrutsky, R. Gibson, J. Sears, G. Khitrova, H. M. Gibbs, and J. Hendrickson, “Linear systems approach to describing and classifying Fano resonances,” Phys. Rev. B 87, 125118 (2013).

Gibson, R.

I. Avrutsky, R. Gibson, J. Sears, G. Khitrova, H. M. Gibbs, and J. Hendrickson, “Linear systems approach to describing and classifying Fano resonances,” Phys. Rev. B 87, 125118 (2013).

Ginossar, E.

A. Bleszynski-Jayich, W. Shanks, B. Peadecerf, E. Ginossar, F. von Oppen, L. Glazman, and J. Harris, “Persistent currents in normal metal rings,” Science 326, 272–275 (2009).
[Crossref]

Girvin, S.

F. Elste, S. Girvin, and A. Clerk, “Quantum noise interference and backaction cooling in cavity nanomechanics,” Phys. Rev. Lett. 102, 207209 (2009).
[Crossref]

Glazman, L.

A. Bleszynski-Jayich, W. Shanks, B. Peadecerf, E. Ginossar, F. von Oppen, L. Glazman, and J. Harris, “Persistent currents in normal metal rings,” Science 326, 272–275 (2009).
[Crossref]

Groblacher, S.

J. Chan, T. P. M. Alegre, A. H. Safavi-Naeini, J. T. Hill, A. Krause, S. Groblacher, M. Aspelmeyer, and O. Painter, “Laser cooling of a nanomechanical oscillator into its quantum ground state,” Nature 478, 89–92 (2011).
[Crossref]

Gu, W.-J.

W.-J. Gu, G.-X. Li, and Y.-P. Yang, “Generation of squeezed states in a movable mirror via dissipative optomechanical coupling,” Phys. Rev. A 88, 013835 (2013).
[Crossref]

Hammerer, K.

S. P. Tarabrin, H. Kaufer, F. Y. Khalili, R. Schnabel, and K. Hammerer, “Anomalous dynamic backaction in interferomters,” Phys. Rev. A 88, 023809 (2013).
[Crossref]

A. Xuereb, R. Schnabel, and K. Hammerer, “Dissipative optomechanics in a Michelson-Sagnac interferometer,” Phys. Rev. Lett. 107, 213604 (2011).
[Crossref]

Harris, J.

A. Bleszynski-Jayich, W. Shanks, B. Peadecerf, E. Ginossar, F. von Oppen, L. Glazman, and J. Harris, “Persistent currents in normal metal rings,” Science 326, 272–275 (2009).
[Crossref]

Hauer, B.

P. Kim, C. Doolin, B. Hauer, A. MacDonald, M. Freeman, P. Barclay, and J. Davis, “Nanoscale torsional optomechanics,” Appl. Phys. Lett. 102, 053102 (2013).
[Crossref]

Haus, H. A.

C. Manolatou, M. J. Khan, S. Fan, P. R. Villeneuve, H. A. Haus, and J. D. Joannopoulos, “Coupling of modes analysis of resonant channel add-drop filters,” IEEE J. Quantum Electron. 35, 1322–1331 (1999).
[Crossref]

Healey, C.

M. Wu, A. C. Hryciw, C. Healey, D. P. Lake, H. Jayakumar, M. R. Freeman, J. P. Davis, and P. E. Barclay, “Dissipative and dispersive optomechanics in a nanocavity torque sensor,” Phys. Rev. X 4, 021052 (2014).
[Crossref]

Hendrickson, J.

I. Avrutsky, R. Gibson, J. Sears, G. Khitrova, H. M. Gibbs, and J. Hendrickson, “Linear systems approach to describing and classifying Fano resonances,” Phys. Rev. B 87, 125118 (2013).

Hill, J.

A. Safavi-Naeini, J. Chan, J. Hill, T. P. M. Alegre, A. Krause, and O. Painter, “Observation of quantum motion of a nanomechanical resonator,” Phys. Rev. Lett. 108, 033602 (2012).
[Crossref]

Hill, J. T.

J. Chan, T. P. M. Alegre, A. H. Safavi-Naeini, J. T. Hill, A. Krause, S. Groblacher, M. Aspelmeyer, and O. Painter, “Laser cooling of a nanomechanical oscillator into its quantum ground state,” Nature 478, 89–92 (2011).
[Crossref]

Hochberg, M.

M. Li, W. H. P. Pernice, C. Xiong, T. Baehr-Jones, M. Hochberg, and H. X. Tang, “Harnessing optical forces in integrated photonic circuits,” Nature 456, 480–484 (2008).
[Crossref]

Hryciw, A.

Hryciw, A. C.

M. Wu, A. C. Hryciw, C. Healey, D. P. Lake, H. Jayakumar, M. R. Freeman, J. P. Davis, and P. E. Barclay, “Dissipative and dispersive optomechanics in a nanocavity torque sensor,” Phys. Rev. X 4, 021052 (2014).
[Crossref]

Ibanescu, M.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. Joannopoulos, and S. G. Johnson, “Meep: a flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181, 687–702 (2010).
[Crossref]

S. G. Johnson, M. Ibanescu, M. A. Skorobogatiy, O. Weisberg, J. D. Joannopoulos, and Y. Fink, “Perturbation theory for Maxwell’s equations with shifting material boundaries,” Phys. Rev. E 65, 066611 (2002).
[Crossref]

Ilic, R.

