Abstract

Single-photon sources are basic building blocks for quantum communications, processing, and metrology. Solid-state quantum emitters in semiconductors have the potential for robust and reliable generation of photons, and atomically thin transition metal dichalcogenides, such as MoS2, MoSe2, WS2, and WSe2, are a promising new class of two-dimensional semiconductors with a direct optical bandgap in the visible or near-IR. Here, we observe bright and stable single-photon emission from localized excitons in a monolayer of tungsten diselenide (WSe2). The emitters appear at the edges of the flakes and are linearly polarized. The spectral width of their emission is below 120 μeV in a freestanding WSe2 monolayer. Photoluminescence excitation spectroscopy reveals the excitonic nature of the emitters and provides evidence that these single excitons originate from free excitons trapped in local potential wells at the edges of the atomically thin flakes. We find that the emitters can also be deterministically created by scratching the WSe2 monolayer. Their excellent spectral stability implies that these localized single-photon emitters could find application in optoelectronics. Our results light the way to single exciton physics and quantum optics with atomically thin semiconductors.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Resonant laser spectroscopy of localized excitons in monolayer WSe2

Santosh Kumar, Mauro Brotóns-Gisbert, Rima Al-Khuzheyri, Artur Branny, Guillem Ballesteros-Garcia, Juan F. Sánchez-Royo, and Brian D. Gerardot
Optica 3(8) 882-886 (2016)

Localized emission from defects in MoSe2 layers

Chitraleema Chakraborty, Kenneth M. Goodfellow, and A. Nick Vamivakas
Opt. Mater. Express 6(6) 2081-2087 (2016)

Few-layer MoS2 saturable absorbers for short-pulse laser technology: current status and future perspectives [Invited]

R. I. Woodward, R. C. T. Howe, G. Hu, F. Torrisi, M. Zhang, T. Hasan, and E. J. R. Kelleher
Photon. Res. 3(2) A30-A42 (2015)

References

  • View by:
  • |
  • |
  • |

  1. A. K. Geim, I. V. Grigorieva, “Van der Waals heterostructures,” Nature 499, 419–425 (2013).
    [Crossref]
  2. F. Xia, H. Wang, D. Xiao, M. Dubey, A. Ramasubramaniam, “Two-dimensional material nanophotonics,” Nat. Photonics 8, 899–907 (2014).
    [Crossref]
  3. Q. H. Wang, K. Kalantar-Zadeh, A. Kis, J. N. Coleman, M. S. Strano, “Electronics and optoelectronics of two-dimensional transition metal dichalcogenides,” Nat. Nanotechnol. 7, 699–712 (2012).
    [Crossref]
  4. R. Bratschitsch, “Optoelectronic devices: monolayer diodes light up,” Nat. Nanotechnol. 9, 247–248 (2014).
    [Crossref]
  5. R. F. Frindt, A. D. Yoffe, “Physical properties of layer structures: optical properties and photoconductivity of thin crystals of molybdenum disulphide,” Proc. R. Soc. A 273, 69–83 (1963).
    [Crossref]
  6. A. Splendiani, L. Sun, Y. Zhang, T. Li, J. Kim, C.-Y. Chim, G. Galli, F. Wang, “Emerging photoluminescence in monolayer MoS2,” Nano Lett. 10, 1271–1275 (2010).
    [Crossref]
  7. K. F. Mak, C. Lee, J. Hone, J. Shan, T. F. Heinz, “Atomically thin MoS2: a new direct-gap semiconductor,” Phys. Rev. Lett. 105, 136805 (2010).
    [Crossref]
  8. P. Tonndorf, R. Schmidt, P. Böttger, X. Zhang, J. Börner, A. Liebig, M. Albrecht, C. Kloc, O. Gordan, D. R. T. Zahn, S. Michaelis de Vasconcellos, R. Bratschitsch, “Photoluminescence emission and Raman response of monolayer MoS2, MoSe2, and WSe2,” Opt. Express 21, 4908–4916 (2013).
    [Crossref]
  9. K. Behnia, “Condensed-matter physics: polarized light boosts valleytronics,” Nat. Nanotechnol. 7, 488–489 (2012).
    [Crossref]
  10. T. Korn, S. Heydrich, M. Hirmer, J. Schmutzler, C. Schüller, “Low-temperature photocarrier dynamics in monolayer MoS2,” Appl. Phys. Lett. 99, 102109 (2011).
    [Crossref]
  11. S. Tongay, J. Suh, C. Ataca, W. Fan, A. Luce, J. S. Kang, J. Liu, C. Ko, R. Raghunathanan, J. Zhou, F. Ogletree, J. Li, J. C. Grossman, J. Wu, “Defects activated photoluminescence in two-dimensional semiconductors: interplay between bound, charged, and free excitons,” Sci. Rep. 3, 2657 (2013).
    [Crossref]
  12. L. Mandel, E. Wolf, Optical Coherence and Quantum Optics (Cambridge University, 1995).
  13. P. Michler, A. Imamoglu, M. Mason, P. Carson, G. Strouse, S. Buratto, “Quantum correlation among photons from a single quantum dot at room temperature,” Nature 406, 968–970 (2000).
    [Crossref]
  14. S. Mouri, Y. Miyauchi, M. Toh, W. Zhao, G. Eda, K. Matsuda, “Nonlinear photoluminescence in atomically thin layered WSe2 arising from diffusion-assisted exciton–exciton annihilation,” Phys. Rev. B 90, 155449 (2014).
    [Crossref]
  15. H. J. Kimble, “The quantum internet,” Nature 453, 1023–1030 (2008).
    [Crossref]
  16. A. Beveratos, R. Brouri, T. Gacoin, A. Villing, J.-P. Poizat, P. Grangier, “Single photon quantum cryptography,” Phys. Rev. Lett. 89, 187901 (2002).
    [Crossref]
  17. E. Knill, R. La, G. J. Milburn, “A scheme for efficient quantum computation with linear optics,” Nature 409, 46–52 (2001).
    [Crossref]
  18. S. V. Polyakov, A. L. Migdall, “Quantum radiometry,” J. Mod. Opt. 56, 1045–1052 (2009).
    [Crossref]
  19. M. S. Hofmann, J. T. Glückert, J. Noé, C. Bourjau, R. Dehmel, A. Högele, “Bright, long-lived and coherent excitons in carbon nanotube quantum dots,” Nat. Nanotechnol. 8, 502–505 (2013).
    [Crossref]
  20. D. Liu, Y. Guo, L. Fang, J. Robertson, “Sulfur vacancies in monolayer MoS2 and its electrical contacts,” Appl. Phys. Lett. 103, 183113 (2013).
    [Crossref]
  21. M. V. Bollinger, J. V. Lauritsen, K. W. Jacobsen, J. K. Nørskov, S. Helveg, F. Besenbacher, “One-dimensional metallic edge states in MoS2,” Phys. Rev. Lett. 87, 196803 (2001).
    [Crossref]
  22. X. Yin, Z. Ye, D. A. Chenet, Y. Ye, K. O’Brien, J. C. Hone, X. Zhang, “Edge nonlinear optics on a MoS2 atomic monolayer,” Science 344, 488–490 (2014).
    [Crossref]
  23. K. Nakada, M. Fujita, G. Dresselhaus, M. Dresselhaus, “Edge state in graphene ribbons: nanometer size effect and edge shape dependence,” Phys. Rev. B 54, 17954–17961 (1996).
    [Crossref]
  24. H. R. Gutiérrez, N. Perea-López, A. L. Elías, A. Berkdemir, B. Wang, R. Lv, F. López-Urías, V. H. Crespi, H. Terrones, M. Terrones, “Extraordinary room-temperature photoluminescence in triangular WS2 monolayers,” Nano Lett. 13, 3447–3454 (2013).
    [Crossref]
  25. L. Allen, J. Eberly, Optical Resonance and Two-Level Atoms (Dover, 1988).
  26. J. A. Schuller, S. Karaveli, T. Schiros, K. He, S. Yang, I. Kymissis, J. Shan, R. Zia, “Orientation of luminescent excitons in layered nanomaterials,” Nat. Nanotechnol. 8, 271–276 (2013).
    [Crossref]
  27. A. M. Jones, H. Yu, N. J. Ghimire, S. Wu, G. Aivazian, J. S. Ross, B. Zhao, J. Yan, D. G. Mandrus, D. Xiao, W. Yao, X. Xu, “Optical generation of excitonic valley coherence in monolayer WSe2,” Nat. Nanotechnol. 8, 634–638 (2013).
    [Crossref]
  28. D. Gammon, E. S. Snow, B. V. Shanabrook, D. S. Katzer, D. Park, “Fine structure splitting in the optical spectra of single GaAs quantum dots,” Phys. Rev. Lett. 76, 3005–3008 (1996).
    [Crossref]
  29. K. Brunner, U. Bockelmann, G. Abstreiter, M. Walther, G. Böhm, G. Tränkle, G. Weimann, “Photoluminescence from a single GaAs/AlGaAs quantum dot,” Phys. Rev. Lett. 69, 3216–3219 (1992).
    [Crossref]
  30. A. Zrenner, L. Butov, M. Hagn, G. Abstreiter, G. Böhm, G. Weimann, “Quantum dots formed by interface fluctuations in AlAs/GaAs coupled quantum well structures,” Phys. Rev. Lett. 72, 3382–3385 (1994).
    [Crossref]
  31. K. He, N. Kumar, L. Zhao, Z. Wang, K. F. Mak, H. Zhao, J. Shan, “Tightly bound excitons in monolayer WSe2,” Phys. Rev. Lett. 113, 026803 (2014).
    [Crossref]
  32. A. Srivastava, M. Sidler, A. V. Allain, D. S. Lembke, A. Kis, A. Imamoglu, “Optically active quantum dots in monolayer WSe2,” arXiv:1411.0025v1 [cond-mat.mes-hall] (2014).
  33. Y. He, G. Clark, J. R. Schaibley, Y. He, M. Chen, Y. Wei, X. Ding, W. Zhang, W. Yao, X. Xu, C.-Y. Lu, J.-W. Pan, “Single quantum emitters in monolayer semiconductors,” arXiv: 1411.2449v1 (2014).
  34. M. Koperski, K. Nogajewski, A. Arora, J. Marcus, P. Kossacki, M. Potemski, “Single photon emitters in exfoliated WSe2 structures,” arXiv:1411.2774v2 (2014).

