Abstract

Although supercontinuum sources are readily available for the visible and near infrared (IR), and recently also for the mid-IR, many areas of biology, chemistry, and physics would benefit greatly from the availability of compact, stable, and spectrally bright deep-ultraviolet and vacuum-ultraviolet (VUV) supercontinuum sources. Such sources have, however, not yet been developed. Here we report the generation of a bright supercontinuum, spanning more than three octaves from 124 nm to beyond 1200 nm, in hydrogen-filled kagomé-style hollow-core photonic crystal fiber (kagomé-PCF). Few-microjoule, 30 fs pump pulses at wavelength of 805 nm are launched into the fiber, where they undergo self-compression via the Raman-enhanced Kerr effect. Modeling indicates that before reaching a minimum subcycle pulse duration of 1fs, much less than one period of molecular vibration (8 fs), nonlinear reshaping of the pulse envelope, accentuated by self-steepening and shock formation, creates an ultrashort feature that causes impulsive excitation of long-lived coherent molecular vibrations. These phase modulate a strong VUV dispersive wave (at 182 nm or 6.8 eV) on the trailing edge of the pulse, further broadening the spectrum into the VUV. The results also show for the first time that kagomé-PCF guides well in the VUV.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Generation of a vacuum ultraviolet to visible Raman frequency comb in H2-filled kagomé photonic crystal fiber

M. K. Mridha, D. Novoa, S. T. Bauerschmidt, A. Abdolvand, and P. St.J. Russell
Opt. Lett. 41(12) 2811-2814 (2016)

High-power soliton-induced supercontinuum generation and tunable sub-10-fs VUV pulses from kagome-lattice HC-PCFs

Song-Jin Im, Anton Husakou, and Joachim Herrmann
Opt. Express 18(6) 5367-5374 (2010)

Ultrafast nonlinear optics in gas-filled hollow-core photonic crystal fibers [Invited]

John C. Travers, Wonkeun Chang, Johannes Nold, Nicolas Y. Joly, and Philip St. J. Russell
J. Opt. Soc. Am. B 28(12) A11-A26 (2011)

References

  • View by:
  • |
  • |
  • |

  1. C. Xia, M. Kumar, O. P. Kulkarni, M. N. Islam, F. L. Terry, M. J. Freeman, M. Poulain, G. Mazé, “Mid-infrared supercontinuum generation to 4.5  μm in ZBLAN fluoride fibers by nanosecond diode pumping,” Opt. Lett. 31, 2553–2555 (2006).
    [Crossref]
  2. J. K. Ranka, R. S. Windeler, A. J. Stentz, “Visible continuum generation in air-silica microstructure optical fibers with anomalous dispersion at 800  nm,” Opt. Lett. 25, 25–27 (2000).
    [Crossref]
  3. J. M. Dudley, S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135–1184 (2006).
    [Crossref]
  4. S. P. Stark, J. C. Travers, P. St. J. Russell, “Extreme supercontinuum generation to the deep UV,” Opt. Lett. 37, 770–772 (2012).
    [Crossref]
  5. J. Ringling, O. Kittelmann, F. Noack, G. Korn, J. Squier, “Tunable femtosecond pulses in the near vacuum ultraviolet generated by frequency conversion of amplified Ti:sapphire laser pulses,” Opt. Lett. 18, 2035–2037 (1993).
    [Crossref]
  6. V. Petrov, F. Rotermund, F. Noack, J. Ringling, O. Kittelmann, R. Komatsu, “Frequency conversion of Ti:sapphire-based femtosecond laser systems to the 200-nm spectral region using nonlinear optical crystals,” IEEE J. Sel. Top. Quantum Electron. I5, 1532–1542 (1999).
    [Crossref]
  7. P. Trabs, F. Noack, A. S. Aleksandrovsky, A. M. Vyunishev, A. I. Zaitsev, N. V. Radionov, V. Petrov, “Generation of fs-pulses down to 121  nm by frequency doubling using random quasi-phase-matching in strontium tetraborate,” in Proceedings of Ultrafast Optics, Davos, Switzerland (2013), paper Fr2.4.
  8. P. St. J. Russell, P. Hölzer, W. Chang, A. Abdolvand, J. C. Travers, “Hollow-core photonic crystal fibers for gas-based nonlinear optics,” Nat. Photonics 8, 278–286 (2014).
    [Crossref]
  9. N. Y. Joly, J. Nold, W. Chang, P. Hölzer, A. Nazarkin, G. K. L. Wong, F. Biancalana, P. St. J. Russell, “Bright spatially coherent wavelength-tunable deep-UV laser source using an Ar-filled photonic crystal fiber,” Phys. Rev. Lett. 106, 203901 (2011).
    [Crossref]
  10. K. F. Mak, J. C. Travers, P. Hölzer, N. Y. Joly, P. St. J. Russell, “Tunable vacuum-UV to visible ultrafast pulse source based on gas-filled Kagome-PCF,” Opt. Express 21, 10942–10953 (2013).
    [Crossref]
  11. M. Nisoli, S. D. Silvestri, O. Svelto, R. Szipöcs, K. Ferencz, C. Spielmann, S. Sartania, F. Krausz, “Compression of high-energy laser pulses below 5  fs,” Opt. Lett. 22, 522–524 (1997).
    [Crossref]
  12. C. G. Durfee, S. Backus, H. C. Kapteyn, M. M. Murnane, “Intense 8-fs pulse generation in the deep ultraviolet,” Opt. Lett. 24, 697–699 (1999).
    [Crossref]
  13. P. B. Corkum, C. Rolland, T. Srinivasan-Rao, “Supercontinuum generation in gases,” Phys. Rev. Lett. 57, 2268–2271 (1986).
    [Crossref]
  14. H. Nishioka, W. Odajima, K. Ueda, H. Takuma, “Ultrabroadband flat continuum generation in multichannel propagation of terrawatt Ti:sapphire laser pulses,” Opt. Lett. 20, 2505–2507 (1995).
    [Crossref]
  15. S. A. Trushin, K. Kosma, W. Fuß, W. E. Schmid, “Sub-10-fs supercontinuum radiation generated by filamentation of few-cycle 800  nm pulses in argon,” Opt. Lett. 32, 2432–2434 (2007).
    [Crossref]
  16. N. Aközbek, S. A. Trushin, A. Baltuška, W. Fuß, E. Goulielmakis, K. Kosma, F. Krausz, S. Panja, M. Uiberacker, W. E. Schmid, A. Becker, M. Scalora, M. Bloemer, “Extending the supercontinuum spectrum down to 200  nm with few-cycle pulses,” New J. Phys. 8, 177 (2006).
    [Crossref]
  17. C. Jauregui, J. Limpert, A. Tunnermann, “High-power fiber lasers,” Nat. Photonics 7, 861–867 (2013).
    [Crossref]
  18. M. J. Weber, CRC Handbook of Laser Science and Technology Supplement 2: Optical Materials, 1st ed. (CRC Press, 1994).
  19. J. C. Travers, W. Chang, J. Nold, N. Y. Joly, P. St. J. Russell, “Ultrafast nonlinear optics in gas-filled hollow-core photonic crystal fibers [Invited],” J. Opt. Soc. Am. B 28, A11–A26 (2011).
    [Crossref]
  20. P. Hölzer, W. Chang, J. C. Travers, A. Nazarkin, J. Nold, N. Y. Joly, M. F. Saleh, F. Biancalana, P. St. J. Russell, “Femtosecond nonlinear fiber optics in the ionization regime,” Phys. Rev. Lett. 107, 203901 (2011).
    [Crossref]
  21. E. A. J. Marcatili, R. A. Schmeltzer, “Hollow metallic and dielectric waveguides for long distance optical transmission and lasers,” Bell Syst. Tech. J. 43, 1759–1782 (1964).
    [Crossref]
  22. E. R. Peck, S. Huang, “Refractivity and dispersion of hydrogen in the visible and near infrared,” J. Opt. Soc. Am. 67, 1550–1554 (1977).
    [Crossref]
  23. F. Gebert, M. H. Frosz, T. Weiss, Y. Wan, A. Ermolov, N. Y. Joly, P. O. Schmidt, P. St. J. Russell, “Damage-free single-mode transmission of deep-UV light in hollow-core PCF,” Opt. Express 22, 15388–15396 (2014).
    [Crossref]
  24. A. Brodeur, S. L. Chin, “Band-gap dependence of the ultrafast white-light continuum,” Phys. Rev. Lett. 80, 4406–4409 (1998).
    [Crossref]
  25. M. Erkintalo, Y. Q. Xu, S. G. Murdoch, J. M. Dudley, G. Genty, “Cascaded phase matching and nonlinear symmetry breaking in fiber frequency combs,” Phys. Rev. Lett. 109, 223904 (2012).
    [Crossref]
  26. A. Nazarkin, G. Korn, M. Wittmann, T. Elsaesser, “Generation of multiple phase-locked Stokes and anti-Stokes components in an impulsively excited Raman medium,” Phys. Rev. Lett. 83, 2560–2563 (1999).
    [Crossref]
  27. R. R. Alfano, The Supercontinuum Laser Source: Fundamentals with Updated References (Springer, 2006).
  28. S. Baker, I. A. Walmsley, J. W. G. Tisch, J. P. Marangos, “Femtosecond to attosecond light pulses from a molecular modulator,” Nat. Photonics 5, 664–671 (2011).
    [Crossref]
  29. F. Couny, F. Benabid, P. J. Roberts, P. S. Light, M. G. Raymer, “Generation and photonic guidance of multi-octave optical-frequency combs,” Science 318, 1118–1121 (2007).
    [Crossref]
  30. A. V. Sokolov, S. E. Harris, “Ultrashort pulse generation by molecular modulation,” J. Opt. B 5, R1–R26 (2003).
    [Crossref]
  31. A. Abdolvand, A. M. Walser, M. Ziemienczuk, T. Nguyen, P. St. J. Russell, “Generation of a phase-locked Raman frequency comb in gas-filled hollow-core photonic crystal fiber,” Opt. Lett. 37, 4362–4364 (2012).
    [Crossref]
  32. O. Shitamichi, T. Imasaka, “High-order Raman sidebands generated from the near-infrared to ultraviolet region by four-wave Raman mixing of hydrogen using an ultrashort two-color pump beam,” Opt. Express 20, 27959–27965 (2012).
    [Crossref]
  33. A. Goehlich, U. Czarnetzki, H. F. Döbele, “Increased efficiency of vacuum ultraviolet generation by stimulated anti-Stokes Raman scattering with Stokes seeding,” Appl. Opt. 37, 8453–8459 (1998).
    [Crossref]
  34. G. Korn, O. Dühr, A. Nazarkin, “Observation of Raman self-conversion of fs-pulse frequency due to impulsive excitation of molecular vibrations,” Phys. Rev. Lett. 81, 1215–1218 (1998).
    [Crossref]
  35. W. K. Bischel, M. J. Dyer, “Temperature dependence of the Raman linewidth and line shift for the Q(1) and Q(0) transitions in normal and para-H2,” Phys. Rev. A 33, 3113–3123 (1986).
    [Crossref]
  36. R. A. Bartels, S. Backus, M. M. Murnane, H. C. Kapteyn, “Impulsive stimulated Raman scattering of molecular vibrations using nonlinear pulse shaping,” Chem. Phys. Lett. 374, 326–333 (2003).
    [Crossref]
  37. S. Zaitsu, Y. Kida, T. Imasaka, “Stimulated Raman scattering in the boundary region between impulsive and nonimpulsive excitation,” J. Opt. Soc. Am. B 22, 2642–2650 (2005).
    [Crossref]
  38. G. Herzberg, Molecular Spectra and Molecular Structure: Spectra of Diatomic Molecules, 2nd ed. (Krieger, 1989), Vol. 1.
  39. F. Tani, J. C. Travers, P. St. J. Russell, “Multimode ultrafast nonlinear optics in optical waveguides: numerical modeling and experiments in kagomé photonic-crystal fiber,” J. Opt. Soc. Am. B 31, 311–320 (2014).
    [Crossref]
  40. W. Chang, A. Nazarkin, J. C. Travers, J. Nold, P. Hölzer, N. Y. Joly, P. St. J. Russell, “Influence of ionization on ultrafast gas-based nonlinear fiber optics,” Opt. Express 19, 21018–21027 (2011).
    [Crossref]
  41. M. Kolesik, J. V. Moloney, “Nonlinear optical pulse propagation simulation: from Maxwell’s to unidirectional equations,” Phys. Rev. E 70, 036604 (2004).
    [Crossref]
  42. V. Mizrahi, D. P. Shelton, “Nonlinear susceptibility of H2 and D2 accurately measured over a wide range of wavelengths,” Phys. Rev. A 32, 3454–3460 (1985).
    [Crossref]
  43. F. L. Kien, J. Q. Liang, M. Katsuragawa, K. Ohtsuki, K. Hakuta, A. V. Sokolov, “Subfemtosecond pulse generation with molecular coherence control in stimulated Raman scattering,” Phys. Rev. A 60, 1562–1571 (1999).
    [Crossref]
  44. V. P. Kalosha, J. Herrmann, “Phase relations, quasicontinuous spectra and subfemtosecond pulses in high-order stimulated Raman scattering with short-pulse excitation,” Phys. Rev. Lett. 85, 1226–1229 (2000).
    [Crossref]
  45. A. M. Zheltikov, A. A. Voronin, R. Kienberger, F. Krausz, G. Korn, “Frequency-tunable multigigawatt sub-half-cycle light pulses from coupled-state dynamics of optical solitons and impulsively driven molecular vibrations,” Phys. Rev. Lett. 105, 103901 (2010).
    [Crossref]
  46. M. Geissler, G. Tempea, A. Scrinzi, M. Schnürer, F. Krausz, T. Brabec, “Light propagation in field-ionizing media: extreme nonlinear optics,” Phys. Rev. Lett. 83, 2930–2933 (1999).
    [Crossref]
  47. J. Muth-Böhm, A. Becker, F. H. M. Faisal, “Suppressed molecular ionization for a class of diatomics in intense femtosecond laser fields,” Phys. Rev. Lett. 85, 2280–2283 (2000).
    [Crossref]
  48. M. V. Ammosov, N. B. Delone, V. P. Krainov, “Tunnel ionization of complex atoms and atomic ions in an electromagnetic field,” Sov. Phys. JETP 64, 1191–1196 (1986).
  49. A. Saenz, “Behavior of molecular hydrogen exposed to strong dc, ac, or low-frequency laser fields. II. Comparison of ab initio and Ammosov-Delone-Krainov rates,” Phys. Rev. A 66, 063408 (2002).
    [Crossref]
  50. A. M. Perelomov, V. S. Popov, M. V. Terent’ev, “Ionization of atoms in an alternating electric field,” Sov. Phys. JETP 23, 924–934 (1966).
  51. A. L. Gaeta, “Catastrophic collapse of ultrashort pulses,” Phys. Rev. Lett. 84, 3582–3585 (2000).
    [Crossref]
  52. E. T. J. Nibbering, G. Grillon, M. A. Franco, B. S. Prade, A. Mysyrowicz, “Determination of the inertial contribution to the nonlinear refractive index of air, N2, and O2 by use of unfocused high-intensity femtosecond laser pulses,” J. Opt. Soc. Am. B 14, 650–660 (1997).
    [Crossref]
  53. A. M. Weiner, D. E. Leaird, G. P. Wiederrecht, K. A. Nelson, “Femtosecond multiple-pulse impulsive stimulated Raman scattering spectroscopy,” J. Opt. Soc. Am. B 8, 1264–1275 (1991).
    [Crossref]
  54. S. P. Fodor, R. P. Rava, T. R. Hays, T. G. Spiro, “Ultraviolet resonance Raman spectroscopy of the nucleotides with 266-, 240-, 218-, and 200-nm pulsed laser excitation,” J. Am. Chem. Soc. 107, 1520–1529 (1985).
    [Crossref]
  55. C. Consani, G. Aubock, F. van Mourik, M. Chergui, “Ultrafast tryptophan-to-heme electron transfer in myoglobins revealed by UV 2D spectroscopy,” Science 339, 1586–1589 (2013).
    [Crossref]
  56. F. Calegari, D. Ayuso, A. Trabattoni, L. Belshaw, S. De Camillis, S. Anumula, F. Frassetto, L. Poletto, A. Palacios, P. Decleva, J. B. Greenwood, F. Martín, M. Nisoli, “Ultrafast electron dynamics in phenylalanine initiated by attosecond pulses,” Science 346, 336–339 (2014).
    [Crossref]
  57. O. Geßner, A. Lee, J. Shaffer, H. Reisler, S. Levchenko, A. Krylov, J. Underwood, H. Shi, A. East, D. Wardlaw, E. Chrysostom, C. Hayden, A. Stolow, “Femtosecond multidimensional imaging of a molecular dissociation,” Science 311, 219–222 (2006).
    [Crossref]
  58. I. Gierz, J. C. Petersen, M. Mitrano, C. Cacho, I. C. E. Turcu, E. Springate, A. Stöhr, A. Köhler, U. Starke, A. Cavalleri, “Snapshots of non-equilibrium Dirac carrier distributions in graphene,” Nat. Mater. 12, 1119–1124 (2013).
    [Crossref]
  59. M. C. Downer, “A new low for nonlinear optics,” Science 298, 373–375 (2002).
    [Crossref]

