Abstract

Characterization of structures using conventional optical microscopy is restricted by the diffraction limit. Techniques such as atomic force and scanning electron microscopy can investigate smaller structures but are very time consuming. We show that using scatterometry, a technique based on optical diffraction, integrated into a commercial light microscope we can characterize nano-textured surfaces in a few milliseconds. The adapted microscope has two detectors, a CCD camera used to easily find an area of interest and a spectrometer for the measurements. We demonstrate that the microscope has a resolution in the nanometer range for the topographic parameters—height, width, and sidewall angle of a periodic grating—even in an environment with many vibrations, such as a production facility with heavy equipment.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Imaging scatterometry for flexible measurements of patterned areas

Morten Hannibal Madsen and Poul-Erik Hansen
Opt. Express 24(2) 1109-1117 (2016)

Spatial characterization of nanotextured surfaces by visual color imaging

Nikolaj A. Feidenhans’l, Swathi Murthy, Morten H. Madsen, Jan C. Petersen, and Rafael Taboryski
Appl. Opt. 55(34) 9719-9723 (2016)

Profiles of a high-aspect-ratio grating determined by spectroscopic scatterometry and atomic-force microscopy

J. Garnaes, P.-E. Hansen, N. Agersnap, J. Holm, F. Borsetto, and A. Kühle
Appl. Opt. 45(14) 3201-3212 (2006)

References

  • View by:
  • |
  • |
  • |

  1. R. Leach, Fundamental Principles of Engineering Nanometrology (Elsevier, 2014).
  2. X. Niu, N. Jakatdar, J. Bao, C. Spanos, “Specular spectroscopic scatterometry,” IEEE Trans. Semicond. Manuf. 14, 97–111 (2001).
    [Crossref]
  3. N. Agersnap, P.-E. Hansen, J. C. Petersen, J. Garnaes, N. Destouches, O. Parriaux, “Critical dimension metrology using optical diffraction microscopy,” Proc. SPIE 5985, 68–78 (2005).
  4. J. Garnaes, P.-E. Hansen, N. Agersnap, J. Holm, F. Borsetto, A. Kuhle, “Profiles of a high-aspect-ratio grating determined by spectroscopic scatterometry and atomic-force microscopy,” Appl. Opt. 45, 3201–3212 (2006).
    [Crossref]
  5. D.-M. Shyu, Y.-S. Ku, N. Smith, “Angular scatterometry for line-width roughness measurement,” Proc. SPIE 6518, 65184G (2007).
    [Crossref]
  6. A. Kato, F. Scholze, “Effect of line roughness on the diffraction intensities in angular resolved scatterometry,” Appl. Opt. 49, 6102–6110 (2010).
    [Crossref]
  7. O. Paul, F. Widulle, B. H. Kleemann, A. Heinrich, “Nanometrology of periodic nanopillar arrays by means of light scattering,” Proc. SPIE 8788, 87881O (2013).
    [Crossref]
  8. P. Boher, J. Petit, T. Leroux, J. Foucher, Y. Desieres, J. Hazart, P. Chaton, “Optical Fourier transform scatterometry for LER and LWR metrology,” Proc. SPIE 5752, 192–203 (2005).
    [Crossref]
  9. J. P. Ogilvie, E. Beaurepaire, A. Alexandrou, M. Joffre, “Fourier-transform coherent anti-Stokes Raman scattering microscopy,” Opt. Lett. 31, 480–482 (2006).
    [Crossref]
  10. S. Roy, N. Kumar, S. Pereira, H. Urbach, “Interferometric coherent Fourier scatterometry: a method for obtaining high sensitivity in the optical inverse-grating problem,” J. Opt. 15, 075707 (2013).
    [Crossref]
  11. N. Kumar, O. E. Gawhary, S. Roy, V. Kutchoukov, S. Pereira, W. Coene, H. Urbach, “Coherent Fourier scatterometry: tool for improved sensitivity in semiconductor metrology,” Proc. SPIE 8324, 83240Q (2012).
    [Crossref]
  12. V. F. Paz, S. Peterhänsel, K. Frenner, W. Osten, “Solving the inverse grating problem by white light interference Fourier scatterometry,” Light Sci. Appl. 1, e36 (2012).
    [Crossref]
  13. S. Peterhänsel, H. Laamanen, M. Kuittinen, J. Turunen, C. Pruss, W. Osten, J. Tervo, “Solving the inverse grating problem with the naked eye,” Opt. Lett. 39, 3547–3550 (2014).
    [Crossref]
  14. S. Kinoshita, S. Yoshioka, J. Miyazaki, “Physics of structural colors,” Rep. Prog. Phys. 71, 076401 (2008).
    [Crossref]
  15. J. S. Clausen, E. Højlund-Nielsen, A. B. Christiansen, S. Yazdi, M. Grajower, H. Taha, U. Levy, A. Kristensen, N. A. Mortensen, “Plasmonic metasurfaces for coloration of plastic consumer products,” Nano Lett. 14, 4499–4504 (2014).
    [Crossref]
  16. B. Tian, X. Zheng, T. J. Kempa, Y. Fang, N. Yu, G. Yu, J. Huang, C. M. Lieber, “Coaxial silicon nanowires as solar cells and nanoelectronic power sources,” Nature 449, 885–889 (2007).
    [Crossref]
  17. J. Wallentin, N. Anttu, D. Asoli, M. Huffman, I. Åberg, M. H. Magnusson, G. Siefer, P. Fuss-Kailuweit, F. Dimroth, B. Witzigmann, H. Q. Xu, L. Samuelson, K. Deppert, M. T. Borgström, “InP nanowire array solar cells achieving 13.8% efficiency by exceeding the ray optics limit,” Science 339, 1057–1060 (2013).
    [Crossref]
  18. N. Anttu, S. Lehmann, K. Storm, K. A. Dick, L. Samuelson, P. M. Wu, M.-E. Pistol, “Crystal phase-dependent nanophotonic resonances in InAs nanowire arrays,” Nano Lett. 14, 5650–5655 (2014).
    [Crossref]
  19. G. Grzela, R. Paniagua-Domínguez, T. Barten, D. van Dam, J. A. Saìnchez-Gil, J. G. Rivas, “Nanowire antenna absorption probed with time-reversed Fourier microscopy,” Nano Lett. 14, 3227–3234 (2014).
    [Crossref]
  20. P. Lalanne, E. Silberstein, “Fourier-modal methods applied to waveguide computational problems,” Opt. Lett. 25, 1092–1094 (2000).
    [Crossref]
  21. M. Karamehmedović, P.-E. Hansen, K. Dirscherl, E. Karamehmedović, T. Wriedt, “Profile estimation for Pt submicron wire on rough Si substrate from experimental data,” Opt. Express 20, 21678–21686 (2012).
    [Crossref]
  22. A. M. G. Moharam, A. Pommet, E. B. Grann, T. K. Gaylord, “Stable implementation of the rigorous coupled-wave analysis for surface relief gratings: enhanced transmittance matrix approach,” J. Opt. Soc. Am. A 12, 1077–1086 (1995).
    [Crossref]
  23. B. L. Li, “Fourier modal methods for crossed anisotropic gratings with arbitrary permittivity and permeability tensors,” J. Opt. A 5, 345–355 (2003).
    [Crossref]
  24. P.-E. Hansen, L. Nielsen, “Combined optimization and hybrid scalar–vector diffraction method for grating topography parameters determination,” Mater. Sci. Eng. B 165, 165–168 (2009).
    [Crossref]
  25. E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1985).
  26. W. H. Press, S. A. Teukolsky, W. T. Vetterling, B. P. Flannery, Numerical Recipes in C++ (Cambridge University, 2002).
  27. M. T. Postek, “Critical Issues in scanning electron microscope metrology,” J. Res. Natl. Inst. Stand. Technol. 99, 641–671 (1994).
    [Crossref]
  28. E. Popov, M. Neviere, B. Gralak, G. Tayeb, “Staircase approximation validity for arbitrary-shaped gratings,” J. Opt. Soc. Am. A 19, 33–42 (2002).
    [Crossref]
  29. A. Savitzky, M. J. E. Golay, “Smoothing and differentiation of data by simplified least squares procedures,” Anal. Chem. 36, 1627–1639 (1964).
    [Crossref]