2014 (5)

S. Mouri, Y. Miyauchi, M. Toh, W. Zhao, G. Eda, K. Matsuda, “Nonlinear photoluminescence in atomically thin layered WSe2 arising from diffusion-assisted exciton–exciton annihilation,” Phys. Rev. B 90, 155449 (2014).
[Crossref]

X. Yin, Z. Ye, D. A. Chenet, Y. Ye, K. O’Brien, J. C. Hone, X. Zhang, “Edge nonlinear optics on a MoS2 atomic monolayer,” Science 344, 488–490 (2014).
[Crossref]

K. He, N. Kumar, L. Zhao, Z. Wang, K. F. Mak, H. Zhao, J. Shan, “Tightly bound excitons in monolayer WSe2,” Phys. Rev. Lett. 113, 026803 (2014).
[Crossref]

F. Xia, H. Wang, D. Xiao, M. Dubey, A. Ramasubramaniam, “Two-dimensional material nanophotonics,” Nat. Photonics 8, 899–907 (2014).
[Crossref]

R. Bratschitsch, “Optoelectronic devices: monolayer diodes light up,” Nat. Nanotechnol. 9, 247–248 (2014).
[Crossref]

2013 (8)

A. K. Geim, I. V. Grigorieva, “Van der Waals heterostructures,” Nature 499, 419–425 (2013).
[Crossref]

P. Tonndorf, R. Schmidt, P. Böttger, X. Zhang, J. Börner, A. Liebig, M. Albrecht, C. Kloc, O. Gordan, D. R. T. Zahn, S. Michaelis de Vasconcellos, R. Bratschitsch, “Photoluminescence emission and Raman response of monolayer MoS2, MoSe2, and WSe2,” Opt. Express 21, 4908–4916 (2013).
[Crossref]

M. S. Hofmann, J. T. Glückert, J. Noé, C. Bourjau, R. Dehmel, A. Högele, “Bright, long-lived and coherent excitons in carbon nanotube quantum dots,” Nat. Nanotechnol. 8, 502–505 (2013).
[Crossref]

D. Liu, Y. Guo, L. Fang, J. Robertson, “Sulfur vacancies in monolayer MoS2 and its electrical contacts,” Appl. Phys. Lett. 103, 183113 (2013).
[Crossref]

H. R. Gutiérrez, N. Perea-López, A. L. Elías, A. Berkdemir, B. Wang, R. Lv, F. López-Urías, V. H. Crespi, H. Terrones, M. Terrones, “Extraordinary room-temperature photoluminescence in triangular WS2 monolayers,” Nano Lett. 13, 3447–3454 (2013).
[Crossref]

J. A. Schuller, S. Karaveli, T. Schiros, K. He, S. Yang, I. Kymissis, J. Shan, R. Zia, “Orientation of luminescent excitons in layered nanomaterials,” Nat. Nanotechnol. 8, 271–276 (2013).
[Crossref]

A. M. Jones, H. Yu, N. J. Ghimire, S. Wu, G. Aivazian, J. S. Ross, B. Zhao, J. Yan, D. G. Mandrus, D. Xiao, W. Yao, X. Xu, “Optical generation of excitonic valley coherence in monolayer WSe2,” Nat. Nanotechnol. 8, 634–638 (2013).
[Crossref]

S. Tongay, J. Suh, C. Ataca, W. Fan, A. Luce, J. S. Kang, J. Liu, C. Ko, R. Raghunathanan, J. Zhou, F. Ogletree, J. Li, J. C. Grossman, J. Wu, “Defects activated photoluminescence in two-dimensional semiconductors: interplay between bound, charged, and free excitons,” Sci. Rep. 3, 2657 (2013).
[Crossref]

2012 (2)

K. Behnia, “Condensed-matter physics: polarized light boosts valleytronics,” Nat. Nanotechnol. 7, 488–489 (2012).
[Crossref]

Q. H. Wang, K. Kalantar-Zadeh, A. Kis, J. N. Coleman, M. S. Strano, “Electronics and optoelectronics of two-dimensional transition metal dichalcogenides,” Nat. Nanotechnol. 7, 699–712 (2012).
[Crossref]

2011 (1)

T. Korn, S. Heydrich, M. Hirmer, J. Schmutzler, C. Schüller, “Low-temperature photocarrier dynamics in monolayer MoS2,” Appl. Phys. Lett. 99, 102109 (2011).
[Crossref]

2010 (2)

A. Splendiani, L. Sun, Y. Zhang, T. Li, J. Kim, C.-Y. Chim, G. Galli, F. Wang, “Emerging photoluminescence in monolayer MoS2,” Nano Lett. 10, 1271–1275 (2010).
[Crossref]

K. F. Mak, C. Lee, J. Hone, J. Shan, T. F. Heinz, “Atomically thin MoS2: a new direct-gap semiconductor,” Phys. Rev. Lett. 105, 136805 (2010).
[Crossref]

2009 (1)

S. V. Polyakov, A. L. Migdall, “Quantum radiometry,” J. Mod. Opt. 56, 1045–1052 (2009).
[Crossref]

2008 (1)

H. J. Kimble, “The quantum internet,” Nature 453, 1023–1030 (2008).
[Crossref]

2002 (1)

A. Beveratos, R. Brouri, T. Gacoin, A. Villing, J.-P. Poizat, P. Grangier, “Single photon quantum cryptography,” Phys. Rev. Lett. 89, 187901 (2002).
[Crossref]

2001 (2)

E. Knill, R. La, G. J. Milburn, “A scheme for efficient quantum computation with linear optics,” Nature 409, 46–52 (2001).
[Crossref]

M. V. Bollinger, J. V. Lauritsen, K. W. Jacobsen, J. K. Nørskov, S. Helveg, F. Besenbacher, “One-dimensional metallic edge states in MoS2,” Phys. Rev. Lett. 87, 196803 (2001).
[Crossref]

2000 (1)

P. Michler, A. Imamoglu, M. Mason, P. Carson, G. Strouse, S. Buratto, “Quantum correlation among photons from a single quantum dot at room temperature,” Nature 406, 968–970 (2000).
[Crossref]

1996 (2)

K. Nakada, M. Fujita, G. Dresselhaus, M. Dresselhaus, “Edge state in graphene ribbons: nanometer size effect and edge shape dependence,” Phys. Rev. B 54, 17954–17961 (1996).
[Crossref]

D. Gammon, E. S. Snow, B. V. Shanabrook, D. S. Katzer, D. Park, “Fine structure splitting in the optical spectra of single GaAs quantum dots,” Phys. Rev. Lett. 76, 3005–3008 (1996).
[Crossref]

1994 (1)

A. Zrenner, L. Butov, M. Hagn, G. Abstreiter, G. Böhm, G. Weimann, “Quantum dots formed by interface fluctuations in AlAs/GaAs coupled quantum well structures,” Phys. Rev. Lett. 72, 3382–3385 (1994).
[Crossref]

1992 (1)

K. Brunner, U. Bockelmann, G. Abstreiter, M. Walther, G. Böhm, G. Tränkle, G. Weimann, “Photoluminescence from a single GaAs/AlGaAs quantum dot,” Phys. Rev. Lett. 69, 3216–3219 (1992).
[Crossref]

1963 (1)

R. F. Frindt, A. D. Yoffe, “Physical properties of layer structures: optical properties and photoconductivity of thin crystals of molybdenum disulphide,” Proc. R. Soc. A 273, 69–83 (1963).
[Crossref]

Abstreiter, G.

A. Zrenner, L. Butov, M. Hagn, G. Abstreiter, G. Böhm, G. Weimann, “Quantum dots formed by interface fluctuations in AlAs/GaAs coupled quantum well structures,” Phys. Rev. Lett. 72, 3382–3385 (1994).
[Crossref]

K. Brunner, U. Bockelmann, G. Abstreiter, M. Walther, G. Böhm, G. Tränkle, G. Weimann, “Photoluminescence from a single GaAs/AlGaAs quantum dot,” Phys. Rev. Lett. 69, 3216–3219 (1992).
[Crossref]

Aivazian, G.

A. M. Jones, H. Yu, N. J. Ghimire, S. Wu, G. Aivazian, J. S. Ross, B. Zhao, J. Yan, D. G. Mandrus, D. Xiao, W. Yao, X. Xu, “Optical generation of excitonic valley coherence in monolayer WSe2,” Nat. Nanotechnol. 8, 634–638 (2013).
[Crossref]

Albrecht, M.

Allain, A. V.

A. Srivastava, M. Sidler, A. V. Allain, D. S. Lembke, A. Kis, A. Imamoglu, “Optically active quantum dots in monolayer WSe2,” arXiv:1411.0025v1 [cond-mat.mes-hall] (2014).

Allen, L.

L. Allen, J. Eberly, Optical Resonance and Two-Level Atoms (Dover, 1988).

Arora, A.

M. Koperski, K. Nogajewski, A. Arora, J. Marcus, P. Kossacki, M. Potemski, “Single photon emitters in exfoliated WSe2 structures,” arXiv:1411.2774v2 (2014).

Ataca, C.

S. Tongay, J. Suh, C. Ataca, W. Fan, A. Luce, J. S. Kang, J. Liu, C. Ko, R. Raghunathanan, J. Zhou, F. Ogletree, J. Li, J. C. Grossman, J. Wu, “Defects activated photoluminescence in two-dimensional semiconductors: interplay between bound, charged, and free excitons,” Sci. Rep. 3, 2657 (2013).
[Crossref]

Behnia, K.

K. Behnia, “Condensed-matter physics: polarized light boosts valleytronics,” Nat. Nanotechnol. 7, 488–489 (2012).
[Crossref]

Berkdemir, A.

