Abstract

The polarization dependence of the reflection, refraction, and diffraction of electromagnetic waves from materials is measured in applications that extend from small (e.g., ellipsometry of semiconductor chips) to large scales (e.g., remote sensing for planetary science and weather radar). Such applications employ polarimeters that are in turn based on devices with polarization-selective absorption or reflection/refraction properties (e.g., prisms). The latter devices are generally bulky, thereby limiting their integration into compact systems. The former devices are inherently lossy, as they function by absorbing the unwanted polarization. Here, we experimentally demonstrate a conceptually novel method for pixel-level polarimetry. Each pixel contains amorphous-silicon nanoridges and deflects incident light in a polarization-dependent manner. As photons are sorted by polarization rather than filtered, the approach permits high efficiency. A high transmission efficiency of 90% and a high extinction ratio of 15 times are demonstrated.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Polarization beam splitters, converters and analyzers based on a metasurface composed of regularly arranged silicon nanospheres with controllable coupling strength

Jin Xiang, Jinxiang Li, Hui Li, Chengyun Zhang, Qiaofeng Dai, Shaolong Tie, and Sheng Lan
Opt. Express 24(11) 11420-11434 (2016)

High-efficiency polarization beam splitter based on a self-collimating photonic crystal

Jong-Moon Park, Sun-Goo Lee, Hae-Ryeong Park, and Myung-Hyun Lee
J. Opt. Soc. Am. B 27(11) 2247-2254 (2010)

Wave-plate polarizing beam splitter based on a form-birefringent multilayer grating

A. G. Lopez and H. G. Craighead
Opt. Lett. 23(20) 1627-1629 (1998)

References

  • View by:
  • |
  • |
  • |

  1. S. Shwartz, E. Namer, Y. Schechner, “Blind haze separation,” Proc. IEEE 2, 1984–1991 (2006).
  2. T. Treibitz, Y. Schechner, “Active polarization descattering,” IEEE Trans. Pattern Anal. Mach. Intell. 31, 385–399 (2009).
    [Crossref]
  3. J. S. Tyo, M. P. Rowe, E. N. Pugh, N. Engheta, “Target detection in optically scattering media by polarization-difference imaging,” Appl. Opt. 35, 1855–1870 (1996).
    [Crossref]
  4. W. Groner, J. W. Winkelman, A. G. Harri, C. Ince, G. J. Bouma, K. Messmer, R. G. Nadeau, “Orthogonal polarization spectral imaging: a new method for study of the microcirculation,” Nat. Med. 5, 1209–1212 (1999).
    [Crossref]
  5. R. S. Gurjar, V. Backman, L. T. Perelman, I. Georgakoudi, K. Badizadegan, I. Itzkan, R. R. Dasari, M. S. Feld, “Imaging human epithelial properties with polarized light scattering spectroscopy,” Nat. Med. 7, 1245–1248 (2001).
    [Crossref]
  6. V. Gruev, R. Perkins, T. York, “CCD polarization imaging sensor with aluminum nanowire optical filters,” Opt. Express 18, 19087–19094 (2010).
    [Crossref]
  7. G. R. Bird, M. Parrish, “The wire grid as a near-infrared polarizer,” J. Opt. Soc. Am. 50, 886 (1960).
    [Crossref]
  8. E. Laux, C. Genet, T. Skauli, T. W. Ebbesen, “Plasmonic photon sorters for spectral and polarimetric imaging,” Nat. Photonics 2, 161–164 (2008).
    [Crossref]
  9. J. Elliott, I. I. Smolyaninov, N. I. Zheludev, A. V. Zayats, “Polarization control of optical transmission of a periodic array of elliptical nanoholes in a metal film,” Opt. Lett. 29, 1414–1416 (2004).
    [Crossref]
  10. T. Ellenbogen, K. Seo, K. B. Crozier, “Chromatic plasmonic polarizers for active visible color filtering and polarimetry,” Nano Lett. 12, 1026–1031 (2012).
  11. W. Nicol, “On a method of so far increasing the divergence of the two rays in calcareous-spar, that only one image may be seen at a time,” Edinburgh New Philos. J. 6, 83–84 (1829).
  12. P. Glan, “Über einen polarisator,” Rep. Exptl-Physik 16, 570–573 (1880).
  13. M. Bass, Handbook of Optics (McGraw-Hill, 2001).
  14. D. Goldstein, Polarized Light, 2nd ed. (Dekker, 2003).
  15. Y. Shen, D. Ye, I. Celanovic, S. G. Johnson, J. D. Joannopoulos, M. Soljačić, “Optical broadband angular selectivity,” Science 343, 1499–1501 (2014).
    [Crossref]
  16. M. Khorasaninejad, K. B. Crozier, “Silicon nanofin grating as a miniature chirality-distinguishing beam-splitter,” Nat. Commun. 5, 5386 (2014).
    [Crossref]
  17. D. Lin, P. Fan, E. Hasman, M. L. Brongersma, “Dielectric gradient metasurface optical elements,” Science 345, 298–302 (2014).
    [Crossref]
  18. M. Decker, I. Staude, M. Falkner, J. Dominguez, D. N. Neshev, I. Brener, T. Pertsch, Y. S. Kivshar, “High-efficiency dielectric Huygens’ surfaces,” Adv. Opt. Mater., article ID 201400584 (to be published).
  19. Y. Yang, W. Wang, P. Moitra, I. I. Kravchenko, D. P. Briggs, J. Valentine, “Dielectric meta-reflectarray for broadband linear polarization conversion and optical vortex generation,” Nano Lett. 14, 1394–1399 (2014).
  20. I. Staude, A. E. Miroshnichenko, M. Decker, N. T. Fofang, S. Liu, E. Gonzales, J. Dominguez, T. S. Luk, D. N. Neshev, I. Brener, Y. Kivshar, “Tailoring directional scattering through magnetic and electric resonances in subwavelength silicon nanodisks,” ACS Nano 7, 7824–7832 (2013).
    [Crossref]
  21. C. Wu, N. Arju, G. Kelp, J. Fan, J. Dominguez, E. Gonzales, E. Tutuc, I. Brener, G. Shvets, “Spectrally selective chiral silicon metasurfaces based on infrared Fano resonances,” Nat. Commun. 5, 3892 (2014).
  22. M. Khorasaninejad, N. Abedzadeh, J. Walia, S. Patchett, S. S. Saini, “Color matrix refractive index sensors using coupled vertical silicon nanowire arrays,” Nano Lett. 12, 4228–4234 (2012).
  23. K. Seo, M. Wober, P. Steinvurzel, E. Schonbrun, Y. P. Dan, T. Ellenbogen, K. B. Crozier, “Multicolored vertical silicon nanowires,” Nano Lett. 11, 1851–1856 (2011).
  24. S. Nishiwaki, T. Nakamura, M. Hiramoto, T. Fujii, M. Suzuki, “Efficient colour splitters for high-pixel-density image sensors,” Nat. Photonics 7, 248–254 (2013).
    [Crossref]
  25. M. Khorasaninejad, S. Patchett, J. Sun, N. O, S. S. Saini, “Diameter dependence of polarization resolved reflectance from vertical silicon nanowire arrays: evidence of tunable absorption,” J. Appl. Phys. 114, 024304 (2013).
    [Crossref]
  26. J. Walia, N. Dhindsa, M. Khorasaninejad, S. S. Saini, “Color generation and refractive index sensing using diffraction from 2D silicon nanowire arrays,” Small 10, 144–151 (2014).
    [Crossref]
  27. M. Phillips, N. Ho, “Infrared hyperspectral imaging using a broadly tunable external cavity quantum cascade laser and microbolometer focal plane array,” Opt. Express 16, 1836–1845 (2008).
    [Crossref]
  28. M. C. Martin, C. Dabat-Blondeau, M. Unger, J. Sedlmair, D. Y. Parkinson, H. A. Bechtel, B. Illman, J. M. Castro, M. Keiluweit, D. Buschke, B. Ogle, M. J. Nasse, C. J. Hirschmugl, “3D spectral imaging with synchrotron Fourier transform infrared spectro-microtomography,” Nat. Methods 10, 861–864 (2013).
    [Crossref]
  29. A. Rogalski, “Infrared detectors: an overview,” Infrared Phys. Technol. 43, 187–210 (2002).
    [Crossref]
  30. E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1985).
  31. M. Khorasaninejad, N. Abedzadeh, J. Sun, J. N. Hilfiker, S. S. Saini, “Polarization resolved reflection from ordered vertical silicon nanowire arrays,” Opt. Lett. 37, 2961–2963 (2012).
    [Crossref]
  32. M. Khorasaninejad, J. Walia, S. S. Saini, “Enhanced first-order Raman scattering from arrays of vertical silicon nanowires,” Nanotechnology 23, 275706 (2012).
    [Crossref]
  33. D. T. Pierce, W. E. Spicer, “Electronic structure of amorphous Si from photoemission and optical studies,” Phys. Rev. B 5, 3017–3029 (1972). Refractive indices from this reference are also reported in http://refractiveindex.info/?shelf=main&book=Si&page=Pierce .
  34. P. Refregier, B. Javidi, “Optical image encryption based on input plane and Fourier plane random encoding,” Opt. Lett. 20, 767–769 (1995).
    [Crossref]
  35. A. Lamas-Linares, J. C. Howell, D. Bouwmeester, “Stimulated emission of polarization-entangled photons,” Nature 412, 887–890 (2001).
    [Crossref]
  36. Y. R. Shen, Principles of Nonlinear Optics (Wiley, 1984).

