Abstract

Optical nanofibers (ONFs) provide a rich platform for exploring atomic and optical phenomena even when they support only a single spatial mode. Nanofibers supporting higher-order modes (HOMs) provide additional degrees of freedom to enable complex evanescent field profiles for interaction with the surrounding medium, but local control of these profiles requires nondestructive evaluation of the propagating fields. Here, we use Rayleigh scattering for rapid measurement of the propagation of light in few-mode ONFs. Imaging the Rayleigh scattered light provides direct visualization of the spatial evolution of propagating fields throughout the entire fiber, including the transition from core–cladding guidance to cladding–air guidance. We resolve the interference between HOMs to determine local beat lengths and modal content along the fiber, and show that the modal superposition in the waist can be systematically controlled by adjusting the input superposition. With this diagnostic we can measure variations in the radius of the fiber waist to below 3 nm in situ using purely optical means. This nondestructive technique also provides useful insight into light propagation in ONFs.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Modal interference in optical nanofibers for sub-Angstrom radius sensitivity

Fredrik K. Fatemi, Jonathan E. Hoffman, Pablo Solano, Eliot F. Fenton, Guy Beadie, Steven L. Rolston, and Luis A. Orozco
Optica 4(1) 157-162 (2017)

A low-loss photonic silica nanofiber for higher-order modes

S. Ravets, J. E. Hoffman, L. A. Orozco, S. L. Rolston, G. Beadie, and F. K. Fatemi
Opt. Express 21(15) 18325-18335 (2013)

Spatially-resolved Rayleigh scattering for analysis of vector mode propagation in few-mode fibers

Fredrik K. Fatemi and Guy Beadie
Opt. Express 23(3) 3831-3840 (2015)

References

  • View by:
  • |
  • |
  • |

  1. E. Vetsch, D. Reitz, G. Sagué, R. Schmidt, S. T. Dawkins, A. Rauschenbeutel, “Optical interface created by laser-cooled atoms trapped in the evanescent field surrounding an optical nanofiber,” Phys. Rev. Lett. 104, 203603 (2010).
    [Crossref]
  2. D. O’Shea, C. Junge, J. Volz, A. Rauschenbeutel, “Fiber-optical switch controlled by a single atom,” Phys. Rev. Lett. 111, 193601 (2013).
    [Crossref]
  3. D. Reitz, C. Sayrin, R. Mitsch, P. Schneeweiss, A. Rauschenbeutel, “Coherence properties of nanofiber-trapped cesium atoms,” Phys. Rev. Lett. 110, 243603 (2013).
    [Crossref]
  4. M. J. Morrissey, K. Deasy, Y. Wu, S. Chakrabarti, S. Nic Chormaic, “Tapered optical fibers as tools for probing magneto-optical trap characteristics,” Rev. Sci. Instrum. 80, 053102 (2009).
    [Crossref]
  5. K. P. Nayak, P. N. Melentiev, M. Morinaga, F. L. Kien, V. I. Balykin, K. Hakuta, “Optical nanofiber as an efficient tool for manipulating and probing atomic fluorescence,” Opt. Express 15, 5431–5438 (2007).
    [Crossref]
  6. F. L. Kien, S. D. Gupta, V. I. Balykin, K. Hakuta, “Spontaneous emission of a cesium atom near a nanofiber: efficient coupling of light to guided modes,” Phys. Rev. A 72, 032509 (2005).
    [Crossref]
  7. S. M. Spillane, G. S. Pati, K. Salit, M. Hall, P. Kumar, R. G. Beausoleil, M. S. Shahriar, “Observation of nonlinear optical interactions of ultralow levels of light in a tapered optical nanofiber embedded in a hot rubidium vapor,” Phys. Rev. Lett. 100, 233602 (2008).
    [Crossref]
  8. M. J. Morrissey, K. Deasy, M. Frawley, R. Kumar, E. Prel, L. Russell, V. G. Truong, S. Nic Chormaic, “Spectroscopy, manipulation and trapping of neutral atoms, molecules, and other particles using optical nanofibers: a review,” Sensors 13, 10449–10481 (2013).
    [Crossref]
  9. R. Mitsch, C. Sayrin, B. Albrecht, P. Schneeweiss, A. Rauschenbeutel, “Exploiting the local polarization of strongly confined light for sub-micrometer-resolution internal state preparation and manipulation of cold atoms,” Phys. Rev. A 89, 063829 (2014).
    [Crossref]
  10. C. Lacroûte, K. S. Choi, A. Goban, D. J. Alton, D. Ding, N. P. Stern, H. J. Kimble, “A state-insensitive, compensated nanofiber trap,” New. J. Phys. 14, 023056 (2012).
  11. J.-B. Béguin, E. M. Bookjans, S. L. Christensen, H. L. Sørensen, J. H. Müller, E. S. Polzik, J. Appel, “Generation and detection of a sub-Poissonian atom number distribution in a one-dimensional optical lattice,” Phys. Rev. Lett. 113, 263603 (2014).
    [Crossref]
  12. R. Yalla, F. L. Kien, M. Morinaga, K. Hakuta, “Efficient channeling of fluorescence photons from single quantum dots into guided modes of optical nanofiber,” Phys. Rev. Lett. 109, 063602 (2012).
    [Crossref]
  13. M. Fujiwara, K. Toubaru, T. Noda, H.-Q. Zhao, S. Takeuchi, “Highly efficient coupling of photons from nanoemitters into single-mode optical fibers,” Nano Lett. 11, 4362–4365 (2011).
  14. R. Garcia-Fernandez, W. Alt, F. Bruse, C. Dan, K. Karapetyan, O. Rehband, A. Stiebeiner, U. Wiedemann, D. Meschede, A. Rauschenbeutel, “Optical nanofibers and spectroscopy,” Appl. Phys. B 105, 3–15 (2011).
    [Crossref]
  15. S. Ravets, J. E. Hoffman, L. A. Orozco, S. L. Rolston, G. Beadie, F. K. Fatemi, “A low-loss photonic silica nanofiber for higher-order modes,” Opt. Express 21, 18325–18335 (2013).
    [Crossref]
  16. M. C. Frawley, A. Petcu-Colan, V. G. Truong, S. Nic Chormaic, “Higher order mode propagation in an optical nanofiber,” Opt. Commun. 285, 4648–4654 (2012).
    [Crossref]
  17. G. Sagué, A. Baade, A. Rauschenbeutel, “Blue-detuned evanescent field surface traps for neutral atoms based on mode interference in ultrathin optical fibres,” New J. Phys 10, 113008 (2008).
    [Crossref]
  18. Q. Zhan, “Cylindrical vector beams: from mathematical concepts to applications,” Adv. Opt. Photon. 1, 1–57 (2009).
  19. F. K. Fatemi, “Cylindrical vector beams for rapid polarization-dependent measurements in atomic systems,” Opt. Express 19, 25143–25150 (2011).
    [Crossref]
  20. F. K. Fatemi, G. Beadie, “Rapid complex mode decomposition of vector beams by common path interferometry,” Opt. Express 21, 32291–32305 (2013).
    [Crossref]
  21. S. Golowich, N. Bozinovic, P. Kristensen, S. Ramachandran, “Complex mode amplitude measurement for a six-mode optical fiber,” Opt. Express 21, 4931–4944 (2013).
    [Crossref]
  22. D. Flamm, D. Naidoo, C. Schulze, A. Forbes, M. Duparré, “Mode analysis with a spatial light modulator as a correlation filter,” Opt. Lett. 37, 2478–2480 (2012).
    [Crossref]
  23. E. Vetsch, S. T. Dawkins, R. Mitsch, D. Reitz, P. Schneeweiss, A. Rauschenbeutel, “Nanofiber-based optical trapping of cold neutral atoms,” IEEE J. Sel. Top. Quantum Electron. 18, 1763–1770 (2012).
    [Crossref]
  24. D. Marcuse, Principles of Optical Fiber Measurement (Academic, 1981).
  25. A. Goban, K. Choi, D. J. Alton, D. Ding, C. Lacroûte, M. Pototschnig, T. Thiele, N. P. Stern, H. J. Kimble, “Demonstration of a state-insensitive, compensated nanofiber trap,” Phys. Rev. Lett 109, 033603 (2012).
    [Crossref]
  26. W. Eickhoff, O. Krumpholz, “Determination of the ellipticity of monomode glass fibres from measurements of scattered light intensity,” Electron. Lett 12, 405–407 (1976).
    [Crossref]
  27. F. K. Fatemi, G. Beadie, “Spatially-resolved Rayleigh scattering for analysis of vector mode propagation in few-mode fibers,” Opt. Express 23, 3831–3840 (2015).
    [Crossref]
  28. J. E. Hoffman, S. Ravets, J. Grover, P. Solano, P. R. Kordell, J. D. Wong-Campos, S. L. Rolston, L. A. Orozco, “Ultrahigh transmission optical nanofibers,” AIP Adv. 4, 067124 (2014).
    [Crossref]
  29. S. Ravets, J. E. Hoffman, P. R. Kordell, J. D. Wong-Campos, S. L. Rolston, L. A. Orozco, “Intermodal energy transfer in a tapered optical fiber: optimizing transmission,” J. Opt. Soc. Am. A 30, 2361–2371 (2013).
    [Crossref]
  30. T. Birks, Y. Li, “The shape of fiber tapers,” J. Lightwave Technol. 10, 432–438 (1992).
    [Crossref]
  31. F. Warken, “Ultra thin glass fibers as a tool for coupling light and matter,” Ph.D. thesis (Rheinische Friedrich-Wilhelms Universitat, Mainz, Germany, 2007).
  32. F. Orucevic, V. Lefèvre-Seguin, J. Hare, “Transmittance and near-field characterization of sub-wavelength tapered optical fibers,” Opt. Express 15, 13624–13629 (2007).
    [Crossref]
  33. P. Mazumder, S. L. Logunov, S. Raghavan, “Analysis of excess scattering in optical fibers,” J. Appl. Phys. 96, 4042–4049 (2004).
    [Crossref]
  34. J. Lee, D. H. Park, S. Mittal, M. Dagenais, S. L. Rolston, “Integrated optical dipole trap for cold neutral atoms with an optical waveguide coupler,” New J. Phys. 15, 043010 (2013).
    [Crossref]