H. R. Gutiérrez, N. Perea-López, A. L. Elías, A. Berkdemir, B. Wang, R. Lv, F. López-Urías, V. H. Crespi, H. Terrones, M. Terrones, “Extraordinary room-temperature photoluminescence in triangular WS2 monolayers,” Nano Lett. 13, 3447–3454 (2013).
[Crossref]

Besenbacher, F.

M. V. Bollinger, J. V. Lauritsen, K. W. Jacobsen, J. K. Nørskov, S. Helveg, F. Besenbacher, “One-dimensional metallic edge states in MoS2,” Phys. Rev. Lett. 87, 196803 (2001).
[Crossref]

Beveratos, A.

A. Beveratos, R. Brouri, T. Gacoin, A. Villing, J.-P. Poizat, P. Grangier, “Single photon quantum cryptography,” Phys. Rev. Lett. 89, 187901 (2002).
[Crossref]

Bockelmann, U.

K. Brunner, U. Bockelmann, G. Abstreiter, M. Walther, G. Böhm, G. Tränkle, G. Weimann, “Photoluminescence from a single GaAs/AlGaAs quantum dot,” Phys. Rev. Lett. 69, 3216–3219 (1992).
[Crossref]

Böhm, G.

A. Zrenner, L. Butov, M. Hagn, G. Abstreiter, G. Böhm, G. Weimann, “Quantum dots formed by interface fluctuations in AlAs/GaAs coupled quantum well structures,” Phys. Rev. Lett. 72, 3382–3385 (1994).
[Crossref]

K. Brunner, U. Bockelmann, G. Abstreiter, M. Walther, G. Böhm, G. Tränkle, G. Weimann, “Photoluminescence from a single GaAs/AlGaAs quantum dot,” Phys. Rev. Lett. 69, 3216–3219 (1992).
[Crossref]

Bollinger, M. V.

M. V. Bollinger, J. V. Lauritsen, K. W. Jacobsen, J. K. Nørskov, S. Helveg, F. Besenbacher, “One-dimensional metallic edge states in MoS2,” Phys. Rev. Lett. 87, 196803 (2001).
[Crossref]

Börner, J.

Böttger, P.

Bourjau, C.

M. S. Hofmann, J. T. Glückert, J. Noé, C. Bourjau, R. Dehmel, A. Högele, “Bright, long-lived and coherent excitons in carbon nanotube quantum dots,” Nat. Nanotechnol. 8, 502–505 (2013).
[Crossref]

Bratschitsch, R.

Brouri, R.

A. Beveratos, R. Brouri, T. Gacoin, A. Villing, J.-P. Poizat, P. Grangier, “Single photon quantum cryptography,” Phys. Rev. Lett. 89, 187901 (2002).
[Crossref]

Brunner, K.

K. Brunner, U. Bockelmann, G. Abstreiter, M. Walther, G. Böhm, G. Tränkle, G. Weimann, “Photoluminescence from a single GaAs/AlGaAs quantum dot,” Phys. Rev. Lett. 69, 3216–3219 (1992).
[Crossref]

Buratto, S.

P. Michler, A. Imamoglu, M. Mason, P. Carson, G. Strouse, S. Buratto, “Quantum correlation among photons from a single quantum dot at room temperature,” Nature 406, 968–970 (2000).
[Crossref]

Butov, L.

A. Zrenner, L. Butov, M. Hagn, G. Abstreiter, G. Böhm, G. Weimann, “Quantum dots formed by interface fluctuations in AlAs/GaAs coupled quantum well structures,” Phys. Rev. Lett. 72, 3382–3385 (1994).
[Crossref]

Carson, P.

P. Michler, A. Imamoglu, M. Mason, P. Carson, G. Strouse, S. Buratto, “Quantum correlation among photons from a single quantum dot at room temperature,” Nature 406, 968–970 (2000).
[Crossref]

Chen, M.

Y. He, G. Clark, J. R. Schaibley, Y. He, M. Chen, Y. Wei, X. Ding, W. Zhang, W. Yao, X. Xu, C.-Y. Lu, J.-W. Pan, “Single quantum emitters in monolayer semiconductors,” arXiv: 1411.2449v1 (2014).

Chenet, D. A.

X. Yin, Z. Ye, D. A. Chenet, Y. Ye, K. O’Brien, J. C. Hone, X. Zhang, “Edge nonlinear optics on a MoS2 atomic monolayer,” Science 344, 488–490 (2014).
[Crossref]

Chim, C.-Y.

A. Splendiani, L. Sun, Y. Zhang, T. Li, J. Kim, C.-Y. Chim, G. Galli, F. Wang, “Emerging photoluminescence in monolayer MoS2,” Nano Lett. 10, 1271–1275 (2010).
[Crossref]

Clark, G.

Y. He, G. Clark, J. R. Schaibley, Y. He, M. Chen, Y. Wei, X. Ding, W. Zhang, W. Yao, X. Xu, C.-Y. Lu, J.-W. Pan, “Single quantum emitters in monolayer semiconductors,” arXiv: 1411.2449v1 (2014).

Coleman, J. N.

Q. H. Wang, K. Kalantar-Zadeh, A. Kis, J. N. Coleman, M. S. Strano, “Electronics and optoelectronics of two-dimensional transition metal dichalcogenides,” Nat. Nanotechnol. 7, 699–712 (2012).
[Crossref]

Crespi, V. H.

H. R. Gutiérrez, N. Perea-López, A. L. Elías, A. Berkdemir, B. Wang, R. Lv, F. López-Urías, V. H. Crespi, H. Terrones, M. Terrones, “Extraordinary room-temperature photoluminescence in triangular WS2 monolayers,” Nano Lett. 13, 3447–3454 (2013).
[Crossref]

Dehmel, R.

M. S. Hofmann, J. T. Glückert, J. Noé, C. Bourjau, R. Dehmel, A. Högele, “Bright, long-lived and coherent excitons in carbon nanotube quantum dots,” Nat. Nanotechnol. 8, 502–505 (2013).
[Crossref]

Ding, X.

Y. He, G. Clark, J. R. Schaibley, Y. He, M. Chen, Y. Wei, X. Ding, W. Zhang, W. Yao, X. Xu, C.-Y. Lu, J.-W. Pan, “Single quantum emitters in monolayer semiconductors,” arXiv: 1411.2449v1 (2014).

Dresselhaus, G.

K. Nakada, M. Fujita, G. Dresselhaus, M. Dresselhaus, “Edge state in graphene ribbons: nanometer size effect and edge shape dependence,” Phys. Rev. B 54, 17954–17961 (1996).
[Crossref]

Dresselhaus, M.

K. Nakada, M. Fujita, G. Dresselhaus, M. Dresselhaus, “Edge state in graphene ribbons: nanometer size effect and edge shape dependence,” Phys. Rev. B 54, 17954–17961 (1996).
[Crossref]

Dubey, M.

F. Xia, H. Wang, D. Xiao, M. Dubey, A. Ramasubramaniam, “Two-dimensional material nanophotonics,” Nat. Photonics 8, 899–907 (2014).
[Crossref]

Eberly, J.

L. Allen, J. Eberly, Optical Resonance and Two-Level Atoms (Dover, 1988).

Eda, G.

S. Mouri, Y. Miyauchi, M. Toh, W. Zhao, G. Eda, K. Matsuda, “Nonlinear photoluminescence in atomically thin layered WSe2 arising from diffusion-assisted exciton–exciton annihilation,” Phys. Rev. B 90, 155449 (2014).
[Crossref]

Elías, A. L.

H. R. Gutiérrez, N. Perea-López, A. L. Elías, A. Berkdemir, B. Wang, R. Lv, F. López-Urías, V. H. Crespi, H. Terrones, M. Terrones, “Extraordinary room-temperature photoluminescence in triangular WS2 monolayers,” Nano Lett. 13, 3447–3454 (2013).
[Crossref]

Fan, W.

S. Tongay, J. Suh, C. Ataca, W. Fan, A. Luce, J. S. Kang, J. Liu, C. Ko, R. Raghunathanan, J. Zhou, F. Ogletree, J. Li, J. C. Grossman, J. Wu, “Defects activated photoluminescence in two-dimensional semiconductors: interplay between bound, charged, and free excitons,” Sci. Rep. 3, 2657 (2013).
[Crossref]

Fang, L.

D. Liu, Y. Guo, L. Fang, J. Robertson, “Sulfur vacancies in monolayer MoS2 and its electrical contacts,” Appl. Phys. Lett. 103, 183113 (2013).
[Crossref]

Frindt, R. F.

R. F. Frindt, A. D. Yoffe, “Physical properties of layer structures: optical properties and photoconductivity of thin crystals of molybdenum disulphide,” Proc. R. Soc. A 273, 69–83 (1963).
[Crossref]

Fujita, M.

K. Nakada, M. Fujita, G. Dresselhaus, M. Dresselhaus, “Edge state in graphene ribbons: nanometer size effect and edge shape dependence,” Phys. Rev. B 54, 17954–17961 (1996).
[Crossref]

Gacoin, T.

A. Beveratos, R. Brouri, T. Gacoin, A. Villing, J.-P. Poizat, P. Grangier, “Single photon quantum cryptography,” Phys. Rev. Lett. 89, 187901 (2002).
[Crossref]

Galli, G.

A. Splendiani, L. Sun, Y. Zhang, T. Li, J. Kim, C.-Y. Chim, G. Galli, F. Wang, “Emerging photoluminescence in monolayer MoS2,” Nano Lett. 10, 1271–1275 (2010).
[Crossref]

Gammon, D.

D. Gammon, E. S. Snow, B. V. Shanabrook, D. S. Katzer, D. Park, “Fine structure splitting in the optical spectra of single GaAs quantum dots,” Phys. Rev. Lett. 76, 3005–3008 (1996).
[Crossref]

Geim, A. K.

A. K. Geim, I. V. Grigorieva, “Van der Waals heterostructures,” Nature 499, 419–425 (2013).
[Crossref]

Ghimire, N. J.

A. M. Jones, H. Yu, N. J. Ghimire, S. Wu, G. Aivazian, J. S. Ross, B. Zhao, J. Yan, D. G. Mandrus, D. Xiao, W. Yao, X. Xu, “Optical generation of excitonic valley coherence in monolayer WSe2,” Nat. Nanotechnol. 8, 634–638 (2013).
[Crossref]

Glückert, J. T.