2014 (4)

S. Peterhänsel, H. Laamanen, M. Kuittinen, J. Turunen, C. Pruss, W. Osten, J. Tervo, “Solving the inverse grating problem with the naked eye,” Opt. Lett. 39, 3547–3550 (2014).
[Crossref]

J. S. Clausen, E. Højlund-Nielsen, A. B. Christiansen, S. Yazdi, M. Grajower, H. Taha, U. Levy, A. Kristensen, N. A. Mortensen, “Plasmonic metasurfaces for coloration of plastic consumer products,” Nano Lett. 14, 4499–4504 (2014).
[Crossref]

N. Anttu, S. Lehmann, K. Storm, K. A. Dick, L. Samuelson, P. M. Wu, M.-E. Pistol, “Crystal phase-dependent nanophotonic resonances in InAs nanowire arrays,” Nano Lett. 14, 5650–5655 (2014).
[Crossref]

G. Grzela, R. Paniagua-Domínguez, T. Barten, D. van Dam, J. A. Saìnchez-Gil, J. G. Rivas, “Nanowire antenna absorption probed with time-reversed Fourier microscopy,” Nano Lett. 14, 3227–3234 (2014).
[Crossref]

2013 (3)

S. Roy, N. Kumar, S. Pereira, H. Urbach, “Interferometric coherent Fourier scatterometry: a method for obtaining high sensitivity in the optical inverse-grating problem,” J. Opt. 15, 075707 (2013).
[Crossref]

O. Paul, F. Widulle, B. H. Kleemann, A. Heinrich, “Nanometrology of periodic nanopillar arrays by means of light scattering,” Proc. SPIE 8788, 87881O (2013).
[Crossref]

J. Wallentin, N. Anttu, D. Asoli, M. Huffman, I. Åberg, M. H. Magnusson, G. Siefer, P. Fuss-Kailuweit, F. Dimroth, B. Witzigmann, H. Q. Xu, L. Samuelson, K. Deppert, M. T. Borgström, “InP nanowire array solar cells achieving 13.8% efficiency by exceeding the ray optics limit,” Science 339, 1057–1060 (2013).
[Crossref]

2012 (3)

M. Karamehmedović, P.-E. Hansen, K. Dirscherl, E. Karamehmedović, T. Wriedt, “Profile estimation for Pt submicron wire on rough Si substrate from experimental data,” Opt. Express 20, 21678–21686 (2012).
[Crossref]

N. Kumar, O. E. Gawhary, S. Roy, V. Kutchoukov, S. Pereira, W. Coene, H. Urbach, “Coherent Fourier scatterometry: tool for improved sensitivity in semiconductor metrology,” Proc. SPIE 8324, 83240Q (2012).
[Crossref]

V. F. Paz, S. Peterhänsel, K. Frenner, W. Osten, “Solving the inverse grating problem by white light interference Fourier scatterometry,” Light Sci. Appl. 1, e36 (2012).
[Crossref]

2010 (1)

2009 (1)

P.-E. Hansen, L. Nielsen, “Combined optimization and hybrid scalar–vector diffraction method for grating topography parameters determination,” Mater. Sci. Eng. B 165, 165–168 (2009).
[Crossref]

2008 (1)

S. Kinoshita, S. Yoshioka, J. Miyazaki, “Physics of structural colors,” Rep. Prog. Phys. 71, 076401 (2008).
[Crossref]

2007 (2)

B. Tian, X. Zheng, T. J. Kempa, Y. Fang, N. Yu, G. Yu, J. Huang, C. M. Lieber, “Coaxial silicon nanowires as solar cells and nanoelectronic power sources,” Nature 449, 885–889 (2007).
[Crossref]

D.-M. Shyu, Y.-S. Ku, N. Smith, “Angular scatterometry for line-width roughness measurement,” Proc. SPIE 6518, 65184G (2007).
[Crossref]

2006 (2)

2005 (2)

P. Boher, J. Petit, T. Leroux, J. Foucher, Y. Desieres, J. Hazart, P. Chaton, “Optical Fourier transform scatterometry for LER and LWR metrology,” Proc. SPIE 5752, 192–203 (2005).
[Crossref]

N. Agersnap, P.-E. Hansen, J. C. Petersen, J. Garnaes, N. Destouches, O. Parriaux, “Critical dimension metrology using optical diffraction microscopy,” Proc. SPIE 5985, 68–78 (2005).

2003 (1)

B. L. Li, “Fourier modal methods for crossed anisotropic gratings with arbitrary permittivity and permeability tensors,” J. Opt. A 5, 345–355 (2003).
[Crossref]

2002 (1)

2001 (1)

X. Niu, N. Jakatdar, J. Bao, C. Spanos, “Specular spectroscopic scatterometry,” IEEE Trans. Semicond. Manuf. 14, 97–111 (2001).
[Crossref]

2000 (1)

1995 (1)

1994 (1)

M. T. Postek, “Critical Issues in scanning electron microscope metrology,” J. Res. Natl. Inst. Stand. Technol. 99, 641–671 (1994).
[Crossref]

1964 (1)

A. Savitzky, M. J. E. Golay, “Smoothing and differentiation of data by simplified least squares procedures,” Anal. Chem. 36, 1627–1639 (1964).
[Crossref]

Åberg, I.

