Abstract

Aluminosilicate fibers have very low Brillouin scattering gain coefficients, making them interesting fibers for nonlinear optical applications. We manufactured Bragg gratings in high (30 mol.%) and low (4 mol.%) alumina content optical fiber using 800 nm femtosecond pulse duration radiation and a phase mask. Grating spectral characteristics and thermal behavior are presented. Index modulations >103 were generated for fundamental pitched Bragg gratings, and >104 for higher-order gratings. Gratings were annealed at temperatures up to 900°C. Type II gratings written in fibers with lower alumina content showed better thermal stability than gratings written in fibers with higher alumina content. Bragg gratings in these fibers would be well suited as laser cavity mirrors in high-energy laser systems, as well as in telecommunication and sensor systems where Brillouin scattering restricts power scaling.

Full Article  |  PDF Article
OSA Recommended Articles
Low loss Type II regenerative Bragg gratings made with ultrafast radiation

Dan Grobnic, Cyril Hnatovsky, and Stephen J. Mihailov
Opt. Express 24(25) 28704-28712 (2016)

Bragg grating inscription in various optical fibers with femtosecond infrared lasers and a phase mask

Stephen J. Mihailov, Dan Grobnic, Christopher W. Smelser, Ping Lu, Robert B. Walker, and Huimin Ding
Opt. Mater. Express 1(4) 754-765 (2011)

High temperature sensing with fiber Bragg gratings in sapphire-derived all-glass optical fibers

Tino Elsmann, Adrian Lorenz, Nazila Safari Yazd, Tobias Habisreuther, Jan Dellith, Anka Schwuchow, Jörg Bierlich, Kay Schuster, Manfred Rothhardt, Ladislav Kido, and Hartmut Bartelt
Opt. Express 22(22) 26825-26833 (2014)

References

  • View by:
  • |
  • |
  • |

  1. S. J. Mihailov, C. W. Smelser, P. Lu, R. B. Walker, H. Ding, D. Grobnic, G. Henderson, J. Unruh, “Fiber Bragg gratings made with a phase mask and 800-nm femtosecond radiation,” Opt. Lett. 28, 995–997 (2003).
    [Crossref]
  2. S. J. Mihailov, D. Grobnic, C. W. Smelser, P. Lu, R. B. Walker, H. Ding, “Bragg grating inscription in various optical fibers with femtosecond infrared lasers and a phase mask,” Opt. Mater. Express 1, 754–765 (2011).
    [Crossref]
  3. D. Grobnic, S. J. Mihailov, C. W. Smelser, “Bragg gratings made with ultrafast radiation in crystal waveguides, lithium niobate, sapphire and YAG Bragg gratings,” Proc. SPIE 6796, 679620 (2007).
  4. D. Grobnic, S. J. Mihailov, C. W. Smelser, R. B. Walker, “Bragg gratings made with ultrafast radiation in non-silica glasses; fluoride, phosphate, borosilicate and chalcogenide Bragg gratings,” Proc. SPIE 6796, 67961K (2007).
  5. D. Grobnic, R. B. Walker, S. J. Mihailov, C. W. Smelser, P. Lu, “Bragg gratings made in highly nonlinear bismuth oxide fibers with ultrafast IR radiation,” IEEE Photon. Technol. Lett. 22, 124–126 (2010).
    [Crossref]
  6. E. Wikszak, J. Thomas, J. Burghoff, B. Ortaç, J. Limpert, S. Nolte, U. Fuchs, A. Tünnermann, “Erbium fiber laser based on intracore femtosecond-written fiber Bragg grating,” Opt. Lett. 31, 2390–2392 (2006).
    [Crossref]
  7. M. Leich, J. Fiebrandt, A. Schwuchow, S. Unger, S. Jetschke, H. Bartelt, “Femtosecond pulse-induced fiber Bragg gratings for in-core temperature measurement in optically pumped Yb-doped silica fibers,” Opt. Commun. 285, 4387–4390 (2012).
    [Crossref]
  8. D. Grobnic, S. J. Mihailov, J. Ballato, P. Dragic, “Bragg gratings made with IR femtosecond radiation in high alumina content aluminosilicate optical fibers,” in Advanced Photonics, OSA Technical Digest Series (Optical Society of America, 2014), paper BW2D.4.
  9. T. Elsmann, A. Lorenz, N. S. Yazd, T. Habisreuther, J. Dellith, A. Schwuchow, J. Bierlich, K. Schuster, M. Rothhardt, L. Kido, H. Bartlet, “High temperature sensing with fiber Bragg gratings in sapphire-derived all-glass optical fibers,” Opt. Express 22, 26825–26833 (2014).
    [Crossref]
  10. D. Grobnic, S. J. Mihailov, C. W. Smelser, H. Ding, “Sapphire fiber Bragg grating sensor made using femtosecond laser radiation for ultrahigh temperature applications,” IEEE Photon. Technol. Lett. 16, 2505–2507 (2004).
    [Crossref]
  11. P. Dragic, T. Hawkins, P. Foy, S. Morris, J. Ballato, “Sapphire-derived all-glass optical fibers,” Nat. Photonics 6, 629–635 (2012).
    [Crossref]
  12. A. Yablon, “Multi-wavelength optical fibre refractive index profiling by spatially resolved Fourier transform spectroscopy,” J. Lightwave Technol. 28, 360–364 (2010).
    [Crossref]
  13. C. W. Smelser, S. J. Mihailov, D. Grobnic, “Formation of type I-IR and type II-IR gratings with an ultrafast IR laser and a phase mask,” Opt. Express 13, 5377–5386 (2005).
    [Crossref]
  14. C. W. Smelser, S. J. Mihailov, D. Grobnic, “Characterization of Fourier components in type I infrared ultrafast laser induced fiber Bragg gratings,” Opt. Lett. 32, 1453–1455 (2007).
    [Crossref]
  15. C. W. Smelser, S. J. Mihailov, D. Grobnic, “Impact of index change saturation on the growth behavior of higher-order type I ultrafast induced fiber Bragg gratings,” J. Opt. Soc. Am. B 25, 877–883 (2008).
    [Crossref]
  16. J. Nishii, N. Kitamura, H. Yamanaka, H. Hosono, H. Kawazoe, “Ultraviolet-radiation induced chemical reactions through one- and two- photon absorption processes in GeO2-SiO2 glasses,” Opt. Lett. 20, 1184–1186 (1995).
    [Crossref]
  17. V. Rose, R. Franchy, “The band gap of ultrathin amorphous and well-ordered Al2O3 films on CoAl(100) measured by scanning tunneling spectroscopy,” J. Appl. Phys. 105, 07C902 (2009).
    [Crossref]
  18. D. Grobnic, S. J. Mihailov, R. B. Walker, C. W. Smelser, “Reflection characteristics of type II FBG made with femtosecond radiation,” in Bragg Gratings, Photosensitivity and Poling in Glass Waveguides (BGPP), Colorado Springs, CO, June17–20 2012, paper BM2D.5.
  19. D. Grobnic, C. W. Smelser, S. J. Mihailov, R. B. Walker, “Long-term thermal stability tests at 1000°C of silica fibre Bragg gratings made with ultrafast laser radiation,” Meas. Sci. Technol. 17, 1009–1013 (2006).
    [Crossref]
  20. T. Takamori, R. Roy, “Rapid crystallization of SiO2–Al2O3 glasses,” J. Am. Ceram. Soc. 56, 639–644 (1973).
    [Crossref]
  21. D. Grobnic, S. J. Mihailov, H. Ding, F. Bilodeau, C. W. Smelser, “Single and low order mode interrogation of a multimode sapphire fibre Bragg grating sensor with tapered fibres,” Meas. Sci. Technol. 17, 980–984 (2006).
    [Crossref]
  22. S. J. Mihailov, D. Grobnic, C. W. Smelser, P. Lu, R. B. Walker, H. Ding, “Induced Bragg gratings in optical fibers and waveguides using an ultrafast infrared laser and a phase mask,” Laser Chem. 2008, 1–20 (2008).
    [Crossref]
  23. L. Prod’homme, “A new approach to the thermal change in the refractive index of glasses,” Phys. Chem. Glasses 1, 119–122 (1960).
  24. P. D. Dragic, C. Kucera, J. Ballato, D. Litzkendorf, J. Dellith, K. Schuster, “Brillouin scattering properties of lanthano-aluminosilicate optical fiber,” Appl. Opt. 53, 5660–5671 (2014).
    [Crossref]
  25. R. M. Waxler, G. W. Cleek, “The effect of temperature and pressure on the refractive index of some oxide glasses,” J. Res. Natl. Bur. Stand. A 7A, 755–763 (1973).
    [Crossref]
  26. M. Huang, “Stress effects on the performance of optical waveguides,” Int. J. Solids Struct. 40, 1615–1632 (2003).
    [Crossref]
  27. J. Ballato, P. Dragic, “Rethinking optical fiber: new demands, old glasses,” J. Am. Ceram. Soc. 96, 2675–2692 (2013).
    [Crossref]
  28. P. D. Dragic, J. Ballato, S. Morris, T. Hawkins, “Pockels’ coefficients of alumina in aluminosilicate optical fiber,” J. Opt. Soc. Am. B 30, 244–250 (2013).
    [Crossref]
  29. P. Dragic, J. Ballato, A. Ballato, S. Morris, T. Hawkins, P.-C. Law, S. Ghosh, M. C. Paul, “Mass density and the Brillouin spectroscopy of aluminosilicate optical fibers,” Opt. Mater. Express 2, 1641–1654 (2012).
    [Crossref]
  30. S. Magne, S. Rougeault, M. Vilela, P. Ferdinand, “State-of-strain evaluation with fiber Bragg grating rosettes: application to discrimination between strain and temperature effects in fiber sensors,” Appl. Opt. 36, 9437–9447 (1997).
    [Crossref]