M. S. Hofmann, J. T. Glückert, J. Noé, C. Bourjau, R. Dehmel, A. Högele, “Bright, long-lived and coherent excitons in carbon nanotube quantum dots,” Nat. Nanotechnol. 8, 502–505 (2013).
[Crossref]

Gordan, O.

Grangier, P.

A. Beveratos, R. Brouri, T. Gacoin, A. Villing, J.-P. Poizat, P. Grangier, “Single photon quantum cryptography,” Phys. Rev. Lett. 89, 187901 (2002).
[Crossref]

Grigorieva, I. V.

A. K. Geim, I. V. Grigorieva, “Van der Waals heterostructures,” Nature 499, 419–425 (2013).
[Crossref]

Grossman, J. C.

S. Tongay, J. Suh, C. Ataca, W. Fan, A. Luce, J. S. Kang, J. Liu, C. Ko, R. Raghunathanan, J. Zhou, F. Ogletree, J. Li, J. C. Grossman, J. Wu, “Defects activated photoluminescence in two-dimensional semiconductors: interplay between bound, charged, and free excitons,” Sci. Rep. 3, 2657 (2013).
[Crossref]

Guo, Y.

D. Liu, Y. Guo, L. Fang, J. Robertson, “Sulfur vacancies in monolayer MoS2 and its electrical contacts,” Appl. Phys. Lett. 103, 183113 (2013).
[Crossref]

Gutiérrez, H. R.

H. R. Gutiérrez, N. Perea-López, A. L. Elías, A. Berkdemir, B. Wang, R. Lv, F. López-Urías, V. H. Crespi, H. Terrones, M. Terrones, “Extraordinary room-temperature photoluminescence in triangular WS2 monolayers,” Nano Lett. 13, 3447–3454 (2013).
[Crossref]

Hagn, M.

A. Zrenner, L. Butov, M. Hagn, G. Abstreiter, G. Böhm, G. Weimann, “Quantum dots formed by interface fluctuations in AlAs/GaAs coupled quantum well structures,” Phys. Rev. Lett. 72, 3382–3385 (1994).
[Crossref]

He, K.

K. He, N. Kumar, L. Zhao, Z. Wang, K. F. Mak, H. Zhao, J. Shan, “Tightly bound excitons in monolayer WSe2,” Phys. Rev. Lett. 113, 026803 (2014).
[Crossref]

J. A. Schuller, S. Karaveli, T. Schiros, K. He, S. Yang, I. Kymissis, J. Shan, R. Zia, “Orientation of luminescent excitons in layered nanomaterials,” Nat. Nanotechnol. 8, 271–276 (2013).
[Crossref]

He, Y.

Y. He, G. Clark, J. R. Schaibley, Y. He, M. Chen, Y. Wei, X. Ding, W. Zhang, W. Yao, X. Xu, C.-Y. Lu, J.-W. Pan, “Single quantum emitters in monolayer semiconductors,” arXiv: 1411.2449v1 (2014).

Y. He, G. Clark, J. R. Schaibley, Y. He, M. Chen, Y. Wei, X. Ding, W. Zhang, W. Yao, X. Xu, C.-Y. Lu, J.-W. Pan, “Single quantum emitters in monolayer semiconductors,” arXiv: 1411.2449v1 (2014).

Heinz, T. F.

K. F. Mak, C. Lee, J. Hone, J. Shan, T. F. Heinz, “Atomically thin MoS2: a new direct-gap semiconductor,” Phys. Rev. Lett. 105, 136805 (2010).
[Crossref]

Helveg, S.

M. V. Bollinger, J. V. Lauritsen, K. W. Jacobsen, J. K. Nørskov, S. Helveg, F. Besenbacher, “One-dimensional metallic edge states in MoS2,” Phys. Rev. Lett. 87, 196803 (2001).
[Crossref]

Heydrich, S.

T. Korn, S. Heydrich, M. Hirmer, J. Schmutzler, C. Schüller, “Low-temperature photocarrier dynamics in monolayer MoS2,” Appl. Phys. Lett. 99, 102109 (2011).
[Crossref]

Hirmer, M.

T. Korn, S. Heydrich, M. Hirmer, J. Schmutzler, C. Schüller, “Low-temperature photocarrier dynamics in monolayer MoS2,” Appl. Phys. Lett. 99, 102109 (2011).
[Crossref]

Hofmann, M. S.

M. S. Hofmann, J. T. Glückert, J. Noé, C. Bourjau, R. Dehmel, A. Högele, “Bright, long-lived and coherent excitons in carbon nanotube quantum dots,” Nat. Nanotechnol. 8, 502–505 (2013).
[Crossref]

Högele, A.

M. S. Hofmann, J. T. Glückert, J. Noé, C. Bourjau, R. Dehmel, A. Högele, “Bright, long-lived and coherent excitons in carbon nanotube quantum dots,” Nat. Nanotechnol. 8, 502–505 (2013).
[Crossref]

Hone, J.

K. F. Mak, C. Lee, J. Hone, J. Shan, T. F. Heinz, “Atomically thin MoS2: a new direct-gap semiconductor,” Phys. Rev. Lett. 105, 136805 (2010).
[Crossref]

Hone, J. C.

X. Yin, Z. Ye, D. A. Chenet, Y. Ye, K. O’Brien, J. C. Hone, X. Zhang, “Edge nonlinear optics on a MoS2 atomic monolayer,” Science 344, 488–490 (2014).
[Crossref]

Imamoglu, A.

P. Michler, A. Imamoglu, M. Mason, P. Carson, G. Strouse, S. Buratto, “Quantum correlation among photons from a single quantum dot at room temperature,” Nature 406, 968–970 (2000).
[Crossref]

A. Srivastava, M. Sidler, A. V. Allain, D. S. Lembke, A. Kis, A. Imamoglu, “Optically active quantum dots in monolayer WSe2,” arXiv:1411.0025v1 [cond-mat.mes-hall] (2014).

Jacobsen, K. W.

M. V. Bollinger, J. V. Lauritsen, K. W. Jacobsen, J. K. Nørskov, S. Helveg, F. Besenbacher, “One-dimensional metallic edge states in MoS2,” Phys. Rev. Lett. 87, 196803 (2001).
[Crossref]

Jones, A. M.

A. M. Jones, H. Yu, N. J. Ghimire, S. Wu, G. Aivazian, J. S. Ross, B. Zhao, J. Yan, D. G. Mandrus, D. Xiao, W. Yao, X. Xu, “Optical generation of excitonic valley coherence in monolayer WSe2,” Nat. Nanotechnol. 8, 634–638 (2013).
[Crossref]

Kalantar-Zadeh, K.

Q. H. Wang, K. Kalantar-Zadeh, A. Kis, J. N. Coleman, M. S. Strano, “Electronics and optoelectronics of two-dimensional transition metal dichalcogenides,” Nat. Nanotechnol. 7, 699–712 (2012).
[Crossref]

Kang, J. S.

S. Tongay, J. Suh, C. Ataca, W. Fan, A. Luce, J. S. Kang, J. Liu, C. Ko, R. Raghunathanan, J. Zhou, F. Ogletree, J. Li, J. C. Grossman, J. Wu, “Defects activated photoluminescence in two-dimensional semiconductors: interplay between bound, charged, and free excitons,” Sci. Rep. 3, 2657 (2013).
[Crossref]

Karaveli, S.

J. A. Schuller, S. Karaveli, T. Schiros, K. He, S. Yang, I. Kymissis, J. Shan, R. Zia, “Orientation of luminescent excitons in layered nanomaterials,” Nat. Nanotechnol. 8, 271–276 (2013).
[Crossref]

Katzer, D. S.

D. Gammon, E. S. Snow, B. V. Shanabrook, D. S. Katzer, D. Park, “Fine structure splitting in the optical spectra of single GaAs quantum dots,” Phys. Rev. Lett. 76, 3005–3008 (1996).
[Crossref]

Kim, J.

A. Splendiani, L. Sun, Y. Zhang, T. Li, J. Kim, C.-Y. Chim, G. Galli, F. Wang, “Emerging photoluminescence in monolayer MoS2,” Nano Lett. 10, 1271–1275 (2010).
[Crossref]

Kimble, H. J.

H. J. Kimble, “The quantum internet,” Nature 453, 1023–1030 (2008).
[Crossref]

Kis, A.

Q. H. Wang, K. Kalantar-Zadeh, A. Kis, J. N. Coleman, M. S. Strano, “Electronics and optoelectronics of two-dimensional transition metal dichalcogenides,” Nat. Nanotechnol. 7, 699–712 (2012).
[Crossref]

A. Srivastava, M. Sidler, A. V. Allain, D. S. Lembke, A. Kis, A. Imamoglu, “Optically active quantum dots in monolayer WSe2,” arXiv:1411.0025v1 [cond-mat.mes-hall] (2014).

Kloc, C.

Knill, E.

E. Knill, R. La, G. J. Milburn, “A scheme for efficient quantum computation with linear optics,” Nature 409, 46–52 (2001).
[Crossref]

Ko, C.

S. Tongay, J. Suh, C. Ataca, W. Fan, A. Luce, J. S. Kang, J. Liu, C. Ko, R. Raghunathanan, J. Zhou, F. Ogletree, J. Li, J. C. Grossman, J. Wu, “Defects activated photoluminescence in two-dimensional semiconductors: interplay between bound, charged, and free excitons,” Sci. Rep. 3, 2657 (2013).
[Crossref]

Koperski, M.

M. Koperski, K. Nogajewski, A. Arora, J. Marcus, P. Kossacki, M. Potemski, “Single photon emitters in exfoliated WSe2 structures,” arXiv:1411.2774v2 (2014).

Korn, T.

T. Korn, S. Heydrich, M. Hirmer, J. Schmutzler, C. Schüller, “Low-temperature photocarrier dynamics in monolayer MoS2,” Appl. Phys. Lett. 99, 102109 (2011).
[Crossref]

Kossacki, P.