J. Wallentin, N. Anttu, D. Asoli, M. Huffman, I. Åberg, M. H. Magnusson, G. Siefer, P. Fuss-Kailuweit, F. Dimroth, B. Witzigmann, H. Q. Xu, L. Samuelson, K. Deppert, M. T. Borgström, “InP nanowire array solar cells achieving 13.8% efficiency by exceeding the ray optics limit,” Science 339, 1057–1060 (2013).
[Crossref]

Agersnap, N.

J. Garnaes, P.-E. Hansen, N. Agersnap, J. Holm, F. Borsetto, A. Kuhle, “Profiles of a high-aspect-ratio grating determined by spectroscopic scatterometry and atomic-force microscopy,” Appl. Opt. 45, 3201–3212 (2006).
[Crossref]

N. Agersnap, P.-E. Hansen, J. C. Petersen, J. Garnaes, N. Destouches, O. Parriaux, “Critical dimension metrology using optical diffraction microscopy,” Proc. SPIE 5985, 68–78 (2005).

Alexandrou, A.

Anttu, N.

N. Anttu, S. Lehmann, K. Storm, K. A. Dick, L. Samuelson, P. M. Wu, M.-E. Pistol, “Crystal phase-dependent nanophotonic resonances in InAs nanowire arrays,” Nano Lett. 14, 5650–5655 (2014).
[Crossref]

J. Wallentin, N. Anttu, D. Asoli, M. Huffman, I. Åberg, M. H. Magnusson, G. Siefer, P. Fuss-Kailuweit, F. Dimroth, B. Witzigmann, H. Q. Xu, L. Samuelson, K. Deppert, M. T. Borgström, “InP nanowire array solar cells achieving 13.8% efficiency by exceeding the ray optics limit,” Science 339, 1057–1060 (2013).
[Crossref]

Asoli, D.

J. Wallentin, N. Anttu, D. Asoli, M. Huffman, I. Åberg, M. H. Magnusson, G. Siefer, P. Fuss-Kailuweit, F. Dimroth, B. Witzigmann, H. Q. Xu, L. Samuelson, K. Deppert, M. T. Borgström, “InP nanowire array solar cells achieving 13.8% efficiency by exceeding the ray optics limit,” Science 339, 1057–1060 (2013).
[Crossref]

Bao, J.

X. Niu, N. Jakatdar, J. Bao, C. Spanos, “Specular spectroscopic scatterometry,” IEEE Trans. Semicond. Manuf. 14, 97–111 (2001).
[Crossref]

Barten, T.

G. Grzela, R. Paniagua-Domínguez, T. Barten, D. van Dam, J. A. Saìnchez-Gil, J. G. Rivas, “Nanowire antenna absorption probed with time-reversed Fourier microscopy,” Nano Lett. 14, 3227–3234 (2014).
[Crossref]

Beaurepaire, E.

Boher, P.

P. Boher, J. Petit, T. Leroux, J. Foucher, Y. Desieres, J. Hazart, P. Chaton, “Optical Fourier transform scatterometry for LER and LWR metrology,” Proc. SPIE 5752, 192–203 (2005).
[Crossref]

Borgström, M. T.

J. Wallentin, N. Anttu, D. Asoli, M. Huffman, I. Åberg, M. H. Magnusson, G. Siefer, P. Fuss-Kailuweit, F. Dimroth, B. Witzigmann, H. Q. Xu, L. Samuelson, K. Deppert, M. T. Borgström, “InP nanowire array solar cells achieving 13.8% efficiency by exceeding the ray optics limit,” Science 339, 1057–1060 (2013).
[Crossref]

Borsetto, F.

Chaton, P.

P. Boher, J. Petit, T. Leroux, J. Foucher, Y. Desieres, J. Hazart, P. Chaton, “Optical Fourier transform scatterometry for LER and LWR metrology,” Proc. SPIE 5752, 192–203 (2005).
[Crossref]

Christiansen, A. B.

J. S. Clausen, E. Højlund-Nielsen, A. B. Christiansen, S. Yazdi, M. Grajower, H. Taha, U. Levy, A. Kristensen, N. A. Mortensen, “Plasmonic metasurfaces for coloration of plastic consumer products,” Nano Lett. 14, 4499–4504 (2014).
[Crossref]

Clausen, J. S.

J. S. Clausen, E. Højlund-Nielsen, A. B. Christiansen, S. Yazdi, M. Grajower, H. Taha, U. Levy, A. Kristensen, N. A. Mortensen, “Plasmonic metasurfaces for coloration of plastic consumer products,” Nano Lett. 14, 4499–4504 (2014).
[Crossref]

Coene, W.

N. Kumar, O. E. Gawhary, S. Roy, V. Kutchoukov, S. Pereira, W. Coene, H. Urbach, “Coherent Fourier scatterometry: tool for improved sensitivity in semiconductor metrology,” Proc. SPIE 8324, 83240Q (2012).
[Crossref]

Deppert, K.

J. Wallentin, N. Anttu, D. Asoli, M. Huffman, I. Åberg, M. H. Magnusson, G. Siefer, P. Fuss-Kailuweit, F. Dimroth, B. Witzigmann, H. Q. Xu, L. Samuelson, K. Deppert, M. T. Borgström, “InP nanowire array solar cells achieving 13.8% efficiency by exceeding the ray optics limit,” Science 339, 1057–1060 (2013).
[Crossref]

Desieres, Y.

P. Boher, J. Petit, T. Leroux, J. Foucher, Y. Desieres, J. Hazart, P. Chaton, “Optical Fourier transform scatterometry for LER and LWR metrology,” Proc. SPIE 5752, 192–203 (2005).
[Crossref]

Destouches, N.

N. Agersnap, P.-E. Hansen, J. C. Petersen, J. Garnaes, N. Destouches, O. Parriaux, “Critical dimension metrology using optical diffraction microscopy,” Proc. SPIE 5985, 68–78 (2005).

Dick, K. A.

N. Anttu, S. Lehmann, K. Storm, K. A. Dick, L. Samuelson, P. M. Wu, M.-E. Pistol, “Crystal phase-dependent nanophotonic resonances in InAs nanowire arrays,” Nano Lett. 14, 5650–5655 (2014).
[Crossref]

Dimroth, F.