P. Deotare, I. Bulu, I. W. Frank, Q. Quan, Y. Zhang, R. Ilic, and M. Lončar, “All optical reconfiguration of optomechanical filters,” Nat. Commun. 3, 846 (2012).
[Crossref]

Jayakumar, H.

M. Wu, A. C. Hryciw, C. Healey, D. P. Lake, H. Jayakumar, M. R. Freeman, J. P. Davis, and P. E. Barclay, “Dissipative and dispersive optomechanics in a nanocavity torque sensor,” Phys. Rev. X 4, 021052 (2014).
[Crossref]

Joannopoulos, J.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. Joannopoulos, and S. G. Johnson, “Meep: a flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181, 687–702 (2010).
[Crossref]

Joannopoulos, J. D.

S. G. Johnson, M. Ibanescu, M. A. Skorobogatiy, O. Weisberg, J. D. Joannopoulos, and Y. Fink, “Perturbation theory for Maxwell’s equations with shifting material boundaries,” Phys. Rev. E 65, 066611 (2002).
[Crossref]

C. Manolatou, M. J. Khan, S. Fan, P. R. Villeneuve, H. A. Haus, and J. D. Joannopoulos, “Coupling of modes analysis of resonant channel add-drop filters,” IEEE J. Quantum Electron. 35, 1322–1331 (1999).
[Crossref]

Johnson, S. G.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. Joannopoulos, and S. G. Johnson, “Meep: a flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181, 687–702 (2010).
[Crossref]

S. G. Johnson, M. Ibanescu, M. A. Skorobogatiy, O. Weisberg, J. D. Joannopoulos, and Y. Fink, “Perturbation theory for Maxwell’s equations with shifting material boundaries,” Phys. Rev. E 65, 066611 (2002).
[Crossref]

Johnson, T. J.

Kaufer, H.

S. P. Tarabrin, H. Kaufer, F. Y. Khalili, R. Schnabel, and K. Hammerer, “Anomalous dynamic backaction in interferomters,” Phys. Rev. A 88, 023809 (2013).
[Crossref]

Khalili, F. Y.

S. P. Tarabrin, H. Kaufer, F. Y. Khalili, R. Schnabel, and K. Hammerer, “Anomalous dynamic backaction in interferomters,” Phys. Rev. A 88, 023809 (2013).
[Crossref]

Khan, M. J.

C. Manolatou, M. J. Khan, S. Fan, P. R. Villeneuve, H. A. Haus, and J. D. Joannopoulos, “Coupling of modes analysis of resonant channel add-drop filters,” IEEE J. Quantum Electron. 35, 1322–1331 (1999).
[Crossref]

Khitrova, G.

I. Avrutsky, R. Gibson, J. Sears, G. Khitrova, H. M. Gibbs, and J. Hendrickson, “Linear systems approach to describing and classifying Fano resonances,” Phys. Rev. B 87, 125118 (2013).

Kim, P.

P. Kim, C. Doolin, B. Hauer, A. MacDonald, M. Freeman, P. Barclay, and J. Davis, “Nanoscale torsional optomechanics,” Appl. Phys. Lett. 102, 053102 (2013).
[Crossref]

Kippenberg, T.

E. Gavartin, R. Braive, I. Sagnes, O. Arcizet, A. Beveratos, T. Kippenberg, and I. Robert-Philip, “Optomechanical coupling in a two-dimensional photonic crystal defect cavity,” Phys. Rev. Lett. 106, 203902 (2011).
[Crossref]

G. Anetsberger, O. Arcizet, Q. Unterreithmeier, R. Rivière, A. Schliesser, E. Weig, J. Kotthaus, and T. Kippenberg, “Near-field cavity optomechanics with nanomechanical oscillators,” Nat. Phys. 5, 909–914 (2009).
[Crossref]

M. Aspelmeyer, T. Kippenberg, and C. Marquardt, “Cavity optomechanics,” arXiv:1303.0733 (2013).

Kotthaus, J.

G. Anetsberger, O. Arcizet, Q. Unterreithmeier, R. Rivière, A. Schliesser, E. Weig, J. Kotthaus, and T. Kippenberg, “Near-field cavity optomechanics with nanomechanical oscillators,” Nat. Phys. 5, 909–914 (2009).
[Crossref]

Krause, A.

A. Safavi-Naeini, J. Chan, J. Hill, T. P. M. Alegre, A. Krause, and O. Painter, “Observation of quantum motion of a nanomechanical resonator,” Phys. Rev. Lett. 108, 033602 (2012).
[Crossref]

J. Chan, T. P. M. Alegre, A. H. Safavi-Naeini, J. T. Hill, A. Krause, S. Groblacher, M. Aspelmeyer, and O. Painter, “Laser cooling of a nanomechanical oscillator into its quantum ground state,” Nature 478, 89–92 (2011).
[Crossref]

Krause, A. G.

