Abstract

Optical scanning holography (OSH) is a technique that employs a single-pixel sensor to capture the hologram of a three-dimensional object through a sequential row-by-row scanning process. Being different from standard digital hologram acquisition methods that are based on a two-dimensional camera with restricted capturing area and highly limited spatial resolution, OSH is capable of acquiring holograms of wide-field scenes with high resolution. However, this favorable feature also implies a large data size that inevitably leads to various problems in the transmission and processing of the holographic data. In this paper, we propose a new framework, which we call compressive optical scanning holography (COSH), to handle this problem. Briefly, we incorporate a near computational-free and noniterative method to select the hologram pixels to be included in the optical scanning process, and subsequently to convert the value of each acquired pixel into a 1-bit binary representation at the moment when it is detected by the single-pixel sensor. As such, the data size of the hologram can be reduced by one to two order(s) of magnitude. In addition, in the selection of the pixels with our proposed method, the hologram row that is likely to contain similar content to the previous row is not scanned, hence leading to a considerable reduction in the hologram acquisition time. At the receiving end, the hologram can be recovered through simple interpolation of the compressed data. The compressive OSH capturing system can be realized to operate at video rate with very simple hardware or software implementation. We have demonstrated experimentally that the proposed COSH method is capable of acquiring a hologram with less than 1% of its original data size, and still preserving good fidelity on its contents.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Three-dimensional microscopy and sectional image reconstruction using optical scanning holography

Edmund Y. Lam, Xin Zhang, Huy Vo, Ting-Chung Poon, and Guy Indebetouw
Appl. Opt. 48(34) H113-H119 (2009)

Compressive multiple view projection incoherent holography

Yair Rivenson, Adrian Stern, and Joseph Rosen
Opt. Express 19(7) 6109-6118 (2011)

Edge-preserving sectional image reconstruction in optical scanning holography

Xin Zhang and Edmund Y. Lam
J. Opt. Soc. Am. A 27(7) 1630-1637 (2010)