M. Koperski, K. Nogajewski, A. Arora, J. Marcus, P. Kossacki, M. Potemski, “Single photon emitters in exfoliated WSe2 structures,” arXiv:1411.2774v2 (2014).

Kumar, N.

K. He, N. Kumar, L. Zhao, Z. Wang, K. F. Mak, H. Zhao, J. Shan, “Tightly bound excitons in monolayer WSe2,” Phys. Rev. Lett. 113, 026803 (2014).
[Crossref]

Kymissis, I.

J. A. Schuller, S. Karaveli, T. Schiros, K. He, S. Yang, I. Kymissis, J. Shan, R. Zia, “Orientation of luminescent excitons in layered nanomaterials,” Nat. Nanotechnol. 8, 271–276 (2013).
[Crossref]

La, R.

E. Knill, R. La, G. J. Milburn, “A scheme for efficient quantum computation with linear optics,” Nature 409, 46–52 (2001).
[Crossref]

Lauritsen, J. V.

M. V. Bollinger, J. V. Lauritsen, K. W. Jacobsen, J. K. Nørskov, S. Helveg, F. Besenbacher, “One-dimensional metallic edge states in MoS2,” Phys. Rev. Lett. 87, 196803 (2001).
[Crossref]

Lee, C.

K. F. Mak, C. Lee, J. Hone, J. Shan, T. F. Heinz, “Atomically thin MoS2: a new direct-gap semiconductor,” Phys. Rev. Lett. 105, 136805 (2010).
[Crossref]

Lembke, D. S.

A. Srivastava, M. Sidler, A. V. Allain, D. S. Lembke, A. Kis, A. Imamoglu, “Optically active quantum dots in monolayer WSe2,” arXiv:1411.0025v1 [cond-mat.mes-hall] (2014).

Li, J.

S. Tongay, J. Suh, C. Ataca, W. Fan, A. Luce, J. S. Kang, J. Liu, C. Ko, R. Raghunathanan, J. Zhou, F. Ogletree, J. Li, J. C. Grossman, J. Wu, “Defects activated photoluminescence in two-dimensional semiconductors: interplay between bound, charged, and free excitons,” Sci. Rep. 3, 2657 (2013).
[Crossref]

Li, T.

A. Splendiani, L. Sun, Y. Zhang, T. Li, J. Kim, C.-Y. Chim, G. Galli, F. Wang, “Emerging photoluminescence in monolayer MoS2,” Nano Lett. 10, 1271–1275 (2010).
[Crossref]

Liebig, A.

Liu, D.

D. Liu, Y. Guo, L. Fang, J. Robertson, “Sulfur vacancies in monolayer MoS2 and its electrical contacts,” Appl. Phys. Lett. 103, 183113 (2013).
[Crossref]

Liu, J.

S. Tongay, J. Suh, C. Ataca, W. Fan, A. Luce, J. S. Kang, J. Liu, C. Ko, R. Raghunathanan, J. Zhou, F. Ogletree, J. Li, J. C. Grossman, J. Wu, “Defects activated photoluminescence in two-dimensional semiconductors: interplay between bound, charged, and free excitons,” Sci. Rep. 3, 2657 (2013).
[Crossref]

López-Urías, F.

H. R. Gutiérrez, N. Perea-López, A. L. Elías, A. Berkdemir, B. Wang, R. Lv, F. López-Urías, V. H. Crespi, H. Terrones, M. Terrones, “Extraordinary room-temperature photoluminescence in triangular WS2 monolayers,” Nano Lett. 13, 3447–3454 (2013).
[Crossref]

Lu, C.-Y.

Y. He, G. Clark, J. R. Schaibley, Y. He, M. Chen, Y. Wei, X. Ding, W. Zhang, W. Yao, X. Xu, C.-Y. Lu, J.-W. Pan, “Single quantum emitters in monolayer semiconductors,” arXiv: 1411.2449v1 (2014).

Luce, A.

S. Tongay, J. Suh, C. Ataca, W. Fan, A. Luce, J. S. Kang, J. Liu, C. Ko, R. Raghunathanan, J. Zhou, F. Ogletree, J. Li, J. C. Grossman, J. Wu, “Defects activated photoluminescence in two-dimensional semiconductors: interplay between bound, charged, and free excitons,” Sci. Rep. 3, 2657 (2013).
[Crossref]

Lv, R.

H. R. Gutiérrez, N. Perea-López, A. L. Elías, A. Berkdemir, B. Wang, R. Lv, F. López-Urías, V. H. Crespi, H. Terrones, M. Terrones, “Extraordinary room-temperature photoluminescence in triangular WS2 monolayers,” Nano Lett. 13, 3447–3454 (2013).
[Crossref]

Mak, K. F.

K. He, N. Kumar, L. Zhao, Z. Wang, K. F. Mak, H. Zhao, J. Shan, “Tightly bound excitons in monolayer WSe2,” Phys. Rev. Lett. 113, 026803 (2014).
[Crossref]

K. F. Mak, C. Lee, J. Hone, J. Shan, T. F. Heinz, “Atomically thin MoS2: a new direct-gap semiconductor,” Phys. Rev. Lett. 105, 136805 (2010).
[Crossref]

Mandel, L.

L. Mandel, E. Wolf, Optical Coherence and Quantum Optics (Cambridge University, 1995).

Mandrus, D. G.

A. M. Jones, H. Yu, N. J. Ghimire, S. Wu, G. Aivazian, J. S. Ross, B. Zhao, J. Yan, D. G. Mandrus, D. Xiao, W. Yao, X. Xu, “Optical generation of excitonic valley coherence in monolayer WSe2,” Nat. Nanotechnol. 8, 634–638 (2013).
[Crossref]

Marcus, J.

M. Koperski, K. Nogajewski, A. Arora, J. Marcus, P. Kossacki, M. Potemski, “Single photon emitters in exfoliated WSe2 structures,” arXiv:1411.2774v2 (2014).

Mason, M.

P. Michler, A. Imamoglu, M. Mason, P. Carson, G. Strouse, S. Buratto, “Quantum correlation among photons from a single quantum dot at room temperature,” Nature 406, 968–970 (2000).
[Crossref]

Matsuda, K.

S. Mouri, Y. Miyauchi, M. Toh, W. Zhao, G. Eda, K. Matsuda, “Nonlinear photoluminescence in atomically thin layered WSe2 arising from diffusion-assisted exciton–exciton annihilation,” Phys. Rev. B 90, 155449 (2014).
[Crossref]

Michaelis de Vasconcellos, S.

Michler, P.

P. Michler, A. Imamoglu, M. Mason, P. Carson, G. Strouse, S. Buratto, “Quantum correlation among photons from a single quantum dot at room temperature,” Nature 406, 968–970 (2000).
[Crossref]

Migdall, A. L.

S. V. Polyakov, A. L. Migdall, “Quantum radiometry,” J. Mod. Opt. 56, 1045–1052 (2009).
[Crossref]

Milburn, G. J.

E. Knill, R. La, G. J. Milburn, “A scheme for efficient quantum computation with linear optics,” Nature 409, 46–52 (2001).
[Crossref]

Miyauchi, Y.

S. Mouri, Y. Miyauchi, M. Toh, W. Zhao, G. Eda, K. Matsuda, “Nonlinear photoluminescence in atomically thin layered WSe2 arising from diffusion-assisted exciton–exciton annihilation,” Phys. Rev. B 90, 155449 (2014).
[Crossref]

Mouri, S.

S. Mouri, Y. Miyauchi, M. Toh, W. Zhao, G. Eda, K. Matsuda, “Nonlinear photoluminescence in atomically thin layered WSe2 arising from diffusion-assisted exciton–exciton annihilation,” Phys. Rev. B 90, 155449 (2014).
[Crossref]

Nakada, K.

K. Nakada, M. Fujita, G. Dresselhaus, M. Dresselhaus, “Edge state in graphene ribbons: nanometer size effect and edge shape dependence,” Phys. Rev. B 54, 17954–17961 (1996).
[Crossref]

Noé, J.

M. S. Hofmann, J. T. Glückert, J. Noé, C. Bourjau, R. Dehmel, A. Högele, “Bright, long-lived and coherent excitons in carbon nanotube quantum dots,” Nat. Nanotechnol. 8, 502–505 (2013).
[Crossref]

Nogajewski, K.

M. Koperski, K. Nogajewski, A. Arora, J. Marcus, P. Kossacki, M. Potemski, “Single photon emitters in exfoliated WSe2 structures,” arXiv:1411.2774v2 (2014).

Nørskov, J. K.

M. V. Bollinger, J. V. Lauritsen, K. W. Jacobsen, J. K. Nørskov, S. Helveg, F. Besenbacher, “One-dimensional metallic edge states in MoS2,” Phys. Rev. Lett. 87, 196803 (2001).
[Crossref]

O’Brien, K.

X. Yin, Z. Ye, D. A. Chenet, Y. Ye, K. O’Brien, J. C. Hone, X. Zhang, “Edge nonlinear optics on a MoS2 atomic monolayer,” Science 344, 488–490 (2014).
[Crossref]

Ogletree, F.

S. Tongay, J. Suh, C. Ataca, W. Fan, A. Luce, J. S. Kang, J. Liu, C. Ko, R. Raghunathanan, J. Zhou, F. Ogletree, J. Li, J. C. Grossman, J. Wu, “Defects activated photoluminescence in two-dimensional semiconductors: interplay between bound, charged, and free excitons,” Sci. Rep. 3, 2657 (2013).
[Crossref]

Pan, J.-W.

Y. He, G. Clark, J. R. Schaibley, Y. He, M. Chen, Y. Wei, X. Ding, W. Zhang, W. Yao, X. Xu, C.-Y. Lu, J.-W. Pan, “Single quantum emitters in monolayer semiconductors,” arXiv: 1411.2449v1 (2014).

Park, D.

D. Gammon, E. S. Snow, B. V. Shanabrook, D. S. Katzer, D. Park, “Fine structure splitting in the optical spectra of single GaAs quantum dots,” Phys. Rev. Lett. 76, 3005–3008 (1996).
[Crossref]

Perea-López, N.