2014 (6)

Y. Shen, D. Ye, I. Celanovic, S. G. Johnson, J. D. Joannopoulos, M. Soljačić, “Optical broadband angular selectivity,” Science 343, 1499–1501 (2014).
[Crossref]

M. Khorasaninejad, K. B. Crozier, “Silicon nanofin grating as a miniature chirality-distinguishing beam-splitter,” Nat. Commun. 5, 5386 (2014).
[Crossref]

D. Lin, P. Fan, E. Hasman, M. L. Brongersma, “Dielectric gradient metasurface optical elements,” Science 345, 298–302 (2014).
[Crossref]

Y. Yang, W. Wang, P. Moitra, I. I. Kravchenko, D. P. Briggs, J. Valentine, “Dielectric meta-reflectarray for broadband linear polarization conversion and optical vortex generation,” Nano Lett. 14, 1394–1399 (2014).

C. Wu, N. Arju, G. Kelp, J. Fan, J. Dominguez, E. Gonzales, E. Tutuc, I. Brener, G. Shvets, “Spectrally selective chiral silicon metasurfaces based on infrared Fano resonances,” Nat. Commun. 5, 3892 (2014).

J. Walia, N. Dhindsa, M. Khorasaninejad, S. S. Saini, “Color generation and refractive index sensing using diffraction from 2D silicon nanowire arrays,” Small 10, 144–151 (2014).
[Crossref]

2013 (4)

M. C. Martin, C. Dabat-Blondeau, M. Unger, J. Sedlmair, D. Y. Parkinson, H. A. Bechtel, B. Illman, J. M. Castro, M. Keiluweit, D. Buschke, B. Ogle, M. J. Nasse, C. J. Hirschmugl, “3D spectral imaging with synchrotron Fourier transform infrared spectro-microtomography,” Nat. Methods 10, 861–864 (2013).
[Crossref]

S. Nishiwaki, T. Nakamura, M. Hiramoto, T. Fujii, M. Suzuki, “Efficient colour splitters for high-pixel-density image sensors,” Nat. Photonics 7, 248–254 (2013).
[Crossref]

M. Khorasaninejad, S. Patchett, J. Sun, N. O, S. S. Saini, “Diameter dependence of polarization resolved reflectance from vertical silicon nanowire arrays: evidence of tunable absorption,” J. Appl. Phys. 114, 024304 (2013).
[Crossref]

I. Staude, A. E. Miroshnichenko, M. Decker, N. T. Fofang, S. Liu, E. Gonzales, J. Dominguez, T. S. Luk, D. N. Neshev, I. Brener, Y. Kivshar, “Tailoring directional scattering through magnetic and electric resonances in subwavelength silicon nanodisks,” ACS Nano 7, 7824–7832 (2013).
[Crossref]

2012 (4)

T. Ellenbogen, K. Seo, K. B. Crozier, “Chromatic plasmonic polarizers for active visible color filtering and polarimetry,” Nano Lett. 12, 1026–1031 (2012).

M. Khorasaninejad, N. Abedzadeh, J. Walia, S. Patchett, S. S. Saini, “Color matrix refractive index sensors using coupled vertical silicon nanowire arrays,” Nano Lett. 12, 4228–4234 (2012).

M. Khorasaninejad, N. Abedzadeh, J. Sun, J. N. Hilfiker, S. S. Saini, “Polarization resolved reflection from ordered vertical silicon nanowire arrays,” Opt. Lett. 37, 2961–2963 (2012).
[Crossref]

M. Khorasaninejad, J. Walia, S. S. Saini, “Enhanced first-order Raman scattering from arrays of vertical silicon nanowires,” Nanotechnology 23, 275706 (2012).
[Crossref]

2011 (1)

K. Seo, M. Wober, P. Steinvurzel, E. Schonbrun, Y. P. Dan, T. Ellenbogen, K. B. Crozier, “Multicolored vertical silicon nanowires,” Nano Lett. 11, 1851–1856 (2011).

2010 (1)

2009 (1)

T. Treibitz, Y. Schechner, “Active polarization descattering,” IEEE Trans. Pattern Anal. Mach. Intell. 31, 385–399 (2009).
[Crossref]

2008 (2)

E. Laux, C. Genet, T. Skauli, T. W. Ebbesen, “Plasmonic photon sorters for spectral and polarimetric imaging,” Nat. Photonics 2, 161–164 (2008).
[Crossref]

M. Phillips, N. Ho, “Infrared hyperspectral imaging using a broadly tunable external cavity quantum cascade laser and microbolometer focal plane array,” Opt. Express 16, 1836–1845 (2008).
[Crossref]

2006 (1)

S. Shwartz, E. Namer, Y. Schechner, “Blind haze separation,” Proc. IEEE 2, 1984–1991 (2006).

2004 (1)

2002 (1)

A. Rogalski, “Infrared detectors: an overview,” Infrared Phys. Technol. 43, 187–210 (2002).
[Crossref]

2001 (2)

A. Lamas-Linares, J. C. Howell, D. Bouwmeester, “Stimulated emission of polarization-entangled photons,” Nature 412, 887–890 (2001).
[Crossref]

R. S. Gurjar, V. Backman, L. T. Perelman, I. Georgakoudi, K. Badizadegan, I. Itzkan, R. R. Dasari, M. S. Feld, “Imaging human epithelial properties with polarized light scattering spectroscopy,” Nat. Med. 7, 1245–1248 (2001).
[Crossref]

1999 (1)

W. Groner, J. W. Winkelman, A. G. Harri, C. Ince, G. J. Bouma, K. Messmer, R. G. Nadeau, “Orthogonal polarization spectral imaging: a new method for study of the microcirculation,” Nat. Med. 5, 1209–1212 (1999).
[Crossref]

1996 (1)

1995 (1)

1972 (1)

D. T. Pierce, W. E. Spicer, “Electronic structure of amorphous Si from photoemission and optical studies,” Phys. Rev. B 5, 3017–3029 (1972). Refractive indices from this reference are also reported in http://refractiveindex.info/?shelf=main&book=Si&page=Pierce .

1960 (1)

1880 (1)

P. Glan, “Über einen polarisator,” Rep. Exptl-Physik 16, 570–573 (1880).

1829 (1)

W. Nicol, “On a method of so far increasing the divergence of the two rays in calcareous-spar, that only one image may be seen at a time,” Edinburgh New Philos. J. 6, 83–84 (1829).

Abedzadeh, N.

M. Khorasaninejad, N. Abedzadeh, J. Walia, S. Patchett, S. S. Saini, “Color matrix refractive index sensors using coupled vertical silicon nanowire arrays,” Nano Lett. 12, 4228–4234 (2012).