2015 (1)

2014 (3)

R. Mitsch, C. Sayrin, B. Albrecht, P. Schneeweiss, A. Rauschenbeutel, “Exploiting the local polarization of strongly confined light for sub-micrometer-resolution internal state preparation and manipulation of cold atoms,” Phys. Rev. A 89, 063829 (2014).
[Crossref]

J.-B. Béguin, E. M. Bookjans, S. L. Christensen, H. L. Sørensen, J. H. Müller, E. S. Polzik, J. Appel, “Generation and detection of a sub-Poissonian atom number distribution in a one-dimensional optical lattice,” Phys. Rev. Lett. 113, 263603 (2014).
[Crossref]

J. E. Hoffman, S. Ravets, J. Grover, P. Solano, P. R. Kordell, J. D. Wong-Campos, S. L. Rolston, L. A. Orozco, “Ultrahigh transmission optical nanofibers,” AIP Adv. 4, 067124 (2014).
[Crossref]

2013 (8)

D. O’Shea, C. Junge, J. Volz, A. Rauschenbeutel, “Fiber-optical switch controlled by a single atom,” Phys. Rev. Lett. 111, 193601 (2013).
[Crossref]

D. Reitz, C. Sayrin, R. Mitsch, P. Schneeweiss, A. Rauschenbeutel, “Coherence properties of nanofiber-trapped cesium atoms,” Phys. Rev. Lett. 110, 243603 (2013).
[Crossref]

M. J. Morrissey, K. Deasy, M. Frawley, R. Kumar, E. Prel, L. Russell, V. G. Truong, S. Nic Chormaic, “Spectroscopy, manipulation and trapping of neutral atoms, molecules, and other particles using optical nanofibers: a review,” Sensors 13, 10449–10481 (2013).
[Crossref]

J. Lee, D. H. Park, S. Mittal, M. Dagenais, S. L. Rolston, “Integrated optical dipole trap for cold neutral atoms with an optical waveguide coupler,” New J. Phys. 15, 043010 (2013).
[Crossref]

S. Golowich, N. Bozinovic, P. Kristensen, S. Ramachandran, “Complex mode amplitude measurement for a six-mode optical fiber,” Opt. Express 21, 4931–4944 (2013).
[Crossref]

S. Ravets, J. E. Hoffman, L. A. Orozco, S. L. Rolston, G. Beadie, F. K. Fatemi, “A low-loss photonic silica nanofiber for higher-order modes,” Opt. Express 21, 18325–18335 (2013).
[Crossref]

S. Ravets, J. E. Hoffman, P. R. Kordell, J. D. Wong-Campos, S. L. Rolston, L. A. Orozco, “Intermodal energy transfer in a tapered optical fiber: optimizing transmission,” J. Opt. Soc. Am. A 30, 2361–2371 (2013).
[Crossref]

F. K. Fatemi, G. Beadie, “Rapid complex mode decomposition of vector beams by common path interferometry,” Opt. Express 21, 32291–32305 (2013).
[Crossref]

2012 (6)

D. Flamm, D. Naidoo, C. Schulze, A. Forbes, M. Duparré, “Mode analysis with a spatial light modulator as a correlation filter,” Opt. Lett. 37, 2478–2480 (2012).
[Crossref]

M. C. Frawley, A. Petcu-Colan, V. G. Truong, S. Nic Chormaic, “Higher order mode propagation in an optical nanofiber,” Opt. Commun. 285, 4648–4654 (2012).
[Crossref]

E. Vetsch, S. T. Dawkins, R. Mitsch, D. Reitz, P. Schneeweiss, A. Rauschenbeutel, “Nanofiber-based optical trapping of cold neutral atoms,” IEEE J. Sel. Top. Quantum Electron. 18, 1763–1770 (2012).
[Crossref]

A. Goban, K. Choi, D. J. Alton, D. Ding, C. Lacroûte, M. Pototschnig, T. Thiele, N. P. Stern, H. J. Kimble, “Demonstration of a state-insensitive, compensated nanofiber trap,” Phys. Rev. Lett 109, 033603 (2012).
[Crossref]

R. Yalla, F. L. Kien, M. Morinaga, K. Hakuta, “Efficient channeling of fluorescence photons from single quantum dots into guided modes of optical nanofiber,” Phys. Rev. Lett. 109, 063602 (2012).
[Crossref]

C. Lacroûte, K. S. Choi, A. Goban, D. J. Alton, D. Ding, N. P. Stern, H. J. Kimble, “A state-insensitive, compensated nanofiber trap,” New. J. Phys. 14, 023056 (2012).

2011 (3)

M. Fujiwara, K. Toubaru, T. Noda, H.-Q. Zhao, S. Takeuchi, “Highly efficient coupling of photons from nanoemitters into single-mode optical fibers,” Nano Lett. 11, 4362–4365 (2011).

R. Garcia-Fernandez, W. Alt, F. Bruse, C. Dan, K. Karapetyan, O. Rehband, A. Stiebeiner, U. Wiedemann, D. Meschede, A. Rauschenbeutel, “Optical nanofibers and spectroscopy,” Appl. Phys. B 105, 3–15 (2011).
[Crossref]

F. K. Fatemi, “Cylindrical vector beams for rapid polarization-dependent measurements in atomic systems,” Opt. Express 19, 25143–25150 (2011).
[Crossref]

2010 (1)

E. Vetsch, D. Reitz, G. Sagué, R. Schmidt, S. T. Dawkins, A. Rauschenbeutel, “Optical interface created by laser-cooled atoms trapped in the evanescent field surrounding an optical nanofiber,” Phys. Rev. Lett. 104, 203603 (2010).
[Crossref]

2009 (2)

M. J. Morrissey, K. Deasy, Y. Wu, S. Chakrabarti, S. Nic Chormaic, “Tapered optical fibers as tools for probing magneto-optical trap characteristics,” Rev. Sci. Instrum. 80, 053102 (2009).
[Crossref]

Q. Zhan, “Cylindrical vector beams: from mathematical concepts to applications,” Adv. Opt. Photon. 1, 1–57 (2009).

2008 (2)