2014 (4)

P. St. J. Russell, P. Hölzer, W. Chang, A. Abdolvand, J. C. Travers, “Hollow-core photonic crystal fibers for gas-based nonlinear optics,” Nat. Photonics 8, 278–286 (2014).
[Crossref]

F. Gebert, M. H. Frosz, T. Weiss, Y. Wan, A. Ermolov, N. Y. Joly, P. O. Schmidt, P. St. J. Russell, “Damage-free single-mode transmission of deep-UV light in hollow-core PCF,” Opt. Express 22, 15388–15396 (2014).
[Crossref]

F. Tani, J. C. Travers, P. St. J. Russell, “Multimode ultrafast nonlinear optics in optical waveguides: numerical modeling and experiments in kagomé photonic-crystal fiber,” J. Opt. Soc. Am. B 31, 311–320 (2014).
[Crossref]

F. Calegari, D. Ayuso, A. Trabattoni, L. Belshaw, S. De Camillis, S. Anumula, F. Frassetto, L. Poletto, A. Palacios, P. Decleva, J. B. Greenwood, F. Martín, M. Nisoli, “Ultrafast electron dynamics in phenylalanine initiated by attosecond pulses,” Science 346, 336–339 (2014).
[Crossref]

2013 (4)

I. Gierz, J. C. Petersen, M. Mitrano, C. Cacho, I. C. E. Turcu, E. Springate, A. Stöhr, A. Köhler, U. Starke, A. Cavalleri, “Snapshots of non-equilibrium Dirac carrier distributions in graphene,” Nat. Mater. 12, 1119–1124 (2013).
[Crossref]

C. Consani, G. Aubock, F. van Mourik, M. Chergui, “Ultrafast tryptophan-to-heme electron transfer in myoglobins revealed by UV 2D spectroscopy,” Science 339, 1586–1589 (2013).
[Crossref]

K. F. Mak, J. C. Travers, P. Hölzer, N. Y. Joly, P. St. J. Russell, “Tunable vacuum-UV to visible ultrafast pulse source based on gas-filled Kagome-PCF,” Opt. Express 21, 10942–10953 (2013).
[Crossref]

C. Jauregui, J. Limpert, A. Tunnermann, “High-power fiber lasers,” Nat. Photonics 7, 861–867 (2013).
[Crossref]

2012 (4)

2011 (5)

S. Baker, I. A. Walmsley, J. W. G. Tisch, J. P. Marangos, “Femtosecond to attosecond light pulses from a molecular modulator,” Nat. Photonics 5, 664–671 (2011).
[Crossref]

N. Y. Joly, J. Nold, W. Chang, P. Hölzer, A. Nazarkin, G. K. L. Wong, F. Biancalana, P. St. J. Russell, “Bright spatially coherent wavelength-tunable deep-UV laser source using an Ar-filled photonic crystal fiber,” Phys. Rev. Lett. 106, 203901 (2011).
[Crossref]

J. C. Travers, W. Chang, J. Nold, N. Y. Joly, P. St. J. Russell, “Ultrafast nonlinear optics in gas-filled hollow-core photonic crystal fibers [Invited],” J. Opt. Soc. Am. B 28, A11–A26 (2011).
[Crossref]

P. Hölzer, W. Chang, J. C. Travers, A. Nazarkin, J. Nold, N. Y. Joly, M. F. Saleh, F. Biancalana, P. St. J. Russell, “Femtosecond nonlinear fiber optics in the ionization regime,” Phys. Rev. Lett. 107, 203901 (2011).
[Crossref]

W. Chang, A. Nazarkin, J. C. Travers, J. Nold, P. Hölzer, N. Y. Joly, P. St. J. Russell, “Influence of ionization on ultrafast gas-based nonlinear fiber optics,” Opt. Express 19, 21018–21027 (2011).
[Crossref]

2010 (1)

A. M. Zheltikov, A. A. Voronin, R. Kienberger, F. Krausz, G. Korn, “Frequency-tunable multigigawatt sub-half-cycle light pulses from coupled-state dynamics of optical solitons and impulsively driven molecular vibrations,” Phys. Rev. Lett. 105, 103901 (2010).
[Crossref]

2007 (2)

F. Couny, F. Benabid, P. J. Roberts, P. S. Light, M. G. Raymer, “Generation and photonic guidance of multi-octave optical-frequency combs,” Science 318, 1118–1121 (2007).
[Crossref]

S. A. Trushin, K. Kosma, W. Fuß, W. E. Schmid, “Sub-10-fs supercontinuum radiation generated by filamentation of few-cycle 800  nm pulses in argon,” Opt. Lett. 32, 2432–2434 (2007).
[Crossref]

2006 (4)

N. Aközbek, S. A. Trushin, A. Baltuška, W. Fuß, E. Goulielmakis, K. Kosma, F. Krausz, S. Panja, M. Uiberacker, W. E. Schmid, A. Becker, M. Scalora, M. Bloemer, “Extending the supercontinuum spectrum down to 200  nm with few-cycle pulses,” New J. Phys. 8, 177 (2006).
[Crossref]

J. M. Dudley, S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135–1184 (2006).
[Crossref]

C. Xia, M. Kumar, O. P. Kulkarni, M. N. Islam, F. L. Terry, M. J. Freeman, M. Poulain, G. Mazé, “Mid-infrared supercontinuum generation to 4.5  μm in ZBLAN fluoride fibers by nanosecond diode pumping,” Opt. Lett. 31, 2553–2555 (2006).
[Crossref]

O. Geßner, A. Lee, J. Shaffer, H. Reisler, S. Levchenko, A. Krylov, J. Underwood, H. Shi, A. East, D. Wardlaw, E. Chrysostom, C. Hayden, A. Stolow, “Femtosecond multidimensional imaging of a molecular dissociation,” Science 311, 219–222 (2006).
[Crossref]

2005 (1)

2004 (1)

M. Kolesik, J. V. Moloney, “Nonlinear optical pulse propagation simulation: from Maxwell’s to unidirectional equations,” Phys. Rev. E 70, 036604 (2004).
[Crossref]

2003 (2)

R. A. Bartels, S. Backus, M. M. Murnane, H. C. Kapteyn, “Impulsive stimulated Raman scattering of molecular vibrations using nonlinear pulse shaping,” Chem. Phys. Lett. 374, 326–333 (2003).
[Crossref]

A. V. Sokolov, S. E. Harris, “Ultrashort pulse generation by molecular modulation,” J. Opt. B 5, R1–R26 (2003).
[Crossref]

2002 (2)

A. Saenz, “Behavior of molecular hydrogen exposed to strong dc, ac, or low-frequency laser fields. II. Comparison of ab initio and Ammosov-Delone-Krainov rates,” Phys. Rev. A 66, 063408 (2002).
[Crossref]

M. C. Downer, “A new low for nonlinear optics,” Science 298, 373–375 (2002).
[Crossref]

2000 (4)

J. Muth-Böhm, A. Becker, F. H. M. Faisal, “Suppressed molecular ionization for a class of diatomics in intense femtosecond laser fields,” Phys. Rev. Lett. 85, 2280–2283 (2000).
[Crossref]

A. L. Gaeta, “Catastrophic collapse of ultrashort pulses,” Phys. Rev. Lett. 84, 3582–3585 (2000).
[Crossref]

V. P. Kalosha, J. Herrmann, “Phase relations, quasicontinuous spectra and subfemtosecond pulses in high-order stimulated Raman scattering with short-pulse excitation,” Phys. Rev. Lett. 85, 1226–1229 (2000).
[Crossref]

J. K. Ranka, R. S. Windeler, A. J. Stentz, “Visible continuum generation in air-silica microstructure optical fibers with anomalous dispersion at 800  nm,” Opt. Lett. 25, 25–27 (2000).
[Crossref]

1999 (5)

V. Petrov, F. Rotermund, F. Noack, J. Ringling, O. Kittelmann, R. Komatsu, “Frequency conversion of Ti:sapphire-based femtosecond laser systems to the 200-nm spectral region using nonlinear optical crystals,” IEEE J. Sel. Top. Quantum Electron. I5, 1532–1542 (1999).
[Crossref]

C. G. Durfee, S. Backus, H. C. Kapteyn, M. M. Murnane, “Intense 8-fs pulse generation in the deep ultraviolet,” Opt. Lett. 24, 697–699 (1999).
[Crossref]

A. Nazarkin, G. Korn, M. Wittmann, T. Elsaesser, “Generation of multiple phase-locked Stokes and anti-Stokes components in an impulsively excited Raman medium,” Phys. Rev. Lett. 83, 2560–2563 (1999).
[Crossref]

F. L. Kien, J. Q. Liang, M. Katsuragawa, K. Ohtsuki, K. Hakuta, A. V. Sokolov, “Subfemtosecond pulse generation with molecular coherence control in stimulated Raman scattering,” Phys. Rev. A 60, 1562–1571 (1999).
[Crossref]

M. Geissler, G. Tempea, A. Scrinzi, M. Schnürer, F. Krausz, T. Brabec, “Light propagation in field-ionizing media: extreme nonlinear optics,” Phys. Rev. Lett. 83, 2930–2933 (1999).
[Crossref]

1998 (3)

A. Brodeur, S. L. Chin, “Band-gap dependence of the ultrafast white-light continuum,” Phys. Rev. Lett. 80, 4406–4409 (1998).
[Crossref]

A. Goehlich, U. Czarnetzki, H. F. Döbele, “Increased efficiency of vacuum ultraviolet generation by stimulated anti-Stokes Raman scattering with Stokes seeding,” Appl. Opt. 37, 8453–8459 (1998).
[Crossref]

G. Korn, O. Dühr, A. Nazarkin, “Observation of Raman self-conversion of fs-pulse frequency due to impulsive excitation of molecular vibrations,” Phys. Rev. Lett. 81, 1215–1218 (1998).
[Crossref]

1997 (2)

1995 (1)

1993 (1)

1991 (1)

1986 (3)

M. V. Ammosov, N. B. Delone, V. P. Krainov, “Tunnel ionization of complex atoms and atomic ions in an electromagnetic field,” Sov. Phys. JETP 64, 1191–1196 (1986).