M. Khorasaninejad, N. Abedzadeh, J. Sun, J. N. Hilfiker, S. S. Saini, “Polarization resolved reflection from ordered vertical silicon nanowire arrays,” Opt. Lett. 37, 2961–2963 (2012).
[Crossref]

Arju, N.

C. Wu, N. Arju, G. Kelp, J. Fan, J. Dominguez, E. Gonzales, E. Tutuc, I. Brener, G. Shvets, “Spectrally selective chiral silicon metasurfaces based on infrared Fano resonances,” Nat. Commun. 5, 3892 (2014).

Backman, V.

R. S. Gurjar, V. Backman, L. T. Perelman, I. Georgakoudi, K. Badizadegan, I. Itzkan, R. R. Dasari, M. S. Feld, “Imaging human epithelial properties with polarized light scattering spectroscopy,” Nat. Med. 7, 1245–1248 (2001).
[Crossref]

Badizadegan, K.

R. S. Gurjar, V. Backman, L. T. Perelman, I. Georgakoudi, K. Badizadegan, I. Itzkan, R. R. Dasari, M. S. Feld, “Imaging human epithelial properties with polarized light scattering spectroscopy,” Nat. Med. 7, 1245–1248 (2001).
[Crossref]

Bass, M.

M. Bass, Handbook of Optics (McGraw-Hill, 2001).

Bechtel, H. A.

M. C. Martin, C. Dabat-Blondeau, M. Unger, J. Sedlmair, D. Y. Parkinson, H. A. Bechtel, B. Illman, J. M. Castro, M. Keiluweit, D. Buschke, B. Ogle, M. J. Nasse, C. J. Hirschmugl, “3D spectral imaging with synchrotron Fourier transform infrared spectro-microtomography,” Nat. Methods 10, 861–864 (2013).
[Crossref]

Bird, G. R.

Bouma, G. J.

W. Groner, J. W. Winkelman, A. G. Harri, C. Ince, G. J. Bouma, K. Messmer, R. G. Nadeau, “Orthogonal polarization spectral imaging: a new method for study of the microcirculation,” Nat. Med. 5, 1209–1212 (1999).
[Crossref]

Bouwmeester, D.

A. Lamas-Linares, J. C. Howell, D. Bouwmeester, “Stimulated emission of polarization-entangled photons,” Nature 412, 887–890 (2001).
[Crossref]

Brener, I.

C. Wu, N. Arju, G. Kelp, J. Fan, J. Dominguez, E. Gonzales, E. Tutuc, I. Brener, G. Shvets, “Spectrally selective chiral silicon metasurfaces based on infrared Fano resonances,” Nat. Commun. 5, 3892 (2014).

I. Staude, A. E. Miroshnichenko, M. Decker, N. T. Fofang, S. Liu, E. Gonzales, J. Dominguez, T. S. Luk, D. N. Neshev, I. Brener, Y. Kivshar, “Tailoring directional scattering through magnetic and electric resonances in subwavelength silicon nanodisks,” ACS Nano 7, 7824–7832 (2013).
[Crossref]

M. Decker, I. Staude, M. Falkner, J. Dominguez, D. N. Neshev, I. Brener, T. Pertsch, Y. S. Kivshar, “High-efficiency dielectric Huygens’ surfaces,” Adv. Opt. Mater., article ID 201400584 (to be published).

Briggs, D. P.

Y. Yang, W. Wang, P. Moitra, I. I. Kravchenko, D. P. Briggs, J. Valentine, “Dielectric meta-reflectarray for broadband linear polarization conversion and optical vortex generation,” Nano Lett. 14, 1394–1399 (2014).

Brongersma, M. L.

D. Lin, P. Fan, E. Hasman, M. L. Brongersma, “Dielectric gradient metasurface optical elements,” Science 345, 298–302 (2014).
[Crossref]

Buschke, D.

M. C. Martin, C. Dabat-Blondeau, M. Unger, J. Sedlmair, D. Y. Parkinson, H. A. Bechtel, B. Illman, J. M. Castro, M. Keiluweit, D. Buschke, B. Ogle, M. J. Nasse, C. J. Hirschmugl, “3D spectral imaging with synchrotron Fourier transform infrared spectro-microtomography,” Nat. Methods 10, 861–864 (2013).
[Crossref]

Castro, J. M.

M. C. Martin, C. Dabat-Blondeau, M. Unger, J. Sedlmair, D. Y. Parkinson, H. A. Bechtel, B. Illman, J. M. Castro, M. Keiluweit, D. Buschke, B. Ogle, M. J. Nasse, C. J. Hirschmugl, “3D spectral imaging with synchrotron Fourier transform infrared spectro-microtomography,” Nat. Methods 10, 861–864 (2013).
[Crossref]

Celanovic, I.

Y. Shen, D. Ye, I. Celanovic, S. G. Johnson, J. D. Joannopoulos, M. Soljačić, “Optical broadband angular selectivity,” Science 343, 1499–1501 (2014).
[Crossref]

Crozier, K. B.

M. Khorasaninejad, K. B. Crozier, “Silicon nanofin grating as a miniature chirality-distinguishing beam-splitter,” Nat. Commun. 5, 5386 (2014).
[Crossref]

T. Ellenbogen, K. Seo, K. B. Crozier, “Chromatic plasmonic polarizers for active visible color filtering and polarimetry,” Nano Lett. 12, 1026–1031 (2012).

K. Seo, M. Wober, P. Steinvurzel, E. Schonbrun, Y. P. Dan, T. Ellenbogen, K. B. Crozier, “Multicolored vertical silicon nanowires,” Nano Lett. 11, 1851–1856 (2011).

Dabat-Blondeau, C.

M. C. Martin, C. Dabat-Blondeau, M. Unger, J. Sedlmair, D. Y. Parkinson, H. A. Bechtel, B. Illman, J. M. Castro, M. Keiluweit, D. Buschke, B. Ogle, M. J. Nasse, C. J. Hirschmugl, “3D spectral imaging with synchrotron Fourier transform infrared spectro-microtomography,” Nat. Methods 10, 861–864 (2013).
[Crossref]

Dan, Y. P.

K. Seo, M. Wober, P. Steinvurzel, E. Schonbrun, Y. P. Dan, T. Ellenbogen, K. B. Crozier, “Multicolored vertical silicon nanowires,” Nano Lett. 11, 1851–1856 (2011).

Dasari, R. R.

R. S. Gurjar, V. Backman, L. T. Perelman, I. Georgakoudi, K. Badizadegan, I. Itzkan, R. R. Dasari, M. S. Feld, “Imaging human epithelial properties with polarized light scattering spectroscopy,” Nat. Med. 7, 1245–1248 (2001).
[Crossref]

Decker, M.

I. Staude, A. E. Miroshnichenko, M. Decker, N. T. Fofang, S. Liu, E. Gonzales, J. Dominguez, T. S. Luk, D. N. Neshev, I. Brener, Y. Kivshar, “Tailoring directional scattering through magnetic and electric resonances in subwavelength silicon nanodisks,” ACS Nano 7, 7824–7832 (2013).
[Crossref]

M. Decker, I. Staude, M. Falkner, J. Dominguez, D. N. Neshev, I. Brener, T. Pertsch, Y. S. Kivshar, “High-efficiency dielectric Huygens’ surfaces,” Adv. Opt. Mater., article ID 201400584 (to be published).

Dhindsa, N.

J. Walia, N. Dhindsa, M. Khorasaninejad, S. S. Saini, “Color generation and refractive index sensing using diffraction from 2D silicon nanowire arrays,” Small 10, 144–151 (2014).
[Crossref]

Dominguez, J.

C. Wu, N. Arju, G. Kelp, J. Fan, J. Dominguez, E. Gonzales, E. Tutuc, I. Brener, G. Shvets, “Spectrally selective chiral silicon metasurfaces based on infrared Fano resonances,” Nat. Commun. 5, 3892 (2014).