References

  • View by:
  • |
  • |
  • |

  1. L. H. Enloe, J. A. Murphy, C. B. Rubinstein, “Hologram transmission via television,” Bell Syst. Tech. J. 45, 335–339 (1966).
    [Crossref]
  2. J. W. Goodman, R. W. Lawrence, “Digital image formation from electronically detected holograms,” Appl. Phys. Lett. 11, 77–79 (1967).
    [Crossref]
  3. C. B. Burckhardt, L. H. Enloe, “Television transmission of holograms with reduced resolution requirements on the camera tubes,” Bell Syst. Tech. J. 48, 1529–1535 (1969).
    [Crossref]
  4. I. Yamaguchi, J. Kato, S. Ohta, J. Mizuno, “Image formation in phase-shifting digital holography and applications to microscopy,” Appl. Opt. 40, 6177–6186 (2001).
    [Crossref]
  5. T.-C. Poon, A. Korpel, “Optical transfer function of an acousto-optic heterodyning image processor,” Opt. Lett. 4, 317–319 (1979).
    [Crossref]
  6. T.-C. Poon, “Optical scanning holography: a review of recent progress,” J. Opt. Soc. Korea 13, 406–415 (2009).
    [Crossref]
  7. T.-C. Poon, Optical Scanning Holography with Matlab (Springer, 2007).
  8. B. W. Schilling, T.-C. Poon, G. Indebetouw, B. Storrie, K. Shinoda, Y. Suzuki, M. H. Wu, “Three-dimensional holographic fluorescence microscopy,” Opt. Lett. 22, 1506–1508 (1997).
    [Crossref]
  9. J. Swoger, M. Martínez-Corral, J. Huisken, E. Stelzer, “Optical scanning holography as a technique for high-resolution three-dimensional biological microscopy,” J. Opt. Soc. Am. A 19, 1910–1918 (2002).
    [Crossref]
  10. T. Kim, T.-C. Poon, G. Indebetouw, “Depth detection and image recovery in remote sensing by optical scanning holography,” Opt. Eng. 41, 1331–1338 (2002).
    [Crossref]
  11. T.-C. Poon, T. Kim, “Optical image recognition of three-dimensional objects,” Appl. Opt. 38, 370–381 (1999).
    [Crossref]
  12. P. W. M. Tsang, T.-C. Poon, J.-P. Liu, W. Situ, “Review of holographic-based three-dimensional object recognition techniques,” Appl. Opt. 53, G95–G104 (2014).
    [Crossref]
  13. Y. Lam, W. Situ, P. W. M. Tsang, “Fast compression of computer-generated holographic images based on a GPU-accelerated skip-dimension vector quantization method,” Chin. Opt. Lett. 11, 050901 (2013).
    [Crossref]
  14. E. Darakis, J. J. Soraghan, “Use of Fresnelets for phase-shifting digital hologram compression,” IEEE Trans. Image Process. 15, 3804–3811 (2006).
    [Crossref]
  15. T. Naughton, Y. Frauel, B. Javidi, E. Tajahuerce, “Compression of digital holograms for three-dimensional object reconstruction and recognition,” Appl. Opt. 41, 4124–4132 (2002).
    [Crossref]
  16. A. Chan, K. Wong, K. Tsia, E. Lam, “Reducing the acquisition time of optical scanning holography by compressed sensing,” in Imaging and Applied Optics 2014, OSA Technical Digest (online) (Optical Society of America, 2014), paper SM4F.4.
  17. P. Clemente, V. Durán, E. Tajahuerce, P. Andrés, V. Climent, J. Lancis, “Compressive holography with a single-pixel detector,” Opt. Lett. 38, 2524–2527 (2013).
    [Crossref]
  18. Y. Rivenson, A. Stern, B. Javidi, “Compressive Fresnel holography,” J. Disp. Technol. 6, 506–509 (2010).
  19. X. Zhang, E. Y. Lam, “Sectional image reconstruction in optical scanning holography using compressed sensing,” in 17th IEEE International Conference on Image Processing (ICIP) (IEEE, 2010), pp. 3349–3352.
  20. D. J. Brady, K. Choi, D. L. Marks, R. Horisaki, S. Lim, “Compressive holography,” Opt. Express 17, 13040–13049 (2009).
    [Crossref]
  21. Y. S. Zhu, S. W. Leung, C. M. Wong, “Adaptive non-uniform sampling delta modulation for audio/image processing,” IEEE Trans. Consumer Electron. 42, 1062–1072 (1996).
  22. Y. S. Zhu, S. W. Leung, C. M. Wong, “A digital audio processing system based on nonuniform sampling delta modulation,” IEEE Trans. Consumer Electron. 42, 80–86 (1996).
  23. A. S. M. Jiao, P. W. M. Tsang, T.-C. Poon, J.-P. Liu, C.-C. Lee, Y. K. Lam, “Automatic decomposition of a complex hologram based on the virtual diffraction plane framework,” J. Opt. 16, 075401 (2014).
    [Crossref]
  24. P. W. M. Tsang, T.-C. Poon, “Fast generation of digital holograms based on warping of the wavefront recording plane,” Opt. Express 23, 7667–7673 (2015).
    [Crossref]
  25. M. Kwon, S. Kim, S. Yoon, Y. Ho, E. Kim, “Object tracking mask-based NLUT on GPUs for real-time generation of holographic videos of three-dimensional scenes,” Opt. Express 23, 2101–2120 (2015).
    [Crossref]
  26. T. Shimobaba, H. Nakayama, N. Masuda, T. Ito, “Rapid calculation algorithm of Fresnel computer-generated-hologram using look-up table and wavefront-recording plane methods for three-dimensional display,” Opt. Express 18, 19504–19509 (2010).
    [Crossref]

2015 (2)

2014 (2)

P. W. M. Tsang, T.-C. Poon, J.-P. Liu, W. Situ, “Review of holographic-based three-dimensional object recognition techniques,” Appl. Opt. 53, G95–G104 (2014).
[Crossref]

A. S. M. Jiao, P. W. M. Tsang, T.-C. Poon, J.-P. Liu, C.-C. Lee, Y. K. Lam, “Automatic decomposition of a complex hologram based on the virtual diffraction plane framework,” J. Opt. 16, 075401 (2014).
[Crossref]