2014 (2)

2013 (2)

J. Ballato, P. Dragic, “Rethinking optical fiber: new demands, old glasses,” J. Am. Ceram. Soc. 96, 2675–2692 (2013).
[Crossref]

P. D. Dragic, J. Ballato, S. Morris, T. Hawkins, “Pockels’ coefficients of alumina in aluminosilicate optical fiber,” J. Opt. Soc. Am. B 30, 244–250 (2013).
[Crossref]

2012 (3)

P. Dragic, J. Ballato, A. Ballato, S. Morris, T. Hawkins, P.-C. Law, S. Ghosh, M. C. Paul, “Mass density and the Brillouin spectroscopy of aluminosilicate optical fibers,” Opt. Mater. Express 2, 1641–1654 (2012).
[Crossref]

M. Leich, J. Fiebrandt, A. Schwuchow, S. Unger, S. Jetschke, H. Bartelt, “Femtosecond pulse-induced fiber Bragg gratings for in-core temperature measurement in optically pumped Yb-doped silica fibers,” Opt. Commun. 285, 4387–4390 (2012).
[Crossref]

P. Dragic, T. Hawkins, P. Foy, S. Morris, J. Ballato, “Sapphire-derived all-glass optical fibers,” Nat. Photonics 6, 629–635 (2012).
[Crossref]

2011 (1)

2010 (2)

D. Grobnic, R. B. Walker, S. J. Mihailov, C. W. Smelser, P. Lu, “Bragg gratings made in highly nonlinear bismuth oxide fibers with ultrafast IR radiation,” IEEE Photon. Technol. Lett. 22, 124–126 (2010).
[Crossref]

A. Yablon, “Multi-wavelength optical fibre refractive index profiling by spatially resolved Fourier transform spectroscopy,” J. Lightwave Technol. 28, 360–364 (2010).
[Crossref]

2009 (1)

V. Rose, R. Franchy, “The band gap of ultrathin amorphous and well-ordered Al2O3 films on CoAl(100) measured by scanning tunneling spectroscopy,” J. Appl. Phys. 105, 07C902 (2009).
[Crossref]