J. Wallentin, N. Anttu, D. Asoli, M. Huffman, I. Åberg, M. H. Magnusson, G. Siefer, P. Fuss-Kailuweit, F. Dimroth, B. Witzigmann, H. Q. Xu, L. Samuelson, K. Deppert, M. T. Borgström, “InP nanowire array solar cells achieving 13.8% efficiency by exceeding the ray optics limit,” Science 339, 1057–1060 (2013).
[Crossref]

Dirscherl, K.

Fang, Y.

B. Tian, X. Zheng, T. J. Kempa, Y. Fang, N. Yu, G. Yu, J. Huang, C. M. Lieber, “Coaxial silicon nanowires as solar cells and nanoelectronic power sources,” Nature 449, 885–889 (2007).
[Crossref]

Flannery, B. P.

W. H. Press, S. A. Teukolsky, W. T. Vetterling, B. P. Flannery, Numerical Recipes in C++ (Cambridge University, 2002).

Foucher, J.

P. Boher, J. Petit, T. Leroux, J. Foucher, Y. Desieres, J. Hazart, P. Chaton, “Optical Fourier transform scatterometry for LER and LWR metrology,” Proc. SPIE 5752, 192–203 (2005).
[Crossref]

Frenner, K.

V. F. Paz, S. Peterhänsel, K. Frenner, W. Osten, “Solving the inverse grating problem by white light interference Fourier scatterometry,” Light Sci. Appl. 1, e36 (2012).
[Crossref]

Fuss-Kailuweit, P.

J. Wallentin, N. Anttu, D. Asoli, M. Huffman, I. Åberg, M. H. Magnusson, G. Siefer, P. Fuss-Kailuweit, F. Dimroth, B. Witzigmann, H. Q. Xu, L. Samuelson, K. Deppert, M. T. Borgström, “InP nanowire array solar cells achieving 13.8% efficiency by exceeding the ray optics limit,” Science 339, 1057–1060 (2013).
[Crossref]

Garnaes, J.

J. Garnaes, P.-E. Hansen, N. Agersnap, J. Holm, F. Borsetto, A. Kuhle, “Profiles of a high-aspect-ratio grating determined by spectroscopic scatterometry and atomic-force microscopy,” Appl. Opt. 45, 3201–3212 (2006).
[Crossref]

N. Agersnap, P.-E. Hansen, J. C. Petersen, J. Garnaes, N. Destouches, O. Parriaux, “Critical dimension metrology using optical diffraction microscopy,” Proc. SPIE 5985, 68–78 (2005).

Gawhary, O. E.

N. Kumar, O. E. Gawhary, S. Roy, V. Kutchoukov, S. Pereira, W. Coene, H. Urbach, “Coherent Fourier scatterometry: tool for improved sensitivity in semiconductor metrology,” Proc. SPIE 8324, 83240Q (2012).
[Crossref]

Gaylord, T. K.

Golay, M. J. E.

A. Savitzky, M. J. E. Golay, “Smoothing and differentiation of data by simplified least squares procedures,” Anal. Chem. 36, 1627–1639 (1964).
[Crossref]

Grajower, M.

J. S. Clausen, E. Højlund-Nielsen, A. B. Christiansen, S. Yazdi, M. Grajower, H. Taha, U. Levy, A. Kristensen, N. A. Mortensen, “Plasmonic metasurfaces for coloration of plastic consumer products,” Nano Lett. 14, 4499–4504 (2014).
[Crossref]

Gralak, B.

Grann, E. B.

Grzela, G.

G. Grzela, R. Paniagua-Domínguez, T. Barten, D. van Dam, J. A. Saìnchez-Gil, J. G. Rivas, “Nanowire antenna absorption probed with time-reversed Fourier microscopy,” Nano Lett. 14, 3227–3234 (2014).
[Crossref]

Hansen, P.-E.

M. Karamehmedović, P.-E. Hansen, K. Dirscherl, E. Karamehmedović, T. Wriedt, “Profile estimation for Pt submicron wire on rough Si substrate from experimental data,” Opt. Express 20, 21678–21686 (2012).
[Crossref]

P.-E. Hansen, L. Nielsen, “Combined optimization and hybrid scalar–vector diffraction method for grating topography parameters determination,” Mater. Sci. Eng. B 165, 165–168 (2009).
[Crossref]

J. Garnaes, P.-E. Hansen, N. Agersnap, J. Holm, F. Borsetto, A. Kuhle, “Profiles of a high-aspect-ratio grating determined by spectroscopic scatterometry and atomic-force microscopy,” Appl. Opt. 45, 3201–3212 (2006).
[Crossref]

N. Agersnap, P.-E. Hansen, J. C. Petersen, J. Garnaes, N. Destouches, O. Parriaux, “Critical dimension metrology using optical diffraction microscopy,” Proc. SPIE 5985, 68–78 (2005).

Hazart, J.

P. Boher, J. Petit, T. Leroux, J. Foucher, Y. Desieres, J. Hazart, P. Chaton, “Optical Fourier transform scatterometry for LER and LWR metrology,” Proc. SPIE 5752, 192–203 (2005).
[Crossref]

Heinrich, A.

O. Paul, F. Widulle, B. H. Kleemann, A. Heinrich, “Nanometrology of periodic nanopillar arrays by means of light scattering,” Proc. SPIE 8788, 87881O (2013).
[Crossref]

Højlund-Nielsen, E.

J. S. Clausen, E. Højlund-Nielsen, A. B. Christiansen, S. Yazdi, M. Grajower, H. Taha, U. Levy, A. Kristensen, N. A. Mortensen, “Plasmonic metasurfaces for coloration of plastic consumer products,” Nano Lett. 14, 4499–4504 (2014).
[Crossref]

Holm, J.

Huang, J.

B. Tian, X. Zheng, T. J. Kempa, Y. Fang, N. Yu, G. Yu, J. Huang, C. M. Lieber, “Coaxial silicon nanowires as solar cells and nanoelectronic power sources,” Nature 449, 885–889 (2007).
[Crossref]

Huffman, M.

J. Wallentin, N. Anttu, D. Asoli, M. Huffman, I. Åberg, M. H. Magnusson, G. Siefer, P. Fuss-Kailuweit, F. Dimroth, B. Witzigmann, H. Q. Xu, L. Samuelson, K. Deppert, M. T. Borgström, “InP nanowire array solar cells achieving 13.8% efficiency by exceeding the ray optics limit,” Science 339, 1057–1060 (2013).
[Crossref]

Jakatdar, N.