2013 (2)

2010 (2)

2009 (2)

2006 (1)

E. Darakis, J. J. Soraghan, “Use of Fresnelets for phase-shifting digital hologram compression,” IEEE Trans. Image Process. 15, 3804–3811 (2006).
[Crossref]

2002 (3)

2001 (1)

1999 (1)

1997 (1)

1996 (2)

Y. S. Zhu, S. W. Leung, C. M. Wong, “Adaptive non-uniform sampling delta modulation for audio/image processing,” IEEE Trans. Consumer Electron. 42, 1062–1072 (1996).

Y. S. Zhu, S. W. Leung, C. M. Wong, “A digital audio processing system based on nonuniform sampling delta modulation,” IEEE Trans. Consumer Electron. 42, 80–86 (1996).

1979 (1)

1969 (1)

C. B. Burckhardt, L. H. Enloe, “Television transmission of holograms with reduced resolution requirements on the camera tubes,” Bell Syst. Tech. J. 48, 1529–1535 (1969).
[Crossref]

1967 (1)

J. W. Goodman, R. W. Lawrence, “Digital image formation from electronically detected holograms,” Appl. Phys. Lett. 11, 77–79 (1967).
[Crossref]

1966 (1)

L. H. Enloe, J. A. Murphy, C. B. Rubinstein, “Hologram transmission via television,” Bell Syst. Tech. J. 45, 335–339 (1966).
[Crossref]

Andrés, P.

Brady, D. J.

Burckhardt, C. B.

C. B. Burckhardt, L. H. Enloe, “Television transmission of holograms with reduced resolution requirements on the camera tubes,” Bell Syst. Tech. J. 48, 1529–1535 (1969).
[Crossref]

Chan, A.

A. Chan, K. Wong, K. Tsia, E. Lam, “Reducing the acquisition time of optical scanning holography by compressed sensing,” in Imaging and Applied Optics 2014, OSA Technical Digest (online) (Optical Society of America, 2014), paper SM4F.4.

Choi, K.

Clemente, P.

Climent, V.

Darakis, E.

E. Darakis, J. J. Soraghan, “Use of Fresnelets for phase-shifting digital hologram compression,” IEEE Trans. Image Process. 15, 3804–3811 (2006).
[Crossref]

Durán, V.

Enloe, L. H.

C. B. Burckhardt, L. H. Enloe, “Television transmission of holograms with reduced resolution requirements on the camera tubes,” Bell Syst. Tech. J. 48, 1529–1535 (1969).
[Crossref]

L. H. Enloe, J. A. Murphy, C. B. Rubinstein, “Hologram transmission via television,” Bell Syst. Tech. J. 45, 335–339 (1966).
[Crossref]

Frauel, Y.

Goodman, J. W.

J. W. Goodman, R. W. Lawrence, “Digital image formation from electronically detected holograms,” Appl. Phys. Lett. 11, 77–79 (1967).
[Crossref]

Ho, Y.

Horisaki, R.

Huisken, J.

Indebetouw, G.

T. Kim, T.-C. Poon, G. Indebetouw, “Depth detection and image recovery in remote sensing by optical scanning holography,” Opt. Eng. 41, 1331–1338 (2002).
[Crossref]

B. W. Schilling, T.-C. Poon, G. Indebetouw, B. Storrie, K. Shinoda, Y. Suzuki, M. H. Wu, “Three-dimensional holographic fluorescence microscopy,” Opt. Lett. 22, 1506–1508 (1997).
[Crossref]

Ito, T.

Javidi, B.

Jiao, A. S. M.

A. S. M. Jiao, P. W. M. Tsang, T.-C. Poon, J.-P. Liu, C.-C. Lee, Y. K. Lam, “Automatic decomposition of a complex hologram based on the virtual diffraction plane framework,” J. Opt. 16, 075401 (2014).
[Crossref]

Kato, J.

Kim, E.

Kim, S.

Kim, T.