2008 (2)

C. W. Smelser, S. J. Mihailov, D. Grobnic, “Impact of index change saturation on the growth behavior of higher-order type I ultrafast induced fiber Bragg gratings,” J. Opt. Soc. Am. B 25, 877–883 (2008).
[Crossref]

S. J. Mihailov, D. Grobnic, C. W. Smelser, P. Lu, R. B. Walker, H. Ding, “Induced Bragg gratings in optical fibers and waveguides using an ultrafast infrared laser and a phase mask,” Laser Chem. 2008, 1–20 (2008).
[Crossref]

2007 (3)

C. W. Smelser, S. J. Mihailov, D. Grobnic, “Characterization of Fourier components in type I infrared ultrafast laser induced fiber Bragg gratings,” Opt. Lett. 32, 1453–1455 (2007).
[Crossref]

D. Grobnic, S. J. Mihailov, C. W. Smelser, “Bragg gratings made with ultrafast radiation in crystal waveguides, lithium niobate, sapphire and YAG Bragg gratings,” Proc. SPIE 6796, 679620 (2007).

D. Grobnic, S. J. Mihailov, C. W. Smelser, R. B. Walker, “Bragg gratings made with ultrafast radiation in non-silica glasses; fluoride, phosphate, borosilicate and chalcogenide Bragg gratings,” Proc. SPIE 6796, 67961K (2007).

2006 (3)

E. Wikszak, J. Thomas, J. Burghoff, B. Ortaç, J. Limpert, S. Nolte, U. Fuchs, A. Tünnermann, “Erbium fiber laser based on intracore femtosecond-written fiber Bragg grating,” Opt. Lett. 31, 2390–2392 (2006).
[Crossref]

D. Grobnic, S. J. Mihailov, H. Ding, F. Bilodeau, C. W. Smelser, “Single and low order mode interrogation of a multimode sapphire fibre Bragg grating sensor with tapered fibres,” Meas. Sci. Technol. 17, 980–984 (2006).
[Crossref]

D. Grobnic, C. W. Smelser, S. J. Mihailov, R. B. Walker, “Long-term thermal stability tests at 1000°C of silica fibre Bragg gratings made with ultrafast laser radiation,” Meas. Sci. Technol. 17, 1009–1013 (2006).
[Crossref]

2005 (1)

2004 (1)

D. Grobnic, S. J. Mihailov, C. W. Smelser, H. Ding, “Sapphire fiber Bragg grating sensor made using femtosecond laser radiation for ultrahigh temperature applications,” IEEE Photon. Technol. Lett. 16, 2505–2507 (2004).
[Crossref]

2003 (2)

1997 (1)

1995 (1)

1973 (2)

T. Takamori, R. Roy, “Rapid crystallization of SiO2–Al2O3 glasses,” J. Am. Ceram. Soc. 56, 639–644 (1973).
[Crossref]

R. M. Waxler, G. W. Cleek, “The effect of temperature and pressure on the refractive index of some oxide glasses,” J. Res. Natl. Bur. Stand. A 7A, 755–763 (1973).
[Crossref]

1960 (1)

L. Prod’homme, “A new approach to the thermal change in the refractive index of glasses,” Phys. Chem. Glasses 1, 119–122 (1960).

Ballato, A.

Ballato, J.

P. D. Dragic, C. Kucera, J. Ballato, D. Litzkendorf, J. Dellith, K. Schuster, “Brillouin scattering properties of lanthano-aluminosilicate optical fiber,” Appl. Opt. 53, 5660–5671 (2014).
[Crossref]

P. D. Dragic, J. Ballato, S. Morris, T. Hawkins, “Pockels’ coefficients of alumina in aluminosilicate optical fiber,” J. Opt. Soc. Am. B 30, 244–250 (2013).
[Crossref]

J. Ballato, P. Dragic, “Rethinking optical fiber: new demands, old glasses,” J. Am. Ceram. Soc. 96, 2675–2692 (2013).
[Crossref]

P. Dragic, T. Hawkins, P. Foy, S. Morris, J. Ballato, “Sapphire-derived all-glass optical fibers,” Nat. Photonics 6, 629–635 (2012).
[Crossref]

P. Dragic, J. Ballato, A. Ballato, S. Morris, T. Hawkins, P.-C. Law, S. Ghosh, M. C. Paul, “Mass density and the Brillouin spectroscopy of aluminosilicate optical fibers,” Opt. Mater. Express 2, 1641–1654 (2012).
[Crossref]

D. Grobnic, S. J. Mihailov, J. Ballato, P. Dragic, “Bragg gratings made with IR femtosecond radiation in high alumina content aluminosilicate optical fibers,” in Advanced Photonics, OSA Technical Digest Series (Optical Society of America, 2014), paper BW2D.4.

Bartelt, H.

M. Leich, J. Fiebrandt, A. Schwuchow, S. Unger, S. Jetschke, H. Bartelt, “Femtosecond pulse-induced fiber Bragg gratings for in-core temperature measurement in optically pumped Yb-doped silica fibers,” Opt. Commun. 285, 4387–4390 (2012).
[Crossref]

Bartlet, H.

Bierlich, J.

Bilodeau, F.

D. Grobnic, S. J. Mihailov, H. Ding, F. Bilodeau, C. W. Smelser, “Single and low order mode interrogation of a multimode sapphire fibre Bragg grating sensor with tapered fibres,” Meas. Sci. Technol. 17, 980–984 (2006).
[Crossref]

Burghoff, J.

Cleek, G. W.

R. M. Waxler, G. W. Cleek, “The effect of temperature and pressure on the refractive index of some oxide glasses,” J. Res. Natl. Bur. Stand. A 7A, 755–763 (1973).
[Crossref]

Dellith, J.

Ding, H.