X. Niu, N. Jakatdar, J. Bao, C. Spanos, “Specular spectroscopic scatterometry,” IEEE Trans. Semicond. Manuf. 14, 97–111 (2001).
[Crossref]

Joffre, M.

Karamehmedovic, E.

Karamehmedovic, M.

Kato, A.

Kempa, T. J.

B. Tian, X. Zheng, T. J. Kempa, Y. Fang, N. Yu, G. Yu, J. Huang, C. M. Lieber, “Coaxial silicon nanowires as solar cells and nanoelectronic power sources,” Nature 449, 885–889 (2007).
[Crossref]

Kinoshita, S.

S. Kinoshita, S. Yoshioka, J. Miyazaki, “Physics of structural colors,” Rep. Prog. Phys. 71, 076401 (2008).
[Crossref]

Kleemann, B. H.

O. Paul, F. Widulle, B. H. Kleemann, A. Heinrich, “Nanometrology of periodic nanopillar arrays by means of light scattering,” Proc. SPIE 8788, 87881O (2013).
[Crossref]

Kristensen, A.

J. S. Clausen, E. Højlund-Nielsen, A. B. Christiansen, S. Yazdi, M. Grajower, H. Taha, U. Levy, A. Kristensen, N. A. Mortensen, “Plasmonic metasurfaces for coloration of plastic consumer products,” Nano Lett. 14, 4499–4504 (2014).
[Crossref]

Ku, Y.-S.

D.-M. Shyu, Y.-S. Ku, N. Smith, “Angular scatterometry for line-width roughness measurement,” Proc. SPIE 6518, 65184G (2007).
[Crossref]

Kuhle, A.

Kuittinen, M.

Kumar, N.

S. Roy, N. Kumar, S. Pereira, H. Urbach, “Interferometric coherent Fourier scatterometry: a method for obtaining high sensitivity in the optical inverse-grating problem,” J. Opt. 15, 075707 (2013).
[Crossref]

N. Kumar, O. E. Gawhary, S. Roy, V. Kutchoukov, S. Pereira, W. Coene, H. Urbach, “Coherent Fourier scatterometry: tool for improved sensitivity in semiconductor metrology,” Proc. SPIE 8324, 83240Q (2012).
[Crossref]

Kutchoukov, V.

N. Kumar, O. E. Gawhary, S. Roy, V. Kutchoukov, S. Pereira, W. Coene, H. Urbach, “Coherent Fourier scatterometry: tool for improved sensitivity in semiconductor metrology,” Proc. SPIE 8324, 83240Q (2012).
[Crossref]

Laamanen, H.

Lalanne, P.

Leach, R.

R. Leach, Fundamental Principles of Engineering Nanometrology (Elsevier, 2014).

Lehmann, S.

N. Anttu, S. Lehmann, K. Storm, K. A. Dick, L. Samuelson, P. M. Wu, M.-E. Pistol, “Crystal phase-dependent nanophotonic resonances in InAs nanowire arrays,” Nano Lett. 14, 5650–5655 (2014).
[Crossref]

Leroux, T.

P. Boher, J. Petit, T. Leroux, J. Foucher, Y. Desieres, J. Hazart, P. Chaton, “Optical Fourier transform scatterometry for LER and LWR metrology,” Proc. SPIE 5752, 192–203 (2005).
[Crossref]

Levy, U.

J. S. Clausen, E. Højlund-Nielsen, A. B. Christiansen, S. Yazdi, M. Grajower, H. Taha, U. Levy, A. Kristensen, N. A. Mortensen, “Plasmonic metasurfaces for coloration of plastic consumer products,” Nano Lett. 14, 4499–4504 (2014).
[Crossref]

Li, B. L.

B. L. Li, “Fourier modal methods for crossed anisotropic gratings with arbitrary permittivity and permeability tensors,” J. Opt. A 5, 345–355 (2003).
[Crossref]

Lieber, C. M.

B. Tian, X. Zheng, T. J. Kempa, Y. Fang, N. Yu, G. Yu, J. Huang, C. M. Lieber, “Coaxial silicon nanowires as solar cells and nanoelectronic power sources,” Nature 449, 885–889 (2007).
[Crossref]

Magnusson, M. H.

J. Wallentin, N. Anttu, D. Asoli, M. Huffman, I. Åberg, M. H. Magnusson, G. Siefer, P. Fuss-Kailuweit, F. Dimroth, B. Witzigmann, H. Q. Xu, L. Samuelson, K. Deppert, M. T. Borgström, “InP nanowire array solar cells achieving 13.8% efficiency by exceeding the ray optics limit,” Science 339, 1057–1060 (2013).
[Crossref]

Miyazaki, J.

S. Kinoshita, S. Yoshioka, J. Miyazaki, “Physics of structural colors,” Rep. Prog. Phys. 71, 076401 (2008).
[Crossref]

Moharam, A. M. G.

Mortensen, N. A.

J. S. Clausen, E. Højlund-Nielsen, A. B. Christiansen, S. Yazdi, M. Grajower, H. Taha, U. Levy, A. Kristensen, N. A. Mortensen, “Plasmonic metasurfaces for coloration of plastic consumer products,” Nano Lett. 14, 4499–4504 (2014).
[Crossref]

Neviere, M.

Nielsen, L.

P.-E. Hansen, L. Nielsen, “Combined optimization and hybrid scalar–vector diffraction method for grating topography parameters determination,” Mater. Sci. Eng. B 165, 165–168 (2009).
[Crossref]

Niu, X.

X. Niu, N. Jakatdar, J. Bao, C. Spanos, “Specular spectroscopic scatterometry,” IEEE Trans. Semicond. Manuf. 14, 97–111 (2001).
[Crossref]

Ogilvie, J. P.

Osten, W.

S. Peterhänsel, H. Laamanen, M. Kuittinen, J. Turunen, C. Pruss, W. Osten, J. Tervo, “Solving the inverse grating problem with the naked eye,” Opt. Lett. 39, 3547–3550 (2014).
[Crossref]

V. F. Paz, S. Peterhänsel, K. Frenner, W. Osten, “Solving the inverse grating problem by white light interference Fourier scatterometry,” Light Sci. Appl. 1, e36 (2012).
[Crossref]

Palik, E. D.

E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1985).

Paniagua-Domínguez, R.

G. Grzela, R. Paniagua-Domínguez, T. Barten, D. van Dam, J. A. Saìnchez-Gil, J. G. Rivas, “Nanowire antenna absorption probed with time-reversed Fourier microscopy,” Nano Lett. 14, 3227–3234 (2014).
[Crossref]

Parriaux, O.