I. Staude, A. E. Miroshnichenko, M. Decker, N. T. Fofang, S. Liu, E. Gonzales, J. Dominguez, T. S. Luk, D. N. Neshev, I. Brener, Y. Kivshar, “Tailoring directional scattering through magnetic and electric resonances in subwavelength silicon nanodisks,” ACS Nano 7, 7824–7832 (2013).
[Crossref]

M. Decker, I. Staude, M. Falkner, J. Dominguez, D. N. Neshev, I. Brener, T. Pertsch, Y. S. Kivshar, “High-efficiency dielectric Huygens’ surfaces,” Adv. Opt. Mater., article ID 201400584 (to be published).

Ebbesen, T. W.

E. Laux, C. Genet, T. Skauli, T. W. Ebbesen, “Plasmonic photon sorters for spectral and polarimetric imaging,” Nat. Photonics 2, 161–164 (2008).
[Crossref]

Ellenbogen, T.

T. Ellenbogen, K. Seo, K. B. Crozier, “Chromatic plasmonic polarizers for active visible color filtering and polarimetry,” Nano Lett. 12, 1026–1031 (2012).

K. Seo, M. Wober, P. Steinvurzel, E. Schonbrun, Y. P. Dan, T. Ellenbogen, K. B. Crozier, “Multicolored vertical silicon nanowires,” Nano Lett. 11, 1851–1856 (2011).

Elliott, J.

Engheta, N.

Falkner, M.

M. Decker, I. Staude, M. Falkner, J. Dominguez, D. N. Neshev, I. Brener, T. Pertsch, Y. S. Kivshar, “High-efficiency dielectric Huygens’ surfaces,” Adv. Opt. Mater., article ID 201400584 (to be published).

Fan, J.

C. Wu, N. Arju, G. Kelp, J. Fan, J. Dominguez, E. Gonzales, E. Tutuc, I. Brener, G. Shvets, “Spectrally selective chiral silicon metasurfaces based on infrared Fano resonances,” Nat. Commun. 5, 3892 (2014).

Fan, P.

D. Lin, P. Fan, E. Hasman, M. L. Brongersma, “Dielectric gradient metasurface optical elements,” Science 345, 298–302 (2014).
[Crossref]

Feld, M. S.

R. S. Gurjar, V. Backman, L. T. Perelman, I. Georgakoudi, K. Badizadegan, I. Itzkan, R. R. Dasari, M. S. Feld, “Imaging human epithelial properties with polarized light scattering spectroscopy,” Nat. Med. 7, 1245–1248 (2001).
[Crossref]

Fofang, N. T.

I. Staude, A. E. Miroshnichenko, M. Decker, N. T. Fofang, S. Liu, E. Gonzales, J. Dominguez, T. S. Luk, D. N. Neshev, I. Brener, Y. Kivshar, “Tailoring directional scattering through magnetic and electric resonances in subwavelength silicon nanodisks,” ACS Nano 7, 7824–7832 (2013).
[Crossref]

Fujii, T.

S. Nishiwaki, T. Nakamura, M. Hiramoto, T. Fujii, M. Suzuki, “Efficient colour splitters for high-pixel-density image sensors,” Nat. Photonics 7, 248–254 (2013).
[Crossref]

Genet, C.

E. Laux, C. Genet, T. Skauli, T. W. Ebbesen, “Plasmonic photon sorters for spectral and polarimetric imaging,” Nat. Photonics 2, 161–164 (2008).
[Crossref]

Georgakoudi, I.

R. S. Gurjar, V. Backman, L. T. Perelman, I. Georgakoudi, K. Badizadegan, I. Itzkan, R. R. Dasari, M. S. Feld, “Imaging human epithelial properties with polarized light scattering spectroscopy,” Nat. Med. 7, 1245–1248 (2001).
[Crossref]

Glan, P.

P. Glan, “Über einen polarisator,” Rep. Exptl-Physik 16, 570–573 (1880).

Goldstein, D.

D. Goldstein, Polarized Light, 2nd ed. (Dekker, 2003).

Gonzales, E.

C. Wu, N. Arju, G. Kelp, J. Fan, J. Dominguez, E. Gonzales, E. Tutuc, I. Brener, G. Shvets, “Spectrally selective chiral silicon metasurfaces based on infrared Fano resonances,” Nat. Commun. 5, 3892 (2014).

I. Staude, A. E. Miroshnichenko, M. Decker, N. T. Fofang, S. Liu, E. Gonzales, J. Dominguez, T. S. Luk, D. N. Neshev, I. Brener, Y. Kivshar, “Tailoring directional scattering through magnetic and electric resonances in subwavelength silicon nanodisks,” ACS Nano 7, 7824–7832 (2013).
[Crossref]

Groner, W.

W. Groner, J. W. Winkelman, A. G. Harri, C. Ince, G. J. Bouma, K. Messmer, R. G. Nadeau, “Orthogonal polarization spectral imaging: a new method for study of the microcirculation,” Nat. Med. 5, 1209–1212 (1999).
[Crossref]

Gruev, V.

Gurjar, R. S.

R. S. Gurjar, V. Backman, L. T. Perelman, I. Georgakoudi, K. Badizadegan, I. Itzkan, R. R. Dasari, M. S. Feld, “Imaging human epithelial properties with polarized light scattering spectroscopy,” Nat. Med. 7, 1245–1248 (2001).
[Crossref]

Harri, A. G.

W. Groner, J. W. Winkelman, A. G. Harri, C. Ince, G. J. Bouma, K. Messmer, R. G. Nadeau, “Orthogonal polarization spectral imaging: a new method for study of the microcirculation,” Nat. Med. 5, 1209–1212 (1999).
[Crossref]

Hasman, E.

D. Lin, P. Fan, E. Hasman, M. L. Brongersma, “Dielectric gradient metasurface optical elements,” Science 345, 298–302 (2014).
[Crossref]

Hilfiker, J. N.

Hiramoto, M.

S. Nishiwaki, T. Nakamura, M. Hiramoto, T. Fujii, M. Suzuki, “Efficient colour splitters for high-pixel-density image sensors,” Nat. Photonics 7, 248–254 (2013).
[Crossref]

Hirschmugl, C. J.

M. C. Martin, C. Dabat-Blondeau, M. Unger, J. Sedlmair, D. Y. Parkinson, H. A. Bechtel, B. Illman, J. M. Castro, M. Keiluweit, D. Buschke, B. Ogle, M. J. Nasse, C. J. Hirschmugl, “3D spectral imaging with synchrotron Fourier transform infrared spectro-microtomography,” Nat. Methods 10, 861–864 (2013).
[Crossref]

Ho, N.

Howell, J. C.

A. Lamas-Linares, J. C. Howell, D. Bouwmeester, “Stimulated emission of polarization-entangled photons,” Nature 412, 887–890 (2001).
[Crossref]

Illman, B.

M. C. Martin, C. Dabat-Blondeau, M. Unger, J. Sedlmair, D. Y. Parkinson, H. A. Bechtel, B. Illman, J. M. Castro, M. Keiluweit, D. Buschke, B. Ogle, M. J. Nasse, C. J. Hirschmugl, “3D spectral imaging with synchrotron Fourier transform infrared spectro-microtomography,” Nat. Methods 10, 861–864 (2013).
[Crossref]

Ince, C.

W. Groner, J. W. Winkelman, A. G. Harri, C. Ince, G. J. Bouma, K. Messmer, R. G. Nadeau, “Orthogonal polarization spectral imaging: a new method for study of the microcirculation,” Nat. Med. 5, 1209–1212 (1999).
[Crossref]

Itzkan, I.

R. S. Gurjar, V. Backman, L. T. Perelman, I. Georgakoudi, K. Badizadegan, I. Itzkan, R. R. Dasari, M. S. Feld, “Imaging human epithelial properties with polarized light scattering spectroscopy,” Nat. Med. 7, 1245–1248 (2001).
[Crossref]

Javidi, B.

Joannopoulos, J. D.

Y. Shen, D. Ye, I. Celanovic, S. G. Johnson, J. D. Joannopoulos, M. Soljačić, “Optical broadband angular selectivity,” Science 343, 1499–1501 (2014).
[Crossref]

Johnson, S. G.