S. J. Mihailov, D. Grobnic, C. W. Smelser, P. Lu, R. B. Walker, H. Ding, “Bragg grating inscription in various optical fibers with femtosecond infrared lasers and a phase mask,” Opt. Mater. Express 1, 754–765 (2011).
[Crossref]

S. J. Mihailov, D. Grobnic, C. W. Smelser, P. Lu, R. B. Walker, H. Ding, “Induced Bragg gratings in optical fibers and waveguides using an ultrafast infrared laser and a phase mask,” Laser Chem. 2008, 1–20 (2008).
[Crossref]

D. Grobnic, S. J. Mihailov, H. Ding, F. Bilodeau, C. W. Smelser, “Single and low order mode interrogation of a multimode sapphire fibre Bragg grating sensor with tapered fibres,” Meas. Sci. Technol. 17, 980–984 (2006).
[Crossref]

D. Grobnic, S. J. Mihailov, C. W. Smelser, H. Ding, “Sapphire fiber Bragg grating sensor made using femtosecond laser radiation for ultrahigh temperature applications,” IEEE Photon. Technol. Lett. 16, 2505–2507 (2004).
[Crossref]

S. J. Mihailov, C. W. Smelser, P. Lu, R. B. Walker, H. Ding, D. Grobnic, G. Henderson, J. Unruh, “Fiber Bragg gratings made with a phase mask and 800-nm femtosecond radiation,” Opt. Lett. 28, 995–997 (2003).
[Crossref]

Dragic, P.

J. Ballato, P. Dragic, “Rethinking optical fiber: new demands, old glasses,” J. Am. Ceram. Soc. 96, 2675–2692 (2013).
[Crossref]

P. Dragic, T. Hawkins, P. Foy, S. Morris, J. Ballato, “Sapphire-derived all-glass optical fibers,” Nat. Photonics 6, 629–635 (2012).
[Crossref]

P. Dragic, J. Ballato, A. Ballato, S. Morris, T. Hawkins, P.-C. Law, S. Ghosh, M. C. Paul, “Mass density and the Brillouin spectroscopy of aluminosilicate optical fibers,” Opt. Mater. Express 2, 1641–1654 (2012).
[Crossref]

D. Grobnic, S. J. Mihailov, J. Ballato, P. Dragic, “Bragg gratings made with IR femtosecond radiation in high alumina content aluminosilicate optical fibers,” in Advanced Photonics, OSA Technical Digest Series (Optical Society of America, 2014), paper BW2D.4.

Dragic, P. D.

Elsmann, T.

Ferdinand, P.

Fiebrandt, J.

M. Leich, J. Fiebrandt, A. Schwuchow, S. Unger, S. Jetschke, H. Bartelt, “Femtosecond pulse-induced fiber Bragg gratings for in-core temperature measurement in optically pumped Yb-doped silica fibers,” Opt. Commun. 285, 4387–4390 (2012).
[Crossref]

Foy, P.

P. Dragic, T. Hawkins, P. Foy, S. Morris, J. Ballato, “Sapphire-derived all-glass optical fibers,” Nat. Photonics 6, 629–635 (2012).
[Crossref]

Franchy, R.

V. Rose, R. Franchy, “The band gap of ultrathin amorphous and well-ordered Al2O3 films on CoAl(100) measured by scanning tunneling spectroscopy,” J. Appl. Phys. 105, 07C902 (2009).
[Crossref]

Fuchs, U.

Ghosh, S.

Grobnic, D.

S. J. Mihailov, D. Grobnic, C. W. Smelser, P. Lu, R. B. Walker, H. Ding, “Bragg grating inscription in various optical fibers with femtosecond infrared lasers and a phase mask,” Opt. Mater. Express 1, 754–765 (2011).
[Crossref]

D. Grobnic, R. B. Walker, S. J. Mihailov, C. W. Smelser, P. Lu, “Bragg gratings made in highly nonlinear bismuth oxide fibers with ultrafast IR radiation,” IEEE Photon. Technol. Lett. 22, 124–126 (2010).
[Crossref]

S. J. Mihailov, D. Grobnic, C. W. Smelser, P. Lu, R. B. Walker, H. Ding, “Induced Bragg gratings in optical fibers and waveguides using an ultrafast infrared laser and a phase mask,” Laser Chem. 2008, 1–20 (2008).
[Crossref]

C. W. Smelser, S. J. Mihailov, D. Grobnic, “Impact of index change saturation on the growth behavior of higher-order type I ultrafast induced fiber Bragg gratings,” J. Opt. Soc. Am. B 25, 877–883 (2008).
[Crossref]

C. W. Smelser, S. J. Mihailov, D. Grobnic, “Characterization of Fourier components in type I infrared ultrafast laser induced fiber Bragg gratings,” Opt. Lett. 32, 1453–1455 (2007).
[Crossref]

D. Grobnic, S. J. Mihailov, C. W. Smelser, “Bragg gratings made with ultrafast radiation in crystal waveguides, lithium niobate, sapphire and YAG Bragg gratings,” Proc. SPIE 6796, 679620 (2007).

D. Grobnic, S. J. Mihailov, C. W. Smelser, R. B. Walker, “Bragg gratings made with ultrafast radiation in non-silica glasses; fluoride, phosphate, borosilicate and chalcogenide Bragg gratings,” Proc. SPIE 6796, 67961K (2007).

D. Grobnic, C. W. Smelser, S. J. Mihailov, R. B. Walker, “Long-term thermal stability tests at 1000°C of silica fibre Bragg gratings made with ultrafast laser radiation,” Meas. Sci. Technol. 17, 1009–1013 (2006).
[Crossref]

D. Grobnic, S. J. Mihailov, H. Ding, F. Bilodeau, C. W. Smelser, “Single and low order mode interrogation of a multimode sapphire fibre Bragg grating sensor with tapered fibres,” Meas. Sci. Technol. 17, 980–984 (2006).
[Crossref]

C. W. Smelser, S. J. Mihailov, D. Grobnic, “Formation of type I-IR and type II-IR gratings with an ultrafast IR laser and a phase mask,” Opt. Express 13, 5377–5386 (2005).
[Crossref]

D. Grobnic, S. J. Mihailov, C. W. Smelser, H. Ding, “Sapphire fiber Bragg grating sensor made using femtosecond laser radiation for ultrahigh temperature applications,” IEEE Photon. Technol. Lett. 16, 2505–2507 (2004).
[Crossref]

S. J. Mihailov, C. W. Smelser, P. Lu, R. B. Walker, H. Ding, D. Grobnic, G. Henderson, J. Unruh, “Fiber Bragg gratings made with a phase mask and 800-nm femtosecond radiation,” Opt. Lett. 28, 995–997 (2003).
[Crossref]

D. Grobnic, S. J. Mihailov, R. B. Walker, C. W. Smelser, “Reflection characteristics of type II FBG made with femtosecond radiation,” in Bragg Gratings, Photosensitivity and Poling in Glass Waveguides (BGPP), Colorado Springs, CO, June17–20 2012, paper BM2D.5.