N. Agersnap, P.-E. Hansen, J. C. Petersen, J. Garnaes, N. Destouches, O. Parriaux, “Critical dimension metrology using optical diffraction microscopy,” Proc. SPIE 5985, 68–78 (2005).

Paul, O.

O. Paul, F. Widulle, B. H. Kleemann, A. Heinrich, “Nanometrology of periodic nanopillar arrays by means of light scattering,” Proc. SPIE 8788, 87881O (2013).
[Crossref]

Paz, V. F.

V. F. Paz, S. Peterhänsel, K. Frenner, W. Osten, “Solving the inverse grating problem by white light interference Fourier scatterometry,” Light Sci. Appl. 1, e36 (2012).
[Crossref]

Pereira, S.

S. Roy, N. Kumar, S. Pereira, H. Urbach, “Interferometric coherent Fourier scatterometry: a method for obtaining high sensitivity in the optical inverse-grating problem,” J. Opt. 15, 075707 (2013).
[Crossref]

N. Kumar, O. E. Gawhary, S. Roy, V. Kutchoukov, S. Pereira, W. Coene, H. Urbach, “Coherent Fourier scatterometry: tool for improved sensitivity in semiconductor metrology,” Proc. SPIE 8324, 83240Q (2012).
[Crossref]

Peterhänsel, S.

S. Peterhänsel, H. Laamanen, M. Kuittinen, J. Turunen, C. Pruss, W. Osten, J. Tervo, “Solving the inverse grating problem with the naked eye,” Opt. Lett. 39, 3547–3550 (2014).
[Crossref]

V. F. Paz, S. Peterhänsel, K. Frenner, W. Osten, “Solving the inverse grating problem by white light interference Fourier scatterometry,” Light Sci. Appl. 1, e36 (2012).
[Crossref]

Petersen, J. C.

N. Agersnap, P.-E. Hansen, J. C. Petersen, J. Garnaes, N. Destouches, O. Parriaux, “Critical dimension metrology using optical diffraction microscopy,” Proc. SPIE 5985, 68–78 (2005).

Petit, J.

P. Boher, J. Petit, T. Leroux, J. Foucher, Y. Desieres, J. Hazart, P. Chaton, “Optical Fourier transform scatterometry for LER and LWR metrology,” Proc. SPIE 5752, 192–203 (2005).
[Crossref]

Pistol, M.-E.

N. Anttu, S. Lehmann, K. Storm, K. A. Dick, L. Samuelson, P. M. Wu, M.-E. Pistol, “Crystal phase-dependent nanophotonic resonances in InAs nanowire arrays,” Nano Lett. 14, 5650–5655 (2014).
[Crossref]

Pommet, A.

Popov, E.

Postek, M. T.

M. T. Postek, “Critical Issues in scanning electron microscope metrology,” J. Res. Natl. Inst. Stand. Technol. 99, 641–671 (1994).
[Crossref]

Press, W. H.

W. H. Press, S. A. Teukolsky, W. T. Vetterling, B. P. Flannery, Numerical Recipes in C++ (Cambridge University, 2002).

Pruss, C.

Rivas, J. G.

G. Grzela, R. Paniagua-Domínguez, T. Barten, D. van Dam, J. A. Saìnchez-Gil, J. G. Rivas, “Nanowire antenna absorption probed with time-reversed Fourier microscopy,” Nano Lett. 14, 3227–3234 (2014).
[Crossref]

Roy, S.

S. Roy, N. Kumar, S. Pereira, H. Urbach, “Interferometric coherent Fourier scatterometry: a method for obtaining high sensitivity in the optical inverse-grating problem,” J. Opt. 15, 075707 (2013).
[Crossref]

N. Kumar, O. E. Gawhary, S. Roy, V. Kutchoukov, S. Pereira, W. Coene, H. Urbach, “Coherent Fourier scatterometry: tool for improved sensitivity in semiconductor metrology,” Proc. SPIE 8324, 83240Q (2012).
[Crossref]

Saìnchez-Gil, J. A.

G. Grzela, R. Paniagua-Domínguez, T. Barten, D. van Dam, J. A. Saìnchez-Gil, J. G. Rivas, “Nanowire antenna absorption probed with time-reversed Fourier microscopy,” Nano Lett. 14, 3227–3234 (2014).
[Crossref]

Samuelson, L.

N. Anttu, S. Lehmann, K. Storm, K. A. Dick, L. Samuelson, P. M. Wu, M.-E. Pistol, “Crystal phase-dependent nanophotonic resonances in InAs nanowire arrays,” Nano Lett. 14, 5650–5655 (2014).
[Crossref]

J. Wallentin, N. Anttu, D. Asoli, M. Huffman, I. Åberg, M. H. Magnusson, G. Siefer, P. Fuss-Kailuweit, F. Dimroth, B. Witzigmann, H. Q. Xu, L. Samuelson, K. Deppert, M. T. Borgström, “InP nanowire array solar cells achieving 13.8% efficiency by exceeding the ray optics limit,” Science 339, 1057–1060 (2013).
[Crossref]

Savitzky, A.

A. Savitzky, M. J. E. Golay, “Smoothing and differentiation of data by simplified least squares procedures,” Anal. Chem. 36, 1627–1639 (1964).
[Crossref]

Scholze, F.

Shyu, D.-M.

D.-M. Shyu, Y.-S. Ku, N. Smith, “Angular scatterometry for line-width roughness measurement,” Proc. SPIE 6518, 65184G (2007).
[Crossref]

Siefer, G.

J. Wallentin, N. Anttu, D. Asoli, M. Huffman, I. Åberg, M. H. Magnusson, G. Siefer, P. Fuss-Kailuweit, F. Dimroth, B. Witzigmann, H. Q. Xu, L. Samuelson, K. Deppert, M. T. Borgström, “InP nanowire array solar cells achieving 13.8% efficiency by exceeding the ray optics limit,” Science 339, 1057–1060 (2013).
[Crossref]

Silberstein, E.

Smith, N.

D.-M. Shyu, Y.-S. Ku, N. Smith, “Angular scatterometry for line-width roughness measurement,” Proc. SPIE 6518, 65184G (2007).
[Crossref]

Spanos, C.

X. Niu, N. Jakatdar, J. Bao, C. Spanos, “Specular spectroscopic scatterometry,” IEEE Trans. Semicond. Manuf. 14, 97–111 (2001).
[Crossref]

Storm, K.

N. Anttu, S. Lehmann, K. Storm, K. A. Dick, L. Samuelson, P. M. Wu, M.-E. Pistol, “Crystal phase-dependent nanophotonic resonances in InAs nanowire arrays,” Nano Lett. 14, 5650–5655 (2014).
[Crossref]

Taha, H.