A. G. Krause, M. Winger, T. D. Blasius, W. Lin, and O. Painter, “A high-resolution microchip optomechanical accelerometer,” Nat. Photonics 6, 768–772 (2012).
[Crossref]

Lake, D. P.

M. Wu, A. C. Hryciw, C. Healey, D. P. Lake, H. Jayakumar, M. R. Freeman, J. P. Davis, and P. E. Barclay, “Dissipative and dispersive optomechanics in a nanocavity torque sensor,” Phys. Rev. X 4, 021052 (2014).
[Crossref]

Li, G.-X.

W.-J. Gu, G.-X. Li, and Y.-P. Yang, “Generation of squeezed states in a movable mirror via dissipative optomechanical coupling,” Phys. Rev. A 88, 013835 (2013).
[Crossref]

Li, M.

M. Bagheri, M. Poot, M. Li, W. Pernice, and H. Tang, “Dynamic manipulation of nanomechanical resonators in the high-amplitude regime and non-volatile mechanical memory operation,” Nat. Nanotechnol. 6, 726–732 (2011).
[Crossref]

M. Li, W. H. P. Pernice, and H. X. Tang, “Broadband all-photonic transduction of nanocantilevers,” Nat. Nanotechnol. 4, 377–382 (2009).
[Crossref]

M. Li, W. Pernice, and H. Tang, “Reactive cavity optical force on microdisk-coupled nanomechanical beam waveguides,” Phys. Rev. Lett. 103, 223901 (2009).
[Crossref]

M. Li, W. H. P. Pernice, C. Xiong, T. Baehr-Jones, M. Hochberg, and H. X. Tang, “Harnessing optical forces in integrated photonic circuits,” Nature 456, 480–484 (2008).
[Crossref]

Lin, W.

A. G. Krause, M. Winger, T. D. Blasius, W. Lin, and O. Painter, “A high-resolution microchip optomechanical accelerometer,” Nat. Photonics 6, 768–772 (2012).
[Crossref]

Liu, H.-C.

Liu, Y.

Y. Liu, Y. Xiao, X. Luan, and C. Wong, “Dynamic dissipative cooling of a mechanical resonator in strong coupling optomechanics,” Phys. Rev. Lett. 110, 153606 (2013).
[Crossref]

Loncar, M.

P. Deotare, I. Bulu, I. W. Frank, Q. Quan, Y. Zhang, R. Ilic, and M. Lončar, “All optical reconfiguration of optomechanical filters,” Nat. Commun. 3, 846 (2012).
[Crossref]

Luan, X.

Y. Liu, Y. Xiao, X. Luan, and C. Wong, “Dynamic dissipative cooling of a mechanical resonator in strong coupling optomechanics,” Phys. Rev. Lett. 110, 153606 (2013).
[Crossref]

MacDonald, A.

P. Kim, C. Doolin, B. Hauer, A. MacDonald, M. Freeman, P. Barclay, and J. Davis, “Nanoscale torsional optomechanics,” Appl. Phys. Lett. 102, 053102 (2013).
[Crossref]

Manolatou, C.

C. Manolatou, M. J. Khan, S. Fan, P. R. Villeneuve, H. A. Haus, and J. D. Joannopoulos, “Coupling of modes analysis of resonant channel add-drop filters,” IEEE J. Quantum Electron. 35, 1322–1331 (1999).
[Crossref]

Marquardt, C.

M. Aspelmeyer, T. Kippenberg, and C. Marquardt, “Cavity optomechanics,” arXiv:1303.0733 (2013).

Miao, H.

K. Srinivasan, H. Miao, M. Rakher, M. Davanço, and V. Aksyuk, “Optomechanical transduction of an integrated silicon cantilever probe using a microdisk resonator,” Nano Lett. 11, 791–797 (2011).

Michael, C.

M. Eichenfield, C. Michael, R. Perahia, and O. Painter, “Actuation of micro-optomechanical systems via cavity-enhanced optical dipole forces,” Nat. Photonics 1, 416–422 (2007).
[Crossref]

Michael, C. P.

Nunnenkamp, A.

T. Weiss and A. Nunnenkamp, “Quantum limit of laser cooling in dispersively and dissipatively coupled optomechanical systems,” Phys. Rev. A 88, 023850 (2013).
[Crossref]

Oskooi, A. F.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. Joannopoulos, and S. G. Johnson, “Meep: a flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181, 687–702 (2010).
[Crossref]

Painter, O.