Y. Shen, D. Ye, I. Celanovic, S. G. Johnson, J. D. Joannopoulos, M. Soljačić, “Optical broadband angular selectivity,” Science 343, 1499–1501 (2014).
[Crossref]

Keiluweit, M.

M. C. Martin, C. Dabat-Blondeau, M. Unger, J. Sedlmair, D. Y. Parkinson, H. A. Bechtel, B. Illman, J. M. Castro, M. Keiluweit, D. Buschke, B. Ogle, M. J. Nasse, C. J. Hirschmugl, “3D spectral imaging with synchrotron Fourier transform infrared spectro-microtomography,” Nat. Methods 10, 861–864 (2013).
[Crossref]

Kelp, G.

C. Wu, N. Arju, G. Kelp, J. Fan, J. Dominguez, E. Gonzales, E. Tutuc, I. Brener, G. Shvets, “Spectrally selective chiral silicon metasurfaces based on infrared Fano resonances,” Nat. Commun. 5, 3892 (2014).

Khorasaninejad, M.

M. Khorasaninejad, K. B. Crozier, “Silicon nanofin grating as a miniature chirality-distinguishing beam-splitter,” Nat. Commun. 5, 5386 (2014).
[Crossref]

J. Walia, N. Dhindsa, M. Khorasaninejad, S. S. Saini, “Color generation and refractive index sensing using diffraction from 2D silicon nanowire arrays,” Small 10, 144–151 (2014).
[Crossref]

M. Khorasaninejad, S. Patchett, J. Sun, N. O, S. S. Saini, “Diameter dependence of polarization resolved reflectance from vertical silicon nanowire arrays: evidence of tunable absorption,” J. Appl. Phys. 114, 024304 (2013).
[Crossref]

M. Khorasaninejad, J. Walia, S. S. Saini, “Enhanced first-order Raman scattering from arrays of vertical silicon nanowires,” Nanotechnology 23, 275706 (2012).
[Crossref]

M. Khorasaninejad, N. Abedzadeh, J. Walia, S. Patchett, S. S. Saini, “Color matrix refractive index sensors using coupled vertical silicon nanowire arrays,” Nano Lett. 12, 4228–4234 (2012).

M. Khorasaninejad, N. Abedzadeh, J. Sun, J. N. Hilfiker, S. S. Saini, “Polarization resolved reflection from ordered vertical silicon nanowire arrays,” Opt. Lett. 37, 2961–2963 (2012).
[Crossref]

Kivshar, Y.

I. Staude, A. E. Miroshnichenko, M. Decker, N. T. Fofang, S. Liu, E. Gonzales, J. Dominguez, T. S. Luk, D. N. Neshev, I. Brener, Y. Kivshar, “Tailoring directional scattering through magnetic and electric resonances in subwavelength silicon nanodisks,” ACS Nano 7, 7824–7832 (2013).
[Crossref]

Kivshar, Y. S.

M. Decker, I. Staude, M. Falkner, J. Dominguez, D. N. Neshev, I. Brener, T. Pertsch, Y. S. Kivshar, “High-efficiency dielectric Huygens’ surfaces,” Adv. Opt. Mater., article ID 201400584 (to be published).

Kravchenko, I. I.

Y. Yang, W. Wang, P. Moitra, I. I. Kravchenko, D. P. Briggs, J. Valentine, “Dielectric meta-reflectarray for broadband linear polarization conversion and optical vortex generation,” Nano Lett. 14, 1394–1399 (2014).

Lamas-Linares, A.

A. Lamas-Linares, J. C. Howell, D. Bouwmeester, “Stimulated emission of polarization-entangled photons,” Nature 412, 887–890 (2001).
[Crossref]

Laux, E.

E. Laux, C. Genet, T. Skauli, T. W. Ebbesen, “Plasmonic photon sorters for spectral and polarimetric imaging,” Nat. Photonics 2, 161–164 (2008).
[Crossref]

Lin, D.

D. Lin, P. Fan, E. Hasman, M. L. Brongersma, “Dielectric gradient metasurface optical elements,” Science 345, 298–302 (2014).
[Crossref]

Liu, S.

I. Staude, A. E. Miroshnichenko, M. Decker, N. T. Fofang, S. Liu, E. Gonzales, J. Dominguez, T. S. Luk, D. N. Neshev, I. Brener, Y. Kivshar, “Tailoring directional scattering through magnetic and electric resonances in subwavelength silicon nanodisks,” ACS Nano 7, 7824–7832 (2013).
[Crossref]

Luk, T. S.

I. Staude, A. E. Miroshnichenko, M. Decker, N. T. Fofang, S. Liu, E. Gonzales, J. Dominguez, T. S. Luk, D. N. Neshev, I. Brener, Y. Kivshar, “Tailoring directional scattering through magnetic and electric resonances in subwavelength silicon nanodisks,” ACS Nano 7, 7824–7832 (2013).
[Crossref]

Martin, M. C.

M. C. Martin, C. Dabat-Blondeau, M. Unger, J. Sedlmair, D. Y. Parkinson, H. A. Bechtel, B. Illman, J. M. Castro, M. Keiluweit, D. Buschke, B. Ogle, M. J. Nasse, C. J. Hirschmugl, “3D spectral imaging with synchrotron Fourier transform infrared spectro-microtomography,” Nat. Methods 10, 861–864 (2013).
[Crossref]

Messmer, K.

W. Groner, J. W. Winkelman, A. G. Harri, C. Ince, G. J. Bouma, K. Messmer, R. G. Nadeau, “Orthogonal polarization spectral imaging: a new method for study of the microcirculation,” Nat. Med. 5, 1209–1212 (1999).
[Crossref]

Miroshnichenko, A. E.

I. Staude, A. E. Miroshnichenko, M. Decker, N. T. Fofang, S. Liu, E. Gonzales, J. Dominguez, T. S. Luk, D. N. Neshev, I. Brener, Y. Kivshar, “Tailoring directional scattering through magnetic and electric resonances in subwavelength silicon nanodisks,” ACS Nano 7, 7824–7832 (2013).
[Crossref]

Moitra, P.

Y. Yang, W. Wang, P. Moitra, I. I. Kravchenko, D. P. Briggs, J. Valentine, “Dielectric meta-reflectarray for broadband linear polarization conversion and optical vortex generation,” Nano Lett. 14, 1394–1399 (2014).

Nadeau, R. G.

W. Groner, J. W. Winkelman, A. G. Harri, C. Ince, G. J. Bouma, K. Messmer, R. G. Nadeau, “Orthogonal polarization spectral imaging: a new method for study of the microcirculation,” Nat. Med. 5, 1209–1212 (1999).
[Crossref]

Nakamura, T.

S. Nishiwaki, T. Nakamura, M. Hiramoto, T. Fujii, M. Suzuki, “Efficient colour splitters for high-pixel-density image sensors,” Nat. Photonics 7, 248–254 (2013).
[Crossref]

Namer, E.

S. Shwartz, E. Namer, Y. Schechner, “Blind haze separation,” Proc. IEEE 2, 1984–1991 (2006).

Nasse, M. J.

M. C. Martin, C. Dabat-Blondeau, M. Unger, J. Sedlmair, D. Y. Parkinson, H. A. Bechtel, B. Illman, J. M. Castro, M. Keiluweit, D. Buschke, B. Ogle, M. J. Nasse, C. J. Hirschmugl, “3D spectral imaging with synchrotron Fourier transform infrared spectro-microtomography,” Nat. Methods 10, 861–864 (2013).
[Crossref]

Neshev, D. N.

I. Staude, A. E. Miroshnichenko, M. Decker, N. T. Fofang, S. Liu, E. Gonzales, J. Dominguez, T. S. Luk, D. N. Neshev, I. Brener, Y. Kivshar, “Tailoring directional scattering through magnetic and electric resonances in subwavelength silicon nanodisks,” ACS Nano 7, 7824–7832 (2013).
[Crossref]

M. Decker, I. Staude, M. Falkner, J. Dominguez, D. N. Neshev, I. Brener, T. Pertsch, Y. S. Kivshar, “High-efficiency dielectric Huygens’ surfaces,” Adv. Opt. Mater., article ID 201400584 (to be published).