D. Grobnic, S. J. Mihailov, J. Ballato, P. Dragic, “Bragg gratings made with IR femtosecond radiation in high alumina content aluminosilicate optical fibers,” in Advanced Photonics, OSA Technical Digest Series (Optical Society of America, 2014), paper BW2D.4.

Habisreuther, T.

Hawkins, T.

Henderson, G.

Hosono, H.

Huang, M.

M. Huang, “Stress effects on the performance of optical waveguides,” Int. J. Solids Struct. 40, 1615–1632 (2003).
[Crossref]

Jetschke, S.

M. Leich, J. Fiebrandt, A. Schwuchow, S. Unger, S. Jetschke, H. Bartelt, “Femtosecond pulse-induced fiber Bragg gratings for in-core temperature measurement in optically pumped Yb-doped silica fibers,” Opt. Commun. 285, 4387–4390 (2012).
[Crossref]

Kawazoe, H.

Kido, L.

Kitamura, N.

Kucera, C.

Law, P.-C.

Leich, M.

M. Leich, J. Fiebrandt, A. Schwuchow, S. Unger, S. Jetschke, H. Bartelt, “Femtosecond pulse-induced fiber Bragg gratings for in-core temperature measurement in optically pumped Yb-doped silica fibers,” Opt. Commun. 285, 4387–4390 (2012).
[Crossref]

Limpert, J.

Litzkendorf, D.

Lorenz, A.

Lu, P.

S. J. Mihailov, D. Grobnic, C. W. Smelser, P. Lu, R. B. Walker, H. Ding, “Bragg grating inscription in various optical fibers with femtosecond infrared lasers and a phase mask,” Opt. Mater. Express 1, 754–765 (2011).
[Crossref]

D. Grobnic, R. B. Walker, S. J. Mihailov, C. W. Smelser, P. Lu, “Bragg gratings made in highly nonlinear bismuth oxide fibers with ultrafast IR radiation,” IEEE Photon. Technol. Lett. 22, 124–126 (2010).
[Crossref]

S. J. Mihailov, D. Grobnic, C. W. Smelser, P. Lu, R. B. Walker, H. Ding, “Induced Bragg gratings in optical fibers and waveguides using an ultrafast infrared laser and a phase mask,” Laser Chem. 2008, 1–20 (2008).
[Crossref]

S. J. Mihailov, C. W. Smelser, P. Lu, R. B. Walker, H. Ding, D. Grobnic, G. Henderson, J. Unruh, “Fiber Bragg gratings made with a phase mask and 800-nm femtosecond radiation,” Opt. Lett. 28, 995–997 (2003).
[Crossref]

Magne, S.

Mihailov, S. J.

S. J. Mihailov, D. Grobnic, C. W. Smelser, P. Lu, R. B. Walker, H. Ding, “Bragg grating inscription in various optical fibers with femtosecond infrared lasers and a phase mask,” Opt. Mater. Express 1, 754–765 (2011).
[Crossref]

D. Grobnic, R. B. Walker, S. J. Mihailov, C. W. Smelser, P. Lu, “Bragg gratings made in highly nonlinear bismuth oxide fibers with ultrafast IR radiation,” IEEE Photon. Technol. Lett. 22, 124–126 (2010).
[Crossref]

S. J. Mihailov, D. Grobnic, C. W. Smelser, P. Lu, R. B. Walker, H. Ding, “Induced Bragg gratings in optical fibers and waveguides using an ultrafast infrared laser and a phase mask,” Laser Chem. 2008, 1–20 (2008).
[Crossref]

C. W. Smelser, S. J. Mihailov, D. Grobnic, “Impact of index change saturation on the growth behavior of higher-order type I ultrafast induced fiber Bragg gratings,” J. Opt. Soc. Am. B 25, 877–883 (2008).
[Crossref]

C. W. Smelser, S. J. Mihailov, D. Grobnic, “Characterization of Fourier components in type I infrared ultrafast laser induced fiber Bragg gratings,” Opt. Lett. 32, 1453–1455 (2007).
[Crossref]

D. Grobnic, S. J. Mihailov, C. W. Smelser, R. B. Walker, “Bragg gratings made with ultrafast radiation in non-silica glasses; fluoride, phosphate, borosilicate and chalcogenide Bragg gratings,” Proc. SPIE 6796, 67961K (2007).

D. Grobnic, S. J. Mihailov, C. W. Smelser, “Bragg gratings made with ultrafast radiation in crystal waveguides, lithium niobate, sapphire and YAG Bragg gratings,” Proc. SPIE 6796, 679620 (2007).