P. B. Corkum, C. Rolland, T. Srinivasan-Rao, “Supercontinuum generation in gases,” Phys. Rev. Lett. 57, 2268–2271 (1986).
[Crossref]

W. K. Bischel, M. J. Dyer, “Temperature dependence of the Raman linewidth and line shift for the Q(1) and Q(0) transitions in normal and para-H2,” Phys. Rev. A 33, 3113–3123 (1986).
[Crossref]

1985 (2)

S. P. Fodor, R. P. Rava, T. R. Hays, T. G. Spiro, “Ultraviolet resonance Raman spectroscopy of the nucleotides with 266-, 240-, 218-, and 200-nm pulsed laser excitation,” J. Am. Chem. Soc. 107, 1520–1529 (1985).
[Crossref]

V. Mizrahi, D. P. Shelton, “Nonlinear susceptibility of H2 and D2 accurately measured over a wide range of wavelengths,” Phys. Rev. A 32, 3454–3460 (1985).
[Crossref]

1977 (1)

1966 (1)

A. M. Perelomov, V. S. Popov, M. V. Terent’ev, “Ionization of atoms in an alternating electric field,” Sov. Phys. JETP 23, 924–934 (1966).

1964 (1)

E. A. J. Marcatili, R. A. Schmeltzer, “Hollow metallic and dielectric waveguides for long distance optical transmission and lasers,” Bell Syst. Tech. J. 43, 1759–1782 (1964).
[Crossref]

Abdolvand, A.

P. St. J. Russell, P. Hölzer, W. Chang, A. Abdolvand, J. C. Travers, “Hollow-core photonic crystal fibers for gas-based nonlinear optics,” Nat. Photonics 8, 278–286 (2014).
[Crossref]

A. Abdolvand, A. M. Walser, M. Ziemienczuk, T. Nguyen, P. St. J. Russell, “Generation of a phase-locked Raman frequency comb in gas-filled hollow-core photonic crystal fiber,” Opt. Lett. 37, 4362–4364 (2012).
[Crossref]

Aközbek, N.

N. Aközbek, S. A. Trushin, A. Baltuška, W. Fuß, E. Goulielmakis, K. Kosma, F. Krausz, S. Panja, M. Uiberacker, W. E. Schmid, A. Becker, M. Scalora, M. Bloemer, “Extending the supercontinuum spectrum down to 200  nm with few-cycle pulses,” New J. Phys. 8, 177 (2006).
[Crossref]

Aleksandrovsky, A. S.

P. Trabs, F. Noack, A. S. Aleksandrovsky, A. M. Vyunishev, A. I. Zaitsev, N. V. Radionov, V. Petrov, “Generation of fs-pulses down to 121  nm by frequency doubling using random quasi-phase-matching in strontium tetraborate,” in Proceedings of Ultrafast Optics, Davos, Switzerland (2013), paper Fr2.4.

Alfano, R. R.

R. R. Alfano, The Supercontinuum Laser Source: Fundamentals with Updated References (Springer, 2006).

Ammosov, M. V.

M. V. Ammosov, N. B. Delone, V. P. Krainov, “Tunnel ionization of complex atoms and atomic ions in an electromagnetic field,” Sov. Phys. JETP 64, 1191–1196 (1986).

Anumula, S.

F. Calegari, D. Ayuso, A. Trabattoni, L. Belshaw, S. De Camillis, S. Anumula, F. Frassetto, L. Poletto, A. Palacios, P. Decleva, J. B. Greenwood, F. Martín, M. Nisoli, “Ultrafast electron dynamics in phenylalanine initiated by attosecond pulses,” Science 346, 336–339 (2014).
[Crossref]

Aubock, G.

C. Consani, G. Aubock, F. van Mourik, M. Chergui, “Ultrafast tryptophan-to-heme electron transfer in myoglobins revealed by UV 2D spectroscopy,” Science 339, 1586–1589 (2013).
[Crossref]

Ayuso, D.

F. Calegari, D. Ayuso, A. Trabattoni, L. Belshaw, S. De Camillis, S. Anumula, F. Frassetto, L. Poletto, A. Palacios, P. Decleva, J. B. Greenwood, F. Martín, M. Nisoli, “Ultrafast electron dynamics in phenylalanine initiated by attosecond pulses,” Science 346, 336–339 (2014).
[Crossref]

Backus, S.

R. A. Bartels, S. Backus, M. M. Murnane, H. C. Kapteyn, “Impulsive stimulated Raman scattering of molecular vibrations using nonlinear pulse shaping,” Chem. Phys. Lett. 374, 326–333 (2003).
[Crossref]

C. G. Durfee, S. Backus, H. C. Kapteyn, M. M. Murnane, “Intense 8-fs pulse generation in the deep ultraviolet,” Opt. Lett. 24, 697–699 (1999).
[Crossref]

Baker, S.

S. Baker, I. A. Walmsley, J. W. G. Tisch, J. P. Marangos, “Femtosecond to attosecond light pulses from a molecular modulator,” Nat. Photonics 5, 664–671 (2011).
[Crossref]

Baltuška, A.

N. Aközbek, S. A. Trushin, A. Baltuška, W. Fuß, E. Goulielmakis, K. Kosma, F. Krausz, S. Panja, M. Uiberacker, W. E. Schmid, A. Becker, M. Scalora, M. Bloemer, “Extending the supercontinuum spectrum down to 200  nm with few-cycle pulses,” New J. Phys. 8, 177 (2006).
[Crossref]

Bartels, R. A.

R. A. Bartels, S. Backus, M. M. Murnane, H. C. Kapteyn, “Impulsive stimulated Raman scattering of molecular vibrations using nonlinear pulse shaping,” Chem. Phys. Lett. 374, 326–333 (2003).
[Crossref]

Becker, A.

N. Aközbek, S. A. Trushin, A. Baltuška, W. Fuß, E. Goulielmakis, K. Kosma, F. Krausz, S. Panja, M. Uiberacker, W. E. Schmid, A. Becker, M. Scalora, M. Bloemer, “Extending the supercontinuum spectrum down to 200  nm with few-cycle pulses,” New J. Phys. 8, 177 (2006).
[Crossref]

J. Muth-Böhm, A. Becker, F. H. M. Faisal, “Suppressed molecular ionization for a class of diatomics in intense femtosecond laser fields,” Phys. Rev. Lett. 85, 2280–2283 (2000).
[Crossref]

Belshaw, L.

F. Calegari, D. Ayuso, A. Trabattoni, L. Belshaw, S. De Camillis, S. Anumula, F. Frassetto, L. Poletto, A. Palacios, P. Decleva, J. B. Greenwood, F. Martín, M. Nisoli, “Ultrafast electron dynamics in phenylalanine initiated by attosecond pulses,” Science 346, 336–339 (2014).
[Crossref]

Benabid, F.

F. Couny, F. Benabid, P. J. Roberts, P. S. Light, M. G. Raymer, “Generation and photonic guidance of multi-octave optical-frequency combs,” Science 318, 1118–1121 (2007).
[Crossref]

Biancalana, F.

P. Hölzer, W. Chang, J. C. Travers, A. Nazarkin, J. Nold, N. Y. Joly, M. F. Saleh, F. Biancalana, P. St. J. Russell, “Femtosecond nonlinear fiber optics in the ionization regime,” Phys. Rev. Lett. 107, 203901 (2011).
[Crossref]

N. Y. Joly, J. Nold, W. Chang, P. Hölzer, A. Nazarkin, G. K. L. Wong, F. Biancalana, P. St. J. Russell, “Bright spatially coherent wavelength-tunable deep-UV laser source using an Ar-filled photonic crystal fiber,” Phys. Rev. Lett. 106, 203901 (2011).
[Crossref]

Bischel, W. K.

W. K. Bischel, M. J. Dyer, “Temperature dependence of the Raman linewidth and line shift for the Q(1) and Q(0) transitions in normal and para-H2,” Phys. Rev. A 33, 3113–3123 (1986).
[Crossref]

Bloemer, M.

N. Aközbek, S. A. Trushin, A. Baltuška, W. Fuß, E. Goulielmakis, K. Kosma, F. Krausz, S. Panja, M. Uiberacker, W. E. Schmid, A. Becker, M. Scalora, M. Bloemer, “Extending the supercontinuum spectrum down to 200  nm with few-cycle pulses,” New J. Phys. 8, 177 (2006).
[Crossref]

Brabec, T.

M. Geissler, G. Tempea, A. Scrinzi, M. Schnürer, F. Krausz, T. Brabec, “Light propagation in field-ionizing media: extreme nonlinear optics,” Phys. Rev. Lett. 83, 2930–2933 (1999).
[Crossref]

Brodeur, A.

A. Brodeur, S. L. Chin, “Band-gap dependence of the ultrafast white-light continuum,” Phys. Rev. Lett. 80, 4406–4409 (1998).
[Crossref]

Cacho, C.

I. Gierz, J. C. Petersen, M. Mitrano, C. Cacho, I. C. E. Turcu, E. Springate, A. Stöhr, A. Köhler, U. Starke, A. Cavalleri, “Snapshots of non-equilibrium Dirac carrier distributions in graphene,” Nat. Mater. 12, 1119–1124 (2013).
[Crossref]

Calegari, F.

F. Calegari, D. Ayuso, A. Trabattoni, L. Belshaw, S. De Camillis, S. Anumula, F. Frassetto, L. Poletto, A. Palacios, P. Decleva, J. B. Greenwood, F. Martín, M. Nisoli, “Ultrafast electron dynamics in phenylalanine initiated by attosecond pulses,” Science 346, 336–339 (2014).
[Crossref]

Cavalleri, A.

I. Gierz, J. C. Petersen, M. Mitrano, C. Cacho, I. C. E. Turcu, E. Springate, A. Stöhr, A. Köhler, U. Starke, A. Cavalleri, “Snapshots of non-equilibrium Dirac carrier distributions in graphene,” Nat. Mater. 12, 1119–1124 (2013).
[Crossref]

Chang, W.

P. St. J. Russell, P. Hölzer, W. Chang, A. Abdolvand, J. C. Travers, “Hollow-core photonic crystal fibers for gas-based nonlinear optics,” Nat. Photonics 8, 278–286 (2014).
[Crossref]

P. Hölzer, W. Chang, J. C. Travers, A. Nazarkin, J. Nold, N. Y. Joly, M. F. Saleh, F. Biancalana, P. St. J. Russell, “Femtosecond nonlinear fiber optics in the ionization regime,” Phys. Rev. Lett. 107, 203901 (2011).
[Crossref]

N. Y. Joly, J. Nold, W. Chang, P. Hölzer, A. Nazarkin, G. K. L. Wong, F. Biancalana, P. St. J. Russell, “Bright spatially coherent wavelength-tunable deep-UV laser source using an Ar-filled photonic crystal fiber,” Phys. Rev. Lett. 106, 203901 (2011).
[Crossref]

J. C. Travers, W. Chang, J. Nold, N. Y. Joly, P. St. J. Russell, “Ultrafast nonlinear optics in gas-filled hollow-core photonic crystal fibers [Invited],” J. Opt. Soc. Am. B 28, A11–A26 (2011).
[Crossref]

W. Chang, A. Nazarkin, J. C. Travers, J. Nold, P. Hölzer, N. Y. Joly, P. St. J. Russell, “Influence of ionization on ultrafast gas-based nonlinear fiber optics,” Opt. Express 19, 21018–21027 (2011).
[Crossref]

Chergui, M.

C. Consani, G. Aubock, F. van Mourik, M. Chergui, “Ultrafast tryptophan-to-heme electron transfer in myoglobins revealed by UV 2D spectroscopy,” Science 339, 1586–1589 (2013).
[Crossref]

Chin, S. L.

A. Brodeur, S. L. Chin, “Band-gap dependence of the ultrafast white-light continuum,” Phys. Rev. Lett. 80, 4406–4409 (1998).
[Crossref]

Chrysostom, E.

O. Geßner, A. Lee, J. Shaffer, H. Reisler, S. Levchenko, A. Krylov, J. Underwood, H. Shi, A. East, D. Wardlaw, E. Chrysostom, C. Hayden, A. Stolow, “Femtosecond multidimensional imaging of a molecular dissociation,” Science 311, 219–222 (2006).
[Crossref]

Coen, S.

J. M. Dudley, S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135–1184 (2006).
[Crossref]

Consani, C.

C. Consani, G. Aubock, F. van Mourik, M. Chergui, “Ultrafast tryptophan-to-heme electron transfer in myoglobins revealed by UV 2D spectroscopy,” Science 339, 1586–1589 (2013).
[Crossref]

Corkum, P. B.