T. Kim, T.-C. Poon, G. Indebetouw, “Depth detection and image recovery in remote sensing by optical scanning holography,” Opt. Eng. 41, 1331–1338 (2002).
[Crossref]

T.-C. Poon, T. Kim, “Optical image recognition of three-dimensional objects,” Appl. Opt. 38, 370–381 (1999).
[Crossref]

Korpel, A.

Kwon, M.

Lam, E.

A. Chan, K. Wong, K. Tsia, E. Lam, “Reducing the acquisition time of optical scanning holography by compressed sensing,” in Imaging and Applied Optics 2014, OSA Technical Digest (online) (Optical Society of America, 2014), paper SM4F.4.

Lam, E. Y.

X. Zhang, E. Y. Lam, “Sectional image reconstruction in optical scanning holography using compressed sensing,” in 17th IEEE International Conference on Image Processing (ICIP) (IEEE, 2010), pp. 3349–3352.

Lam, Y.

Lam, Y. K.

A. S. M. Jiao, P. W. M. Tsang, T.-C. Poon, J.-P. Liu, C.-C. Lee, Y. K. Lam, “Automatic decomposition of a complex hologram based on the virtual diffraction plane framework,” J. Opt. 16, 075401 (2014).
[Crossref]

Lancis, J.

Lawrence, R. W.

J. W. Goodman, R. W. Lawrence, “Digital image formation from electronically detected holograms,” Appl. Phys. Lett. 11, 77–79 (1967).
[Crossref]

Lee, C.-C.

A. S. M. Jiao, P. W. M. Tsang, T.-C. Poon, J.-P. Liu, C.-C. Lee, Y. K. Lam, “Automatic decomposition of a complex hologram based on the virtual diffraction plane framework,” J. Opt. 16, 075401 (2014).
[Crossref]

Leung, S. W.

Y. S. Zhu, S. W. Leung, C. M. Wong, “Adaptive non-uniform sampling delta modulation for audio/image processing,” IEEE Trans. Consumer Electron. 42, 1062–1072 (1996).

Y. S. Zhu, S. W. Leung, C. M. Wong, “A digital audio processing system based on nonuniform sampling delta modulation,” IEEE Trans. Consumer Electron. 42, 80–86 (1996).

Lim, S.

Liu, J.-P.

A. S. M. Jiao, P. W. M. Tsang, T.-C. Poon, J.-P. Liu, C.-C. Lee, Y. K. Lam, “Automatic decomposition of a complex hologram based on the virtual diffraction plane framework,” J. Opt. 16, 075401 (2014).
[Crossref]

P. W. M. Tsang, T.-C. Poon, J.-P. Liu, W. Situ, “Review of holographic-based three-dimensional object recognition techniques,” Appl. Opt. 53, G95–G104 (2014).
[Crossref]

Marks, D. L.

Martínez-Corral, M.

Masuda, N.

Mizuno, J.

Murphy, J. A.

L. H. Enloe, J. A. Murphy, C. B. Rubinstein, “Hologram transmission via television,” Bell Syst. Tech. J. 45, 335–339 (1966).
[Crossref]

Nakayama, H.

Naughton, T.

Ohta, S.

Poon, T.-C.

Rivenson, Y.

Y. Rivenson, A. Stern, B. Javidi, “Compressive Fresnel holography,” J. Disp. Technol. 6, 506–509 (2010).

Rubinstein, C. B.

L. H. Enloe, J. A. Murphy, C. B. Rubinstein, “Hologram transmission via television,” Bell Syst. Tech. J. 45, 335–339 (1966).
[Crossref]

Schilling, B. W.

Shimobaba, T.

Shinoda, K.

Situ, W.

Soraghan, J. J.

E. Darakis, J. J. Soraghan, “Use of Fresnelets for phase-shifting digital hologram compression,” IEEE Trans. Image Process. 15, 3804–3811 (2006).
[Crossref]

Stelzer, E.

Stern, A.

Y. Rivenson, A. Stern, B. Javidi, “Compressive Fresnel holography,” J. Disp. Technol. 6, 506–509 (2010).

Storrie, B.

Suzuki, Y.

Swoger, J.

Tajahuerce, E.

Tsang, P. W. M.

Tsia, K.