D. Grobnic, S. J. Mihailov, H. Ding, F. Bilodeau, C. W. Smelser, “Single and low order mode interrogation of a multimode sapphire fibre Bragg grating sensor with tapered fibres,” Meas. Sci. Technol. 17, 980–984 (2006).
[Crossref]

D. Grobnic, C. W. Smelser, S. J. Mihailov, R. B. Walker, “Long-term thermal stability tests at 1000°C of silica fibre Bragg gratings made with ultrafast laser radiation,” Meas. Sci. Technol. 17, 1009–1013 (2006).
[Crossref]

C. W. Smelser, S. J. Mihailov, D. Grobnic, “Formation of type I-IR and type II-IR gratings with an ultrafast IR laser and a phase mask,” Opt. Express 13, 5377–5386 (2005).
[Crossref]

D. Grobnic, S. J. Mihailov, C. W. Smelser, H. Ding, “Sapphire fiber Bragg grating sensor made using femtosecond laser radiation for ultrahigh temperature applications,” IEEE Photon. Technol. Lett. 16, 2505–2507 (2004).
[Crossref]

S. J. Mihailov, C. W. Smelser, P. Lu, R. B. Walker, H. Ding, D. Grobnic, G. Henderson, J. Unruh, “Fiber Bragg gratings made with a phase mask and 800-nm femtosecond radiation,” Opt. Lett. 28, 995–997 (2003).
[Crossref]

D. Grobnic, S. J. Mihailov, R. B. Walker, C. W. Smelser, “Reflection characteristics of type II FBG made with femtosecond radiation,” in Bragg Gratings, Photosensitivity and Poling in Glass Waveguides (BGPP), Colorado Springs, CO, June17–20 2012, paper BM2D.5.

D. Grobnic, S. J. Mihailov, J. Ballato, P. Dragic, “Bragg gratings made with IR femtosecond radiation in high alumina content aluminosilicate optical fibers,” in Advanced Photonics, OSA Technical Digest Series (Optical Society of America, 2014), paper BW2D.4.

Morris, S.

Nishii, J.

Nolte, S.

Ortaç, B.

Paul, M. C.

Prod’homme, L.

L. Prod’homme, “A new approach to the thermal change in the refractive index of glasses,” Phys. Chem. Glasses 1, 119–122 (1960).

Rose, V.

V. Rose, R. Franchy, “The band gap of ultrathin amorphous and well-ordered Al2O3 films on CoAl(100) measured by scanning tunneling spectroscopy,” J. Appl. Phys. 105, 07C902 (2009).
[Crossref]

Rothhardt, M.

Rougeault, S.

Roy, R.

T. Takamori, R. Roy, “Rapid crystallization of SiO2–Al2O3 glasses,” J. Am. Ceram. Soc. 56, 639–644 (1973).
[Crossref]

Schuster, K.

Schwuchow, A.

T. Elsmann, A. Lorenz, N. S. Yazd, T. Habisreuther, J. Dellith, A. Schwuchow, J. Bierlich, K. Schuster, M. Rothhardt, L. Kido, H. Bartlet, “High temperature sensing with fiber Bragg gratings in sapphire-derived all-glass optical fibers,” Opt. Express 22, 26825–26833 (2014).
[Crossref]

M. Leich, J. Fiebrandt, A. Schwuchow, S. Unger, S. Jetschke, H. Bartelt, “Femtosecond pulse-induced fiber Bragg gratings for in-core temperature measurement in optically pumped Yb-doped silica fibers,” Opt. Commun. 285, 4387–4390 (2012).
[Crossref]

Smelser, C. W.

S. J. Mihailov, D. Grobnic, C. W. Smelser, P. Lu, R. B. Walker, H. Ding, “Bragg grating inscription in various optical fibers with femtosecond infrared lasers and a phase mask,” Opt. Mater. Express 1, 754–765 (2011).
[Crossref]

D. Grobnic, R. B. Walker, S. J. Mihailov, C. W. Smelser, P. Lu, “Bragg gratings made in highly nonlinear bismuth oxide fibers with ultrafast IR radiation,” IEEE Photon. Technol. Lett. 22, 124–126 (2010).
[Crossref]

S. J. Mihailov, D. Grobnic, C. W. Smelser, P. Lu, R. B. Walker, H. Ding, “Induced Bragg gratings in optical fibers and waveguides using an ultrafast infrared laser and a phase mask,” Laser Chem. 2008, 1–20 (2008).
[Crossref]

C. W. Smelser, S. J. Mihailov, D. Grobnic, “Impact of index change saturation on the growth behavior of higher-order type I ultrafast induced fiber Bragg gratings,” J. Opt. Soc. Am. B 25, 877–883 (2008).
[Crossref]

C. W. Smelser, S. J. Mihailov, D. Grobnic, “Characterization of Fourier components in type I infrared ultrafast laser induced fiber Bragg gratings,” Opt. Lett. 32, 1453–1455 (2007).
[Crossref]

D. Grobnic, S. J. Mihailov, C. W. Smelser, “Bragg gratings made with ultrafast radiation in crystal waveguides, lithium niobate, sapphire and YAG Bragg gratings,” Proc. SPIE 6796, 679620 (2007).

D. Grobnic, S. J. Mihailov, C. W. Smelser, R. B. Walker, “Bragg gratings made with ultrafast radiation in non-silica glasses; fluoride, phosphate, borosilicate and chalcogenide Bragg gratings,” Proc. SPIE 6796, 67961K (2007).

D. Grobnic, S. J. Mihailov, H. Ding, F. Bilodeau, C. W. Smelser, “Single and low order mode interrogation of a multimode sapphire fibre Bragg grating sensor with tapered fibres,” Meas. Sci. Technol. 17, 980–984 (2006).
[Crossref]

D. Grobnic, C. W. Smelser, S. J. Mihailov, R. B. Walker, “Long-term thermal stability tests at 1000°C of silica fibre Bragg gratings made with ultrafast laser radiation,” Meas. Sci. Technol. 17, 1009–1013 (2006).
[Crossref]

C. W. Smelser, S. J. Mihailov, D. Grobnic, “Formation of type I-IR and type II-IR gratings with an ultrafast IR laser and a phase mask,” Opt. Express 13, 5377–5386 (2005).
[Crossref]

D. Grobnic, S. J. Mihailov, C. W. Smelser, H. Ding, “Sapphire fiber Bragg grating sensor made using femtosecond laser radiation for ultrahigh temperature applications,” IEEE Photon. Technol. Lett. 16, 2505–2507 (2004).
[Crossref]

S. J. Mihailov, C. W. Smelser, P. Lu, R. B. Walker, H. Ding, D. Grobnic, G. Henderson, J. Unruh, “Fiber Bragg gratings made with a phase mask and 800-nm femtosecond radiation,” Opt. Lett. 28, 995–997 (2003).
[Crossref]

D. Grobnic, S. J. Mihailov, R. B. Walker, C. W. Smelser, “Reflection characteristics of type II FBG made with femtosecond radiation,” in Bragg Gratings, Photosensitivity and Poling in Glass Waveguides (BGPP), Colorado Springs, CO, June17–20 2012, paper BM2D.5.