J. S. Clausen, E. Højlund-Nielsen, A. B. Christiansen, S. Yazdi, M. Grajower, H. Taha, U. Levy, A. Kristensen, N. A. Mortensen, “Plasmonic metasurfaces for coloration of plastic consumer products,” Nano Lett. 14, 4499–4504 (2014).
[Crossref]

Tayeb, G.

Tervo, J.

Teukolsky, S. A.

W. H. Press, S. A. Teukolsky, W. T. Vetterling, B. P. Flannery, Numerical Recipes in C++ (Cambridge University, 2002).

Tian, B.

B. Tian, X. Zheng, T. J. Kempa, Y. Fang, N. Yu, G. Yu, J. Huang, C. M. Lieber, “Coaxial silicon nanowires as solar cells and nanoelectronic power sources,” Nature 449, 885–889 (2007).
[Crossref]

Turunen, J.

Urbach, H.

S. Roy, N. Kumar, S. Pereira, H. Urbach, “Interferometric coherent Fourier scatterometry: a method for obtaining high sensitivity in the optical inverse-grating problem,” J. Opt. 15, 075707 (2013).
[Crossref]

N. Kumar, O. E. Gawhary, S. Roy, V. Kutchoukov, S. Pereira, W. Coene, H. Urbach, “Coherent Fourier scatterometry: tool for improved sensitivity in semiconductor metrology,” Proc. SPIE 8324, 83240Q (2012).
[Crossref]

van Dam, D.

G. Grzela, R. Paniagua-Domínguez, T. Barten, D. van Dam, J. A. Saìnchez-Gil, J. G. Rivas, “Nanowire antenna absorption probed with time-reversed Fourier microscopy,” Nano Lett. 14, 3227–3234 (2014).
[Crossref]

Vetterling, W. T.

W. H. Press, S. A. Teukolsky, W. T. Vetterling, B. P. Flannery, Numerical Recipes in C++ (Cambridge University, 2002).

Wallentin, J.

J. Wallentin, N. Anttu, D. Asoli, M. Huffman, I. Åberg, M. H. Magnusson, G. Siefer, P. Fuss-Kailuweit, F. Dimroth, B. Witzigmann, H. Q. Xu, L. Samuelson, K. Deppert, M. T. Borgström, “InP nanowire array solar cells achieving 13.8% efficiency by exceeding the ray optics limit,” Science 339, 1057–1060 (2013).
[Crossref]

Widulle, F.

O. Paul, F. Widulle, B. H. Kleemann, A. Heinrich, “Nanometrology of periodic nanopillar arrays by means of light scattering,” Proc. SPIE 8788, 87881O (2013).
[Crossref]

Witzigmann, B.

J. Wallentin, N. Anttu, D. Asoli, M. Huffman, I. Åberg, M. H. Magnusson, G. Siefer, P. Fuss-Kailuweit, F. Dimroth, B. Witzigmann, H. Q. Xu, L. Samuelson, K. Deppert, M. T. Borgström, “InP nanowire array solar cells achieving 13.8% efficiency by exceeding the ray optics limit,” Science 339, 1057–1060 (2013).
[Crossref]

Wriedt, T.

Wu, P. M.

N. Anttu, S. Lehmann, K. Storm, K. A. Dick, L. Samuelson, P. M. Wu, M.-E. Pistol, “Crystal phase-dependent nanophotonic resonances in InAs nanowire arrays,” Nano Lett. 14, 5650–5655 (2014).
[Crossref]

Xu, H. Q.

J. Wallentin, N. Anttu, D. Asoli, M. Huffman, I. Åberg, M. H. Magnusson, G. Siefer, P. Fuss-Kailuweit, F. Dimroth, B. Witzigmann, H. Q. Xu, L. Samuelson, K. Deppert, M. T. Borgström, “InP nanowire array solar cells achieving 13.8% efficiency by exceeding the ray optics limit,” Science 339, 1057–1060 (2013).
[Crossref]

Yazdi, S.

J. S. Clausen, E. Højlund-Nielsen, A. B. Christiansen, S. Yazdi, M. Grajower, H. Taha, U. Levy, A. Kristensen, N. A. Mortensen, “Plasmonic metasurfaces for coloration of plastic consumer products,” Nano Lett. 14, 4499–4504 (2014).
[Crossref]

Yoshioka, S.

S. Kinoshita, S. Yoshioka, J. Miyazaki, “Physics of structural colors,” Rep. Prog. Phys. 71, 076401 (2008).
[Crossref]

Yu, G.

B. Tian, X. Zheng, T. J. Kempa, Y. Fang, N. Yu, G. Yu, J. Huang, C. M. Lieber, “Coaxial silicon nanowires as solar cells and nanoelectronic power sources,” Nature 449, 885–889 (2007).
[Crossref]

Yu, N.

B. Tian, X. Zheng, T. J. Kempa, Y. Fang, N. Yu, G. Yu, J. Huang, C. M. Lieber, “Coaxial silicon nanowires as solar cells and nanoelectronic power sources,” Nature 449, 885–889 (2007).
[Crossref]

Zheng, X.

B. Tian, X. Zheng, T. J. Kempa, Y. Fang, N. Yu, G. Yu, J. Huang, C. M. Lieber, “Coaxial silicon nanowires as solar cells and nanoelectronic power sources,” Nature 449, 885–889 (2007).
[Crossref]

Anal. Chem. (1)

A. Savitzky, M. J. E. Golay, “Smoothing and differentiation of data by simplified least squares procedures,” Anal. Chem. 36, 1627–1639 (1964).
[Crossref]

Appl. Opt. (2)

IEEE Trans. Semicond. Manuf. (1)

X. Niu, N. Jakatdar, J. Bao, C. Spanos, “Specular spectroscopic scatterometry,” IEEE Trans. Semicond. Manuf. 14, 97–111 (2001).
[Crossref]

J. Opt. (1)

S. Roy, N. Kumar, S. Pereira, H. Urbach, “Interferometric coherent Fourier scatterometry: a method for obtaining high sensitivity in the optical inverse-grating problem,” J. Opt. 15, 075707 (2013).
[Crossref]

J. Opt. A (1)

B. L. Li, “Fourier modal methods for crossed anisotropic gratings with arbitrary permittivity and permeability tensors,” J. Opt. A 5, 345–355 (2003).
[Crossref]

J. Opt. Soc. Am. A (2)

J. Res. Natl. Inst. Stand. Technol. (1)

M. T. Postek, “Critical Issues in scanning electron microscope metrology,” J. Res. Natl. Inst. Stand. Technol. 99, 641–671 (1994).
[Crossref]