A. Safavi-Naeini, J. Chan, J. Hill, T. P. M. Alegre, A. Krause, and O. Painter, “Observation of quantum motion of a nanomechanical resonator,” Phys. Rev. Lett. 108, 033602 (2012).
[Crossref]

A. G. Krause, M. Winger, T. D. Blasius, W. Lin, and O. Painter, “A high-resolution microchip optomechanical accelerometer,” Nat. Photonics 6, 768–772 (2012).
[Crossref]

J. Chan, T. P. M. Alegre, A. H. Safavi-Naeini, J. T. Hill, A. Krause, S. Groblacher, M. Aspelmeyer, and O. Painter, “Laser cooling of a nanomechanical oscillator into its quantum ground state,” Nature 478, 89–92 (2011).
[Crossref]

M. Eichenfield, J. Chan, R. Camacho, K. Vahala, and O. Painter, “Optomechanical crystals,” Nature 462, 78–82 (2009).
[Crossref]

M. Eichenfield, R. Camacho, J. Chan, K. J. Vahala, and O. Painter, “A picogram and nanometer scale photonic crystal opto-mechanical cavity,” Nature 459, 550–555 (2009).
[Crossref]

J. Chan, M. Eichenfield, R. Camacho, and O. Painter, “Optical and mechanical design of a zipper photonic crystal optomechanical cavity,” Opt. Express 17, 3802–3817 (2009).
[Crossref]

C. P. Michael, M. Borselli, T. J. Johnson, C. Chrystala, and O. Painter, “An optical fiber-taper probe for wafer-scale microphotonic device characterization,” Opt. Express 15, 4745–4752 (2007).
[Crossref]

M. Eichenfield, C. Michael, R. Perahia, and O. Painter, “Actuation of micro-optomechanical systems via cavity-enhanced optical dipole forces,” Nat. Photonics 1, 416–422 (2007).
[Crossref]

P. E. Barclay, K. Srinivasan, M. Borselli, and O. Painter, “Efficient input and output optical fiber coupling to a photonic crystal waveguide,” Opt. Lett. 29, 697–699 (2004).
[Crossref]

Peadecerf, B.

A. Bleszynski-Jayich, W. Shanks, B. Peadecerf, E. Ginossar, F. von Oppen, L. Glazman, and J. Harris, “Persistent currents in normal metal rings,” Science 326, 272–275 (2009).
[Crossref]

Perahia, R.

M. Eichenfield, C. Michael, R. Perahia, and O. Painter, “Actuation of micro-optomechanical systems via cavity-enhanced optical dipole forces,” Nat. Photonics 1, 416–422 (2007).
[Crossref]

Pernice, W.

M. Bagheri, M. Poot, M. Li, W. Pernice, and H. Tang, “Dynamic manipulation of nanomechanical resonators in the high-amplitude regime and non-volatile mechanical memory operation,” Nat. Nanotechnol. 6, 726–732 (2011).
[Crossref]

M. Li, W. Pernice, and H. Tang, “Reactive cavity optical force on microdisk-coupled nanomechanical beam waveguides,” Phys. Rev. Lett. 103, 223901 (2009).
[Crossref]

Pernice, W. H. P.

M. Li, W. H. P. Pernice, and H. X. Tang, “Broadband all-photonic transduction of nanocantilevers,” Nat. Nanotechnol. 4, 377–382 (2009).
[Crossref]

M. Li, W. H. P. Pernice, C. Xiong, T. Baehr-Jones, M. Hochberg, and H. X. Tang, “Harnessing optical forces in integrated photonic circuits,” Nature 456, 480–484 (2008).
[Crossref]

Poot, M.

X. Sun, J. Zhang, M. Poot, C. Wong, and H. Tang, “Femtogram doubly clamped nanomechanical resonators embedded in a high-Q two-dimensional photonic crystal nanocavity,” Nano Lett. 12, 2299–2305 (2012).

M. Bagheri, M. Poot, M. Li, W. Pernice, and H. Tang, “Dynamic manipulation of nanomechanical resonators in the high-amplitude regime and non-volatile mechanical memory operation,” Nat. Nanotechnol. 6, 726–732 (2011).
[Crossref]

Quan, Q.

P. Deotare, I. Bulu, I. W. Frank, Q. Quan, Y. Zhang, R. Ilic, and M. Lončar, “All optical reconfiguration of optomechanical filters,” Nat. Commun. 3, 846 (2012).
[Crossref]

Rakher, M.

K. Srinivasan, H. Miao, M. Rakher, M. Davanço, and V. Aksyuk, “Optomechanical transduction of an integrated silicon cantilever probe using a microdisk resonator,” Nano Lett. 11, 791–797 (2011).

Rivière, R.

G. Anetsberger, O. Arcizet, Q. Unterreithmeier, R. Rivière, A. Schliesser, E. Weig, J. Kotthaus, and T. Kippenberg, “Near-field cavity optomechanics with nanomechanical oscillators,” Nat. Phys. 5, 909–914 (2009).
[Crossref]

Robert-Philip, I.

E. Gavartin, R. Braive, I. Sagnes, O. Arcizet, A. Beveratos, T. Kippenberg, and I. Robert-Philip, “Optomechanical coupling in a two-dimensional photonic crystal defect cavity,” Phys. Rev. Lett. 106, 203902 (2011).
[Crossref]

Roundy, D.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. Joannopoulos, and S. G. Johnson, “Meep: a flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181, 687–702 (2010).
[Crossref]

Safavi-Naeini, A.