Takamori, T.

T. Takamori, R. Roy, “Rapid crystallization of SiO2–Al2O3 glasses,” J. Am. Ceram. Soc. 56, 639–644 (1973).
[Crossref]

Thomas, J.

Tünnermann, A.

Unger, S.

M. Leich, J. Fiebrandt, A. Schwuchow, S. Unger, S. Jetschke, H. Bartelt, “Femtosecond pulse-induced fiber Bragg gratings for in-core temperature measurement in optically pumped Yb-doped silica fibers,” Opt. Commun. 285, 4387–4390 (2012).
[Crossref]

Unruh, J.

Vilela, M.

Walker, R. B.

S. J. Mihailov, D. Grobnic, C. W. Smelser, P. Lu, R. B. Walker, H. Ding, “Bragg grating inscription in various optical fibers with femtosecond infrared lasers and a phase mask,” Opt. Mater. Express 1, 754–765 (2011).
[Crossref]

D. Grobnic, R. B. Walker, S. J. Mihailov, C. W. Smelser, P. Lu, “Bragg gratings made in highly nonlinear bismuth oxide fibers with ultrafast IR radiation,” IEEE Photon. Technol. Lett. 22, 124–126 (2010).
[Crossref]

S. J. Mihailov, D. Grobnic, C. W. Smelser, P. Lu, R. B. Walker, H. Ding, “Induced Bragg gratings in optical fibers and waveguides using an ultrafast infrared laser and a phase mask,” Laser Chem. 2008, 1–20 (2008).
[Crossref]

D. Grobnic, S. J. Mihailov, C. W. Smelser, R. B. Walker, “Bragg gratings made with ultrafast radiation in non-silica glasses; fluoride, phosphate, borosilicate and chalcogenide Bragg gratings,” Proc. SPIE 6796, 67961K (2007).

D. Grobnic, C. W. Smelser, S. J. Mihailov, R. B. Walker, “Long-term thermal stability tests at 1000°C of silica fibre Bragg gratings made with ultrafast laser radiation,” Meas. Sci. Technol. 17, 1009–1013 (2006).
[Crossref]

S. J. Mihailov, C. W. Smelser, P. Lu, R. B. Walker, H. Ding, D. Grobnic, G. Henderson, J. Unruh, “Fiber Bragg gratings made with a phase mask and 800-nm femtosecond radiation,” Opt. Lett. 28, 995–997 (2003).
[Crossref]

D. Grobnic, S. J. Mihailov, R. B. Walker, C. W. Smelser, “Reflection characteristics of type II FBG made with femtosecond radiation,” in Bragg Gratings, Photosensitivity and Poling in Glass Waveguides (BGPP), Colorado Springs, CO, June17–20 2012, paper BM2D.5.

Waxler, R. M.

R. M. Waxler, G. W. Cleek, “The effect of temperature and pressure on the refractive index of some oxide glasses,” J. Res. Natl. Bur. Stand. A 7A, 755–763 (1973).
[Crossref]

Wikszak, E.

Yablon, A.

Yamanaka, H.

Yazd, N. S.

Appl. Opt. (2)

IEEE Photon. Technol. Lett. (2)

D. Grobnic, R. B. Walker, S. J. Mihailov, C. W. Smelser, P. Lu, “Bragg gratings made in highly nonlinear bismuth oxide fibers with ultrafast IR radiation,” IEEE Photon. Technol. Lett. 22, 124–126 (2010).
[Crossref]

D. Grobnic, S. J. Mihailov, C. W. Smelser, H. Ding, “Sapphire fiber Bragg grating sensor made using femtosecond laser radiation for ultrahigh temperature applications,” IEEE Photon. Technol. Lett. 16, 2505–2507 (2004).
[Crossref]

Int. J. Solids Struct. (1)

M. Huang, “Stress effects on the performance of optical waveguides,” Int. J. Solids Struct. 40, 1615–1632 (2003).
[Crossref]

J. Am. Ceram. Soc. (2)

J. Ballato, P. Dragic, “Rethinking optical fiber: new demands, old glasses,” J. Am. Ceram. Soc. 96, 2675–2692 (2013).
[Crossref]

T. Takamori, R. Roy, “Rapid crystallization of SiO2–Al2O3 glasses,” J. Am. Ceram. Soc. 56, 639–644 (1973).
[Crossref]

J. Appl. Phys. (1)

V. Rose, R. Franchy, “The band gap of ultrathin amorphous and well-ordered Al2O3 films on CoAl(100) measured by scanning tunneling spectroscopy,” J. Appl. Phys. 105, 07C902 (2009).
[Crossref]

J. Lightwave Technol. (1)

J. Opt. Soc. Am. B (2)

J. Res. Natl. Bur. Stand. A (1)

R. M. Waxler, G. W. Cleek, “The effect of temperature and pressure on the refractive index of some oxide glasses,” J. Res. Natl. Bur. Stand. A 7A, 755–763 (1973).
[Crossref]

Laser Chem. (1)

S. J. Mihailov, D. Grobnic, C. W. Smelser, P. Lu, R. B. Walker, H. Ding, “Induced Bragg gratings in optical fibers and waveguides using an ultrafast infrared laser and a phase mask,” Laser Chem. 2008, 1–20 (2008).
[Crossref]

Meas. Sci. Technol. (2)

D. Grobnic, C. W. Smelser, S. J. Mihailov, R. B. Walker, “Long-term thermal stability tests at 1000°C of silica fibre Bragg gratings made with ultrafast laser radiation,” Meas. Sci. Technol. 17, 1009–1013 (2006).
[Crossref]