P. B. Corkum, C. Rolland, T. Srinivasan-Rao, “Supercontinuum generation in gases,” Phys. Rev. Lett. 57, 2268–2271 (1986).
[Crossref]

Couny, F.

F. Couny, F. Benabid, P. J. Roberts, P. S. Light, M. G. Raymer, “Generation and photonic guidance of multi-octave optical-frequency combs,” Science 318, 1118–1121 (2007).
[Crossref]

Czarnetzki, U.

De Camillis, S.

F. Calegari, D. Ayuso, A. Trabattoni, L. Belshaw, S. De Camillis, S. Anumula, F. Frassetto, L. Poletto, A. Palacios, P. Decleva, J. B. Greenwood, F. Martín, M. Nisoli, “Ultrafast electron dynamics in phenylalanine initiated by attosecond pulses,” Science 346, 336–339 (2014).
[Crossref]

Decleva, P.

F. Calegari, D. Ayuso, A. Trabattoni, L. Belshaw, S. De Camillis, S. Anumula, F. Frassetto, L. Poletto, A. Palacios, P. Decleva, J. B. Greenwood, F. Martín, M. Nisoli, “Ultrafast electron dynamics in phenylalanine initiated by attosecond pulses,” Science 346, 336–339 (2014).
[Crossref]

Delone, N. B.

M. V. Ammosov, N. B. Delone, V. P. Krainov, “Tunnel ionization of complex atoms and atomic ions in an electromagnetic field,” Sov. Phys. JETP 64, 1191–1196 (1986).

Döbele, H. F.

Downer, M. C.

M. C. Downer, “A new low for nonlinear optics,” Science 298, 373–375 (2002).
[Crossref]

Dudley, J. M.

M. Erkintalo, Y. Q. Xu, S. G. Murdoch, J. M. Dudley, G. Genty, “Cascaded phase matching and nonlinear symmetry breaking in fiber frequency combs,” Phys. Rev. Lett. 109, 223904 (2012).
[Crossref]

J. M. Dudley, S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135–1184 (2006).
[Crossref]

Dühr, O.

G. Korn, O. Dühr, A. Nazarkin, “Observation of Raman self-conversion of fs-pulse frequency due to impulsive excitation of molecular vibrations,” Phys. Rev. Lett. 81, 1215–1218 (1998).
[Crossref]

Durfee, C. G.

Dyer, M. J.

W. K. Bischel, M. J. Dyer, “Temperature dependence of the Raman linewidth and line shift for the Q(1) and Q(0) transitions in normal and para-H2,” Phys. Rev. A 33, 3113–3123 (1986).
[Crossref]

East, A.

O. Geßner, A. Lee, J. Shaffer, H. Reisler, S. Levchenko, A. Krylov, J. Underwood, H. Shi, A. East, D. Wardlaw, E. Chrysostom, C. Hayden, A. Stolow, “Femtosecond multidimensional imaging of a molecular dissociation,” Science 311, 219–222 (2006).
[Crossref]

Elsaesser, T.

A. Nazarkin, G. Korn, M. Wittmann, T. Elsaesser, “Generation of multiple phase-locked Stokes and anti-Stokes components in an impulsively excited Raman medium,” Phys. Rev. Lett. 83, 2560–2563 (1999).
[Crossref]

Erkintalo, M.

M. Erkintalo, Y. Q. Xu, S. G. Murdoch, J. M. Dudley, G. Genty, “Cascaded phase matching and nonlinear symmetry breaking in fiber frequency combs,” Phys. Rev. Lett. 109, 223904 (2012).
[Crossref]

Ermolov, A.

Faisal, F. H. M.

J. Muth-Böhm, A. Becker, F. H. M. Faisal, “Suppressed molecular ionization for a class of diatomics in intense femtosecond laser fields,” Phys. Rev. Lett. 85, 2280–2283 (2000).
[Crossref]

Ferencz, K.

Fodor, S. P.

S. P. Fodor, R. P. Rava, T. R. Hays, T. G. Spiro, “Ultraviolet resonance Raman spectroscopy of the nucleotides with 266-, 240-, 218-, and 200-nm pulsed laser excitation,” J. Am. Chem. Soc. 107, 1520–1529 (1985).
[Crossref]

Franco, M. A.

Frassetto, F.

F. Calegari, D. Ayuso, A. Trabattoni, L. Belshaw, S. De Camillis, S. Anumula, F. Frassetto, L. Poletto, A. Palacios, P. Decleva, J. B. Greenwood, F. Martín, M. Nisoli, “Ultrafast electron dynamics in phenylalanine initiated by attosecond pulses,” Science 346, 336–339 (2014).
[Crossref]

Freeman, M. J.

Frosz, M. H.

Fuß, W.

S. A. Trushin, K. Kosma, W. Fuß, W. E. Schmid, “Sub-10-fs supercontinuum radiation generated by filamentation of few-cycle 800  nm pulses in argon,” Opt. Lett. 32, 2432–2434 (2007).
[Crossref]

N. Aközbek, S. A. Trushin, A. Baltuška, W. Fuß, E. Goulielmakis, K. Kosma, F. Krausz, S. Panja, M. Uiberacker, W. E. Schmid, A. Becker, M. Scalora, M. Bloemer, “Extending the supercontinuum spectrum down to 200  nm with few-cycle pulses,” New J. Phys. 8, 177 (2006).
[Crossref]

Gaeta, A. L.

A. L. Gaeta, “Catastrophic collapse of ultrashort pulses,” Phys. Rev. Lett. 84, 3582–3585 (2000).
[Crossref]

Gebert, F.

Geissler, M.

M. Geissler, G. Tempea, A. Scrinzi, M. Schnürer, F. Krausz, T. Brabec, “Light propagation in field-ionizing media: extreme nonlinear optics,” Phys. Rev. Lett. 83, 2930–2933 (1999).
[Crossref]

Genty, G.

M. Erkintalo, Y. Q. Xu, S. G. Murdoch, J. M. Dudley, G. Genty, “Cascaded phase matching and nonlinear symmetry breaking in fiber frequency combs,” Phys. Rev. Lett. 109, 223904 (2012).
[Crossref]

Geßner, O.

O. Geßner, A. Lee, J. Shaffer, H. Reisler, S. Levchenko, A. Krylov, J. Underwood, H. Shi, A. East, D. Wardlaw, E. Chrysostom, C. Hayden, A. Stolow, “Femtosecond multidimensional imaging of a molecular dissociation,” Science 311, 219–222 (2006).
[Crossref]

Gierz, I.

I. Gierz, J. C. Petersen, M. Mitrano, C. Cacho, I. C. E. Turcu, E. Springate, A. Stöhr, A. Köhler, U. Starke, A. Cavalleri, “Snapshots of non-equilibrium Dirac carrier distributions in graphene,” Nat. Mater. 12, 1119–1124 (2013).
[Crossref]

Goehlich, A.

Goulielmakis, E.

N. Aközbek, S. A. Trushin, A. Baltuška, W. Fuß, E. Goulielmakis, K. Kosma, F. Krausz, S. Panja, M. Uiberacker, W. E. Schmid, A. Becker, M. Scalora, M. Bloemer, “Extending the supercontinuum spectrum down to 200  nm with few-cycle pulses,” New J. Phys. 8, 177 (2006).
[Crossref]

Greenwood, J. B.

F. Calegari, D. Ayuso, A. Trabattoni, L. Belshaw, S. De Camillis, S. Anumula, F. Frassetto, L. Poletto, A. Palacios, P. Decleva, J. B. Greenwood, F. Martín, M. Nisoli, “Ultrafast electron dynamics in phenylalanine initiated by attosecond pulses,” Science 346, 336–339 (2014).
[Crossref]

Grillon, G.

Hakuta, K.

F. L. Kien, J. Q. Liang, M. Katsuragawa, K. Ohtsuki, K. Hakuta, A. V. Sokolov, “Subfemtosecond pulse generation with molecular coherence control in stimulated Raman scattering,” Phys. Rev. A 60, 1562–1571 (1999).
[Crossref]

Harris, S. E.

A. V. Sokolov, S. E. Harris, “Ultrashort pulse generation by molecular modulation,” J. Opt. B 5, R1–R26 (2003).
[Crossref]

Hayden, C.

O. Geßner, A. Lee, J. Shaffer, H. Reisler, S. Levchenko, A. Krylov, J. Underwood, H. Shi, A. East, D. Wardlaw, E. Chrysostom, C. Hayden, A. Stolow, “Femtosecond multidimensional imaging of a molecular dissociation,” Science 311, 219–222 (2006).
[Crossref]

Hays, T. R.

S. P. Fodor, R. P. Rava, T. R. Hays, T. G. Spiro, “Ultraviolet resonance Raman spectroscopy of the nucleotides with 266-, 240-, 218-, and 200-nm pulsed laser excitation,” J. Am. Chem. Soc. 107, 1520–1529 (1985).
[Crossref]

Herrmann, J.

V. P. Kalosha, J. Herrmann, “Phase relations, quasicontinuous spectra and subfemtosecond pulses in high-order stimulated Raman scattering with short-pulse excitation,” Phys. Rev. Lett. 85, 1226–1229 (2000).
[Crossref]

Herzberg, G.

G. Herzberg, Molecular Spectra and Molecular Structure: Spectra of Diatomic Molecules, 2nd ed. (Krieger, 1989), Vol. 1.

Hölzer, P.

P. St. J. Russell, P. Hölzer, W. Chang, A. Abdolvand, J. C. Travers, “Hollow-core photonic crystal fibers for gas-based nonlinear optics,” Nat. Photonics 8, 278–286 (2014).
[Crossref]

K. F. Mak, J. C. Travers, P. Hölzer, N. Y. Joly, P. St. J. Russell, “Tunable vacuum-UV to visible ultrafast pulse source based on gas-filled Kagome-PCF,” Opt. Express 21, 10942–10953 (2013).
[Crossref]

W. Chang, A. Nazarkin, J. C. Travers, J. Nold, P. Hölzer, N. Y. Joly, P. St. J. Russell, “Influence of ionization on ultrafast gas-based nonlinear fiber optics,” Opt. Express 19, 21018–21027 (2011).
[Crossref]

N. Y. Joly, J. Nold, W. Chang, P. Hölzer, A. Nazarkin, G. K. L. Wong, F. Biancalana, P. St. J. Russell, “Bright spatially coherent wavelength-tunable deep-UV laser source using an Ar-filled photonic crystal fiber,” Phys. Rev. Lett. 106, 203901 (2011).
[Crossref]

P. Hölzer, W. Chang, J. C. Travers, A. Nazarkin, J. Nold, N. Y. Joly, M. F. Saleh, F. Biancalana, P. St. J. Russell, “Femtosecond nonlinear fiber optics in the ionization regime,” Phys. Rev. Lett. 107, 203901 (2011).
[Crossref]

Huang, S.

Imasaka, T.

Islam, M. N.

Jauregui, C.

C. Jauregui, J. Limpert, A. Tunnermann, “High-power fiber lasers,” Nat. Photonics 7, 861–867 (2013).
[Crossref]

Joly, N. Y.

Kalosha, V. P.

V. P. Kalosha, J. Herrmann, “Phase relations, quasicontinuous spectra and subfemtosecond pulses in high-order stimulated Raman scattering with short-pulse excitation,” Phys. Rev. Lett. 85, 1226–1229 (2000).
[Crossref]

Kapteyn, H. C.

R. A. Bartels, S. Backus, M. M. Murnane, H. C. Kapteyn, “Impulsive stimulated Raman scattering of molecular vibrations using nonlinear pulse shaping,” Chem. Phys. Lett. 374, 326–333 (2003).
[Crossref]

C. G. Durfee, S. Backus, H. C. Kapteyn, M. M. Murnane, “Intense 8-fs pulse generation in the deep ultraviolet,” Opt. Lett. 24, 697–699 (1999).
[Crossref]

Katsuragawa, M.

F. L. Kien, J. Q. Liang, M. Katsuragawa, K. Ohtsuki, K. Hakuta, A. V. Sokolov, “Subfemtosecond pulse generation with molecular coherence control in stimulated Raman scattering,” Phys. Rev. A 60, 1562–1571 (1999).
[Crossref]

Kida, Y.

Kien, F. L.

F. L. Kien, J. Q. Liang, M. Katsuragawa, K. Ohtsuki, K. Hakuta, A. V. Sokolov, “Subfemtosecond pulse generation with molecular coherence control in stimulated Raman scattering,” Phys. Rev. A 60, 1562–1571 (1999).
[Crossref]

Kienberger, R.

A. M. Zheltikov, A. A. Voronin, R. Kienberger, F. Krausz, G. Korn, “Frequency-tunable multigigawatt sub-half-cycle light pulses from coupled-state dynamics of optical solitons and impulsively driven molecular vibrations,” Phys. Rev. Lett. 105, 103901 (2010).
[Crossref]

Kittelmann, O.

V. Petrov, F. Rotermund, F. Noack, J. Ringling, O. Kittelmann, R. Komatsu, “Frequency conversion of Ti:sapphire-based femtosecond laser systems to the 200-nm spectral region using nonlinear optical crystals,” IEEE J. Sel. Top. Quantum Electron. I5, 1532–1542 (1999).
[Crossref]

J. Ringling, O. Kittelmann, F. Noack, G. Korn, J. Squier, “Tunable femtosecond pulses in the near vacuum ultraviolet generated by frequency conversion of amplified Ti:sapphire laser pulses,” Opt. Lett. 18, 2035–2037 (1993).
[Crossref]

Köhler, A.