G. Sagué, A. Baade, A. Rauschenbeutel, “Blue-detuned evanescent field surface traps for neutral atoms based on mode interference in ultrathin optical fibres,” New J. Phys 10, 113008 (2008).
[Crossref]

S. M. Spillane, G. S. Pati, K. Salit, M. Hall, P. Kumar, R. G. Beausoleil, M. S. Shahriar, “Observation of nonlinear optical interactions of ultralow levels of light in a tapered optical nanofiber embedded in a hot rubidium vapor,” Phys. Rev. Lett. 100, 233602 (2008).
[Crossref]

2007 (2)

2005 (1)

F. L. Kien, S. D. Gupta, V. I. Balykin, K. Hakuta, “Spontaneous emission of a cesium atom near a nanofiber: efficient coupling of light to guided modes,” Phys. Rev. A 72, 032509 (2005).
[Crossref]

2004 (1)

P. Mazumder, S. L. Logunov, S. Raghavan, “Analysis of excess scattering in optical fibers,” J. Appl. Phys. 96, 4042–4049 (2004).
[Crossref]

1992 (1)

T. Birks, Y. Li, “The shape of fiber tapers,” J. Lightwave Technol. 10, 432–438 (1992).
[Crossref]

1976 (1)

W. Eickhoff, O. Krumpholz, “Determination of the ellipticity of monomode glass fibres from measurements of scattered light intensity,” Electron. Lett 12, 405–407 (1976).
[Crossref]

Albrecht, B.

R. Mitsch, C. Sayrin, B. Albrecht, P. Schneeweiss, A. Rauschenbeutel, “Exploiting the local polarization of strongly confined light for sub-micrometer-resolution internal state preparation and manipulation of cold atoms,” Phys. Rev. A 89, 063829 (2014).
[Crossref]

Alt, W.

R. Garcia-Fernandez, W. Alt, F. Bruse, C. Dan, K. Karapetyan, O. Rehband, A. Stiebeiner, U. Wiedemann, D. Meschede, A. Rauschenbeutel, “Optical nanofibers and spectroscopy,” Appl. Phys. B 105, 3–15 (2011).
[Crossref]

Alton, D. J.

C. Lacroûte, K. S. Choi, A. Goban, D. J. Alton, D. Ding, N. P. Stern, H. J. Kimble, “A state-insensitive, compensated nanofiber trap,” New. J. Phys. 14, 023056 (2012).

A. Goban, K. Choi, D. J. Alton, D. Ding, C. Lacroûte, M. Pototschnig, T. Thiele, N. P. Stern, H. J. Kimble, “Demonstration of a state-insensitive, compensated nanofiber trap,” Phys. Rev. Lett 109, 033603 (2012).
[Crossref]

Appel, J.

J.-B. Béguin, E. M. Bookjans, S. L. Christensen, H. L. Sørensen, J. H. Müller, E. S. Polzik, J. Appel, “Generation and detection of a sub-Poissonian atom number distribution in a one-dimensional optical lattice,” Phys. Rev. Lett. 113, 263603 (2014).
[Crossref]

Baade, A.

G. Sagué, A. Baade, A. Rauschenbeutel, “Blue-detuned evanescent field surface traps for neutral atoms based on mode interference in ultrathin optical fibres,” New J. Phys 10, 113008 (2008).
[Crossref]

Balykin, V. I.

K. P. Nayak, P. N. Melentiev, M. Morinaga, F. L. Kien, V. I. Balykin, K. Hakuta, “Optical nanofiber as an efficient tool for manipulating and probing atomic fluorescence,” Opt. Express 15, 5431–5438 (2007).
[Crossref]

F. L. Kien, S. D. Gupta, V. I. Balykin, K. Hakuta, “Spontaneous emission of a cesium atom near a nanofiber: efficient coupling of light to guided modes,” Phys. Rev. A 72, 032509 (2005).
[Crossref]

Beadie, G.

Beausoleil, R. G.

S. M. Spillane, G. S. Pati, K. Salit, M. Hall, P. Kumar, R. G. Beausoleil, M. S. Shahriar, “Observation of nonlinear optical interactions of ultralow levels of light in a tapered optical nanofiber embedded in a hot rubidium vapor,” Phys. Rev. Lett. 100, 233602 (2008).
[Crossref]

Béguin, J.-B.

J.-B. Béguin, E. M. Bookjans, S. L. Christensen, H. L. Sørensen, J. H. Müller, E. S. Polzik, J. Appel, “Generation and detection of a sub-Poissonian atom number distribution in a one-dimensional optical lattice,” Phys. Rev. Lett. 113, 263603 (2014).
[Crossref]

Birks, T.

T. Birks, Y. Li, “The shape of fiber tapers,” J. Lightwave Technol. 10, 432–438 (1992).
[Crossref]

Bookjans, E. M.

J.-B. Béguin, E. M. Bookjans, S. L. Christensen, H. L. Sørensen, J. H. Müller, E. S. Polzik, J. Appel, “Generation and detection of a sub-Poissonian atom number distribution in a one-dimensional optical lattice,” Phys. Rev. Lett. 113, 263603 (2014).
[Crossref]

Bozinovic, N.

Bruse, F.

R. Garcia-Fernandez, W. Alt, F. Bruse, C. Dan, K. Karapetyan, O. Rehband, A. Stiebeiner, U. Wiedemann, D. Meschede, A. Rauschenbeutel, “Optical nanofibers and spectroscopy,” Appl. Phys. B 105, 3–15 (2011).
[Crossref]

Chakrabarti, S.

M. J. Morrissey, K. Deasy, Y. Wu, S. Chakrabarti, S. Nic Chormaic, “Tapered optical fibers as tools for probing magneto-optical trap characteristics,” Rev. Sci. Instrum. 80, 053102 (2009).
[Crossref]

Choi, K.

A. Goban, K. Choi, D. J. Alton, D. Ding, C. Lacroûte, M. Pototschnig, T. Thiele, N. P. Stern, H. J. Kimble, “Demonstration of a state-insensitive, compensated nanofiber trap,” Phys. Rev. Lett 109, 033603 (2012).
[Crossref]

Choi, K. S.

C. Lacroûte, K. S. Choi, A. Goban, D. J. Alton, D. Ding, N. P. Stern, H. J. Kimble, “A state-insensitive, compensated nanofiber trap,” New. J. Phys. 14, 023056 (2012).

Christensen, S. L.

J.-B. Béguin, E. M. Bookjans, S. L. Christensen, H. L. Sørensen, J. H. Müller, E. S. Polzik, J. Appel, “Generation and detection of a sub-Poissonian atom number distribution in a one-dimensional optical lattice,” Phys. Rev. Lett. 113, 263603 (2014).
[Crossref]

Dagenais, M.

J. Lee, D. H. Park, S. Mittal, M. Dagenais, S. L. Rolston, “Integrated optical dipole trap for cold neutral atoms with an optical waveguide coupler,” New J. Phys. 15, 043010 (2013).
[Crossref]

Dan, C.

R. Garcia-Fernandez, W. Alt, F. Bruse, C. Dan, K. Karapetyan, O. Rehband, A. Stiebeiner, U. Wiedemann, D. Meschede, A. Rauschenbeutel, “Optical nanofibers and spectroscopy,” Appl. Phys. B 105, 3–15 (2011).
[Crossref]

Dawkins, S. T.

E. Vetsch, S. T. Dawkins, R. Mitsch, D. Reitz, P. Schneeweiss, A. Rauschenbeutel, “Nanofiber-based optical trapping of cold neutral atoms,” IEEE J. Sel. Top. Quantum Electron. 18, 1763–1770 (2012).
[Crossref]

E. Vetsch, D. Reitz, G. Sagué, R. Schmidt, S. T. Dawkins, A. Rauschenbeutel, “Optical interface created by laser-cooled atoms trapped in the evanescent field surrounding an optical nanofiber,” Phys. Rev. Lett. 104, 203603 (2010).
[Crossref]

Deasy, K.