Light Sci. Appl. (1)

V. F. Paz, S. Peterhänsel, K. Frenner, W. Osten, “Solving the inverse grating problem by white light interference Fourier scatterometry,” Light Sci. Appl. 1, e36 (2012).
[Crossref]

Mater. Sci. Eng. B (1)

P.-E. Hansen, L. Nielsen, “Combined optimization and hybrid scalar–vector diffraction method for grating topography parameters determination,” Mater. Sci. Eng. B 165, 165–168 (2009).
[Crossref]

Nano Lett. (3)

J. S. Clausen, E. Højlund-Nielsen, A. B. Christiansen, S. Yazdi, M. Grajower, H. Taha, U. Levy, A. Kristensen, N. A. Mortensen, “Plasmonic metasurfaces for coloration of plastic consumer products,” Nano Lett. 14, 4499–4504 (2014).
[Crossref]

N. Anttu, S. Lehmann, K. Storm, K. A. Dick, L. Samuelson, P. M. Wu, M.-E. Pistol, “Crystal phase-dependent nanophotonic resonances in InAs nanowire arrays,” Nano Lett. 14, 5650–5655 (2014).
[Crossref]

G. Grzela, R. Paniagua-Domínguez, T. Barten, D. van Dam, J. A. Saìnchez-Gil, J. G. Rivas, “Nanowire antenna absorption probed with time-reversed Fourier microscopy,” Nano Lett. 14, 3227–3234 (2014).
[Crossref]

Nature (1)

B. Tian, X. Zheng, T. J. Kempa, Y. Fang, N. Yu, G. Yu, J. Huang, C. M. Lieber, “Coaxial silicon nanowires as solar cells and nanoelectronic power sources,” Nature 449, 885–889 (2007).
[Crossref]

Opt. Express (1)

Opt. Lett. (3)

Proc. SPIE (5)

O. Paul, F. Widulle, B. H. Kleemann, A. Heinrich, “Nanometrology of periodic nanopillar arrays by means of light scattering,” Proc. SPIE 8788, 87881O (2013).
[Crossref]

P. Boher, J. Petit, T. Leroux, J. Foucher, Y. Desieres, J. Hazart, P. Chaton, “Optical Fourier transform scatterometry for LER and LWR metrology,” Proc. SPIE 5752, 192–203 (2005).
[Crossref]

N. Agersnap, P.-E. Hansen, J. C. Petersen, J. Garnaes, N. Destouches, O. Parriaux, “Critical dimension metrology using optical diffraction microscopy,” Proc. SPIE 5985, 68–78 (2005).

D.-M. Shyu, Y.-S. Ku, N. Smith, “Angular scatterometry for line-width roughness measurement,” Proc. SPIE 6518, 65184G (2007).
[Crossref]

N. Kumar, O. E. Gawhary, S. Roy, V. Kutchoukov, S. Pereira, W. Coene, H. Urbach, “Coherent Fourier scatterometry: tool for improved sensitivity in semiconductor metrology,” Proc. SPIE 8324, 83240Q (2012).
[Crossref]

Rep. Prog. Phys. (1)

S. Kinoshita, S. Yoshioka, J. Miyazaki, “Physics of structural colors,” Rep. Prog. Phys. 71, 076401 (2008).
[Crossref]

Science (1)

J. Wallentin, N. Anttu, D. Asoli, M. Huffman, I. Åberg, M. H. Magnusson, G. Siefer, P. Fuss-Kailuweit, F. Dimroth, B. Witzigmann, H. Q. Xu, L. Samuelson, K. Deppert, M. T. Borgström, “InP nanowire array solar cells achieving 13.8% efficiency by exceeding the ray optics limit,” Science 339, 1057–1060 (2013).
[Crossref]

Other (3)

R. Leach, Fundamental Principles of Engineering Nanometrology (Elsevier, 2014).

E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1985).

W. H. Press, S. A. Teukolsky, W. T. Vetterling, B. P. Flannery, Numerical Recipes in C++ (Cambridge University, 2002).

Supplementary Material (1)

» Supplement 1: PDF (1602 KB)     

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1. 1D grating in Si(100). A, topographic AFM image of a 1D grating with a pitch, p , of 800 nm. All axes have the same length scale. B, sketch of a single structure seen from the side. The definitions of the height, h , width, w , and sidewall angle, ϑ , are indicated in the figure. The filling factor is defined as the amount of material present compared to a uniform film with the same thickness as the height of the nanostructures. C, profile obtained with a tilted sample 23° in the AFM of the grating with a 1400 nm pitch. The shape and angle of the scanning AFM tip are indicated in the figure.
Fig. 2.
Fig. 2. Sketch of experimental setup. Data acquisition can be performed using either a CCD camera or a spectrometer. The images to the left show a calibration artifact with 3 μm pitch acquired with a 50 × objective. CCD, charge-coupled device (1.3 MPx); LED, light emitting diode (5 W); BS, beam splitter cube (50/50).
Fig. 3.
Fig. 3. Scatterometry measurements for TE-polarized light on a 1D grating with a period of 800 nm etched in Si(100). A, experimental data (black curve) and simulation for best fit (red curve) of diffraction efficiency. The best fit is found for the parameters h = 189 nm , FF = 0.468 , and α = 88 ° . The inset shows the raw data for the sample, dark, and reference spectra. B, color plots of the χ 2 values. Dark blue shows areas with the lowest χ 2 value and hence the parameters for the best fit. The dashed white curve indicates the 95% confidence interval of the fit. C, profile of the best-fit data (red dashed curve) overlayered on experimental data obtained with an atomic force microscope (blue solid curve). Due to tip convolution the AFM profile overestimates the width and sidewall angle.
Fig. 4.
Fig. 4. Height, fill factor, and sidewall angle data with 2 σ confidence limits for the different gratings. The scatterometry data are most accurate for pitches below 800 nm, as no higher-order reflections are collected when observing these structures. The reference measurements are obtained with AFM, SEM, and tilted AFM for the height, filling factor, and sidewall angle, respectively.

Tables (2)

Tables Icon

Table 1. Thin-Film Measurements on Transfer Standards a

Tables Icon

Table 2. Measurements on a 1D Grating with a Pitch of 800 nm Etched in a Si(100) Substrate a

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

η ( λ ) = I sample ( λ ) I dark ( λ ) I ref ( λ ) I dark ( λ ) R ( λ ) ,
d λ min 2 sin ( 2 θ NA ) .
χ 2 = i = 1 N [ η f i ( α ) σ i ] 2 .

Metrics