A. Safavi-Naeini, J. Chan, J. Hill, T. P. M. Alegre, A. Krause, and O. Painter, “Observation of quantum motion of a nanomechanical resonator,” Phys. Rev. Lett. 108, 033602 (2012).
[Crossref]

Safavi-Naeini, A. H.

J. Chan, T. P. M. Alegre, A. H. Safavi-Naeini, J. T. Hill, A. Krause, S. Groblacher, M. Aspelmeyer, and O. Painter, “Laser cooling of a nanomechanical oscillator into its quantum ground state,” Nature 478, 89–92 (2011).
[Crossref]

Sagnes, I.

E. Gavartin, R. Braive, I. Sagnes, O. Arcizet, A. Beveratos, T. Kippenberg, and I. Robert-Philip, “Optomechanical coupling in a two-dimensional photonic crystal defect cavity,” Phys. Rev. Lett. 106, 203902 (2011).
[Crossref]

Schliesser, A.

G. Anetsberger, O. Arcizet, Q. Unterreithmeier, R. Rivière, A. Schliesser, E. Weig, J. Kotthaus, and T. Kippenberg, “Near-field cavity optomechanics with nanomechanical oscillators,” Nat. Phys. 5, 909–914 (2009).
[Crossref]

Schnabel, R.

S. P. Tarabrin, H. Kaufer, F. Y. Khalili, R. Schnabel, and K. Hammerer, “Anomalous dynamic backaction in interferomters,” Phys. Rev. A 88, 023809 (2013).
[Crossref]

A. Xuereb, R. Schnabel, and K. Hammerer, “Dissipative optomechanics in a Michelson-Sagnac interferometer,” Phys. Rev. Lett. 107, 213604 (2011).
[Crossref]

Sears, J.

I. Avrutsky, R. Gibson, J. Sears, G. Khitrova, H. M. Gibbs, and J. Hendrickson, “Linear systems approach to describing and classifying Fano resonances,” Phys. Rev. B 87, 125118 (2013).

Shanks, W.

A. Bleszynski-Jayich, W. Shanks, B. Peadecerf, E. Ginossar, F. von Oppen, L. Glazman, and J. Harris, “Persistent currents in normal metal rings,” Science 326, 272–275 (2009).
[Crossref]

Skorobogatiy, M. A.

S. G. Johnson, M. Ibanescu, M. A. Skorobogatiy, O. Weisberg, J. D. Joannopoulos, and Y. Fink, “Perturbation theory for Maxwell’s equations with shifting material boundaries,” Phys. Rev. E 65, 066611 (2002).
[Crossref]

Srinivasan, K.

K. Srinivasan, H. Miao, M. Rakher, M. Davanço, and V. Aksyuk, “Optomechanical transduction of an integrated silicon cantilever probe using a microdisk resonator,” Nano Lett. 11, 791–797 (2011).

P. E. Barclay, K. Srinivasan, M. Borselli, and O. Painter, “Efficient input and output optical fiber coupling to a photonic crystal waveguide,” Opt. Lett. 29, 697–699 (2004).
[Crossref]

Sun, X.

X. Sun, J. Zhang, M. Poot, C. Wong, and H. Tang, “Femtogram doubly clamped nanomechanical resonators embedded in a high-Q two-dimensional photonic crystal nanocavity,” Nano Lett. 12, 2299–2305 (2012).

Tang, H.

X. Sun, J. Zhang, M. Poot, C. Wong, and H. Tang, “Femtogram doubly clamped nanomechanical resonators embedded in a high-Q two-dimensional photonic crystal nanocavity,” Nano Lett. 12, 2299–2305 (2012).

M. Bagheri, M. Poot, M. Li, W. Pernice, and H. Tang, “Dynamic manipulation of nanomechanical resonators in the high-amplitude regime and non-volatile mechanical memory operation,” Nat. Nanotechnol. 6, 726–732 (2011).
[Crossref]

M. Li, W. Pernice, and H. Tang, “Reactive cavity optical force on microdisk-coupled nanomechanical beam waveguides,” Phys. Rev. Lett. 103, 223901 (2009).
[Crossref]

Tang, H. X.

M. Li, W. H. P. Pernice, and H. X. Tang, “Broadband all-photonic transduction of nanocantilevers,” Nat. Nanotechnol. 4, 377–382 (2009).
[Crossref]

M. Li, W. H. P. Pernice, C. Xiong, T. Baehr-Jones, M. Hochberg, and H. X. Tang, “Harnessing optical forces in integrated photonic circuits,” Nature 456, 480–484 (2008).
[Crossref]

Tarabrin, S. P.

S. P. Tarabrin, H. Kaufer, F. Y. Khalili, R. Schnabel, and K. Hammerer, “Anomalous dynamic backaction in interferomters,” Phys. Rev. A 88, 023809 (2013).
[Crossref]

Unterreithmeier, Q.

G. Anetsberger, O. Arcizet, Q. Unterreithmeier, R. Rivière, A. Schliesser, E. Weig, J. Kotthaus, and T. Kippenberg, “Near-field cavity optomechanics with nanomechanical oscillators,” Nat. Phys. 5, 909–914 (2009).
[Crossref]

Vahala, K.