H. R. Gutiérrez, N. Perea-López, A. L. Elías, A. Berkdemir, B. Wang, R. Lv, F. López-Urías, V. H. Crespi, H. Terrones, M. Terrones, “Extraordinary room-temperature photoluminescence in triangular WS2 monolayers,” Nano Lett. 13, 3447–3454 (2013).
[Crossref]

Poizat, J.-P.

A. Beveratos, R. Brouri, T. Gacoin, A. Villing, J.-P. Poizat, P. Grangier, “Single photon quantum cryptography,” Phys. Rev. Lett. 89, 187901 (2002).
[Crossref]

Polyakov, S. V.

S. V. Polyakov, A. L. Migdall, “Quantum radiometry,” J. Mod. Opt. 56, 1045–1052 (2009).
[Crossref]

Potemski, M.

M. Koperski, K. Nogajewski, A. Arora, J. Marcus, P. Kossacki, M. Potemski, “Single photon emitters in exfoliated WSe2 structures,” arXiv:1411.2774v2 (2014).

Raghunathanan, R.

S. Tongay, J. Suh, C. Ataca, W. Fan, A. Luce, J. S. Kang, J. Liu, C. Ko, R. Raghunathanan, J. Zhou, F. Ogletree, J. Li, J. C. Grossman, J. Wu, “Defects activated photoluminescence in two-dimensional semiconductors: interplay between bound, charged, and free excitons,” Sci. Rep. 3, 2657 (2013).
[Crossref]

Ramasubramaniam, A.

F. Xia, H. Wang, D. Xiao, M. Dubey, A. Ramasubramaniam, “Two-dimensional material nanophotonics,” Nat. Photonics 8, 899–907 (2014).
[Crossref]

Robertson, J.

D. Liu, Y. Guo, L. Fang, J. Robertson, “Sulfur vacancies in monolayer MoS2 and its electrical contacts,” Appl. Phys. Lett. 103, 183113 (2013).
[Crossref]

Ross, J. S.

A. M. Jones, H. Yu, N. J. Ghimire, S. Wu, G. Aivazian, J. S. Ross, B. Zhao, J. Yan, D. G. Mandrus, D. Xiao, W. Yao, X. Xu, “Optical generation of excitonic valley coherence in monolayer WSe2,” Nat. Nanotechnol. 8, 634–638 (2013).
[Crossref]

Schaibley, J. R.

Y. He, G. Clark, J. R. Schaibley, Y. He, M. Chen, Y. Wei, X. Ding, W. Zhang, W. Yao, X. Xu, C.-Y. Lu, J.-W. Pan, “Single quantum emitters in monolayer semiconductors,” arXiv: 1411.2449v1 (2014).

Schiros, T.

J. A. Schuller, S. Karaveli, T. Schiros, K. He, S. Yang, I. Kymissis, J. Shan, R. Zia, “Orientation of luminescent excitons in layered nanomaterials,” Nat. Nanotechnol. 8, 271–276 (2013).
[Crossref]

Schmidt, R.

Schmutzler, J.

T. Korn, S. Heydrich, M. Hirmer, J. Schmutzler, C. Schüller, “Low-temperature photocarrier dynamics in monolayer MoS2,” Appl. Phys. Lett. 99, 102109 (2011).
[Crossref]

Schuller, J. A.

J. A. Schuller, S. Karaveli, T. Schiros, K. He, S. Yang, I. Kymissis, J. Shan, R. Zia, “Orientation of luminescent excitons in layered nanomaterials,” Nat. Nanotechnol. 8, 271–276 (2013).
[Crossref]

Schüller, C.

T. Korn, S. Heydrich, M. Hirmer, J. Schmutzler, C. Schüller, “Low-temperature photocarrier dynamics in monolayer MoS2,” Appl. Phys. Lett. 99, 102109 (2011).
[Crossref]

Shan, J.

K. He, N. Kumar, L. Zhao, Z. Wang, K. F. Mak, H. Zhao, J. Shan, “Tightly bound excitons in monolayer WSe2,” Phys. Rev. Lett. 113, 026803 (2014).
[Crossref]

J. A. Schuller, S. Karaveli, T. Schiros, K. He, S. Yang, I. Kymissis, J. Shan, R. Zia, “Orientation of luminescent excitons in layered nanomaterials,” Nat. Nanotechnol. 8, 271–276 (2013).
[Crossref]

K. F. Mak, C. Lee, J. Hone, J. Shan, T. F. Heinz, “Atomically thin MoS2: a new direct-gap semiconductor,” Phys. Rev. Lett. 105, 136805 (2010).
[Crossref]

Shanabrook, B. V.

D. Gammon, E. S. Snow, B. V. Shanabrook, D. S. Katzer, D. Park, “Fine structure splitting in the optical spectra of single GaAs quantum dots,” Phys. Rev. Lett. 76, 3005–3008 (1996).
[Crossref]

Sidler, M.

A. Srivastava, M. Sidler, A. V. Allain, D. S. Lembke, A. Kis, A. Imamoglu, “Optically active quantum dots in monolayer WSe2,” arXiv:1411.0025v1 [cond-mat.mes-hall] (2014).

Snow, E. S.

D. Gammon, E. S. Snow, B. V. Shanabrook, D. S. Katzer, D. Park, “Fine structure splitting in the optical spectra of single GaAs quantum dots,” Phys. Rev. Lett. 76, 3005–3008 (1996).
[Crossref]

Splendiani, A.

A. Splendiani, L. Sun, Y. Zhang, T. Li, J. Kim, C.-Y. Chim, G. Galli, F. Wang, “Emerging photoluminescence in monolayer MoS2,” Nano Lett. 10, 1271–1275 (2010).
[Crossref]

Srivastava, A.

A. Srivastava, M. Sidler, A. V. Allain, D. S. Lembke, A. Kis, A. Imamoglu, “Optically active quantum dots in monolayer WSe2,” arXiv:1411.0025v1 [cond-mat.mes-hall] (2014).

Strano, M. S.

Q. H. Wang, K. Kalantar-Zadeh, A. Kis, J. N. Coleman, M. S. Strano, “Electronics and optoelectronics of two-dimensional transition metal dichalcogenides,” Nat. Nanotechnol. 7, 699–712 (2012).
[Crossref]

Strouse, G.

P. Michler, A. Imamoglu, M. Mason, P. Carson, G. Strouse, S. Buratto, “Quantum correlation among photons from a single quantum dot at room temperature,” Nature 406, 968–970 (2000).
[Crossref]

Suh, J.

S. Tongay, J. Suh, C. Ataca, W. Fan, A. Luce, J. S. Kang, J. Liu, C. Ko, R. Raghunathanan, J. Zhou, F. Ogletree, J. Li, J. C. Grossman, J. Wu, “Defects activated photoluminescence in two-dimensional semiconductors: interplay between bound, charged, and free excitons,” Sci. Rep. 3, 2657 (2013).
[Crossref]

Sun, L.

A. Splendiani, L. Sun, Y. Zhang, T. Li, J. Kim, C.-Y. Chim, G. Galli, F. Wang, “Emerging photoluminescence in monolayer MoS2,” Nano Lett. 10, 1271–1275 (2010).
[Crossref]

Terrones, H.

H. R. Gutiérrez, N. Perea-López, A. L. Elías, A. Berkdemir, B. Wang, R. Lv, F. López-Urías, V. H. Crespi, H. Terrones, M. Terrones, “Extraordinary room-temperature photoluminescence in triangular WS2 monolayers,” Nano Lett. 13, 3447–3454 (2013).
[Crossref]

Terrones, M.

H. R. Gutiérrez, N. Perea-López, A. L. Elías, A. Berkdemir, B. Wang, R. Lv, F. López-Urías, V. H. Crespi, H. Terrones, M. Terrones, “Extraordinary room-temperature photoluminescence in triangular WS2 monolayers,” Nano Lett. 13, 3447–3454 (2013).
[Crossref]

Toh, M.

S. Mouri, Y. Miyauchi, M. Toh, W. Zhao, G. Eda, K. Matsuda, “Nonlinear photoluminescence in atomically thin layered WSe2 arising from diffusion-assisted exciton–exciton annihilation,” Phys. Rev. B 90, 155449 (2014).
[Crossref]

Tongay, S.

S. Tongay, J. Suh, C. Ataca, W. Fan, A. Luce, J. S. Kang, J. Liu, C. Ko, R. Raghunathanan, J. Zhou, F. Ogletree, J. Li, J. C. Grossman, J. Wu, “Defects activated photoluminescence in two-dimensional semiconductors: interplay between bound, charged, and free excitons,” Sci. Rep. 3, 2657 (2013).
[Crossref]

Tonndorf, P.

Tränkle, G.

K. Brunner, U. Bockelmann, G. Abstreiter, M. Walther, G. Böhm, G. Tränkle, G. Weimann, “Photoluminescence from a single GaAs/AlGaAs quantum dot,” Phys. Rev. Lett. 69, 3216–3219 (1992).
[Crossref]

Villing, A.

A. Beveratos, R. Brouri, T. Gacoin, A. Villing, J.-P. Poizat, P. Grangier, “Single photon quantum cryptography,” Phys. Rev. Lett. 89, 187901 (2002).
[Crossref]

Walther, M.

K. Brunner, U. Bockelmann, G. Abstreiter, M. Walther, G. Böhm, G. Tränkle, G. Weimann, “Photoluminescence from a single GaAs/AlGaAs quantum dot,” Phys. Rev. Lett. 69, 3216–3219 (1992).
[Crossref]

Wang, B.

H. R. Gutiérrez, N. Perea-López, A. L. Elías, A. Berkdemir, B. Wang, R. Lv, F. López-Urías, V. H. Crespi, H. Terrones, M. Terrones, “Extraordinary room-temperature photoluminescence in triangular WS2 monolayers,” Nano Lett. 13, 3447–3454 (2013).
[Crossref]

Wang, F.

A. Splendiani, L. Sun, Y. Zhang, T. Li, J. Kim, C.-Y. Chim, G. Galli, F. Wang, “Emerging photoluminescence in monolayer MoS2,” Nano Lett. 10, 1271–1275 (2010).
[Crossref]

Wang, H.