D. Grobnic, S. J. Mihailov, H. Ding, F. Bilodeau, C. W. Smelser, “Single and low order mode interrogation of a multimode sapphire fibre Bragg grating sensor with tapered fibres,” Meas. Sci. Technol. 17, 980–984 (2006).
[Crossref]

Nat. Photonics (1)

P. Dragic, T. Hawkins, P. Foy, S. Morris, J. Ballato, “Sapphire-derived all-glass optical fibers,” Nat. Photonics 6, 629–635 (2012).
[Crossref]

Opt. Commun. (1)

M. Leich, J. Fiebrandt, A. Schwuchow, S. Unger, S. Jetschke, H. Bartelt, “Femtosecond pulse-induced fiber Bragg gratings for in-core temperature measurement in optically pumped Yb-doped silica fibers,” Opt. Commun. 285, 4387–4390 (2012).
[Crossref]

Opt. Express (2)

Opt. Lett. (4)

Opt. Mater. Express (2)

Phys. Chem. Glasses (1)

L. Prod’homme, “A new approach to the thermal change in the refractive index of glasses,” Phys. Chem. Glasses 1, 119–122 (1960).

Proc. SPIE (2)

D. Grobnic, S. J. Mihailov, C. W. Smelser, “Bragg gratings made with ultrafast radiation in crystal waveguides, lithium niobate, sapphire and YAG Bragg gratings,” Proc. SPIE 6796, 679620 (2007).

D. Grobnic, S. J. Mihailov, C. W. Smelser, R. B. Walker, “Bragg gratings made with ultrafast radiation in non-silica glasses; fluoride, phosphate, borosilicate and chalcogenide Bragg gratings,” Proc. SPIE 6796, 67961K (2007).

Other (2)

D. Grobnic, S. J. Mihailov, J. Ballato, P. Dragic, “Bragg gratings made with IR femtosecond radiation in high alumina content aluminosilicate optical fibers,” in Advanced Photonics, OSA Technical Digest Series (Optical Society of America, 2014), paper BW2D.4.

D. Grobnic, S. J. Mihailov, R. B. Walker, C. W. Smelser, “Reflection characteristics of type II FBG made with femtosecond radiation,” in Bragg Gratings, Photosensitivity and Poling in Glass Waveguides (BGPP), Colorado Springs, CO, June17–20 2012, paper BM2D.5.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (14)

Fig. 1.
Fig. 1. Refractive index profiles of high-concentration Al Fiber A (blue) and low-concentration Al Fiber B (red).
Fig. 2.
Fig. 2. Transmission (blue) and reflection (red) spectra of a grating made with a Λ=3.21μm phase mask in Fiber A.
Fig. 3.
Fig. 3. Microscope image of the high-order grating made in Fiber A as viewed normal to the optical axis of the inscription beam.
Fig. 4.
Fig. 4. Multimode grating structure (Fiber A) with fundamental Bragg resonance at 1608 nm.
Fig. 5.
Fig. 5. Launching-condition-dependent transmission spectra: FBG made with Λ=1.07μm phase mask probed with an erbium white light source (red trace) and a tunable laser source (blue trace).
Fig. 6.
Fig. 6. Spectral characteristics of a type II grating made in high-content aluminosilicate fiber.
Fig. 7.
Fig. 7. Type II (left) and type I (right) gratings concatenated on the same strand of aluminosilicate fiber.
Fig. 8.
Fig. 8. Annealing characteristics of type I gratings made in silica fiber (green triangles), low-content aluminosilicate fiber (red circles), and type II gratings made in high-content aluminosilicate fiber (blue squares). Trend lines are shown to guide the eye.
Fig. 9.
Fig. 9. Type II gratings in silica and low-content alumina fiber written in the spliced junction between the two fibers. The superposed gratings in the silica fiber have resonant wavelengths of 1528.6 and 1544.4 nm, while the low-content aluminosilicate fiber is resonant at 1536.5 nm.
Fig. 10.
Fig. 10. High-temperature annealing of type II gratings made in low-content aluminosilicate fiber (blue squares) and silica fibers (red and green).
Fig. 11.
Fig. 11. Spectral transformation of a type II grating written in low-content aluminosilicate fiber from room temperature (blue) to 800°C (red).
Fig. 12.
Fig. 12. Temperature shift of Bragg wavelength for type II gratings made in high alumina content (green triangle) and low alumina content (red circle) fibers.
Fig. 13.
Fig. 13. Block diagram of a unit volume in the thermomechanical system.
Fig. 14.
Fig. 14. Modeled temperature sensitivity of the type II gratings as a function of alumina content (solid line silica-clad fiber, dashed line un-clad fiber). The data points for the silica-clad aluminosilicate glass are from this work (Fig. 12), Ref. [9] (red dot), pure unclad sapphire fiber [21] (green dot), and the zero-alumina point is from [30].

Tables (1)

Tables Icon

Table 1. Summary of Physical Properties of the Various Glass Constituents

Equations (13)

Equations on this page are rendered with MathJax. Learn more.

dλBraggdT=1m(ΛdneffdT+neffdΛdT),
dΛdT=ΛαCTE.
υ=εxεz=εyεz,
Δnx=12n0,x3(p12υ(p11+p12))εz,
Δnx=12n0,x3(p12υ(p11+p12))εy.
Δnx=12n0,x3(p112υp12)εx.
dnxdT|correction=dnxdεdεdT,
dnxdε=12n0,x3[2(p12υ(p11+p12))+(p112υp12)]
dεdT=(αcoreαclad),
n(T)=qnA(T)+(1q)nS(T),
q=MAl2O3MSiO2ρSiO2[Al2O3]ρAl2O3+[Al2O3](MAl2O3MSiO2ρSiO2ρAl2O3),
nA,S(T)=n0,A,S+dnA,SdT(TTo)+dnA,SdεdεdT(TTo).
α=qαA+(1q)αS.

Metrics