M. Eichenfield, J. Chan, R. Camacho, K. Vahala, and O. Painter, “Optomechanical crystals,” Nature 462, 78–82 (2009).
[Crossref]

Vahala, K. J.

M. Eichenfield, R. Camacho, J. Chan, K. J. Vahala, and O. Painter, “A picogram and nanometer scale photonic crystal opto-mechanical cavity,” Nature 459, 550–555 (2009).
[Crossref]

Villeneuve, P. R.

C. Manolatou, M. J. Khan, S. Fan, P. R. Villeneuve, H. A. Haus, and J. D. Joannopoulos, “Coupling of modes analysis of resonant channel add-drop filters,” IEEE J. Quantum Electron. 35, 1322–1331 (1999).
[Crossref]

von Oppen, F.

A. Bleszynski-Jayich, W. Shanks, B. Peadecerf, E. Ginossar, F. von Oppen, L. Glazman, and J. Harris, “Persistent currents in normal metal rings,” Science 326, 272–275 (2009).
[Crossref]

Weig, E.

G. Anetsberger, O. Arcizet, Q. Unterreithmeier, R. Rivière, A. Schliesser, E. Weig, J. Kotthaus, and T. Kippenberg, “Near-field cavity optomechanics with nanomechanical oscillators,” Nat. Phys. 5, 909–914 (2009).
[Crossref]

Weisberg, O.

S. G. Johnson, M. Ibanescu, M. A. Skorobogatiy, O. Weisberg, J. D. Joannopoulos, and Y. Fink, “Perturbation theory for Maxwell’s equations with shifting material boundaries,” Phys. Rev. E 65, 066611 (2002).
[Crossref]

Weiss, T.

T. Weiss and A. Nunnenkamp, “Quantum limit of laser cooling in dispersively and dissipatively coupled optomechanical systems,” Phys. Rev. A 88, 023850 (2013).
[Crossref]

Winger, M.

A. G. Krause, M. Winger, T. D. Blasius, W. Lin, and O. Painter, “A high-resolution microchip optomechanical accelerometer,” Nat. Photonics 6, 768–772 (2012).
[Crossref]

Wong, C.

Y. Liu, Y. Xiao, X. Luan, and C. Wong, “Dynamic dissipative cooling of a mechanical resonator in strong coupling optomechanics,” Phys. Rev. Lett. 110, 153606 (2013).
[Crossref]

X. Sun, J. Zhang, M. Poot, C. Wong, and H. Tang, “Femtogram doubly clamped nanomechanical resonators embedded in a high-Q two-dimensional photonic crystal nanocavity,” Nano Lett. 12, 2299–2305 (2012).

Wu, M.

M. Wu, A. C. Hryciw, C. Healey, D. P. Lake, H. Jayakumar, M. R. Freeman, J. P. Davis, and P. E. Barclay, “Dissipative and dispersive optomechanics in a nanocavity torque sensor,” Phys. Rev. X 4, 021052 (2014).
[Crossref]

Xiao, Y.

Y. Liu, Y. Xiao, X. Luan, and C. Wong, “Dynamic dissipative cooling of a mechanical resonator in strong coupling optomechanics,” Phys. Rev. Lett. 110, 153606 (2013).
[Crossref]

Xiong, C.

M. Li, W. H. P. Pernice, C. Xiong, T. Baehr-Jones, M. Hochberg, and H. X. Tang, “Harnessing optical forces in integrated photonic circuits,” Nature 456, 480–484 (2008).
[Crossref]

Xuereb, A.

A. Xuereb, R. Schnabel, and K. Hammerer, “Dissipative optomechanics in a Michelson-Sagnac interferometer,” Phys. Rev. Lett. 107, 213604 (2011).
[Crossref]

Yang, Y.-P.

W.-J. Gu, G.-X. Li, and Y.-P. Yang, “Generation of squeezed states in a movable mirror via dissipative optomechanical coupling,” Phys. Rev. A 88, 013835 (2013).
[Crossref]

Yariv, A.

Zhang, J.

X. Sun, J. Zhang, M. Poot, C. Wong, and H. Tang, “Femtogram doubly clamped nanomechanical resonators embedded in a high-Q two-dimensional photonic crystal nanocavity,” Nano Lett. 12, 2299–2305 (2012).

Zhang, Y.

P. Deotare, I. Bulu, I. W. Frank, Q. Quan, Y. Zhang, R. Ilic, and M. Lončar, “All optical reconfiguration of optomechanical filters,” Nat. Commun. 3, 846 (2012).
[Crossref]

Appl. Phys. Lett. (1)

P. Kim, C. Doolin, B. Hauer, A. MacDonald, M. Freeman, P. Barclay, and J. Davis, “Nanoscale torsional optomechanics,” Appl. Phys. Lett. 102, 053102 (2013).
[Crossref]

Comput. Phys. Commun. (1)

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. Joannopoulos, and S. G. Johnson, “Meep: a flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181, 687–702 (2010).
[Crossref]

IEEE J. Quantum Electron. (1)

C. Manolatou, M. J. Khan, S. Fan, P. R. Villeneuve, H. A. Haus, and J. D. Joannopoulos, “Coupling of modes analysis of resonant channel add-drop filters,” IEEE J. Quantum Electron. 35, 1322–1331 (1999).
[Crossref]

Nano Lett. (2)

X. Sun, J. Zhang, M. Poot, C. Wong, and H. Tang, “Femtogram doubly clamped nanomechanical resonators embedded in a high-Q two-dimensional photonic crystal nanocavity,” Nano Lett. 12, 2299–2305 (2012).