A. Chan, K. Wong, K. Tsia, E. Lam, “Reducing the acquisition time of optical scanning holography by compressed sensing,” in Imaging and Applied Optics 2014, OSA Technical Digest (online) (Optical Society of America, 2014), paper SM4F.4.

Wong, C. M.

Y. S. Zhu, S. W. Leung, C. M. Wong, “A digital audio processing system based on nonuniform sampling delta modulation,” IEEE Trans. Consumer Electron. 42, 80–86 (1996).

Y. S. Zhu, S. W. Leung, C. M. Wong, “Adaptive non-uniform sampling delta modulation for audio/image processing,” IEEE Trans. Consumer Electron. 42, 1062–1072 (1996).

Wong, K.

A. Chan, K. Wong, K. Tsia, E. Lam, “Reducing the acquisition time of optical scanning holography by compressed sensing,” in Imaging and Applied Optics 2014, OSA Technical Digest (online) (Optical Society of America, 2014), paper SM4F.4.

Wu, M. H.

Yamaguchi, I.

Yoon, S.

Zhang, X.

X. Zhang, E. Y. Lam, “Sectional image reconstruction in optical scanning holography using compressed sensing,” in 17th IEEE International Conference on Image Processing (ICIP) (IEEE, 2010), pp. 3349–3352.

Zhu, Y. S.

Y. S. Zhu, S. W. Leung, C. M. Wong, “Adaptive non-uniform sampling delta modulation for audio/image processing,” IEEE Trans. Consumer Electron. 42, 1062–1072 (1996).

Y. S. Zhu, S. W. Leung, C. M. Wong, “A digital audio processing system based on nonuniform sampling delta modulation,” IEEE Trans. Consumer Electron. 42, 80–86 (1996).

Appl. Opt. (4)

Appl. Phys. Lett. (1)

J. W. Goodman, R. W. Lawrence, “Digital image formation from electronically detected holograms,” Appl. Phys. Lett. 11, 77–79 (1967).
[Crossref]

Bell Syst. Tech. J. (2)

C. B. Burckhardt, L. H. Enloe, “Television transmission of holograms with reduced resolution requirements on the camera tubes,” Bell Syst. Tech. J. 48, 1529–1535 (1969).
[Crossref]

L. H. Enloe, J. A. Murphy, C. B. Rubinstein, “Hologram transmission via television,” Bell Syst. Tech. J. 45, 335–339 (1966).
[Crossref]

Chin. Opt. Lett. (1)

IEEE Trans. Consumer Electron. (2)

Y. S. Zhu, S. W. Leung, C. M. Wong, “Adaptive non-uniform sampling delta modulation for audio/image processing,” IEEE Trans. Consumer Electron. 42, 1062–1072 (1996).

Y. S. Zhu, S. W. Leung, C. M. Wong, “A digital audio processing system based on nonuniform sampling delta modulation,” IEEE Trans. Consumer Electron. 42, 80–86 (1996).

IEEE Trans. Image Process. (1)

E. Darakis, J. J. Soraghan, “Use of Fresnelets for phase-shifting digital hologram compression,” IEEE Trans. Image Process. 15, 3804–3811 (2006).
[Crossref]

J. Disp. Technol. (1)

Y. Rivenson, A. Stern, B. Javidi, “Compressive Fresnel holography,” J. Disp. Technol. 6, 506–509 (2010).

J. Opt. (1)

A. S. M. Jiao, P. W. M. Tsang, T.-C. Poon, J.-P. Liu, C.-C. Lee, Y. K. Lam, “Automatic decomposition of a complex hologram based on the virtual diffraction plane framework,” J. Opt. 16, 075401 (2014).
[Crossref]

J. Opt. Soc. Am. A (1)

J. Opt. Soc. Korea (1)

Opt. Eng. (1)

T. Kim, T.-C. Poon, G. Indebetouw, “Depth detection and image recovery in remote sensing by optical scanning holography,” Opt. Eng. 41, 1331–1338 (2002).
[Crossref]

Opt. Express (4)

Opt. Lett. (3)

Other (3)

T.-C. Poon, Optical Scanning Holography with Matlab (Springer, 2007).