F. Xia, H. Wang, D. Xiao, M. Dubey, A. Ramasubramaniam, “Two-dimensional material nanophotonics,” Nat. Photonics 8, 899–907 (2014).
[Crossref]

Wang, Q. H.

Q. H. Wang, K. Kalantar-Zadeh, A. Kis, J. N. Coleman, M. S. Strano, “Electronics and optoelectronics of two-dimensional transition metal dichalcogenides,” Nat. Nanotechnol. 7, 699–712 (2012).
[Crossref]

Wang, Z.

K. He, N. Kumar, L. Zhao, Z. Wang, K. F. Mak, H. Zhao, J. Shan, “Tightly bound excitons in monolayer WSe2,” Phys. Rev. Lett. 113, 026803 (2014).
[Crossref]

Wei, Y.

Y. He, G. Clark, J. R. Schaibley, Y. He, M. Chen, Y. Wei, X. Ding, W. Zhang, W. Yao, X. Xu, C.-Y. Lu, J.-W. Pan, “Single quantum emitters in monolayer semiconductors,” arXiv: 1411.2449v1 (2014).

Weimann, G.

A. Zrenner, L. Butov, M. Hagn, G. Abstreiter, G. Böhm, G. Weimann, “Quantum dots formed by interface fluctuations in AlAs/GaAs coupled quantum well structures,” Phys. Rev. Lett. 72, 3382–3385 (1994).
[Crossref]

K. Brunner, U. Bockelmann, G. Abstreiter, M. Walther, G. Böhm, G. Tränkle, G. Weimann, “Photoluminescence from a single GaAs/AlGaAs quantum dot,” Phys. Rev. Lett. 69, 3216–3219 (1992).
[Crossref]

Wolf, E.

L. Mandel, E. Wolf, Optical Coherence and Quantum Optics (Cambridge University, 1995).

Wu, J.

S. Tongay, J. Suh, C. Ataca, W. Fan, A. Luce, J. S. Kang, J. Liu, C. Ko, R. Raghunathanan, J. Zhou, F. Ogletree, J. Li, J. C. Grossman, J. Wu, “Defects activated photoluminescence in two-dimensional semiconductors: interplay between bound, charged, and free excitons,” Sci. Rep. 3, 2657 (2013).
[Crossref]

Wu, S.

A. M. Jones, H. Yu, N. J. Ghimire, S. Wu, G. Aivazian, J. S. Ross, B. Zhao, J. Yan, D. G. Mandrus, D. Xiao, W. Yao, X. Xu, “Optical generation of excitonic valley coherence in monolayer WSe2,” Nat. Nanotechnol. 8, 634–638 (2013).
[Crossref]

Xia, F.

F. Xia, H. Wang, D. Xiao, M. Dubey, A. Ramasubramaniam, “Two-dimensional material nanophotonics,” Nat. Photonics 8, 899–907 (2014).
[Crossref]

Xiao, D.

F. Xia, H. Wang, D. Xiao, M. Dubey, A. Ramasubramaniam, “Two-dimensional material nanophotonics,” Nat. Photonics 8, 899–907 (2014).
[Crossref]

A. M. Jones, H. Yu, N. J. Ghimire, S. Wu, G. Aivazian, J. S. Ross, B. Zhao, J. Yan, D. G. Mandrus, D. Xiao, W. Yao, X. Xu, “Optical generation of excitonic valley coherence in monolayer WSe2,” Nat. Nanotechnol. 8, 634–638 (2013).
[Crossref]

Xu, X.

A. M. Jones, H. Yu, N. J. Ghimire, S. Wu, G. Aivazian, J. S. Ross, B. Zhao, J. Yan, D. G. Mandrus, D. Xiao, W. Yao, X. Xu, “Optical generation of excitonic valley coherence in monolayer WSe2,” Nat. Nanotechnol. 8, 634–638 (2013).
[Crossref]

Y. He, G. Clark, J. R. Schaibley, Y. He, M. Chen, Y. Wei, X. Ding, W. Zhang, W. Yao, X. Xu, C.-Y. Lu, J.-W. Pan, “Single quantum emitters in monolayer semiconductors,” arXiv: 1411.2449v1 (2014).

Yan, J.

A. M. Jones, H. Yu, N. J. Ghimire, S. Wu, G. Aivazian, J. S. Ross, B. Zhao, J. Yan, D. G. Mandrus, D. Xiao, W. Yao, X. Xu, “Optical generation of excitonic valley coherence in monolayer WSe2,” Nat. Nanotechnol. 8, 634–638 (2013).
[Crossref]

Yang, S.

J. A. Schuller, S. Karaveli, T. Schiros, K. He, S. Yang, I. Kymissis, J. Shan, R. Zia, “Orientation of luminescent excitons in layered nanomaterials,” Nat. Nanotechnol. 8, 271–276 (2013).
[Crossref]

Yao, W.

A. M. Jones, H. Yu, N. J. Ghimire, S. Wu, G. Aivazian, J. S. Ross, B. Zhao, J. Yan, D. G. Mandrus, D. Xiao, W. Yao, X. Xu, “Optical generation of excitonic valley coherence in monolayer WSe2,” Nat. Nanotechnol. 8, 634–638 (2013).
[Crossref]

Y. He, G. Clark, J. R. Schaibley, Y. He, M. Chen, Y. Wei, X. Ding, W. Zhang, W. Yao, X. Xu, C.-Y. Lu, J.-W. Pan, “Single quantum emitters in monolayer semiconductors,” arXiv: 1411.2449v1 (2014).

Ye, Y.

X. Yin, Z. Ye, D. A. Chenet, Y. Ye, K. O’Brien, J. C. Hone, X. Zhang, “Edge nonlinear optics on a MoS2 atomic monolayer,” Science 344, 488–490 (2014).
[Crossref]

Ye, Z.

X. Yin, Z. Ye, D. A. Chenet, Y. Ye, K. O’Brien, J. C. Hone, X. Zhang, “Edge nonlinear optics on a MoS2 atomic monolayer,” Science 344, 488–490 (2014).
[Crossref]

Yin, X.

X. Yin, Z. Ye, D. A. Chenet, Y. Ye, K. O’Brien, J. C. Hone, X. Zhang, “Edge nonlinear optics on a MoS2 atomic monolayer,” Science 344, 488–490 (2014).
[Crossref]

Yoffe, A. D.

R. F. Frindt, A. D. Yoffe, “Physical properties of layer structures: optical properties and photoconductivity of thin crystals of molybdenum disulphide,” Proc. R. Soc. A 273, 69–83 (1963).
[Crossref]

Yu, H.

A. M. Jones, H. Yu, N. J. Ghimire, S. Wu, G. Aivazian, J. S. Ross, B. Zhao, J. Yan, D. G. Mandrus, D. Xiao, W. Yao, X. Xu, “Optical generation of excitonic valley coherence in monolayer WSe2,” Nat. Nanotechnol. 8, 634–638 (2013).
[Crossref]

Zahn, D. R. T.

Zhang, W.

Y. He, G. Clark, J. R. Schaibley, Y. He, M. Chen, Y. Wei, X. Ding, W. Zhang, W. Yao, X. Xu, C.-Y. Lu, J.-W. Pan, “Single quantum emitters in monolayer semiconductors,” arXiv: 1411.2449v1 (2014).

Zhang, X.

Zhang, Y.

A. Splendiani, L. Sun, Y. Zhang, T. Li, J. Kim, C.-Y. Chim, G. Galli, F. Wang, “Emerging photoluminescence in monolayer MoS2,” Nano Lett. 10, 1271–1275 (2010).
[Crossref]

Zhao, B.

A. M. Jones, H. Yu, N. J. Ghimire, S. Wu, G. Aivazian, J. S. Ross, B. Zhao, J. Yan, D. G. Mandrus, D. Xiao, W. Yao, X. Xu, “Optical generation of excitonic valley coherence in monolayer WSe2,” Nat. Nanotechnol. 8, 634–638 (2013).
[Crossref]

Zhao, H.

K. He, N. Kumar, L. Zhao, Z. Wang, K. F. Mak, H. Zhao, J. Shan, “Tightly bound excitons in monolayer WSe2,” Phys. Rev. Lett. 113, 026803 (2014).
[Crossref]

Zhao, L.

K. He, N. Kumar, L. Zhao, Z. Wang, K. F. Mak, H. Zhao, J. Shan, “Tightly bound excitons in monolayer WSe2,” Phys. Rev. Lett. 113, 026803 (2014).
[Crossref]

Zhao, W.

S. Mouri, Y. Miyauchi, M. Toh, W. Zhao, G. Eda, K. Matsuda, “Nonlinear photoluminescence in atomically thin layered WSe2 arising from diffusion-assisted exciton–exciton annihilation,” Phys. Rev. B 90, 155449 (2014).
[Crossref]

Zhou, J.

S. Tongay, J. Suh, C. Ataca, W. Fan, A. Luce, J. S. Kang, J. Liu, C. Ko, R. Raghunathanan, J. Zhou, F. Ogletree, J. Li, J. C. Grossman, J. Wu, “Defects activated photoluminescence in two-dimensional semiconductors: interplay between bound, charged, and free excitons,” Sci. Rep. 3, 2657 (2013).
[Crossref]

Zia, R.

J. A. Schuller, S. Karaveli, T. Schiros, K. He, S. Yang, I. Kymissis, J. Shan, R. Zia, “Orientation of luminescent excitons in layered nanomaterials,” Nat. Nanotechnol. 8, 271–276 (2013).
[Crossref]

Zrenner, A.