Nicol, W.

W. Nicol, “On a method of so far increasing the divergence of the two rays in calcareous-spar, that only one image may be seen at a time,” Edinburgh New Philos. J. 6, 83–84 (1829).

Nishiwaki, S.

S. Nishiwaki, T. Nakamura, M. Hiramoto, T. Fujii, M. Suzuki, “Efficient colour splitters for high-pixel-density image sensors,” Nat. Photonics 7, 248–254 (2013).
[Crossref]

O, N.

M. Khorasaninejad, S. Patchett, J. Sun, N. O, S. S. Saini, “Diameter dependence of polarization resolved reflectance from vertical silicon nanowire arrays: evidence of tunable absorption,” J. Appl. Phys. 114, 024304 (2013).
[Crossref]

Ogle, B.

M. C. Martin, C. Dabat-Blondeau, M. Unger, J. Sedlmair, D. Y. Parkinson, H. A. Bechtel, B. Illman, J. M. Castro, M. Keiluweit, D. Buschke, B. Ogle, M. J. Nasse, C. J. Hirschmugl, “3D spectral imaging with synchrotron Fourier transform infrared spectro-microtomography,” Nat. Methods 10, 861–864 (2013).
[Crossref]

Palik, E. D.

E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1985).

Parkinson, D. Y.

M. C. Martin, C. Dabat-Blondeau, M. Unger, J. Sedlmair, D. Y. Parkinson, H. A. Bechtel, B. Illman, J. M. Castro, M. Keiluweit, D. Buschke, B. Ogle, M. J. Nasse, C. J. Hirschmugl, “3D spectral imaging with synchrotron Fourier transform infrared spectro-microtomography,” Nat. Methods 10, 861–864 (2013).
[Crossref]

Parrish, M.

Patchett, S.

M. Khorasaninejad, S. Patchett, J. Sun, N. O, S. S. Saini, “Diameter dependence of polarization resolved reflectance from vertical silicon nanowire arrays: evidence of tunable absorption,” J. Appl. Phys. 114, 024304 (2013).
[Crossref]

M. Khorasaninejad, N. Abedzadeh, J. Walia, S. Patchett, S. S. Saini, “Color matrix refractive index sensors using coupled vertical silicon nanowire arrays,” Nano Lett. 12, 4228–4234 (2012).

Perelman, L. T.

R. S. Gurjar, V. Backman, L. T. Perelman, I. Georgakoudi, K. Badizadegan, I. Itzkan, R. R. Dasari, M. S. Feld, “Imaging human epithelial properties with polarized light scattering spectroscopy,” Nat. Med. 7, 1245–1248 (2001).
[Crossref]

Perkins, R.

Pertsch, T.

M. Decker, I. Staude, M. Falkner, J. Dominguez, D. N. Neshev, I. Brener, T. Pertsch, Y. S. Kivshar, “High-efficiency dielectric Huygens’ surfaces,” Adv. Opt. Mater., article ID 201400584 (to be published).

Phillips, M.

Pierce, D. T.

D. T. Pierce, W. E. Spicer, “Electronic structure of amorphous Si from photoemission and optical studies,” Phys. Rev. B 5, 3017–3029 (1972). Refractive indices from this reference are also reported in http://refractiveindex.info/?shelf=main&book=Si&page=Pierce .

Pugh, E. N.

Refregier, P.

Rogalski, A.

A. Rogalski, “Infrared detectors: an overview,” Infrared Phys. Technol. 43, 187–210 (2002).
[Crossref]

Rowe, M. P.

Saini, S. S.

J. Walia, N. Dhindsa, M. Khorasaninejad, S. S. Saini, “Color generation and refractive index sensing using diffraction from 2D silicon nanowire arrays,” Small 10, 144–151 (2014).
[Crossref]

M. Khorasaninejad, S. Patchett, J. Sun, N. O, S. S. Saini, “Diameter dependence of polarization resolved reflectance from vertical silicon nanowire arrays: evidence of tunable absorption,” J. Appl. Phys. 114, 024304 (2013).
[Crossref]

M. Khorasaninejad, J. Walia, S. S. Saini, “Enhanced first-order Raman scattering from arrays of vertical silicon nanowires,” Nanotechnology 23, 275706 (2012).
[Crossref]

M. Khorasaninejad, N. Abedzadeh, J. Walia, S. Patchett, S. S. Saini, “Color matrix refractive index sensors using coupled vertical silicon nanowire arrays,” Nano Lett. 12, 4228–4234 (2012).

M. Khorasaninejad, N. Abedzadeh, J. Sun, J. N. Hilfiker, S. S. Saini, “Polarization resolved reflection from ordered vertical silicon nanowire arrays,” Opt. Lett. 37, 2961–2963 (2012).
[Crossref]

Schechner, Y.

T. Treibitz, Y. Schechner, “Active polarization descattering,” IEEE Trans. Pattern Anal. Mach. Intell. 31, 385–399 (2009).
[Crossref]

S. Shwartz, E. Namer, Y. Schechner, “Blind haze separation,” Proc. IEEE 2, 1984–1991 (2006).

Schonbrun, E.

K. Seo, M. Wober, P. Steinvurzel, E. Schonbrun, Y. P. Dan, T. Ellenbogen, K. B. Crozier, “Multicolored vertical silicon nanowires,” Nano Lett. 11, 1851–1856 (2011).

Sedlmair, J.

M. C. Martin, C. Dabat-Blondeau, M. Unger, J. Sedlmair, D. Y. Parkinson, H. A. Bechtel, B. Illman, J. M. Castro, M. Keiluweit, D. Buschke, B. Ogle, M. J. Nasse, C. J. Hirschmugl, “3D spectral imaging with synchrotron Fourier transform infrared spectro-microtomography,” Nat. Methods 10, 861–864 (2013).
[Crossref]

Seo, K.

T. Ellenbogen, K. Seo, K. B. Crozier, “Chromatic plasmonic polarizers for active visible color filtering and polarimetry,” Nano Lett. 12, 1026–1031 (2012).

K. Seo, M. Wober, P. Steinvurzel, E. Schonbrun, Y. P. Dan, T. Ellenbogen, K. B. Crozier, “Multicolored vertical silicon nanowires,” Nano Lett. 11, 1851–1856 (2011).

Shen, Y.

Y. Shen, D. Ye, I. Celanovic, S. G. Johnson, J. D. Joannopoulos, M. Soljačić, “Optical broadband angular selectivity,” Science 343, 1499–1501 (2014).
[Crossref]

Shen, Y. R.

Y. R. Shen, Principles of Nonlinear Optics (Wiley, 1984).

Shvets, G.

C. Wu, N. Arju, G. Kelp, J. Fan, J. Dominguez, E. Gonzales, E. Tutuc, I. Brener, G. Shvets, “Spectrally selective chiral silicon metasurfaces based on infrared Fano resonances,” Nat. Commun. 5, 3892 (2014).

Shwartz, S.

S. Shwartz, E. Namer, Y. Schechner, “Blind haze separation,” Proc. IEEE 2, 1984–1991 (2006).

Skauli, T.

E. Laux, C. Genet, T. Skauli, T. W. Ebbesen, “Plasmonic photon sorters for spectral and polarimetric imaging,” Nat. Photonics 2, 161–164 (2008).
[Crossref]

Smolyaninov, I. I.

Soljacic, M.

Y. Shen, D. Ye, I. Celanovic, S. G. Johnson, J. D. Joannopoulos, M. Soljačić, “Optical broadband angular selectivity,” Science 343, 1499–1501 (2014).
[Crossref]

Spicer, W. E.

D. T. Pierce, W. E. Spicer, “Electronic structure of amorphous Si from photoemission and optical studies,” Phys. Rev. B 5, 3017–3029 (1972). Refractive indices from this reference are also reported in http://refractiveindex.info/?shelf=main&book=Si&page=Pierce .

Staude, I.