X. Zhang, E. Y. Lam, “Sectional image reconstruction in optical scanning holography using compressed sensing,” in 17th IEEE International Conference on Image Processing (ICIP) (IEEE, 2010), pp. 3349–3352.

A. Chan, K. Wong, K. Tsia, E. Lam, “Reducing the acquisition time of optical scanning holography by compressed sensing,” in Imaging and Applied Optics 2014, OSA Technical Digest (online) (Optical Society of America, 2014), paper SM4F.4.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1. Optical scanning holography setup to record the hologram of the object, I 0 ( x , y ; z ) (M’s, mirror; EOM, electro-optic modulator; PBS1,2, polarizing beamsplitters; HWP, half-wave plate; BE1,2, beam expanders; L1,2,3, lenses; BS, beamsplitter; PD1,2, photodetectors; QWP, quarter-wave plate; BPF, bandpass filter tuned at Ω ).
Fig. 2.
Fig. 2. (a) Flowchart of the encoding procedure of ANSDM. (b) Short sequence U = [ u 0 , u 1 , , u 5 ] = [ 6 , 5 , 7 , 4 , 3 , 2 ] of six hologram pixels (real part) in a row of scanning, each quantized to 16 bits, and a predefined fixed quantity S = 5 known as the step-size.
Fig. 3.
Fig. 3. (a)–(c) Process of converting the input data sequence into a shorter sequence of binary bits with the ANSDM method.
Fig. 4.
Fig. 4. Flowchart of the decoding procedure of ANSDM.
Fig. 5.
Fig. 5. (a)–(c) Process of recovering the sequence A = [ a 0 , a 1 , a 2 ] from the output bit-stream O = [ 1 , 1 , 0 ] based on step-size S = 5 .
Fig. 6.
Fig. 6. (a) Cosine hologram of the coins. (b) Sine hologram of the coins. (c) Reconstructed image at the focused plane.
Fig. 7.
Fig. 7. (a)–(c) Reconstructed images at the focused plane with step-size S = 0.08 , 0.05, and 0.03 of the dynamic range, respectively.
Fig. 8.
Fig. 8. (a) Cosine hologram of the two Chinese characters. (b) Sine hologram of the two Chinese characters. (c) Reconstructed image at 24.5 mm. (d) Reconstructed image at 21.5 mm.
Fig. 9.
Fig. 9. (a)–(c) Reconstructed images at 24.5 mm (left character) with step-size of 0.08, 0.05, and 0.03 of the dynamic range, respectively. (d)–(f) Reconstructed images at 21.5 mm (right character) with step-size of 0.08, 0.05, and 0.03 of the dynamic range, respectively.

Tables (5)

Tables Icon

Table 1. Result of Encoding Input Sequence U = [ 6 , 5 , 7 , 4 , 3 , 2 ] with the ANSDM Algorithm based on Step-Size S = 5

Tables Icon

Table 2. Result of Recovering the Sequence A from the Output Bit-Stream O = [ 1 , 1 , 0 ] based on Step-Size S = 5

Tables Icon

Table 3. Optical Setting in the OSH/COSH Acquisition Process

Tables Icon

Table 4. Compression Ratio and Fidelity of the Reconstructed Images Corresponding to the Compressed Holograms of the Coins Acquired with Step-Size of 0.08 to 0.03 (in Steps of 0.01) of the Dynamic Range of the Hologram, and D W = 2

Tables Icon

Table 5. Compression Ratio and Fidelity of the Reconstructed Images at 21.5 and 24.5 mm, Corresponding to the Compressed Holograms of the Chinese Characters Acquired with Step-Size of 0.08–0.03 (in Steps of 0.01) of the Dynamic Range of the Hologram, and D W = 2

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

d p = { d p 1 + 1 o p o p 2 max ( 1 , d p 1 1 ) o p = o p 1 = o p 2 1 otherwise ,
a p = { a p 1 + S o p = 1 a p 1 S o p = 0 .
CR = Q × U size O size ,
a p = a p 1 + g ( o p ) S = k = 0 p g ( o k ) S ,

Metrics