A. Zrenner, L. Butov, M. Hagn, G. Abstreiter, G. Böhm, G. Weimann, “Quantum dots formed by interface fluctuations in AlAs/GaAs coupled quantum well structures,” Phys. Rev. Lett. 72, 3382–3385 (1994).
[Crossref]

Appl. Phys. Lett. (2)

T. Korn, S. Heydrich, M. Hirmer, J. Schmutzler, C. Schüller, “Low-temperature photocarrier dynamics in monolayer MoS2,” Appl. Phys. Lett. 99, 102109 (2011).
[Crossref]

D. Liu, Y. Guo, L. Fang, J. Robertson, “Sulfur vacancies in monolayer MoS2 and its electrical contacts,” Appl. Phys. Lett. 103, 183113 (2013).
[Crossref]

J. Mod. Opt. (1)

S. V. Polyakov, A. L. Migdall, “Quantum radiometry,” J. Mod. Opt. 56, 1045–1052 (2009).
[Crossref]

Nano Lett. (2)

H. R. Gutiérrez, N. Perea-López, A. L. Elías, A. Berkdemir, B. Wang, R. Lv, F. López-Urías, V. H. Crespi, H. Terrones, M. Terrones, “Extraordinary room-temperature photoluminescence in triangular WS2 monolayers,” Nano Lett. 13, 3447–3454 (2013).
[Crossref]

A. Splendiani, L. Sun, Y. Zhang, T. Li, J. Kim, C.-Y. Chim, G. Galli, F. Wang, “Emerging photoluminescence in monolayer MoS2,” Nano Lett. 10, 1271–1275 (2010).
[Crossref]

Nat. Nanotechnol. (6)

Q. H. Wang, K. Kalantar-Zadeh, A. Kis, J. N. Coleman, M. S. Strano, “Electronics and optoelectronics of two-dimensional transition metal dichalcogenides,” Nat. Nanotechnol. 7, 699–712 (2012).
[Crossref]

R. Bratschitsch, “Optoelectronic devices: monolayer diodes light up,” Nat. Nanotechnol. 9, 247–248 (2014).
[Crossref]

M. S. Hofmann, J. T. Glückert, J. Noé, C. Bourjau, R. Dehmel, A. Högele, “Bright, long-lived and coherent excitons in carbon nanotube quantum dots,” Nat. Nanotechnol. 8, 502–505 (2013).
[Crossref]

K. Behnia, “Condensed-matter physics: polarized light boosts valleytronics,” Nat. Nanotechnol. 7, 488–489 (2012).
[Crossref]

J. A. Schuller, S. Karaveli, T. Schiros, K. He, S. Yang, I. Kymissis, J. Shan, R. Zia, “Orientation of luminescent excitons in layered nanomaterials,” Nat. Nanotechnol. 8, 271–276 (2013).
[Crossref]

A. M. Jones, H. Yu, N. J. Ghimire, S. Wu, G. Aivazian, J. S. Ross, B. Zhao, J. Yan, D. G. Mandrus, D. Xiao, W. Yao, X. Xu, “Optical generation of excitonic valley coherence in monolayer WSe2,” Nat. Nanotechnol. 8, 634–638 (2013).
[Crossref]

Nat. Photonics (1)

F. Xia, H. Wang, D. Xiao, M. Dubey, A. Ramasubramaniam, “Two-dimensional material nanophotonics,” Nat. Photonics 8, 899–907 (2014).
[Crossref]

Nature (4)

A. K. Geim, I. V. Grigorieva, “Van der Waals heterostructures,” Nature 499, 419–425 (2013).
[Crossref]

E. Knill, R. La, G. J. Milburn, “A scheme for efficient quantum computation with linear optics,” Nature 409, 46–52 (2001).
[Crossref]

H. J. Kimble, “The quantum internet,” Nature 453, 1023–1030 (2008).
[Crossref]

P. Michler, A. Imamoglu, M. Mason, P. Carson, G. Strouse, S. Buratto, “Quantum correlation among photons from a single quantum dot at room temperature,” Nature 406, 968–970 (2000).
[Crossref]

Opt. Express (1)

Phys. Rev. B (2)

K. Nakada, M. Fujita, G. Dresselhaus, M. Dresselhaus, “Edge state in graphene ribbons: nanometer size effect and edge shape dependence,” Phys. Rev. B 54, 17954–17961 (1996).
[Crossref]

S. Mouri, Y. Miyauchi, M. Toh, W. Zhao, G. Eda, K. Matsuda, “Nonlinear photoluminescence in atomically thin layered WSe2 arising from diffusion-assisted exciton–exciton annihilation,” Phys. Rev. B 90, 155449 (2014).
[Crossref]

Phys. Rev. Lett. (7)

A. Beveratos, R. Brouri, T. Gacoin, A. Villing, J.-P. Poizat, P. Grangier, “Single photon quantum cryptography,” Phys. Rev. Lett. 89, 187901 (2002).
[Crossref]

D. Gammon, E. S. Snow, B. V. Shanabrook, D. S. Katzer, D. Park, “Fine structure splitting in the optical spectra of single GaAs quantum dots,” Phys. Rev. Lett. 76, 3005–3008 (1996).
[Crossref]

K. Brunner, U. Bockelmann, G. Abstreiter, M. Walther, G. Böhm, G. Tränkle, G. Weimann, “Photoluminescence from a single GaAs/AlGaAs quantum dot,” Phys. Rev. Lett. 69, 3216–3219 (1992).
[Crossref]

A. Zrenner, L. Butov, M. Hagn, G. Abstreiter, G. Böhm, G. Weimann, “Quantum dots formed by interface fluctuations in AlAs/GaAs coupled quantum well structures,” Phys. Rev. Lett. 72, 3382–3385 (1994).
[Crossref]

K. He, N. Kumar, L. Zhao, Z. Wang, K. F. Mak, H. Zhao, J. Shan, “Tightly bound excitons in monolayer WSe2,” Phys. Rev. Lett. 113, 026803 (2014).
[Crossref]

M. V. Bollinger, J. V. Lauritsen, K. W. Jacobsen, J. K. Nørskov, S. Helveg, F. Besenbacher, “One-dimensional metallic edge states in MoS2,” Phys. Rev. Lett. 87, 196803 (2001).
[Crossref]

K. F. Mak, C. Lee, J. Hone, J. Shan, T. F. Heinz, “Atomically thin MoS2: a new direct-gap semiconductor,” Phys. Rev. Lett. 105, 136805 (2010).
[Crossref]

Proc. R. Soc. A (1)

R. F. Frindt, A. D. Yoffe, “Physical properties of layer structures: optical properties and photoconductivity of thin crystals of molybdenum disulphide,” Proc. R. Soc. A 273, 69–83 (1963).
[Crossref]

Sci. Rep. (1)

S. Tongay, J. Suh, C. Ataca, W. Fan, A. Luce, J. S. Kang, J. Liu, C. Ko, R. Raghunathanan, J. Zhou, F. Ogletree, J. Li, J. C. Grossman, J. Wu, “Defects activated photoluminescence in two-dimensional semiconductors: interplay between bound, charged, and free excitons,” Sci. Rep. 3, 2657 (2013).
[Crossref]

Science (1)

X. Yin, Z. Ye, D. A. Chenet, Y. Ye, K. O’Brien, J. C. Hone, X. Zhang, “Edge nonlinear optics on a MoS2 atomic monolayer,” Science 344, 488–490 (2014).
[Crossref]

Other (5)

L. Allen, J. Eberly, Optical Resonance and Two-Level Atoms (Dover, 1988).

L. Mandel, E. Wolf, Optical Coherence and Quantum Optics (Cambridge University, 1995).

A. Srivastava, M. Sidler, A. V. Allain, D. S. Lembke, A. Kis, A. Imamoglu, “Optically active quantum dots in monolayer WSe2,” arXiv:1411.0025v1 [cond-mat.mes-hall] (2014).

Y. He, G. Clark, J. R. Schaibley, Y. He, M. Chen, Y. Wei, X. Ding, W. Zhang, W. Yao, X. Xu, C.-Y. Lu, J.-W. Pan, “Single quantum emitters in monolayer semiconductors,” arXiv: 1411.2449v1 (2014).

M. Koperski, K. Nogajewski, A. Arora, J. Marcus, P. Kossacki, M. Potemski, “Single photon emitters in exfoliated WSe2 structures,” arXiv:1411.2774v2 (2014).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Single-photon emission from a localized exciton in monolayer WSe2. (a) Typical PL spectrum of a monolayer, recorded at a temperature of T=10K; (b) photoluminescence (PL) image at a photon energy of 1.707±0.001eV. The solid white line marks the edge of the monolayer (ML), while the dashed line indicates the boundary of the entire exfoliated flake including few-layer (FL) areas. (c) PL image with high spatial resolution of a single emission center, (d) PL spectrum of a single emission center, (e) second-order correlation function g(2)(τ) of the single emitter (1.707±0.001eV); (f) PL spectrum and (g) second-order correlation function from a different single-photon emitter in monolayer WSe2 on h-BN/SiO2/Si.

Fig. 2.
Fig. 2.

Localized exciton in a freestanding WSe2 monolayer. (a) The high-resolution PL spectrum exhibits a narrow FWHM of 120 μeV; (b) spectral diffusion over 8 min.

Fig. 3.
Fig. 3.

Locations of the localized excitons. (a) PL intensity map of the broad spectral range 1.55–1.77 eV. Bright emission centers due to localized excitons are found at the edge of the WSe2 monolayer. (b) PL spectra of five different locations indicated in (a). Positions i–iv at the edge of the monolayer exhibit narrow spectral emission due to localized excitons, while location v in the center of the flake only shows broad PL features. (c), (d) PL intensity map at two spectral positions in the defect exciton band, (e) PL Intensity map at the spectral position of the neutral exciton X0.

Fig. 4.
Fig. 4.

Deliberate creation of localized excitons in a WSe2 monolayer. (a) Atomic force microscope (AFM) and (b) PL images of a WSe2 monolayer on SiO2/Si substrate, scratched with a needle; (c) PL spectra of bright emission centers at folded edges. The monolayer is excited at a photon energy of 1.746 eV. A longpass filter at 1.722 eV blocks the excitation light.

Fig. 5.
Fig. 5.

Saturation and polarization of localized excitons. (a) Saturation curve of a single localized exciton; (b) the PL emission of a single exciton line is linearly polarized and exhibits the characteristics of a dipole emitter.

Fig. 6.
Fig. 6.

Energy level structure of a localized exciton. Photoluminescence excitation (PLE) spectrum of a single localized exciton (blue circles). The PLE spectrum shows distinct resonances of the emitter. The PL spectrum is indicated in red.

Metrics