K. Srinivasan, H. Miao, M. Rakher, M. Davanço, and V. Aksyuk, “Optomechanical transduction of an integrated silicon cantilever probe using a microdisk resonator,” Nano Lett. 11, 791–797 (2011).

Nat. Commun. (1)

P. Deotare, I. Bulu, I. W. Frank, Q. Quan, Y. Zhang, R. Ilic, and M. Lončar, “All optical reconfiguration of optomechanical filters,” Nat. Commun. 3, 846 (2012).
[Crossref]

Nat. Nanotechnol. (2)

M. Bagheri, M. Poot, M. Li, W. Pernice, and H. Tang, “Dynamic manipulation of nanomechanical resonators in the high-amplitude regime and non-volatile mechanical memory operation,” Nat. Nanotechnol. 6, 726–732 (2011).
[Crossref]

M. Li, W. H. P. Pernice, and H. X. Tang, “Broadband all-photonic transduction of nanocantilevers,” Nat. Nanotechnol. 4, 377–382 (2009).
[Crossref]

Nat. Photonics (2)

A. G. Krause, M. Winger, T. D. Blasius, W. Lin, and O. Painter, “A high-resolution microchip optomechanical accelerometer,” Nat. Photonics 6, 768–772 (2012).
[Crossref]

M. Eichenfield, C. Michael, R. Perahia, and O. Painter, “Actuation of micro-optomechanical systems via cavity-enhanced optical dipole forces,” Nat. Photonics 1, 416–422 (2007).
[Crossref]

Nat. Phys. (1)

G. Anetsberger, O. Arcizet, Q. Unterreithmeier, R. Rivière, A. Schliesser, E. Weig, J. Kotthaus, and T. Kippenberg, “Near-field cavity optomechanics with nanomechanical oscillators,” Nat. Phys. 5, 909–914 (2009).
[Crossref]

Nature (4)

M. Li, W. H. P. Pernice, C. Xiong, T. Baehr-Jones, M. Hochberg, and H. X. Tang, “Harnessing optical forces in integrated photonic circuits,” Nature 456, 480–484 (2008).
[Crossref]

M. Eichenfield, J. Chan, R. Camacho, K. Vahala, and O. Painter, “Optomechanical crystals,” Nature 462, 78–82 (2009).
[Crossref]

M. Eichenfield, R. Camacho, J. Chan, K. J. Vahala, and O. Painter, “A picogram and nanometer scale photonic crystal opto-mechanical cavity,” Nature 459, 550–555 (2009).
[Crossref]

J. Chan, T. P. M. Alegre, A. H. Safavi-Naeini, J. T. Hill, A. Krause, S. Groblacher, M. Aspelmeyer, and O. Painter, “Laser cooling of a nanomechanical oscillator into its quantum ground state,” Nature 478, 89–92 (2011).
[Crossref]

Opt. Express (3)

Opt. Lett. (2)

Phys. Rev. A (3)

S. P. Tarabrin, H. Kaufer, F. Y. Khalili, R. Schnabel, and K. Hammerer, “Anomalous dynamic backaction in interferomters,” Phys. Rev. A 88, 023809 (2013).
[Crossref]

W.-J. Gu, G.-X. Li, and Y.-P. Yang, “Generation of squeezed states in a movable mirror via dissipative optomechanical coupling,” Phys. Rev. A 88, 013835 (2013).
[Crossref]

T. Weiss and A. Nunnenkamp, “Quantum limit of laser cooling in dispersively and dissipatively coupled optomechanical systems,” Phys. Rev. A 88, 023850 (2013).
[Crossref]

Phys. Rev. B (1)

I. Avrutsky, R. Gibson, J. Sears, G. Khitrova, H. M. Gibbs, and J. Hendrickson, “Linear systems approach to describing and classifying Fano resonances,” Phys. Rev. B 87, 125118 (2013).