I. Gierz, J. C. Petersen, M. Mitrano, C. Cacho, I. C. E. Turcu, E. Springate, A. Stöhr, A. Köhler, U. Starke, A. Cavalleri, “Snapshots of non-equilibrium Dirac carrier distributions in graphene,” Nat. Mater. 12, 1119–1124 (2013).
[Crossref]

Kolesik, M.

M. Kolesik, J. V. Moloney, “Nonlinear optical pulse propagation simulation: from Maxwell’s to unidirectional equations,” Phys. Rev. E 70, 036604 (2004).
[Crossref]

Komatsu, R.

V. Petrov, F. Rotermund, F. Noack, J. Ringling, O. Kittelmann, R. Komatsu, “Frequency conversion of Ti:sapphire-based femtosecond laser systems to the 200-nm spectral region using nonlinear optical crystals,” IEEE J. Sel. Top. Quantum Electron. I5, 1532–1542 (1999).
[Crossref]

Korn, G.

A. M. Zheltikov, A. A. Voronin, R. Kienberger, F. Krausz, G. Korn, “Frequency-tunable multigigawatt sub-half-cycle light pulses from coupled-state dynamics of optical solitons and impulsively driven molecular vibrations,” Phys. Rev. Lett. 105, 103901 (2010).
[Crossref]

A. Nazarkin, G. Korn, M. Wittmann, T. Elsaesser, “Generation of multiple phase-locked Stokes and anti-Stokes components in an impulsively excited Raman medium,” Phys. Rev. Lett. 83, 2560–2563 (1999).
[Crossref]

G. Korn, O. Dühr, A. Nazarkin, “Observation of Raman self-conversion of fs-pulse frequency due to impulsive excitation of molecular vibrations,” Phys. Rev. Lett. 81, 1215–1218 (1998).
[Crossref]

J. Ringling, O. Kittelmann, F. Noack, G. Korn, J. Squier, “Tunable femtosecond pulses in the near vacuum ultraviolet generated by frequency conversion of amplified Ti:sapphire laser pulses,” Opt. Lett. 18, 2035–2037 (1993).
[Crossref]

Kosma, K.

S. A. Trushin, K. Kosma, W. Fuß, W. E. Schmid, “Sub-10-fs supercontinuum radiation generated by filamentation of few-cycle 800  nm pulses in argon,” Opt. Lett. 32, 2432–2434 (2007).
[Crossref]

N. Aközbek, S. A. Trushin, A. Baltuška, W. Fuß, E. Goulielmakis, K. Kosma, F. Krausz, S. Panja, M. Uiberacker, W. E. Schmid, A. Becker, M. Scalora, M. Bloemer, “Extending the supercontinuum spectrum down to 200  nm with few-cycle pulses,” New J. Phys. 8, 177 (2006).
[Crossref]

Krainov, V. P.

M. V. Ammosov, N. B. Delone, V. P. Krainov, “Tunnel ionization of complex atoms and atomic ions in an electromagnetic field,” Sov. Phys. JETP 64, 1191–1196 (1986).

Krausz, F.

A. M. Zheltikov, A. A. Voronin, R. Kienberger, F. Krausz, G. Korn, “Frequency-tunable multigigawatt sub-half-cycle light pulses from coupled-state dynamics of optical solitons and impulsively driven molecular vibrations,” Phys. Rev. Lett. 105, 103901 (2010).
[Crossref]

N. Aközbek, S. A. Trushin, A. Baltuška, W. Fuß, E. Goulielmakis, K. Kosma, F. Krausz, S. Panja, M. Uiberacker, W. E. Schmid, A. Becker, M. Scalora, M. Bloemer, “Extending the supercontinuum spectrum down to 200  nm with few-cycle pulses,” New J. Phys. 8, 177 (2006).
[Crossref]

M. Geissler, G. Tempea, A. Scrinzi, M. Schnürer, F. Krausz, T. Brabec, “Light propagation in field-ionizing media: extreme nonlinear optics,” Phys. Rev. Lett. 83, 2930–2933 (1999).
[Crossref]

M. Nisoli, S. D. Silvestri, O. Svelto, R. Szipöcs, K. Ferencz, C. Spielmann, S. Sartania, F. Krausz, “Compression of high-energy laser pulses below 5  fs,” Opt. Lett. 22, 522–524 (1997).
[Crossref]

Krylov, A.

O. Geßner, A. Lee, J. Shaffer, H. Reisler, S. Levchenko, A. Krylov, J. Underwood, H. Shi, A. East, D. Wardlaw, E. Chrysostom, C. Hayden, A. Stolow, “Femtosecond multidimensional imaging of a molecular dissociation,” Science 311, 219–222 (2006).
[Crossref]

Kulkarni, O. P.

Kumar, M.

Leaird, D. E.

Lee, A.

O. Geßner, A. Lee, J. Shaffer, H. Reisler, S. Levchenko, A. Krylov, J. Underwood, H. Shi, A. East, D. Wardlaw, E. Chrysostom, C. Hayden, A. Stolow, “Femtosecond multidimensional imaging of a molecular dissociation,” Science 311, 219–222 (2006).
[Crossref]

Levchenko, S.

O. Geßner, A. Lee, J. Shaffer, H. Reisler, S. Levchenko, A. Krylov, J. Underwood, H. Shi, A. East, D. Wardlaw, E. Chrysostom, C. Hayden, A. Stolow, “Femtosecond multidimensional imaging of a molecular dissociation,” Science 311, 219–222 (2006).
[Crossref]

Liang, J. Q.

F. L. Kien, J. Q. Liang, M. Katsuragawa, K. Ohtsuki, K. Hakuta, A. V. Sokolov, “Subfemtosecond pulse generation with molecular coherence control in stimulated Raman scattering,” Phys. Rev. A 60, 1562–1571 (1999).
[Crossref]

Light, P. S.

F. Couny, F. Benabid, P. J. Roberts, P. S. Light, M. G. Raymer, “Generation and photonic guidance of multi-octave optical-frequency combs,” Science 318, 1118–1121 (2007).
[Crossref]

Limpert, J.

C. Jauregui, J. Limpert, A. Tunnermann, “High-power fiber lasers,” Nat. Photonics 7, 861–867 (2013).
[Crossref]

Mak, K. F.

Marangos, J. P.

S. Baker, I. A. Walmsley, J. W. G. Tisch, J. P. Marangos, “Femtosecond to attosecond light pulses from a molecular modulator,” Nat. Photonics 5, 664–671 (2011).
[Crossref]

Marcatili, E. A. J.

E. A. J. Marcatili, R. A. Schmeltzer, “Hollow metallic and dielectric waveguides for long distance optical transmission and lasers,” Bell Syst. Tech. J. 43, 1759–1782 (1964).
[Crossref]

Martín, F.

F. Calegari, D. Ayuso, A. Trabattoni, L. Belshaw, S. De Camillis, S. Anumula, F. Frassetto, L. Poletto, A. Palacios, P. Decleva, J. B. Greenwood, F. Martín, M. Nisoli, “Ultrafast electron dynamics in phenylalanine initiated by attosecond pulses,” Science 346, 336–339 (2014).
[Crossref]

Mazé, G.

Mitrano, M.

I. Gierz, J. C. Petersen, M. Mitrano, C. Cacho, I. C. E. Turcu, E. Springate, A. Stöhr, A. Köhler, U. Starke, A. Cavalleri, “Snapshots of non-equilibrium Dirac carrier distributions in graphene,” Nat. Mater. 12, 1119–1124 (2013).
[Crossref]

Mizrahi, V.

V. Mizrahi, D. P. Shelton, “Nonlinear susceptibility of H2 and D2 accurately measured over a wide range of wavelengths,” Phys. Rev. A 32, 3454–3460 (1985).
[Crossref]

Moloney, J. V.

M. Kolesik, J. V. Moloney, “Nonlinear optical pulse propagation simulation: from Maxwell’s to unidirectional equations,” Phys. Rev. E 70, 036604 (2004).
[Crossref]

Murdoch, S. G.

M. Erkintalo, Y. Q. Xu, S. G. Murdoch, J. M. Dudley, G. Genty, “Cascaded phase matching and nonlinear symmetry breaking in fiber frequency combs,” Phys. Rev. Lett. 109, 223904 (2012).
[Crossref]

Murnane, M. M.

R. A. Bartels, S. Backus, M. M. Murnane, H. C. Kapteyn, “Impulsive stimulated Raman scattering of molecular vibrations using nonlinear pulse shaping,” Chem. Phys. Lett. 374, 326–333 (2003).
[Crossref]

C. G. Durfee, S. Backus, H. C. Kapteyn, M. M. Murnane, “Intense 8-fs pulse generation in the deep ultraviolet,” Opt. Lett. 24, 697–699 (1999).
[Crossref]

Muth-Böhm, J.

J. Muth-Böhm, A. Becker, F. H. M. Faisal, “Suppressed molecular ionization for a class of diatomics in intense femtosecond laser fields,” Phys. Rev. Lett. 85, 2280–2283 (2000).
[Crossref]

Mysyrowicz, A.

Nazarkin, A.

W. Chang, A. Nazarkin, J. C. Travers, J. Nold, P. Hölzer, N. Y. Joly, P. St. J. Russell, “Influence of ionization on ultrafast gas-based nonlinear fiber optics,” Opt. Express 19, 21018–21027 (2011).
[Crossref]

P. Hölzer, W. Chang, J. C. Travers, A. Nazarkin, J. Nold, N. Y. Joly, M. F. Saleh, F. Biancalana, P. St. J. Russell, “Femtosecond nonlinear fiber optics in the ionization regime,” Phys. Rev. Lett. 107, 203901 (2011).
[Crossref]

N. Y. Joly, J. Nold, W. Chang, P. Hölzer, A. Nazarkin, G. K. L. Wong, F. Biancalana, P. St. J. Russell, “Bright spatially coherent wavelength-tunable deep-UV laser source using an Ar-filled photonic crystal fiber,” Phys. Rev. Lett. 106, 203901 (2011).
[Crossref]

A. Nazarkin, G. Korn, M. Wittmann, T. Elsaesser, “Generation of multiple phase-locked Stokes and anti-Stokes components in an impulsively excited Raman medium,” Phys. Rev. Lett. 83, 2560–2563 (1999).
[Crossref]

G. Korn, O. Dühr, A. Nazarkin, “Observation of Raman self-conversion of fs-pulse frequency due to impulsive excitation of molecular vibrations,” Phys. Rev. Lett. 81, 1215–1218 (1998).
[Crossref]

Nelson, K. A.

Nguyen, T.

Nibbering, E. T. J.

Nishioka, H.

Nisoli, M.

F. Calegari, D. Ayuso, A. Trabattoni, L. Belshaw, S. De Camillis, S. Anumula, F. Frassetto, L. Poletto, A. Palacios, P. Decleva, J. B. Greenwood, F. Martín, M. Nisoli, “Ultrafast electron dynamics in phenylalanine initiated by attosecond pulses,” Science 346, 336–339 (2014).
[Crossref]

M. Nisoli, S. D. Silvestri, O. Svelto, R. Szipöcs, K. Ferencz, C. Spielmann, S. Sartania, F. Krausz, “Compression of high-energy laser pulses below 5  fs,” Opt. Lett. 22, 522–524 (1997).
[Crossref]

Noack, F.

V. Petrov, F. Rotermund, F. Noack, J. Ringling, O. Kittelmann, R. Komatsu, “Frequency conversion of Ti:sapphire-based femtosecond laser systems to the 200-nm spectral region using nonlinear optical crystals,” IEEE J. Sel. Top. Quantum Electron. I5, 1532–1542 (1999).
[Crossref]

J. Ringling, O. Kittelmann, F. Noack, G. Korn, J. Squier, “Tunable femtosecond pulses in the near vacuum ultraviolet generated by frequency conversion of amplified Ti:sapphire laser pulses,” Opt. Lett. 18, 2035–2037 (1993).
[Crossref]

P. Trabs, F. Noack, A. S. Aleksandrovsky, A. M. Vyunishev, A. I. Zaitsev, N. V. Radionov, V. Petrov, “Generation of fs-pulses down to 121  nm by frequency doubling using random quasi-phase-matching in strontium tetraborate,” in Proceedings of Ultrafast Optics, Davos, Switzerland (2013), paper Fr2.4.

Nold, J.

N. Y. Joly, J. Nold, W. Chang, P. Hölzer, A. Nazarkin, G. K. L. Wong, F. Biancalana, P. St. J. Russell, “Bright spatially coherent wavelength-tunable deep-UV laser source using an Ar-filled photonic crystal fiber,” Phys. Rev. Lett. 106, 203901 (2011).
[Crossref]

P. Hölzer, W. Chang, J. C. Travers, A. Nazarkin, J. Nold, N. Y. Joly, M. F. Saleh, F. Biancalana, P. St. J. Russell, “Femtosecond nonlinear fiber optics in the ionization regime,” Phys. Rev. Lett. 107, 203901 (2011).
[Crossref]

J. C. Travers, W. Chang, J. Nold, N. Y. Joly, P. St. J. Russell, “Ultrafast nonlinear optics in gas-filled hollow-core photonic crystal fibers [Invited],” J. Opt. Soc. Am. B 28, A11–A26 (2011).
[Crossref]

W. Chang, A. Nazarkin, J. C. Travers, J. Nold, P. Hölzer, N. Y. Joly, P. St. J. Russell, “Influence of ionization on ultrafast gas-based nonlinear fiber optics,” Opt. Express 19, 21018–21027 (2011).
[Crossref]

Odajima, W.