M. J. Morrissey, K. Deasy, M. Frawley, R. Kumar, E. Prel, L. Russell, V. G. Truong, S. Nic Chormaic, “Spectroscopy, manipulation and trapping of neutral atoms, molecules, and other particles using optical nanofibers: a review,” Sensors 13, 10449–10481 (2013).
[Crossref]

M. J. Morrissey, K. Deasy, Y. Wu, S. Chakrabarti, S. Nic Chormaic, “Tapered optical fibers as tools for probing magneto-optical trap characteristics,” Rev. Sci. Instrum. 80, 053102 (2009).
[Crossref]

Ding, D.

C. Lacroûte, K. S. Choi, A. Goban, D. J. Alton, D. Ding, N. P. Stern, H. J. Kimble, “A state-insensitive, compensated nanofiber trap,” New. J. Phys. 14, 023056 (2012).

A. Goban, K. Choi, D. J. Alton, D. Ding, C. Lacroûte, M. Pototschnig, T. Thiele, N. P. Stern, H. J. Kimble, “Demonstration of a state-insensitive, compensated nanofiber trap,” Phys. Rev. Lett 109, 033603 (2012).
[Crossref]

Duparré, M.

Eickhoff, W.

W. Eickhoff, O. Krumpholz, “Determination of the ellipticity of monomode glass fibres from measurements of scattered light intensity,” Electron. Lett 12, 405–407 (1976).
[Crossref]

Fatemi, F. K.

Flamm, D.

Forbes, A.

Frawley, M.

M. J. Morrissey, K. Deasy, M. Frawley, R. Kumar, E. Prel, L. Russell, V. G. Truong, S. Nic Chormaic, “Spectroscopy, manipulation and trapping of neutral atoms, molecules, and other particles using optical nanofibers: a review,” Sensors 13, 10449–10481 (2013).
[Crossref]

Frawley, M. C.

M. C. Frawley, A. Petcu-Colan, V. G. Truong, S. Nic Chormaic, “Higher order mode propagation in an optical nanofiber,” Opt. Commun. 285, 4648–4654 (2012).
[Crossref]

Fujiwara, M.

M. Fujiwara, K. Toubaru, T. Noda, H.-Q. Zhao, S. Takeuchi, “Highly efficient coupling of photons from nanoemitters into single-mode optical fibers,” Nano Lett. 11, 4362–4365 (2011).

Garcia-Fernandez, R.

R. Garcia-Fernandez, W. Alt, F. Bruse, C. Dan, K. Karapetyan, O. Rehband, A. Stiebeiner, U. Wiedemann, D. Meschede, A. Rauschenbeutel, “Optical nanofibers and spectroscopy,” Appl. Phys. B 105, 3–15 (2011).
[Crossref]

Goban, A.

C. Lacroûte, K. S. Choi, A. Goban, D. J. Alton, D. Ding, N. P. Stern, H. J. Kimble, “A state-insensitive, compensated nanofiber trap,” New. J. Phys. 14, 023056 (2012).

A. Goban, K. Choi, D. J. Alton, D. Ding, C. Lacroûte, M. Pototschnig, T. Thiele, N. P. Stern, H. J. Kimble, “Demonstration of a state-insensitive, compensated nanofiber trap,” Phys. Rev. Lett 109, 033603 (2012).
[Crossref]

Golowich, S.

Grover, J.

J. E. Hoffman, S. Ravets, J. Grover, P. Solano, P. R. Kordell, J. D. Wong-Campos, S. L. Rolston, L. A. Orozco, “Ultrahigh transmission optical nanofibers,” AIP Adv. 4, 067124 (2014).
[Crossref]

Gupta, S. D.

F. L. Kien, S. D. Gupta, V. I. Balykin, K. Hakuta, “Spontaneous emission of a cesium atom near a nanofiber: efficient coupling of light to guided modes,” Phys. Rev. A 72, 032509 (2005).
[Crossref]

Hakuta, K.

R. Yalla, F. L. Kien, M. Morinaga, K. Hakuta, “Efficient channeling of fluorescence photons from single quantum dots into guided modes of optical nanofiber,” Phys. Rev. Lett. 109, 063602 (2012).
[Crossref]

K. P. Nayak, P. N. Melentiev, M. Morinaga, F. L. Kien, V. I. Balykin, K. Hakuta, “Optical nanofiber as an efficient tool for manipulating and probing atomic fluorescence,” Opt. Express 15, 5431–5438 (2007).
[Crossref]

F. L. Kien, S. D. Gupta, V. I. Balykin, K. Hakuta, “Spontaneous emission of a cesium atom near a nanofiber: efficient coupling of light to guided modes,” Phys. Rev. A 72, 032509 (2005).
[Crossref]

Hall, M.

S. M. Spillane, G. S. Pati, K. Salit, M. Hall, P. Kumar, R. G. Beausoleil, M. S. Shahriar, “Observation of nonlinear optical interactions of ultralow levels of light in a tapered optical nanofiber embedded in a hot rubidium vapor,” Phys. Rev. Lett. 100, 233602 (2008).
[Crossref]

Hare, J.

Hoffman, J. E.

Junge, C.

D. O’Shea, C. Junge, J. Volz, A. Rauschenbeutel, “Fiber-optical switch controlled by a single atom,” Phys. Rev. Lett. 111, 193601 (2013).
[Crossref]

Karapetyan, K.

R. Garcia-Fernandez, W. Alt, F. Bruse, C. Dan, K. Karapetyan, O. Rehband, A. Stiebeiner, U. Wiedemann, D. Meschede, A. Rauschenbeutel, “Optical nanofibers and spectroscopy,” Appl. Phys. B 105, 3–15 (2011).
[Crossref]

Kien, F. L.

R. Yalla, F. L. Kien, M. Morinaga, K. Hakuta, “Efficient channeling of fluorescence photons from single quantum dots into guided modes of optical nanofiber,” Phys. Rev. Lett. 109, 063602 (2012).
[Crossref]

K. P. Nayak, P. N. Melentiev, M. Morinaga, F. L. Kien, V. I. Balykin, K. Hakuta, “Optical nanofiber as an efficient tool for manipulating and probing atomic fluorescence,” Opt. Express 15, 5431–5438 (2007).
[Crossref]

F. L. Kien, S. D. Gupta, V. I. Balykin, K. Hakuta, “Spontaneous emission of a cesium atom near a nanofiber: efficient coupling of light to guided modes,” Phys. Rev. A 72, 032509 (2005).
[Crossref]

Kimble, H. J.

C. Lacroûte, K. S. Choi, A. Goban, D. J. Alton, D. Ding, N. P. Stern, H. J. Kimble, “A state-insensitive, compensated nanofiber trap,” New. J. Phys. 14, 023056 (2012).

A. Goban, K. Choi, D. J. Alton, D. Ding, C. Lacroûte, M. Pototschnig, T. Thiele, N. P. Stern, H. J. Kimble, “Demonstration of a state-insensitive, compensated nanofiber trap,” Phys. Rev. Lett 109, 033603 (2012).
[Crossref]

Kordell, P. R.

J. E. Hoffman, S. Ravets, J. Grover, P. Solano, P. R. Kordell, J. D. Wong-Campos, S. L. Rolston, L. A. Orozco, “Ultrahigh transmission optical nanofibers,” AIP Adv. 4, 067124 (2014).
[Crossref]

S. Ravets, J. E. Hoffman, P. R. Kordell, J. D. Wong-Campos, S. L. Rolston, L. A. Orozco, “Intermodal energy transfer in a tapered optical fiber: optimizing transmission,” J. Opt. Soc. Am. A 30, 2361–2371 (2013).
[Crossref]

Kristensen, P.

Krumpholz, O.

W. Eickhoff, O. Krumpholz, “Determination of the ellipticity of monomode glass fibres from measurements of scattered light intensity,” Electron. Lett 12, 405–407 (1976).
[Crossref]

Kumar, P.

S. M. Spillane, G. S. Pati, K. Salit, M. Hall, P. Kumar, R. G. Beausoleil, M. S. Shahriar, “Observation of nonlinear optical interactions of ultralow levels of light in a tapered optical nanofiber embedded in a hot rubidium vapor,” Phys. Rev. Lett. 100, 233602 (2008).
[Crossref]

Kumar, R.

M. J. Morrissey, K. Deasy, M. Frawley, R. Kumar, E. Prel, L. Russell, V. G. Truong, S. Nic Chormaic, “Spectroscopy, manipulation and trapping of neutral atoms, molecules, and other particles using optical nanofibers: a review,” Sensors 13, 10449–10481 (2013).
[Crossref]

Lacroûte, C.