Phys. Rev. E (1)

S. G. Johnson, M. Ibanescu, M. A. Skorobogatiy, O. Weisberg, J. D. Joannopoulos, and Y. Fink, “Perturbation theory for Maxwell’s equations with shifting material boundaries,” Phys. Rev. E 65, 066611 (2002).
[Crossref]

Phys. Rev. Lett. (6)

Y. Liu, Y. Xiao, X. Luan, and C. Wong, “Dynamic dissipative cooling of a mechanical resonator in strong coupling optomechanics,” Phys. Rev. Lett. 110, 153606 (2013).
[Crossref]

A. Xuereb, R. Schnabel, and K. Hammerer, “Dissipative optomechanics in a Michelson-Sagnac interferometer,” Phys. Rev. Lett. 107, 213604 (2011).
[Crossref]

A. Safavi-Naeini, J. Chan, J. Hill, T. P. M. Alegre, A. Krause, and O. Painter, “Observation of quantum motion of a nanomechanical resonator,” Phys. Rev. Lett. 108, 033602 (2012).
[Crossref]

M. Li, W. Pernice, and H. Tang, “Reactive cavity optical force on microdisk-coupled nanomechanical beam waveguides,” Phys. Rev. Lett. 103, 223901 (2009).
[Crossref]

F. Elste, S. Girvin, and A. Clerk, “Quantum noise interference and backaction cooling in cavity nanomechanics,” Phys. Rev. Lett. 102, 207209 (2009).
[Crossref]

E. Gavartin, R. Braive, I. Sagnes, O. Arcizet, A. Beveratos, T. Kippenberg, and I. Robert-Philip, “Optomechanical coupling in a two-dimensional photonic crystal defect cavity,” Phys. Rev. Lett. 106, 203902 (2011).
[Crossref]

Phys. Rev. X (1)

M. Wu, A. C. Hryciw, C. Healey, D. P. Lake, H. Jayakumar, M. R. Freeman, J. P. Davis, and P. E. Barclay, “Dissipative and dispersive optomechanics in a nanocavity torque sensor,” Phys. Rev. X 4, 021052 (2014).
[Crossref]

Science (1)

A. Bleszynski-Jayich, W. Shanks, B. Peadecerf, E. Ginossar, F. von Oppen, L. Glazman, and J. Harris, “Persistent currents in normal metal rings,” Science 326, 272–275 (2009).
[Crossref]

Other (1)

M. Aspelmeyer, T. Kippenberg, and C. Marquardt, “Cavity optomechanics,” arXiv:1303.0733 (2013).

Supplementary Material (1)

» Media 1: PDF (2187 KB)     

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

(a) Scanning-electron micrographs of a split-beam photonic crystal nanocavity. The nanocavity optical mode ( E y ) is superimposed on the device in the upper image. (b) Schematic of experimental geometry when fiber is hovering above (left) and touching (right) one of the mirrors. (c) Renormalization of the optical mode by the optical fiber taper. The field plots show E y in the center of the cavity with (upper) and without (lower) the fiber taper. The red–blue scale bar indicates the normalized electric field amplitude for all figures.

Fig. 2.
Fig. 2.

(a) Fiber taper transmission under weak coupling (taper height h 500 nm ). (b) Mechanical mode spectrum when the fiber is in contact with M1. The displacement profile of the fundamental cantilever mode of M2 is shown next to the corresponding peak (amplitude greatly exaggerated). (c) Mechanical mode spectrum with the fiber hovering above the cavity center ( z f 0 ), as close as possible without touching the cantilevers ( h < 150 nm ); the laser detuning was chosen to maximize the peak magnitude. Fabrication imperfections impart a 200 kHz splitting between these resonances. (d) Scanning-electron micrograph of the split-beam cavity center.

Fig. 3.
Fig. 3.

(a) Mechanical spectrum S VV 1 / 2 ( f ) of cantilever modes with fiber hovering 250 nm above M1 (blue) and M2 (green). In each case, the wavelength was tuned to maximize the mechanical resonance. (b)  S VV 1 / 2 ( f , λ ) for the fiber hovering above/touching M1/M2, with the maxima with respect to f marked by red dotted lines. The DC fiber transmission for each configuration is shown in blue.

Fig. 4.
Fig. 4.

(a)  S VV 1 / 2 versus detuning, Δ λ = λ λ o , for the fiber hovering (upper) and touching (lower) the cantilevers, corresponding to the dotted-line slices in Fig. 3(b). The fits use the model in [11]; Γ is given by Eq. (2). (b)  S VV versus λ for varying h hovering over M2 ( z f 2 μm ) until touchdown ( h = 0 ); T ( λ ) is shown in red for selected heights.

Fig. 5.
Fig. 5.

(a) Simulated (circles) and experimental (squares) dispersive ( g om ) and dissipative ( g e ) coupling coefficients for the fiber dimple hovering above M2 ( z f = 2 μm ). Dotted lines indicate fits to numerical simulations. Experimental values are extracted from Fig. 4(b). Simulations assume that g e , M 1 is negligible (i.e., g e = g e , M 2 ) due to a relatively large separation between the fiber taper dimple and M1. (b) Simulated Γ ( h ) (red line) and B ˜ / A ˜ (black line) predicted from the g e and g om values in (a). The simulated Γ ( h ) also uses an approximation of the experimentally observed T d ( h ) . Blue squares indicate experimental Γ ( h ) values taken from coefficients in (a).

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

g om = ω o 2 d A ( d Q d x · n ^ ) [ Δ ε | E | 2 Δ ( ϵ 1 ) | D | 2 ] d V ϵ | E | 2 ,
Γ = | g e d T d γ e | max g om d T d ω o | max | = 8 g e ( h ) T d ( h ) g om ( h ) ( 1 T d ( h ) ) ,

Metrics