I. Staude, A. E. Miroshnichenko, M. Decker, N. T. Fofang, S. Liu, E. Gonzales, J. Dominguez, T. S. Luk, D. N. Neshev, I. Brener, Y. Kivshar, “Tailoring directional scattering through magnetic and electric resonances in subwavelength silicon nanodisks,” ACS Nano 7, 7824–7832 (2013).
[Crossref]

M. Decker, I. Staude, M. Falkner, J. Dominguez, D. N. Neshev, I. Brener, T. Pertsch, Y. S. Kivshar, “High-efficiency dielectric Huygens’ surfaces,” Adv. Opt. Mater., article ID 201400584 (to be published).

Steinvurzel, P.

K. Seo, M. Wober, P. Steinvurzel, E. Schonbrun, Y. P. Dan, T. Ellenbogen, K. B. Crozier, “Multicolored vertical silicon nanowires,” Nano Lett. 11, 1851–1856 (2011).

Sun, J.

M. Khorasaninejad, S. Patchett, J. Sun, N. O, S. S. Saini, “Diameter dependence of polarization resolved reflectance from vertical silicon nanowire arrays: evidence of tunable absorption,” J. Appl. Phys. 114, 024304 (2013).
[Crossref]

M. Khorasaninejad, N. Abedzadeh, J. Sun, J. N. Hilfiker, S. S. Saini, “Polarization resolved reflection from ordered vertical silicon nanowire arrays,” Opt. Lett. 37, 2961–2963 (2012).
[Crossref]

Suzuki, M.

S. Nishiwaki, T. Nakamura, M. Hiramoto, T. Fujii, M. Suzuki, “Efficient colour splitters for high-pixel-density image sensors,” Nat. Photonics 7, 248–254 (2013).
[Crossref]

Treibitz, T.

T. Treibitz, Y. Schechner, “Active polarization descattering,” IEEE Trans. Pattern Anal. Mach. Intell. 31, 385–399 (2009).
[Crossref]

Tutuc, E.

C. Wu, N. Arju, G. Kelp, J. Fan, J. Dominguez, E. Gonzales, E. Tutuc, I. Brener, G. Shvets, “Spectrally selective chiral silicon metasurfaces based on infrared Fano resonances,” Nat. Commun. 5, 3892 (2014).

Tyo, J. S.

Unger, M.

M. C. Martin, C. Dabat-Blondeau, M. Unger, J. Sedlmair, D. Y. Parkinson, H. A. Bechtel, B. Illman, J. M. Castro, M. Keiluweit, D. Buschke, B. Ogle, M. J. Nasse, C. J. Hirschmugl, “3D spectral imaging with synchrotron Fourier transform infrared spectro-microtomography,” Nat. Methods 10, 861–864 (2013).
[Crossref]

Valentine, J.

Y. Yang, W. Wang, P. Moitra, I. I. Kravchenko, D. P. Briggs, J. Valentine, “Dielectric meta-reflectarray for broadband linear polarization conversion and optical vortex generation,” Nano Lett. 14, 1394–1399 (2014).

Walia, J.

J. Walia, N. Dhindsa, M. Khorasaninejad, S. S. Saini, “Color generation and refractive index sensing using diffraction from 2D silicon nanowire arrays,” Small 10, 144–151 (2014).
[Crossref]

M. Khorasaninejad, J. Walia, S. S. Saini, “Enhanced first-order Raman scattering from arrays of vertical silicon nanowires,” Nanotechnology 23, 275706 (2012).
[Crossref]

M. Khorasaninejad, N. Abedzadeh, J. Walia, S. Patchett, S. S. Saini, “Color matrix refractive index sensors using coupled vertical silicon nanowire arrays,” Nano Lett. 12, 4228–4234 (2012).

Wang, W.

Y. Yang, W. Wang, P. Moitra, I. I. Kravchenko, D. P. Briggs, J. Valentine, “Dielectric meta-reflectarray for broadband linear polarization conversion and optical vortex generation,” Nano Lett. 14, 1394–1399 (2014).

Winkelman, J. W.

W. Groner, J. W. Winkelman, A. G. Harri, C. Ince, G. J. Bouma, K. Messmer, R. G. Nadeau, “Orthogonal polarization spectral imaging: a new method for study of the microcirculation,” Nat. Med. 5, 1209–1212 (1999).
[Crossref]

Wober, M.

K. Seo, M. Wober, P. Steinvurzel, E. Schonbrun, Y. P. Dan, T. Ellenbogen, K. B. Crozier, “Multicolored vertical silicon nanowires,” Nano Lett. 11, 1851–1856 (2011).

Wu, C.

C. Wu, N. Arju, G. Kelp, J. Fan, J. Dominguez, E. Gonzales, E. Tutuc, I. Brener, G. Shvets, “Spectrally selective chiral silicon metasurfaces based on infrared Fano resonances,” Nat. Commun. 5, 3892 (2014).

Yang, Y.

Y. Yang, W. Wang, P. Moitra, I. I. Kravchenko, D. P. Briggs, J. Valentine, “Dielectric meta-reflectarray for broadband linear polarization conversion and optical vortex generation,” Nano Lett. 14, 1394–1399 (2014).

Ye, D.

Y. Shen, D. Ye, I. Celanovic, S. G. Johnson, J. D. Joannopoulos, M. Soljačić, “Optical broadband angular selectivity,” Science 343, 1499–1501 (2014).
[Crossref]

York, T.

Zayats, A. V.

Zheludev, N. I.

ACS Nano (1)

I. Staude, A. E. Miroshnichenko, M. Decker, N. T. Fofang, S. Liu, E. Gonzales, J. Dominguez, T. S. Luk, D. N. Neshev, I. Brener, Y. Kivshar, “Tailoring directional scattering through magnetic and electric resonances in subwavelength silicon nanodisks,” ACS Nano 7, 7824–7832 (2013).
[Crossref]

Appl. Opt. (1)

Edinburgh New Philos. J. (1)

W. Nicol, “On a method of so far increasing the divergence of the two rays in calcareous-spar, that only one image may be seen at a time,” Edinburgh New Philos. J. 6, 83–84 (1829).

IEEE Trans. Pattern Anal. Mach. Intell. (1)

T. Treibitz, Y. Schechner, “Active polarization descattering,” IEEE Trans. Pattern Anal. Mach. Intell. 31, 385–399 (2009).
[Crossref]

Infrared Phys. Technol. (1)

A. Rogalski, “Infrared detectors: an overview,” Infrared Phys. Technol. 43, 187–210 (2002).
[Crossref]

J. Appl. Phys. (1)

M. Khorasaninejad, S. Patchett, J. Sun, N. O, S. S. Saini, “Diameter dependence of polarization resolved reflectance from vertical silicon nanowire arrays: evidence of tunable absorption,” J. Appl. Phys. 114, 024304 (2013).
[Crossref]

J. Opt. Soc. Am. (1)

Nano Lett. (4)

Y. Yang, W. Wang, P. Moitra, I. I. Kravchenko, D. P. Briggs, J. Valentine, “Dielectric meta-reflectarray for broadband linear polarization conversion and optical vortex generation,” Nano Lett. 14, 1394–1399 (2014).

M. Khorasaninejad, N. Abedzadeh, J. Walia, S. Patchett, S. S. Saini, “Color matrix refractive index sensors using coupled vertical silicon nanowire arrays,” Nano Lett. 12, 4228–4234 (2012).

K. Seo, M. Wober, P. Steinvurzel, E. Schonbrun, Y. P. Dan, T. Ellenbogen, K. B. Crozier, “Multicolored vertical silicon nanowires,” Nano Lett. 11, 1851–1856 (2011).

T. Ellenbogen, K. Seo, K. B. Crozier, “Chromatic plasmonic polarizers for active visible color filtering and polarimetry,” Nano Lett. 12, 1026–1031 (2012).