C. Lacroûte, K. S. Choi, A. Goban, D. J. Alton, D. Ding, N. P. Stern, H. J. Kimble, “A state-insensitive, compensated nanofiber trap,” New. J. Phys. 14, 023056 (2012).

A. Goban, K. Choi, D. J. Alton, D. Ding, C. Lacroûte, M. Pototschnig, T. Thiele, N. P. Stern, H. J. Kimble, “Demonstration of a state-insensitive, compensated nanofiber trap,” Phys. Rev. Lett 109, 033603 (2012).
[Crossref]

Lee, J.

J. Lee, D. H. Park, S. Mittal, M. Dagenais, S. L. Rolston, “Integrated optical dipole trap for cold neutral atoms with an optical waveguide coupler,” New J. Phys. 15, 043010 (2013).
[Crossref]

Lefèvre-Seguin, V.

Li, Y.

T. Birks, Y. Li, “The shape of fiber tapers,” J. Lightwave Technol. 10, 432–438 (1992).
[Crossref]

Logunov, S. L.

P. Mazumder, S. L. Logunov, S. Raghavan, “Analysis of excess scattering in optical fibers,” J. Appl. Phys. 96, 4042–4049 (2004).
[Crossref]

Marcuse, D.

D. Marcuse, Principles of Optical Fiber Measurement (Academic, 1981).

Mazumder, P.

P. Mazumder, S. L. Logunov, S. Raghavan, “Analysis of excess scattering in optical fibers,” J. Appl. Phys. 96, 4042–4049 (2004).
[Crossref]

Melentiev, P. N.

Meschede, D.

R. Garcia-Fernandez, W. Alt, F. Bruse, C. Dan, K. Karapetyan, O. Rehband, A. Stiebeiner, U. Wiedemann, D. Meschede, A. Rauschenbeutel, “Optical nanofibers and spectroscopy,” Appl. Phys. B 105, 3–15 (2011).
[Crossref]

Mitsch, R.

R. Mitsch, C. Sayrin, B. Albrecht, P. Schneeweiss, A. Rauschenbeutel, “Exploiting the local polarization of strongly confined light for sub-micrometer-resolution internal state preparation and manipulation of cold atoms,” Phys. Rev. A 89, 063829 (2014).
[Crossref]

D. Reitz, C. Sayrin, R. Mitsch, P. Schneeweiss, A. Rauschenbeutel, “Coherence properties of nanofiber-trapped cesium atoms,” Phys. Rev. Lett. 110, 243603 (2013).
[Crossref]

E. Vetsch, S. T. Dawkins, R. Mitsch, D. Reitz, P. Schneeweiss, A. Rauschenbeutel, “Nanofiber-based optical trapping of cold neutral atoms,” IEEE J. Sel. Top. Quantum Electron. 18, 1763–1770 (2012).
[Crossref]

Mittal, S.

J. Lee, D. H. Park, S. Mittal, M. Dagenais, S. L. Rolston, “Integrated optical dipole trap for cold neutral atoms with an optical waveguide coupler,” New J. Phys. 15, 043010 (2013).
[Crossref]

Morinaga, M.

R. Yalla, F. L. Kien, M. Morinaga, K. Hakuta, “Efficient channeling of fluorescence photons from single quantum dots into guided modes of optical nanofiber,” Phys. Rev. Lett. 109, 063602 (2012).
[Crossref]

K. P. Nayak, P. N. Melentiev, M. Morinaga, F. L. Kien, V. I. Balykin, K. Hakuta, “Optical nanofiber as an efficient tool for manipulating and probing atomic fluorescence,” Opt. Express 15, 5431–5438 (2007).
[Crossref]

Morrissey, M. J.

M. J. Morrissey, K. Deasy, M. Frawley, R. Kumar, E. Prel, L. Russell, V. G. Truong, S. Nic Chormaic, “Spectroscopy, manipulation and trapping of neutral atoms, molecules, and other particles using optical nanofibers: a review,” Sensors 13, 10449–10481 (2013).
[Crossref]

M. J. Morrissey, K. Deasy, Y. Wu, S. Chakrabarti, S. Nic Chormaic, “Tapered optical fibers as tools for probing magneto-optical trap characteristics,” Rev. Sci. Instrum. 80, 053102 (2009).
[Crossref]

Müller, J. H.

J.-B. Béguin, E. M. Bookjans, S. L. Christensen, H. L. Sørensen, J. H. Müller, E. S. Polzik, J. Appel, “Generation and detection of a sub-Poissonian atom number distribution in a one-dimensional optical lattice,” Phys. Rev. Lett. 113, 263603 (2014).
[Crossref]

Naidoo, D.

Nayak, K. P.

Nic Chormaic, S.

M. J. Morrissey, K. Deasy, M. Frawley, R. Kumar, E. Prel, L. Russell, V. G. Truong, S. Nic Chormaic, “Spectroscopy, manipulation and trapping of neutral atoms, molecules, and other particles using optical nanofibers: a review,” Sensors 13, 10449–10481 (2013).
[Crossref]

M. C. Frawley, A. Petcu-Colan, V. G. Truong, S. Nic Chormaic, “Higher order mode propagation in an optical nanofiber,” Opt. Commun. 285, 4648–4654 (2012).
[Crossref]

M. J. Morrissey, K. Deasy, Y. Wu, S. Chakrabarti, S. Nic Chormaic, “Tapered optical fibers as tools for probing magneto-optical trap characteristics,” Rev. Sci. Instrum. 80, 053102 (2009).
[Crossref]

Noda, T.

M. Fujiwara, K. Toubaru, T. Noda, H.-Q. Zhao, S. Takeuchi, “Highly efficient coupling of photons from nanoemitters into single-mode optical fibers,” Nano Lett. 11, 4362–4365 (2011).

O’Shea, D.

D. O’Shea, C. Junge, J. Volz, A. Rauschenbeutel, “Fiber-optical switch controlled by a single atom,” Phys. Rev. Lett. 111, 193601 (2013).
[Crossref]

Orozco, L. A.

Orucevic, F.

Park, D. H.

J. Lee, D. H. Park, S. Mittal, M. Dagenais, S. L. Rolston, “Integrated optical dipole trap for cold neutral atoms with an optical waveguide coupler,” New J. Phys. 15, 043010 (2013).
[Crossref]

Pati, G. S.

S. M. Spillane, G. S. Pati, K. Salit, M. Hall, P. Kumar, R. G. Beausoleil, M. S. Shahriar, “Observation of nonlinear optical interactions of ultralow levels of light in a tapered optical nanofiber embedded in a hot rubidium vapor,” Phys. Rev. Lett. 100, 233602 (2008).
[Crossref]

Petcu-Colan, A.

M. C. Frawley, A. Petcu-Colan, V. G. Truong, S. Nic Chormaic, “Higher order mode propagation in an optical nanofiber,” Opt. Commun. 285, 4648–4654 (2012).
[Crossref]

Polzik, E. S.

J.-B. Béguin, E. M. Bookjans, S. L. Christensen, H. L. Sørensen, J. H. Müller, E. S. Polzik, J. Appel, “Generation and detection of a sub-Poissonian atom number distribution in a one-dimensional optical lattice,” Phys. Rev. Lett. 113, 263603 (2014).
[Crossref]

Pototschnig, M.

A. Goban, K. Choi, D. J. Alton, D. Ding, C. Lacroûte, M. Pototschnig, T. Thiele, N. P. Stern, H. J. Kimble, “Demonstration of a state-insensitive, compensated nanofiber trap,” Phys. Rev. Lett 109, 033603 (2012).
[Crossref]

Prel, E.

M. J. Morrissey, K. Deasy, M. Frawley, R. Kumar, E. Prel, L. Russell, V. G. Truong, S. Nic Chormaic, “Spectroscopy, manipulation and trapping of neutral atoms, molecules, and other particles using optical nanofibers: a review,” Sensors 13, 10449–10481 (2013).
[Crossref]

Raghavan, S.

P. Mazumder, S. L. Logunov, S. Raghavan, “Analysis of excess scattering in optical fibers,” J. Appl. Phys. 96, 4042–4049 (2004).
[Crossref]

Ramachandran, S.