Ohtsuki, K.

F. L. Kien, J. Q. Liang, M. Katsuragawa, K. Ohtsuki, K. Hakuta, A. V. Sokolov, “Subfemtosecond pulse generation with molecular coherence control in stimulated Raman scattering,” Phys. Rev. A 60, 1562–1571 (1999).
[Crossref]

Palacios, A.

F. Calegari, D. Ayuso, A. Trabattoni, L. Belshaw, S. De Camillis, S. Anumula, F. Frassetto, L. Poletto, A. Palacios, P. Decleva, J. B. Greenwood, F. Martín, M. Nisoli, “Ultrafast electron dynamics in phenylalanine initiated by attosecond pulses,” Science 346, 336–339 (2014).
[Crossref]

Panja, S.

N. Aközbek, S. A. Trushin, A. Baltuška, W. Fuß, E. Goulielmakis, K. Kosma, F. Krausz, S. Panja, M. Uiberacker, W. E. Schmid, A. Becker, M. Scalora, M. Bloemer, “Extending the supercontinuum spectrum down to 200  nm with few-cycle pulses,” New J. Phys. 8, 177 (2006).
[Crossref]

Peck, E. R.

Perelomov, A. M.

A. M. Perelomov, V. S. Popov, M. V. Terent’ev, “Ionization of atoms in an alternating electric field,” Sov. Phys. JETP 23, 924–934 (1966).

Petersen, J. C.

I. Gierz, J. C. Petersen, M. Mitrano, C. Cacho, I. C. E. Turcu, E. Springate, A. Stöhr, A. Köhler, U. Starke, A. Cavalleri, “Snapshots of non-equilibrium Dirac carrier distributions in graphene,” Nat. Mater. 12, 1119–1124 (2013).
[Crossref]

Petrov, V.

V. Petrov, F. Rotermund, F. Noack, J. Ringling, O. Kittelmann, R. Komatsu, “Frequency conversion of Ti:sapphire-based femtosecond laser systems to the 200-nm spectral region using nonlinear optical crystals,” IEEE J. Sel. Top. Quantum Electron. I5, 1532–1542 (1999).
[Crossref]

P. Trabs, F. Noack, A. S. Aleksandrovsky, A. M. Vyunishev, A. I. Zaitsev, N. V. Radionov, V. Petrov, “Generation of fs-pulses down to 121  nm by frequency doubling using random quasi-phase-matching in strontium tetraborate,” in Proceedings of Ultrafast Optics, Davos, Switzerland (2013), paper Fr2.4.

Poletto, L.

F. Calegari, D. Ayuso, A. Trabattoni, L. Belshaw, S. De Camillis, S. Anumula, F. Frassetto, L. Poletto, A. Palacios, P. Decleva, J. B. Greenwood, F. Martín, M. Nisoli, “Ultrafast electron dynamics in phenylalanine initiated by attosecond pulses,” Science 346, 336–339 (2014).
[Crossref]

Popov, V. S.

A. M. Perelomov, V. S. Popov, M. V. Terent’ev, “Ionization of atoms in an alternating electric field,” Sov. Phys. JETP 23, 924–934 (1966).

Poulain, M.

Prade, B. S.

Radionov, N. V.

P. Trabs, F. Noack, A. S. Aleksandrovsky, A. M. Vyunishev, A. I. Zaitsev, N. V. Radionov, V. Petrov, “Generation of fs-pulses down to 121  nm by frequency doubling using random quasi-phase-matching in strontium tetraborate,” in Proceedings of Ultrafast Optics, Davos, Switzerland (2013), paper Fr2.4.

Ranka, J. K.

Rava, R. P.

S. P. Fodor, R. P. Rava, T. R. Hays, T. G. Spiro, “Ultraviolet resonance Raman spectroscopy of the nucleotides with 266-, 240-, 218-, and 200-nm pulsed laser excitation,” J. Am. Chem. Soc. 107, 1520–1529 (1985).
[Crossref]

Raymer, M. G.

F. Couny, F. Benabid, P. J. Roberts, P. S. Light, M. G. Raymer, “Generation and photonic guidance of multi-octave optical-frequency combs,” Science 318, 1118–1121 (2007).
[Crossref]

Reisler, H.

O. Geßner, A. Lee, J. Shaffer, H. Reisler, S. Levchenko, A. Krylov, J. Underwood, H. Shi, A. East, D. Wardlaw, E. Chrysostom, C. Hayden, A. Stolow, “Femtosecond multidimensional imaging of a molecular dissociation,” Science 311, 219–222 (2006).
[Crossref]

Ringling, J.

V. Petrov, F. Rotermund, F. Noack, J. Ringling, O. Kittelmann, R. Komatsu, “Frequency conversion of Ti:sapphire-based femtosecond laser systems to the 200-nm spectral region using nonlinear optical crystals,” IEEE J. Sel. Top. Quantum Electron. I5, 1532–1542 (1999).
[Crossref]

J. Ringling, O. Kittelmann, F. Noack, G. Korn, J. Squier, “Tunable femtosecond pulses in the near vacuum ultraviolet generated by frequency conversion of amplified Ti:sapphire laser pulses,” Opt. Lett. 18, 2035–2037 (1993).
[Crossref]

Roberts, P. J.

F. Couny, F. Benabid, P. J. Roberts, P. S. Light, M. G. Raymer, “Generation and photonic guidance of multi-octave optical-frequency combs,” Science 318, 1118–1121 (2007).
[Crossref]

Rolland, C.

P. B. Corkum, C. Rolland, T. Srinivasan-Rao, “Supercontinuum generation in gases,” Phys. Rev. Lett. 57, 2268–2271 (1986).
[Crossref]

Rotermund, F.

V. Petrov, F. Rotermund, F. Noack, J. Ringling, O. Kittelmann, R. Komatsu, “Frequency conversion of Ti:sapphire-based femtosecond laser systems to the 200-nm spectral region using nonlinear optical crystals,” IEEE J. Sel. Top. Quantum Electron. I5, 1532–1542 (1999).
[Crossref]

Russell, P. St. J.

P. St. J. Russell, P. Hölzer, W. Chang, A. Abdolvand, J. C. Travers, “Hollow-core photonic crystal fibers for gas-based nonlinear optics,” Nat. Photonics 8, 278–286 (2014).
[Crossref]

F. Tani, J. C. Travers, P. St. J. Russell, “Multimode ultrafast nonlinear optics in optical waveguides: numerical modeling and experiments in kagomé photonic-crystal fiber,” J. Opt. Soc. Am. B 31, 311–320 (2014).
[Crossref]

F. Gebert, M. H. Frosz, T. Weiss, Y. Wan, A. Ermolov, N. Y. Joly, P. O. Schmidt, P. St. J. Russell, “Damage-free single-mode transmission of deep-UV light in hollow-core PCF,” Opt. Express 22, 15388–15396 (2014).
[Crossref]

K. F. Mak, J. C. Travers, P. Hölzer, N. Y. Joly, P. St. J. Russell, “Tunable vacuum-UV to visible ultrafast pulse source based on gas-filled Kagome-PCF,” Opt. Express 21, 10942–10953 (2013).
[Crossref]

A. Abdolvand, A. M. Walser, M. Ziemienczuk, T. Nguyen, P. St. J. Russell, “Generation of a phase-locked Raman frequency comb in gas-filled hollow-core photonic crystal fiber,” Opt. Lett. 37, 4362–4364 (2012).
[Crossref]

S. P. Stark, J. C. Travers, P. St. J. Russell, “Extreme supercontinuum generation to the deep UV,” Opt. Lett. 37, 770–772 (2012).
[Crossref]

J. C. Travers, W. Chang, J. Nold, N. Y. Joly, P. St. J. Russell, “Ultrafast nonlinear optics in gas-filled hollow-core photonic crystal fibers [Invited],” J. Opt. Soc. Am. B 28, A11–A26 (2011).
[Crossref]

W. Chang, A. Nazarkin, J. C. Travers, J. Nold, P. Hölzer, N. Y. Joly, P. St. J. Russell, “Influence of ionization on ultrafast gas-based nonlinear fiber optics,” Opt. Express 19, 21018–21027 (2011).
[Crossref]

N. Y. Joly, J. Nold, W. Chang, P. Hölzer, A. Nazarkin, G. K. L. Wong, F. Biancalana, P. St. J. Russell, “Bright spatially coherent wavelength-tunable deep-UV laser source using an Ar-filled photonic crystal fiber,” Phys. Rev. Lett. 106, 203901 (2011).
[Crossref]

P. Hölzer, W. Chang, J. C. Travers, A. Nazarkin, J. Nold, N. Y. Joly, M. F. Saleh, F. Biancalana, P. St. J. Russell, “Femtosecond nonlinear fiber optics in the ionization regime,” Phys. Rev. Lett. 107, 203901 (2011).
[Crossref]

Saenz, A.

A. Saenz, “Behavior of molecular hydrogen exposed to strong dc, ac, or low-frequency laser fields. II. Comparison of ab initio and Ammosov-Delone-Krainov rates,” Phys. Rev. A 66, 063408 (2002).
[Crossref]

Saleh, M. F.

P. Hölzer, W. Chang, J. C. Travers, A. Nazarkin, J. Nold, N. Y. Joly, M. F. Saleh, F. Biancalana, P. St. J. Russell, “Femtosecond nonlinear fiber optics in the ionization regime,” Phys. Rev. Lett. 107, 203901 (2011).
[Crossref]

Sartania, S.

Scalora, M.

N. Aközbek, S. A. Trushin, A. Baltuška, W. Fuß, E. Goulielmakis, K. Kosma, F. Krausz, S. Panja, M. Uiberacker, W. E. Schmid, A. Becker, M. Scalora, M. Bloemer, “Extending the supercontinuum spectrum down to 200  nm with few-cycle pulses,” New J. Phys. 8, 177 (2006).
[Crossref]

Schmeltzer, R. A.

E. A. J. Marcatili, R. A. Schmeltzer, “Hollow metallic and dielectric waveguides for long distance optical transmission and lasers,” Bell Syst. Tech. J. 43, 1759–1782 (1964).
[Crossref]

Schmid, W. E.

S. A. Trushin, K. Kosma, W. Fuß, W. E. Schmid, “Sub-10-fs supercontinuum radiation generated by filamentation of few-cycle 800  nm pulses in argon,” Opt. Lett. 32, 2432–2434 (2007).
[Crossref]

N. Aközbek, S. A. Trushin, A. Baltuška, W. Fuß, E. Goulielmakis, K. Kosma, F. Krausz, S. Panja, M. Uiberacker, W. E. Schmid, A. Becker, M. Scalora, M. Bloemer, “Extending the supercontinuum spectrum down to 200  nm with few-cycle pulses,” New J. Phys. 8, 177 (2006).
[Crossref]

Schmidt, P. O.

Schnürer, M.

M. Geissler, G. Tempea, A. Scrinzi, M. Schnürer, F. Krausz, T. Brabec, “Light propagation in field-ionizing media: extreme nonlinear optics,” Phys. Rev. Lett. 83, 2930–2933 (1999).
[Crossref]

Scrinzi, A.

M. Geissler, G. Tempea, A. Scrinzi, M. Schnürer, F. Krausz, T. Brabec, “Light propagation in field-ionizing media: extreme nonlinear optics,” Phys. Rev. Lett. 83, 2930–2933 (1999).
[Crossref]

Shaffer, J.

O. Geßner, A. Lee, J. Shaffer, H. Reisler, S. Levchenko, A. Krylov, J. Underwood, H. Shi, A. East, D. Wardlaw, E. Chrysostom, C. Hayden, A. Stolow, “Femtosecond multidimensional imaging of a molecular dissociation,” Science 311, 219–222 (2006).
[Crossref]

Shelton, D. P.

V. Mizrahi, D. P. Shelton, “Nonlinear susceptibility of H2 and D2 accurately measured over a wide range of wavelengths,” Phys. Rev. A 32, 3454–3460 (1985).
[Crossref]

Shi, H.

O. Geßner, A. Lee, J. Shaffer, H. Reisler, S. Levchenko, A. Krylov, J. Underwood, H. Shi, A. East, D. Wardlaw, E. Chrysostom, C. Hayden, A. Stolow, “Femtosecond multidimensional imaging of a molecular dissociation,” Science 311, 219–222 (2006).
[Crossref]

Shitamichi, O.

Silvestri, S. D.

Sokolov, A. V.

A. V. Sokolov, S. E. Harris, “Ultrashort pulse generation by molecular modulation,” J. Opt. B 5, R1–R26 (2003).
[Crossref]

F. L. Kien, J. Q. Liang, M. Katsuragawa, K. Ohtsuki, K. Hakuta, A. V. Sokolov, “Subfemtosecond pulse generation with molecular coherence control in stimulated Raman scattering,” Phys. Rev. A 60, 1562–1571 (1999).
[Crossref]

Spielmann, C.

Spiro, T. G.

S. P. Fodor, R. P. Rava, T. R. Hays, T. G. Spiro, “Ultraviolet resonance Raman spectroscopy of the nucleotides with 266-, 240-, 218-, and 200-nm pulsed laser excitation,” J. Am. Chem. Soc. 107, 1520–1529 (1985).
[Crossref]

Springate, E.