Nanotechnology (1)

M. Khorasaninejad, J. Walia, S. S. Saini, “Enhanced first-order Raman scattering from arrays of vertical silicon nanowires,” Nanotechnology 23, 275706 (2012).
[Crossref]

Nat. Commun. (2)

M. Khorasaninejad, K. B. Crozier, “Silicon nanofin grating as a miniature chirality-distinguishing beam-splitter,” Nat. Commun. 5, 5386 (2014).
[Crossref]

C. Wu, N. Arju, G. Kelp, J. Fan, J. Dominguez, E. Gonzales, E. Tutuc, I. Brener, G. Shvets, “Spectrally selective chiral silicon metasurfaces based on infrared Fano resonances,” Nat. Commun. 5, 3892 (2014).

Nat. Med. (2)

W. Groner, J. W. Winkelman, A. G. Harri, C. Ince, G. J. Bouma, K. Messmer, R. G. Nadeau, “Orthogonal polarization spectral imaging: a new method for study of the microcirculation,” Nat. Med. 5, 1209–1212 (1999).
[Crossref]

R. S. Gurjar, V. Backman, L. T. Perelman, I. Georgakoudi, K. Badizadegan, I. Itzkan, R. R. Dasari, M. S. Feld, “Imaging human epithelial properties with polarized light scattering spectroscopy,” Nat. Med. 7, 1245–1248 (2001).
[Crossref]

Nat. Methods (1)

M. C. Martin, C. Dabat-Blondeau, M. Unger, J. Sedlmair, D. Y. Parkinson, H. A. Bechtel, B. Illman, J. M. Castro, M. Keiluweit, D. Buschke, B. Ogle, M. J. Nasse, C. J. Hirschmugl, “3D spectral imaging with synchrotron Fourier transform infrared spectro-microtomography,” Nat. Methods 10, 861–864 (2013).
[Crossref]

Nat. Photonics (2)

E. Laux, C. Genet, T. Skauli, T. W. Ebbesen, “Plasmonic photon sorters for spectral and polarimetric imaging,” Nat. Photonics 2, 161–164 (2008).
[Crossref]

S. Nishiwaki, T. Nakamura, M. Hiramoto, T. Fujii, M. Suzuki, “Efficient colour splitters for high-pixel-density image sensors,” Nat. Photonics 7, 248–254 (2013).
[Crossref]

Nature (1)

A. Lamas-Linares, J. C. Howell, D. Bouwmeester, “Stimulated emission of polarization-entangled photons,” Nature 412, 887–890 (2001).
[Crossref]

Opt. Express (2)

Opt. Lett. (3)

Phys. Rev. B (1)

D. T. Pierce, W. E. Spicer, “Electronic structure of amorphous Si from photoemission and optical studies,” Phys. Rev. B 5, 3017–3029 (1972). Refractive indices from this reference are also reported in http://refractiveindex.info/?shelf=main&book=Si&page=Pierce .

Proc. IEEE (1)

S. Shwartz, E. Namer, Y. Schechner, “Blind haze separation,” Proc. IEEE 2, 1984–1991 (2006).

Rep. Exptl-Physik (1)

P. Glan, “Über einen polarisator,” Rep. Exptl-Physik 16, 570–573 (1880).

Science (2)

D. Lin, P. Fan, E. Hasman, M. L. Brongersma, “Dielectric gradient metasurface optical elements,” Science 345, 298–302 (2014).
[Crossref]

Y. Shen, D. Ye, I. Celanovic, S. G. Johnson, J. D. Joannopoulos, M. Soljačić, “Optical broadband angular selectivity,” Science 343, 1499–1501 (2014).
[Crossref]

Small (1)

J. Walia, N. Dhindsa, M. Khorasaninejad, S. S. Saini, “Color generation and refractive index sensing using diffraction from 2D silicon nanowire arrays,” Small 10, 144–151 (2014).
[Crossref]

Other (5)

M. Decker, I. Staude, M. Falkner, J. Dominguez, D. N. Neshev, I. Brener, T. Pertsch, Y. S. Kivshar, “High-efficiency dielectric Huygens’ surfaces,” Adv. Opt. Mater., article ID 201400584 (to be published).

M. Bass, Handbook of Optics (McGraw-Hill, 2001).

D. Goldstein, Polarized Light, 2nd ed. (Dekker, 2003).

E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1985).

Y. R. Shen, Principles of Nonlinear Optics (Wiley, 1984).

Supplementary Material (1)

» Supplement 1: PDF (2895 KB)     

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1. (a) Perspective view of proposed PIXIP device, which consists of three a-Si nanoridges per pixel. For simplicity, only the central pixel’s nanoridges are depicted. For polarization perpendicular to the length of nanoridges, impinging light is undeflected (red arrow) and proceeds to the center photodetector pixel. Parallel polarized light, on the other hand, will be redirected to side photodetector pixels (green arrows). (b) Side view of PIXIP device placed above photodetector pixels, with polarization-splitting concept illustrated. (c), (d) Simulation results showing that single nanoridge acts as a polarization beam splitter. Nanoridge has width W = 60 nm and height H = 500 nm and is considered to be infinitely long (in y direction). Wavelength is 1 μm. (c) Simulation result for case in which nanoridge is excited by truncated plane-wave polarized along y direction. Impinging light strongly interacts with nanoridge and is deflected to sides. (d) Simulation result for case in which nanoridge is excited by truncated plane-wave polarized along x direction. Incident light is largely undeflected. (e) Schematic diagram illustrating mechanism of polarization beam splitting. Nanoridge acts akin to a slab waveguide providing an optical path for incoming light (path 1). There is an alternative optical path (path 2). Phase accumulation is different for these two paths. (f) Simulation results showing that phase accumulation varies with polarization. Phase is recorded at a distance of 50 nm above tip of nanoridge [ z = 550 nm in (c) and (d)]. Parallel polarization curve plots phase of y component of electric field under y -polarized illumination. Perpendicular polarization curve plots phase of x component of electric field under x -polarized illumination.
Fig. 2.
Fig. 2. (a) Top-view SEM of fabricated structure; scale bar: 5 μm. White arrows have been added to show the polarization component that is deflected by each nanoridge. Yellow arrows have been added to show deflection direction. Nanoridges have lengths L = 5 μm , widths W = 60 nm , and heights H = 500 nm and are spaced by 5 μm (center-to-center). (b)–(f) Experiments: images of structure under illumination from IR-LED with (b) random, (c) 0 deg, (d) 45 deg, (e) 90 deg, and (f) 135 deg polarization.
Fig. 3.
Fig. 3. (a) Simulated power flow for light polarized parallel to length of nanoridges ( y direction). Wavelength of operation is λ = 950 nm . There are three nanoridges with widths W = 50 nm , heights H = 500 nm , center-to-center distance P = 550 nm , and lengths L = 5 μm . After z = 14 μm the majority of power is present in the side pixel region. Boundaries of pixels are highlighted by dashed lines. For this simulation, the total transmission, reflection, and absorption are 94.5%, 5%, and 0.5%, respectively. (b) Fraction of transmitted power that is deflected to side pixels versus wavelength for three different designs. Designs are optimized for center wavelengths close to 1000, 1200, and 1500 nm. By deviating from the design wavelength, the phase difference will no longer take the value π ; therefore, we shift from the “destructive interference condition,” and the proportion of input light power that is split (deflected) is reduced. For all simulations, there are three nanoridges with widths W = 50 nm , center-to-center distance P = 550 nm , and lengths L = 5 μm . The heights of the nanoridges and distance from substrate where power is recorded are noted in figure’s caption. (c)–(e) SEMs of fabricated PIXIP device. (c) Tilted-view SEM of PIXIP device; scale bar is 1 μm. (d) Top-view SEM of PIXIP device; scale bar is 5 μm. (e) Top-view SEM depicting one unit cell of PIXIP device; scale bar is 1 μm.
Fig. 4.
Fig. 4. (a), (b) Top view of one unit cell of PIXIP showing how nanoridges steer impinging light with (a) horizontal polarization (along x direction) and (b) vertical polarization (along y direction). (c),(d) Experimental results: intensity distributions over one unit cell of PIXIP device, with imaging plane at 15 μm from the PIXIP device, for input polarizations along (c)  x and (d)  y directions.
Fig. 5.
Fig. 5. Fraction of total intensity received by pixel-1 and pixel-2 at distance of S = 15 μm from device versus polarization angle.

Metrics