Rauschenbeutel, A.

R. Mitsch, C. Sayrin, B. Albrecht, P. Schneeweiss, A. Rauschenbeutel, “Exploiting the local polarization of strongly confined light for sub-micrometer-resolution internal state preparation and manipulation of cold atoms,” Phys. Rev. A 89, 063829 (2014).
[Crossref]

D. Reitz, C. Sayrin, R. Mitsch, P. Schneeweiss, A. Rauschenbeutel, “Coherence properties of nanofiber-trapped cesium atoms,” Phys. Rev. Lett. 110, 243603 (2013).
[Crossref]

D. O’Shea, C. Junge, J. Volz, A. Rauschenbeutel, “Fiber-optical switch controlled by a single atom,” Phys. Rev. Lett. 111, 193601 (2013).
[Crossref]

E. Vetsch, S. T. Dawkins, R. Mitsch, D. Reitz, P. Schneeweiss, A. Rauschenbeutel, “Nanofiber-based optical trapping of cold neutral atoms,” IEEE J. Sel. Top. Quantum Electron. 18, 1763–1770 (2012).
[Crossref]

R. Garcia-Fernandez, W. Alt, F. Bruse, C. Dan, K. Karapetyan, O. Rehband, A. Stiebeiner, U. Wiedemann, D. Meschede, A. Rauschenbeutel, “Optical nanofibers and spectroscopy,” Appl. Phys. B 105, 3–15 (2011).
[Crossref]

E. Vetsch, D. Reitz, G. Sagué, R. Schmidt, S. T. Dawkins, A. Rauschenbeutel, “Optical interface created by laser-cooled atoms trapped in the evanescent field surrounding an optical nanofiber,” Phys. Rev. Lett. 104, 203603 (2010).
[Crossref]

G. Sagué, A. Baade, A. Rauschenbeutel, “Blue-detuned evanescent field surface traps for neutral atoms based on mode interference in ultrathin optical fibres,” New J. Phys 10, 113008 (2008).
[Crossref]

Ravets, S.

Rehband, O.

R. Garcia-Fernandez, W. Alt, F. Bruse, C. Dan, K. Karapetyan, O. Rehband, A. Stiebeiner, U. Wiedemann, D. Meschede, A. Rauschenbeutel, “Optical nanofibers and spectroscopy,” Appl. Phys. B 105, 3–15 (2011).
[Crossref]

Reitz, D.

D. Reitz, C. Sayrin, R. Mitsch, P. Schneeweiss, A. Rauschenbeutel, “Coherence properties of nanofiber-trapped cesium atoms,” Phys. Rev. Lett. 110, 243603 (2013).
[Crossref]

E. Vetsch, S. T. Dawkins, R. Mitsch, D. Reitz, P. Schneeweiss, A. Rauschenbeutel, “Nanofiber-based optical trapping of cold neutral atoms,” IEEE J. Sel. Top. Quantum Electron. 18, 1763–1770 (2012).
[Crossref]

E. Vetsch, D. Reitz, G. Sagué, R. Schmidt, S. T. Dawkins, A. Rauschenbeutel, “Optical interface created by laser-cooled atoms trapped in the evanescent field surrounding an optical nanofiber,” Phys. Rev. Lett. 104, 203603 (2010).
[Crossref]

Rolston, S. L.

J. E. Hoffman, S. Ravets, J. Grover, P. Solano, P. R. Kordell, J. D. Wong-Campos, S. L. Rolston, L. A. Orozco, “Ultrahigh transmission optical nanofibers,” AIP Adv. 4, 067124 (2014).
[Crossref]

S. Ravets, J. E. Hoffman, L. A. Orozco, S. L. Rolston, G. Beadie, F. K. Fatemi, “A low-loss photonic silica nanofiber for higher-order modes,” Opt. Express 21, 18325–18335 (2013).
[Crossref]

J. Lee, D. H. Park, S. Mittal, M. Dagenais, S. L. Rolston, “Integrated optical dipole trap for cold neutral atoms with an optical waveguide coupler,” New J. Phys. 15, 043010 (2013).
[Crossref]

S. Ravets, J. E. Hoffman, P. R. Kordell, J. D. Wong-Campos, S. L. Rolston, L. A. Orozco, “Intermodal energy transfer in a tapered optical fiber: optimizing transmission,” J. Opt. Soc. Am. A 30, 2361–2371 (2013).
[Crossref]

Russell, L.

M. J. Morrissey, K. Deasy, M. Frawley, R. Kumar, E. Prel, L. Russell, V. G. Truong, S. Nic Chormaic, “Spectroscopy, manipulation and trapping of neutral atoms, molecules, and other particles using optical nanofibers: a review,” Sensors 13, 10449–10481 (2013).
[Crossref]

Sagué, G.

E. Vetsch, D. Reitz, G. Sagué, R. Schmidt, S. T. Dawkins, A. Rauschenbeutel, “Optical interface created by laser-cooled atoms trapped in the evanescent field surrounding an optical nanofiber,” Phys. Rev. Lett. 104, 203603 (2010).
[Crossref]

G. Sagué, A. Baade, A. Rauschenbeutel, “Blue-detuned evanescent field surface traps for neutral atoms based on mode interference in ultrathin optical fibres,” New J. Phys 10, 113008 (2008).
[Crossref]

Salit, K.

S. M. Spillane, G. S. Pati, K. Salit, M. Hall, P. Kumar, R. G. Beausoleil, M. S. Shahriar, “Observation of nonlinear optical interactions of ultralow levels of light in a tapered optical nanofiber embedded in a hot rubidium vapor,” Phys. Rev. Lett. 100, 233602 (2008).
[Crossref]

Sayrin, C.

R. Mitsch, C. Sayrin, B. Albrecht, P. Schneeweiss, A. Rauschenbeutel, “Exploiting the local polarization of strongly confined light for sub-micrometer-resolution internal state preparation and manipulation of cold atoms,” Phys. Rev. A 89, 063829 (2014).
[Crossref]

D. Reitz, C. Sayrin, R. Mitsch, P. Schneeweiss, A. Rauschenbeutel, “Coherence properties of nanofiber-trapped cesium atoms,” Phys. Rev. Lett. 110, 243603 (2013).
[Crossref]

Schmidt, R.

E. Vetsch, D. Reitz, G. Sagué, R. Schmidt, S. T. Dawkins, A. Rauschenbeutel, “Optical interface created by laser-cooled atoms trapped in the evanescent field surrounding an optical nanofiber,” Phys. Rev. Lett. 104, 203603 (2010).
[Crossref]

Schneeweiss, P.

R. Mitsch, C. Sayrin, B. Albrecht, P. Schneeweiss, A. Rauschenbeutel, “Exploiting the local polarization of strongly confined light for sub-micrometer-resolution internal state preparation and manipulation of cold atoms,” Phys. Rev. A 89, 063829 (2014).
[Crossref]

D. Reitz, C. Sayrin, R. Mitsch, P. Schneeweiss, A. Rauschenbeutel, “Coherence properties of nanofiber-trapped cesium atoms,” Phys. Rev. Lett. 110, 243603 (2013).
[Crossref]

E. Vetsch, S. T. Dawkins, R. Mitsch, D. Reitz, P. Schneeweiss, A. Rauschenbeutel, “Nanofiber-based optical trapping of cold neutral atoms,” IEEE J. Sel. Top. Quantum Electron. 18, 1763–1770 (2012).
[Crossref]

Schulze, C.

Shahriar, M. S.

S. M. Spillane, G. S. Pati, K. Salit, M. Hall, P. Kumar, R. G. Beausoleil, M. S. Shahriar, “Observation of nonlinear optical interactions of ultralow levels of light in a tapered optical nanofiber embedded in a hot rubidium vapor,” Phys. Rev. Lett. 100, 233602 (2008).
[Crossref]

Solano, P.

J. E. Hoffman, S. Ravets, J. Grover, P. Solano, P. R. Kordell, J. D. Wong-Campos, S. L. Rolston, L. A. Orozco, “Ultrahigh transmission optical nanofibers,” AIP Adv. 4, 067124 (2014).
[Crossref]

Sørensen, H. L.