I. Gierz, J. C. Petersen, M. Mitrano, C. Cacho, I. C. E. Turcu, E. Springate, A. Stöhr, A. Köhler, U. Starke, A. Cavalleri, “Snapshots of non-equilibrium Dirac carrier distributions in graphene,” Nat. Mater. 12, 1119–1124 (2013).
[Crossref]

Squier, J.

Srinivasan-Rao, T.

P. B. Corkum, C. Rolland, T. Srinivasan-Rao, “Supercontinuum generation in gases,” Phys. Rev. Lett. 57, 2268–2271 (1986).
[Crossref]

Stark, S. P.

Starke, U.

I. Gierz, J. C. Petersen, M. Mitrano, C. Cacho, I. C. E. Turcu, E. Springate, A. Stöhr, A. Köhler, U. Starke, A. Cavalleri, “Snapshots of non-equilibrium Dirac carrier distributions in graphene,” Nat. Mater. 12, 1119–1124 (2013).
[Crossref]

Stentz, A. J.

Stöhr, A.

I. Gierz, J. C. Petersen, M. Mitrano, C. Cacho, I. C. E. Turcu, E. Springate, A. Stöhr, A. Köhler, U. Starke, A. Cavalleri, “Snapshots of non-equilibrium Dirac carrier distributions in graphene,” Nat. Mater. 12, 1119–1124 (2013).
[Crossref]

Stolow, A.

O. Geßner, A. Lee, J. Shaffer, H. Reisler, S. Levchenko, A. Krylov, J. Underwood, H. Shi, A. East, D. Wardlaw, E. Chrysostom, C. Hayden, A. Stolow, “Femtosecond multidimensional imaging of a molecular dissociation,” Science 311, 219–222 (2006).
[Crossref]

Svelto, O.

Szipöcs, R.

Takuma, H.

Tani, F.

Tempea, G.

M. Geissler, G. Tempea, A. Scrinzi, M. Schnürer, F. Krausz, T. Brabec, “Light propagation in field-ionizing media: extreme nonlinear optics,” Phys. Rev. Lett. 83, 2930–2933 (1999).
[Crossref]

Terent’ev, M. V.

A. M. Perelomov, V. S. Popov, M. V. Terent’ev, “Ionization of atoms in an alternating electric field,” Sov. Phys. JETP 23, 924–934 (1966).

Terry, F. L.

Tisch, J. W. G.

S. Baker, I. A. Walmsley, J. W. G. Tisch, J. P. Marangos, “Femtosecond to attosecond light pulses from a molecular modulator,” Nat. Photonics 5, 664–671 (2011).
[Crossref]

Trabattoni, A.

F. Calegari, D. Ayuso, A. Trabattoni, L. Belshaw, S. De Camillis, S. Anumula, F. Frassetto, L. Poletto, A. Palacios, P. Decleva, J. B. Greenwood, F. Martín, M. Nisoli, “Ultrafast electron dynamics in phenylalanine initiated by attosecond pulses,” Science 346, 336–339 (2014).
[Crossref]

Trabs, P.

P. Trabs, F. Noack, A. S. Aleksandrovsky, A. M. Vyunishev, A. I. Zaitsev, N. V. Radionov, V. Petrov, “Generation of fs-pulses down to 121  nm by frequency doubling using random quasi-phase-matching in strontium tetraborate,” in Proceedings of Ultrafast Optics, Davos, Switzerland (2013), paper Fr2.4.

Travers, J. C.

Trushin, S. A.

S. A. Trushin, K. Kosma, W. Fuß, W. E. Schmid, “Sub-10-fs supercontinuum radiation generated by filamentation of few-cycle 800  nm pulses in argon,” Opt. Lett. 32, 2432–2434 (2007).
[Crossref]

N. Aközbek, S. A. Trushin, A. Baltuška, W. Fuß, E. Goulielmakis, K. Kosma, F. Krausz, S. Panja, M. Uiberacker, W. E. Schmid, A. Becker, M. Scalora, M. Bloemer, “Extending the supercontinuum spectrum down to 200  nm with few-cycle pulses,” New J. Phys. 8, 177 (2006).
[Crossref]

Tunnermann, A.

C. Jauregui, J. Limpert, A. Tunnermann, “High-power fiber lasers,” Nat. Photonics 7, 861–867 (2013).
[Crossref]

Turcu, I. C. E.

I. Gierz, J. C. Petersen, M. Mitrano, C. Cacho, I. C. E. Turcu, E. Springate, A. Stöhr, A. Köhler, U. Starke, A. Cavalleri, “Snapshots of non-equilibrium Dirac carrier distributions in graphene,” Nat. Mater. 12, 1119–1124 (2013).
[Crossref]

Ueda, K.

Uiberacker, M.

N. Aközbek, S. A. Trushin, A. Baltuška, W. Fuß, E. Goulielmakis, K. Kosma, F. Krausz, S. Panja, M. Uiberacker, W. E. Schmid, A. Becker, M. Scalora, M. Bloemer, “Extending the supercontinuum spectrum down to 200  nm with few-cycle pulses,” New J. Phys. 8, 177 (2006).
[Crossref]

Underwood, J.

O. Geßner, A. Lee, J. Shaffer, H. Reisler, S. Levchenko, A. Krylov, J. Underwood, H. Shi, A. East, D. Wardlaw, E. Chrysostom, C. Hayden, A. Stolow, “Femtosecond multidimensional imaging of a molecular dissociation,” Science 311, 219–222 (2006).
[Crossref]

van Mourik, F.

C. Consani, G. Aubock, F. van Mourik, M. Chergui, “Ultrafast tryptophan-to-heme electron transfer in myoglobins revealed by UV 2D spectroscopy,” Science 339, 1586–1589 (2013).
[Crossref]

Voronin, A. A.

A. M. Zheltikov, A. A. Voronin, R. Kienberger, F. Krausz, G. Korn, “Frequency-tunable multigigawatt sub-half-cycle light pulses from coupled-state dynamics of optical solitons and impulsively driven molecular vibrations,” Phys. Rev. Lett. 105, 103901 (2010).
[Crossref]

Vyunishev, A. M.

P. Trabs, F. Noack, A. S. Aleksandrovsky, A. M. Vyunishev, A. I. Zaitsev, N. V. Radionov, V. Petrov, “Generation of fs-pulses down to 121  nm by frequency doubling using random quasi-phase-matching in strontium tetraborate,” in Proceedings of Ultrafast Optics, Davos, Switzerland (2013), paper Fr2.4.

Walmsley, I. A.

S. Baker, I. A. Walmsley, J. W. G. Tisch, J. P. Marangos, “Femtosecond to attosecond light pulses from a molecular modulator,” Nat. Photonics 5, 664–671 (2011).
[Crossref]

Walser, A. M.

Wan, Y.

Wardlaw, D.

O. Geßner, A. Lee, J. Shaffer, H. Reisler, S. Levchenko, A. Krylov, J. Underwood, H. Shi, A. East, D. Wardlaw, E. Chrysostom, C. Hayden, A. Stolow, “Femtosecond multidimensional imaging of a molecular dissociation,” Science 311, 219–222 (2006).
[Crossref]

Weber, M. J.

M. J. Weber, CRC Handbook of Laser Science and Technology Supplement 2: Optical Materials, 1st ed. (CRC Press, 1994).

Weiner, A. M.

Weiss, T.

Wiederrecht, G. P.

Windeler, R. S.

Wittmann, M.

A. Nazarkin, G. Korn, M. Wittmann, T. Elsaesser, “Generation of multiple phase-locked Stokes and anti-Stokes components in an impulsively excited Raman medium,” Phys. Rev. Lett. 83, 2560–2563 (1999).
[Crossref]

Wong, G. K. L.

N. Y. Joly, J. Nold, W. Chang, P. Hölzer, A. Nazarkin, G. K. L. Wong, F. Biancalana, P. St. J. Russell, “Bright spatially coherent wavelength-tunable deep-UV laser source using an Ar-filled photonic crystal fiber,” Phys. Rev. Lett. 106, 203901 (2011).
[Crossref]

Xia, C.

Xu, Y. Q.

M. Erkintalo, Y. Q. Xu, S. G. Murdoch, J. M. Dudley, G. Genty, “Cascaded phase matching and nonlinear symmetry breaking in fiber frequency combs,” Phys. Rev. Lett. 109, 223904 (2012).
[Crossref]

Zaitsev, A. I.

P. Trabs, F. Noack, A. S. Aleksandrovsky, A. M. Vyunishev, A. I. Zaitsev, N. V. Radionov, V. Petrov, “Generation of fs-pulses down to 121  nm by frequency doubling using random quasi-phase-matching in strontium tetraborate,” in Proceedings of Ultrafast Optics, Davos, Switzerland (2013), paper Fr2.4.

Zaitsu, S.

Zheltikov, A. M.

A. M. Zheltikov, A. A. Voronin, R. Kienberger, F. Krausz, G. Korn, “Frequency-tunable multigigawatt sub-half-cycle light pulses from coupled-state dynamics of optical solitons and impulsively driven molecular vibrations,” Phys. Rev. Lett. 105, 103901 (2010).
[Crossref]

Ziemienczuk, M.

Appl. Opt. (1)

Bell Syst. Tech. J. (1)

E. A. J. Marcatili, R. A. Schmeltzer, “Hollow metallic and dielectric waveguides for long distance optical transmission and lasers,” Bell Syst. Tech. J. 43, 1759–1782 (1964).
[Crossref]

Chem. Phys. Lett. (1)

R. A. Bartels, S. Backus, M. M. Murnane, H. C. Kapteyn, “Impulsive stimulated Raman scattering of molecular vibrations using nonlinear pulse shaping,” Chem. Phys. Lett. 374, 326–333 (2003).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

V. Petrov, F. Rotermund, F. Noack, J. Ringling, O. Kittelmann, R. Komatsu, “Frequency conversion of Ti:sapphire-based femtosecond laser systems to the 200-nm spectral region using nonlinear optical crystals,” IEEE J. Sel. Top. Quantum Electron. I5, 1532–1542 (1999).
[Crossref]

J. Am. Chem. Soc. (1)

S. P. Fodor, R. P. Rava, T. R. Hays, T. G. Spiro, “Ultraviolet resonance Raman spectroscopy of the nucleotides with 266-, 240-, 218-, and 200-nm pulsed laser excitation,” J. Am. Chem. Soc. 107, 1520–1529 (1985).
[Crossref]

J. Opt. B (1)

A. V. Sokolov, S. E. Harris, “Ultrashort pulse generation by molecular modulation,” J. Opt. B 5, R1–R26 (2003).
[Crossref]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. B (5)

Nat. Mater. (1)

I. Gierz, J. C. Petersen, M. Mitrano, C. Cacho, I. C. E. Turcu, E. Springate, A. Stöhr, A. Köhler, U. Starke, A. Cavalleri, “Snapshots of non-equilibrium Dirac carrier distributions in graphene,” Nat. Mater. 12, 1119–1124 (2013).
[Crossref]

Nat. Photonics (3)

S. Baker, I. A. Walmsley, J. W. G. Tisch, J. P. Marangos, “Femtosecond to attosecond light pulses from a molecular modulator,” Nat. Photonics 5, 664–671 (2011).
[Crossref]

P. St. J. Russell, P. Hölzer, W. Chang, A. Abdolvand, J. C. Travers, “Hollow-core photonic crystal fibers for gas-based nonlinear optics,” Nat. Photonics 8, 278–286 (2014).
[Crossref]

C. Jauregui, J. Limpert, A. Tunnermann, “High-power fiber lasers,” Nat. Photonics 7, 861–867 (2013).
[Crossref]

New J. Phys. (1)

N. Aközbek, S. A. Trushin, A. Baltuška, W. Fuß, E. Goulielmakis, K. Kosma, F. Krausz, S. Panja, M. Uiberacker, W. E. Schmid, A. Becker, M. Scalora, M. Bloemer, “Extending the supercontinuum spectrum down to 200  nm with few-cycle pulses,” New J. Phys. 8, 177 (2006).
[Crossref]

Opt. Express (4)

Opt. Lett. (9)

M. Nisoli, S. D. Silvestri, O. Svelto, R. Szipöcs, K. Ferencz, C. Spielmann, S. Sartania, F. Krausz, “Compression of high-energy laser pulses below 5  fs,” Opt. Lett. 22, 522–524 (1997).
[Crossref]

C. G. Durfee, S. Backus, H. C. Kapteyn, M. M. Murnane, “Intense 8-fs pulse generation in the deep ultraviolet,” Opt. Lett. 24, 697–699 (1999).
[Crossref]

H. Nishioka, W. Odajima, K. Ueda, H. Takuma, “Ultrabroadband flat continuum generation in multichannel propagation of terrawatt Ti:sapphire laser pulses,” Opt. Lett. 20, 2505–2507 (1995).
[Crossref]

S. A. Trushin, K. Kosma, W. Fuß, W. E. Schmid, “Sub-10-fs supercontinuum radiation generated by filamentation of few-cycle 800  nm pulses in argon,” Opt. Lett. 32, 2432–2434 (2007).
[Crossref]

C. Xia, M. Kumar, O. P. Kulkarni, M. N. Islam, F. L. Terry, M. J. Freeman, M. Poulain, G. Mazé, “Mid-infrared supercontinuum generation to 4.5  μm in ZBLAN fluoride fibers by nanosecond diode pumping,” Opt. Lett. 31, 2553–2555 (2006).
[Crossref]