J.-B. Béguin, E. M. Bookjans, S. L. Christensen, H. L. Sørensen, J. H. Müller, E. S. Polzik, J. Appel, “Generation and detection of a sub-Poissonian atom number distribution in a one-dimensional optical lattice,” Phys. Rev. Lett. 113, 263603 (2014).
[Crossref]

Spillane, S. M.

S. M. Spillane, G. S. Pati, K. Salit, M. Hall, P. Kumar, R. G. Beausoleil, M. S. Shahriar, “Observation of nonlinear optical interactions of ultralow levels of light in a tapered optical nanofiber embedded in a hot rubidium vapor,” Phys. Rev. Lett. 100, 233602 (2008).
[Crossref]

Stern, N. P.

C. Lacroûte, K. S. Choi, A. Goban, D. J. Alton, D. Ding, N. P. Stern, H. J. Kimble, “A state-insensitive, compensated nanofiber trap,” New. J. Phys. 14, 023056 (2012).

A. Goban, K. Choi, D. J. Alton, D. Ding, C. Lacroûte, M. Pototschnig, T. Thiele, N. P. Stern, H. J. Kimble, “Demonstration of a state-insensitive, compensated nanofiber trap,” Phys. Rev. Lett 109, 033603 (2012).
[Crossref]

Stiebeiner, A.

R. Garcia-Fernandez, W. Alt, F. Bruse, C. Dan, K. Karapetyan, O. Rehband, A. Stiebeiner, U. Wiedemann, D. Meschede, A. Rauschenbeutel, “Optical nanofibers and spectroscopy,” Appl. Phys. B 105, 3–15 (2011).
[Crossref]

Takeuchi, S.

M. Fujiwara, K. Toubaru, T. Noda, H.-Q. Zhao, S. Takeuchi, “Highly efficient coupling of photons from nanoemitters into single-mode optical fibers,” Nano Lett. 11, 4362–4365 (2011).

Thiele, T.

A. Goban, K. Choi, D. J. Alton, D. Ding, C. Lacroûte, M. Pototschnig, T. Thiele, N. P. Stern, H. J. Kimble, “Demonstration of a state-insensitive, compensated nanofiber trap,” Phys. Rev. Lett 109, 033603 (2012).
[Crossref]

Toubaru, K.

M. Fujiwara, K. Toubaru, T. Noda, H.-Q. Zhao, S. Takeuchi, “Highly efficient coupling of photons from nanoemitters into single-mode optical fibers,” Nano Lett. 11, 4362–4365 (2011).

Truong, V. G.

M. J. Morrissey, K. Deasy, M. Frawley, R. Kumar, E. Prel, L. Russell, V. G. Truong, S. Nic Chormaic, “Spectroscopy, manipulation and trapping of neutral atoms, molecules, and other particles using optical nanofibers: a review,” Sensors 13, 10449–10481 (2013).
[Crossref]

M. C. Frawley, A. Petcu-Colan, V. G. Truong, S. Nic Chormaic, “Higher order mode propagation in an optical nanofiber,” Opt. Commun. 285, 4648–4654 (2012).
[Crossref]

Vetsch, E.

E. Vetsch, S. T. Dawkins, R. Mitsch, D. Reitz, P. Schneeweiss, A. Rauschenbeutel, “Nanofiber-based optical trapping of cold neutral atoms,” IEEE J. Sel. Top. Quantum Electron. 18, 1763–1770 (2012).
[Crossref]

E. Vetsch, D. Reitz, G. Sagué, R. Schmidt, S. T. Dawkins, A. Rauschenbeutel, “Optical interface created by laser-cooled atoms trapped in the evanescent field surrounding an optical nanofiber,” Phys. Rev. Lett. 104, 203603 (2010).
[Crossref]

Volz, J.

D. O’Shea, C. Junge, J. Volz, A. Rauschenbeutel, “Fiber-optical switch controlled by a single atom,” Phys. Rev. Lett. 111, 193601 (2013).
[Crossref]

Warken, F.

F. Warken, “Ultra thin glass fibers as a tool for coupling light and matter,” Ph.D. thesis (Rheinische Friedrich-Wilhelms Universitat, Mainz, Germany, 2007).

Wiedemann, U.

R. Garcia-Fernandez, W. Alt, F. Bruse, C. Dan, K. Karapetyan, O. Rehband, A. Stiebeiner, U. Wiedemann, D. Meschede, A. Rauschenbeutel, “Optical nanofibers and spectroscopy,” Appl. Phys. B 105, 3–15 (2011).
[Crossref]

Wong-Campos, J. D.

J. E. Hoffman, S. Ravets, J. Grover, P. Solano, P. R. Kordell, J. D. Wong-Campos, S. L. Rolston, L. A. Orozco, “Ultrahigh transmission optical nanofibers,” AIP Adv. 4, 067124 (2014).
[Crossref]

S. Ravets, J. E. Hoffman, P. R. Kordell, J. D. Wong-Campos, S. L. Rolston, L. A. Orozco, “Intermodal energy transfer in a tapered optical fiber: optimizing transmission,” J. Opt. Soc. Am. A 30, 2361–2371 (2013).
[Crossref]

Wu, Y.

M. J. Morrissey, K. Deasy, Y. Wu, S. Chakrabarti, S. Nic Chormaic, “Tapered optical fibers as tools for probing magneto-optical trap characteristics,” Rev. Sci. Instrum. 80, 053102 (2009).
[Crossref]

Yalla, R.

R. Yalla, F. L. Kien, M. Morinaga, K. Hakuta, “Efficient channeling of fluorescence photons from single quantum dots into guided modes of optical nanofiber,” Phys. Rev. Lett. 109, 063602 (2012).
[Crossref]

Zhan, Q.

Zhao, H.-Q.

M. Fujiwara, K. Toubaru, T. Noda, H.-Q. Zhao, S. Takeuchi, “Highly efficient coupling of photons from nanoemitters into single-mode optical fibers,” Nano Lett. 11, 4362–4365 (2011).

Adv. Opt. Photon. (1)

AIP Adv. (1)

J. E. Hoffman, S. Ravets, J. Grover, P. Solano, P. R. Kordell, J. D. Wong-Campos, S. L. Rolston, L. A. Orozco, “Ultrahigh transmission optical nanofibers,” AIP Adv. 4, 067124 (2014).
[Crossref]

Appl. Phys. B (1)

R. Garcia-Fernandez, W. Alt, F. Bruse, C. Dan, K. Karapetyan, O. Rehband, A. Stiebeiner, U. Wiedemann, D. Meschede, A. Rauschenbeutel, “Optical nanofibers and spectroscopy,” Appl. Phys. B 105, 3–15 (2011).
[Crossref]

Electron. Lett (1)

W. Eickhoff, O. Krumpholz, “Determination of the ellipticity of monomode glass fibres from measurements of scattered light intensity,” Electron. Lett 12, 405–407 (1976).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

E. Vetsch, S. T. Dawkins, R. Mitsch, D. Reitz, P. Schneeweiss, A. Rauschenbeutel, “Nanofiber-based optical trapping of cold neutral atoms,” IEEE J. Sel. Top. Quantum Electron. 18, 1763–1770 (2012).
[Crossref]

J. Appl. Phys. (1)

P. Mazumder, S. L. Logunov, S. Raghavan, “Analysis of excess scattering in optical fibers,” J. Appl. Phys. 96, 4042–4049 (2004).
[Crossref]

J. Lightwave Technol. (1)

T. Birks, Y. Li, “The shape of fiber tapers,” J. Lightwave Technol. 10, 432–438 (1992).
[Crossref]

J. Opt. Soc. Am. A (1)

Nano Lett. (1)

M. Fujiwara, K. Toubaru, T. Noda, H.-Q. Zhao, S. Takeuchi, “Highly efficient coupling of photons from nanoemitters into single-mode optical fibers,” Nano Lett. 11, 4362–4365 (2011).

New J. Phys (1)

G. Sagué, A. Baade, A. Rauschenbeutel, “Blue-detuned evanescent field surface traps for neutral atoms based on mode interference in ultrathin optical fibres,” New J. Phys 10, 113008 (2008).
[Crossref]

New J. Phys. (1)

J. Lee, D. H. Park, S. Mittal, M. Dagenais, S. L. Rolston, “Integrated optical dipole trap for cold neutral atoms with an optical waveguide coupler,” New J. Phys. 15, 043010 (2013).
[Crossref]

New. J. Phys. (1)

C. Lacroûte, K. S. Choi, A. Goban, D. J. Alton, D. Ding, N. P. Stern, H. J. Kimble, “A state-insensitive, compensated nanofiber trap,” New. J. Phys. 14, 023056 (2012).

Opt. Commun. (1)

M. C. Frawley, A. Petcu-Colan, V. G. Truong, S. Nic Chormaic, “Higher order mode propagation in an optical nanofiber,” Opt. Commun. 285, 4648–4654 (2012).
[Crossref]

Opt. Express (7)

Opt. Lett. (1)

Phys. Rev. A (2)

F. L. Kien, S. D. Gupta, V. I. Balykin, K. Hakuta, “Spontaneous emission of a cesium atom near a nanofiber: efficient coupling of light to guided modes,” Phys. Rev. A 72, 032509 (2005).
[Crossref]

R. Mitsch, C. Sayrin, B. Albrecht, P. Schneeweiss, A. Rauschenbeutel, “Exploiting the local polarization of strongly confined light for sub-micrometer-resolution internal state preparation and manipulation of cold atoms,” Phys. Rev. A 89, 063829 (2014).
[Crossref]

Phys. Rev. Lett (1)

A. Goban, K. Choi, D. J. Alton, D. Ding, C. Lacroûte, M. Pototschnig, T. Thiele, N. P. Stern, H. J. Kimble, “Demonstration of a state-insensitive, compensated nanofiber trap,” Phys. Rev. Lett 109, 033603 (2012).
[Crossref]

Phys. Rev. Lett. (6)

J.-B. Béguin, E. M. Bookjans, S. L. Christensen, H. L. Sørensen, J. H. Müller, E. S. Polzik, J. Appel, “Generation and detection of a sub-Poissonian atom number distribution in a one-dimensional optical lattice,” Phys. Rev. Lett. 113, 263603 (2014).
[Crossref]

R. Yalla, F. L. Kien, M. Morinaga, K. Hakuta, “Efficient channeling of fluorescence photons from single quantum dots into guided modes of optical nanofiber,” Phys. Rev. Lett. 109, 063602 (2012).
[Crossref]

S. M. Spillane, G. S. Pati, K. Salit, M. Hall, P. Kumar, R. G. Beausoleil, M. S. Shahriar, “Observation of nonlinear optical interactions of ultralow levels of light in a tapered optical nanofiber embedded in a hot rubidium vapor,” Phys. Rev. Lett. 100, 233602 (2008).
[Crossref]

E. Vetsch, D. Reitz, G. Sagué, R. Schmidt, S. T. Dawkins, A. Rauschenbeutel, “Optical interface created by laser-cooled atoms trapped in the evanescent field surrounding an optical nanofiber,” Phys. Rev. Lett. 104, 203603 (2010).
[Crossref]

D. O’Shea, C. Junge, J. Volz, A. Rauschenbeutel, “Fiber-optical switch controlled by a single atom,” Phys. Rev. Lett. 111, 193601 (2013).
[Crossref]

D. Reitz, C. Sayrin, R. Mitsch, P. Schneeweiss, A. Rauschenbeutel, “Coherence properties of nanofiber-trapped cesium atoms,” Phys. Rev. Lett. 110, 243603 (2013).
[Crossref]

Rev. Sci. Instrum. (1)

M. J. Morrissey, K. Deasy, Y. Wu, S. Chakrabarti, S. Nic Chormaic, “Tapered optical fibers as tools for probing magneto-optical trap characteristics,” Rev. Sci. Instrum. 80, 053102 (2009).
[Crossref]

Sensors (1)

M. J. Morrissey, K. Deasy, M. Frawley, R. Kumar, E. Prel, L. Russell, V. G. Truong, S. Nic Chormaic, “Spectroscopy, manipulation and trapping of neutral atoms, molecules, and other particles using optical nanofibers: a review,” Sensors 13, 10449–10481 (2013).
[Crossref]

Other (2)

F. Warken, “Ultra thin glass fibers as a tool for coupling light and matter,” Ph.D. thesis (Rheinische Friedrich-Wilhelms Universitat, Mainz, Germany, 2007).

D. Marcuse, Principles of Optical Fiber Measurement (Academic, 1981).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1.

Geometry of an optical nanofiber. The camera viewing direction is along y ^ , and light propagates from left to right along z ^ . E ^ is the scattered field. The tapered core is negligible in the fiber waist.

Fig. 2.
Fig. 2.

Effective index of refraction for the lowest lying modes in a nanofiber versus V -number (bottom axis) and radius (top axis). (b) Vector profile inside a 450 nm radius fiber for the transverse components of the TE 01 , TM 01 , and HE 21 o modes, respectively. The HE 21 e mode is not shown, but is orthogonal at all points with the HE 21 o mode. (c)  HE 21 e and TM 01 modes interfering. (d)  HE 21 o and TE 01 modes interfering. These images are representative of the transverse fields on the ONF waist. The solid black circle marks the cladding–air interface at a radius of 450 nm. The refractive indices are chosen to be 1.45 and 1 for the cladding and air, respectively.

Fig. 3.
Fig. 3.

Experimental setup to measure the Rayleigh scattering from an ONF.

Fig. 4.
Fig. 4.

High-resolution RS images of an ONF. Light is propagating from left to right. (a) Propagation through the entire ONF, beginning and ending in unmodified fiber. Ω = 0.75 mrad , a w = 1.5 μm . (b) Magnification of the input taper showing the transition from core to cladding near a radius of 13.5 μm. (c) Simulation of the propagation region shown in (b). Colors in the images have been adjusted to highlight structure in the taper.

Fig. 5.
Fig. 5.

Calculated inverse beat frequency for a w = 360 nm with Ω = 1 mrad and L w = 5 mm as a function of (a) propagation distance and (b) ONF radius.

Fig. 6.
Fig. 6.

(a) Detected (blue) and smoothed (red) transverse-polarized RS power along the ONF waist. (b) Spectrogram of concatenated images displaying the HE 21 mode beating with the TM 01 mode in arbitrary false color for the intensity. The dashed black line corresponds to values expected from a fiber profile calculated by the pulling software using a w = 360 nm .

Fig. 7.
Fig. 7.

(a) Detected (blue) and smoothed (red) transverse-polarized RS power along the ONF waist after summing over the transverse scattered power. (b) Spectrogram of aligned concatenated images displaying the HE 21 mode beating with the TE 01 mode in arbitrary false color for the intensity. The dashed black line corresponds to an overlapped exponential fiber profile. The overlap results in a fiber radius of 370 ± 10 nm . Note this is for a different sample than the fiber displayed in Fig. 6.

Fig. 8.
Fig. 8.

Conversion from the HE 21 e and TM 01 modes interfering to HE 21 o and TE 01 . (a) Each column corresponds to a FFT at a given HWP angle. (b) Absolute value of the FFT along the rows in (a) for HE 21 e and TM 01 beating together (blue squares) and HE 21 o and TE 01 modes beating together (red circles). Fits to the expected sin 2 2 α are shown as solid lines.

Fig. 9.
Fig. 9.

Launching a superposition of HOMs into a fiber with Ω = 1 mrad , a w = 300 nm , and L w = 10 mm , marked with a thin, dashed black line. The three panels correspond to scattering collected with (a) longitudinal polarization, (b) transverse polarization, and (c) total scatter as a function of length, respectively. The long, thick dashed black line denotes the HE 21 cutoff, and from that point we observe only the propagation of the TE 01 mode. The short dashed red lines show the power loss from the HE 21 mode ejecting from the ONF. The continuous black lines designate the ONF waist. The power scattered from 0 to 25 mm corresponds to the input taper, and the scattered power from 35 to 50 mm corresponds to the output taper. For clarity, the detected RS signal (solid blue) is smoothed (solid red) in each panel.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

V = a k n 1 2 n 2 2 ,
z b ( a ) = 2 π β 1 ( a ) β 2 ( a ) = λ n eff , 1 ( a ) n eff , 2 ( a ) .

Metrics