J. K. Ranka, R. S. Windeler, A. J. Stentz, “Visible continuum generation in air-silica microstructure optical fibers with anomalous dispersion at 800  nm,” Opt. Lett. 25, 25–27 (2000).
[Crossref]

S. P. Stark, J. C. Travers, P. St. J. Russell, “Extreme supercontinuum generation to the deep UV,” Opt. Lett. 37, 770–772 (2012).
[Crossref]

J. Ringling, O. Kittelmann, F. Noack, G. Korn, J. Squier, “Tunable femtosecond pulses in the near vacuum ultraviolet generated by frequency conversion of amplified Ti:sapphire laser pulses,” Opt. Lett. 18, 2035–2037 (1993).
[Crossref]

A. Abdolvand, A. M. Walser, M. Ziemienczuk, T. Nguyen, P. St. J. Russell, “Generation of a phase-locked Raman frequency comb in gas-filled hollow-core photonic crystal fiber,” Opt. Lett. 37, 4362–4364 (2012).
[Crossref]

Phys. Rev. A (4)

A. Saenz, “Behavior of molecular hydrogen exposed to strong dc, ac, or low-frequency laser fields. II. Comparison of ab initio and Ammosov-Delone-Krainov rates,” Phys. Rev. A 66, 063408 (2002).
[Crossref]

V. Mizrahi, D. P. Shelton, “Nonlinear susceptibility of H2 and D2 accurately measured over a wide range of wavelengths,” Phys. Rev. A 32, 3454–3460 (1985).
[Crossref]

F. L. Kien, J. Q. Liang, M. Katsuragawa, K. Ohtsuki, K. Hakuta, A. V. Sokolov, “Subfemtosecond pulse generation with molecular coherence control in stimulated Raman scattering,” Phys. Rev. A 60, 1562–1571 (1999).
[Crossref]

W. K. Bischel, M. J. Dyer, “Temperature dependence of the Raman linewidth and line shift for the Q(1) and Q(0) transitions in normal and para-H2,” Phys. Rev. A 33, 3113–3123 (1986).
[Crossref]

Phys. Rev. E (1)

M. Kolesik, J. V. Moloney, “Nonlinear optical pulse propagation simulation: from Maxwell’s to unidirectional equations,” Phys. Rev. E 70, 036604 (2004).
[Crossref]

Phys. Rev. Lett. (12)

V. P. Kalosha, J. Herrmann, “Phase relations, quasicontinuous spectra and subfemtosecond pulses in high-order stimulated Raman scattering with short-pulse excitation,” Phys. Rev. Lett. 85, 1226–1229 (2000).
[Crossref]

A. M. Zheltikov, A. A. Voronin, R. Kienberger, F. Krausz, G. Korn, “Frequency-tunable multigigawatt sub-half-cycle light pulses from coupled-state dynamics of optical solitons and impulsively driven molecular vibrations,” Phys. Rev. Lett. 105, 103901 (2010).
[Crossref]

M. Geissler, G. Tempea, A. Scrinzi, M. Schnürer, F. Krausz, T. Brabec, “Light propagation in field-ionizing media: extreme nonlinear optics,” Phys. Rev. Lett. 83, 2930–2933 (1999).
[Crossref]

J. Muth-Böhm, A. Becker, F. H. M. Faisal, “Suppressed molecular ionization for a class of diatomics in intense femtosecond laser fields,” Phys. Rev. Lett. 85, 2280–2283 (2000).
[Crossref]

A. L. Gaeta, “Catastrophic collapse of ultrashort pulses,” Phys. Rev. Lett. 84, 3582–3585 (2000).
[Crossref]

G. Korn, O. Dühr, A. Nazarkin, “Observation of Raman self-conversion of fs-pulse frequency due to impulsive excitation of molecular vibrations,” Phys. Rev. Lett. 81, 1215–1218 (1998).
[Crossref]

A. Brodeur, S. L. Chin, “Band-gap dependence of the ultrafast white-light continuum,” Phys. Rev. Lett. 80, 4406–4409 (1998).
[Crossref]

M. Erkintalo, Y. Q. Xu, S. G. Murdoch, J. M. Dudley, G. Genty, “Cascaded phase matching and nonlinear symmetry breaking in fiber frequency combs,” Phys. Rev. Lett. 109, 223904 (2012).
[Crossref]

A. Nazarkin, G. Korn, M. Wittmann, T. Elsaesser, “Generation of multiple phase-locked Stokes and anti-Stokes components in an impulsively excited Raman medium,” Phys. Rev. Lett. 83, 2560–2563 (1999).
[Crossref]

P. Hölzer, W. Chang, J. C. Travers, A. Nazarkin, J. Nold, N. Y. Joly, M. F. Saleh, F. Biancalana, P. St. J. Russell, “Femtosecond nonlinear fiber optics in the ionization regime,” Phys. Rev. Lett. 107, 203901 (2011).
[Crossref]

N. Y. Joly, J. Nold, W. Chang, P. Hölzer, A. Nazarkin, G. K. L. Wong, F. Biancalana, P. St. J. Russell, “Bright spatially coherent wavelength-tunable deep-UV laser source using an Ar-filled photonic crystal fiber,” Phys. Rev. Lett. 106, 203901 (2011).
[Crossref]

P. B. Corkum, C. Rolland, T. Srinivasan-Rao, “Supercontinuum generation in gases,” Phys. Rev. Lett. 57, 2268–2271 (1986).
[Crossref]

Rev. Mod. Phys. (1)

J. M. Dudley, S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135–1184 (2006).
[Crossref]

Science (5)

F. Couny, F. Benabid, P. J. Roberts, P. S. Light, M. G. Raymer, “Generation and photonic guidance of multi-octave optical-frequency combs,” Science 318, 1118–1121 (2007).
[Crossref]

C. Consani, G. Aubock, F. van Mourik, M. Chergui, “Ultrafast tryptophan-to-heme electron transfer in myoglobins revealed by UV 2D spectroscopy,” Science 339, 1586–1589 (2013).
[Crossref]

F. Calegari, D. Ayuso, A. Trabattoni, L. Belshaw, S. De Camillis, S. Anumula, F. Frassetto, L. Poletto, A. Palacios, P. Decleva, J. B. Greenwood, F. Martín, M. Nisoli, “Ultrafast electron dynamics in phenylalanine initiated by attosecond pulses,” Science 346, 336–339 (2014).
[Crossref]

O. Geßner, A. Lee, J. Shaffer, H. Reisler, S. Levchenko, A. Krylov, J. Underwood, H. Shi, A. East, D. Wardlaw, E. Chrysostom, C. Hayden, A. Stolow, “Femtosecond multidimensional imaging of a molecular dissociation,” Science 311, 219–222 (2006).
[Crossref]

M. C. Downer, “A new low for nonlinear optics,” Science 298, 373–375 (2002).
[Crossref]

Sov. Phys. JETP (2)

M. V. Ammosov, N. B. Delone, V. P. Krainov, “Tunnel ionization of complex atoms and atomic ions in an electromagnetic field,” Sov. Phys. JETP 64, 1191–1196 (1986).

A. M. Perelomov, V. S. Popov, M. V. Terent’ev, “Ionization of atoms in an alternating electric field,” Sov. Phys. JETP 23, 924–934 (1966).

Other (4)

R. R. Alfano, The Supercontinuum Laser Source: Fundamentals with Updated References (Springer, 2006).

G. Herzberg, Molecular Spectra and Molecular Structure: Spectra of Diatomic Molecules, 2nd ed. (Krieger, 1989), Vol. 1.

P. Trabs, F. Noack, A. S. Aleksandrovsky, A. M. Vyunishev, A. I. Zaitsev, N. V. Radionov, V. Petrov, “Generation of fs-pulses down to 121  nm by frequency doubling using random quasi-phase-matching in strontium tetraborate,” in Proceedings of Ultrafast Optics, Davos, Switzerland (2013), paper Fr2.4.

M. J. Weber, CRC Handbook of Laser Science and Technology Supplement 2: Optical Materials, 1st ed. (CRC Press, 1994).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1. Experimental setup. (a) A kagomé-PCF is filled with hydrogen using a pair of gas cells with MgF2 windows. Ultrashort few-microjoule pulses are launched into the fiber using an achromatic lens. Two chirped mirrors compensate for pulse lengthening in air. (b) Diagnostics. Upper, the VUV spectrum is measured with an evacuated scanning monochromator equipped with a scintillator and a photomultiplier tube (PMT); lower, the UV-NIR and DUV spectra are measured by directing the beam to either a UV-NIR or a DUV CCD-based spectrometer using a UV-enhanced optical fiber and a parabolic mirror. Before entering the spectrometer fiber, the signal is attenuated by multiple reflections from several glass wedges. (c) Scanning electron micrograph of cross section of the kagomé-PCF. (d) Experimentally measured loss curve for the kagomé-PCF used in the experiments. (e) Left-hand axis, calculated group velocity dispersion β2 plotted against wavelength (lower axis) for an evacuated fiber (light blue) and a fiber filled with hydrogen at 5 bar pressure (dark blue); right-hand axis, hydrogen pressure needed to produce a given zero-dispersion wavelength (lower axis). (f) Experiment: supercontinuum spectrum generated by pulses of duration 30 fs, center wavelength 805 nm, and energy 2.5 μJ after propagation along 15 cm of kagomé-PCF filled with hydrogen at 5 bar. The spectra were obtained using three different spectrometers as indicated. The frequency-scaled spectral energy density S(ν) (obtained from the measured wavelength-scaled spectral energy density σ(λ) through S(ν)=σ(λ)λ2/c) is normalized to its value at the peak of the spectrum (1.45 eV). The strong peak at 6.8eV (182 nm) is caused by dispersive wave generation [19]. Inset: supercontinuum spectra in the IR for increasing launched pulse energy (marked on plot), measured using an uncalibrated fiber-based spectrometer. (g) Spectral energy density in (f) recalibrated in terms of wavelength σ(λ) (solid black line). Note a drop of only 8 dB for the dispersive wave peak at 182 nm compared to the pump at 805 nm. The dashed gray line shows the initial spectrum of the pump as measured at 50 nJ and before experiencing extreme spectral broadening.
Fig. 2.
Fig. 2. Experimental VUV spectra recorded when a 15 cm long kagomé-PCF was filled with (a) hydrogen at 5 bar and pumped with 2.5 μJ pulses and (b), (c) argon at 4 bar and pumped with pulses of energies 2.4 and 3.1 μJ. (d), (e) Experimental VUV spectra recorded for a 25 cm long kagomé-PCF filled with (d) hydrogen and (e) deuterium at 5 bar and pumped with 2.5 μJ pulses. The dashed lines show the position of the dispersive wave (DW, black) in each case. The shaded bars, corresponding to manifolds of rotational–vibrational transitions, mark the expected positions of the first Stokes (S1) and higher-order anti-Stokes lines (ASn, n=1, 2, 3, blue) for a pump at the dispersive wave position.
Fig. 3.
Fig. 3. Illustrating the different regimes of Raman scattering. The pulse intensity profiles (right-hand axis) and Raman index modulation (left-hand axis) are plotted against time delay in units of the Raman oscillation period Tm=8fs. (a) Instantaneous Kerr-like response when the pulse duration (25 fs) is much longer than the Raman oscillation period. (b) Impulsive Raman scattering when a very short (4 fs) pulse impinges on the gas, exciting a strong Raman-related index oscillation at 125 THz. The positive index slope under the pulse red-shifts its frequency. (c) Raman oscillations created when a long (25 fs) pulse is reshaped by self-steepening, resulting in a very fast feature (indicated by the arrow) that is able to impulsively drive the Raman oscillations.
Fig. 4.
Fig. 4. Numerical simulations and experiment. (a) Calculated spectral evolution along the fiber at 5 bar hydrogen for input pulse energy 2.5 μJ and duration 30 fs. At 10cm the pulse has compressed to a duration of 3fs. Third and fifth harmonics are also visible. The dotted vertical line marks the position of the zero-dispersion wavelength (446 nm). The dashed arrow on the left indicates the initial red-shift due to impulsive rotational Raman modulation, while the solid arrows indicate the expected positions of first and second vibrational anti-Stokes lines of a narrow-band 805 nm pump. (b) Comparison between experiment and simulation at 1.7 μJ. When the Raman contribution is turned off the simulations fail to predict the observations. (c) Experimentally observed spectral broadening of the pump pulse with increasing pump pulse energy (solid lines), and the corresponding simulated results (dotted lines) show very good agreement. (d)–(g) Numerical simulations of the envelope of the optical intensity (black line) together with the rotational (red) and vibrational (blue) coherence waves at four different positions along the propagation. The corresponding positions are marked on the vertical axis of the propagation plot in (a).

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

nnm(λ)=[ngas2(λ)(unmλ/(2πa))2]1/2,
PR(k)=NgTr[ρ^(k)α^(k)]=Ng[α11(k)+(α22(k)α11(k))ρ22(k)+2α12(k)Re(ρ12(k))]E,
(t+1/T2(k)iΩk)ρ12(k)=i2[(α11(k)α22(k))ρ12(k)+α12(k)w(k)]E2,
tw(k)+w(k)+1T1(k)=2α12(k)Im{ρ12(k)}E2,

Metrics