Abstract

Two photons can simultaneously share entanglement between several degrees of freedom such as polarization, energy-time, spatial mode, and orbital angular momentum. This resource is known as hyperentanglement, and it has been shown to be an important tool for optical quantum information processing. Here we demonstrate the quantum storage and retrieval of photonic hyperentanglement in a solid-state quantum memory. A pair of photons entangled in polarization and energy-time is generated such that one photon is stored in the quantum memory, while the other photon has a telecommunication wavelength suitable for transmission in optical fiber. We measured violations of a Clauser–Horne–Shimony–Holt Bell inequality for each degree of freedom, independently of the other one, which proves the successful storage and retrieval of the two bits of entanglement shared by the photons. Our scheme is compatible with long-distance quantum communication in optical fiber, and is in particular suitable for linear-optical entanglement purification for quantum repeaters.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Complete hyperentangled-Bell-state analysis for photon systems assisted by quantum-dot spins in optical microcavities

Bao-Cang Ren, Hai-Rui Wei, Ming Hua, Tao Li, and Fu-Guo Deng
Opt. Express 20(22) 24664-24677 (2012)

Hyperentanglement purification using imperfect spatial entanglement

Tie-Jun Wang, Si-Chen Mi, and Chuan Wang
Opt. Express 25(3) 2969-2982 (2017)

References

  • View by:
  • |
  • |
  • |

  1. P. G. Kwiat, “Hyper-entangled states,” J. Mod. Opt. 44, 2173–2184 (1997).
    [Crossref]
  2. J. T. Barreiro, N. K. Langford, N. A. Peters, P. G. Kwiat, “Generation of hyperentangled photon pairs,” Phys. Rev. Lett. 95, 260501 (2005).
    [Crossref]
  3. M. Barbieri, C. Cinelli, P. Mataloni, F. De Martini, “Polarization-momentum hyperentangled states: realization and characterization,” Phys. Rev. A 72, 052110 (2005).
    [Crossref]
  4. J.-W. Pan, Z.-B. Chen, C.-Y. Lu, H. Weinfurter, A. Zeilinger, M. Z. Żukowski, “Multiphoton entanglement and interferometry,” Rev. Mod. Phys. 84, 777–838 (2012).
    [Crossref]
  5. P. G. Kwiat, H. Weinfurter, “Embedded Bell-state analysis,” Phys. Rev. A 58, R2623–R2626 (1998).
    [Crossref]
  6. S. P. Walborn, S. Pádua, C. H. Monken, “Hyperentanglement-assisted Bell-state analysis,” Phys. Rev. A 68, 042313 (2003).
    [Crossref]
  7. C. Schuck, G. Huber, C. Kurtsiefer, H. Weinfurter, “Complete deterministic linear optics Bell state analysis,” Phys. Rev. Lett. 96, 190501 (2006).
    [Crossref]
  8. D. Boschi, S. Branca, F. De Martini, L. Hardy, S. Popescu, “Experimental realization of teleporting an unknown pure quantum state via dual classical and Einstein–Podolsky–Rosen channels,” Phys. Rev. Lett. 80, 1121–1125 (1998).
    [Crossref]
  9. Y.-H. Kim, S. P. Kulik, Y. Shih, “Quantum teleportation of a polarization state with a complete Bell state measurement,” Phys. Rev. Lett. 86, 1370–1373 (2001).
    [Crossref]
  10. C. Schmid, N. Kiesel, U. K. Weber, R. Ursin, A. Zeilinger, H. Weinfurter, “Quantum teleportation and entanglement swapping with linear optics logic gates,” New J. Phys. 11, 033008 (2009).
    [Crossref]
  11. J. T. Barreiro, T.-C. Wei, P. G. Kwiat, “Beating the channel capacity limit for linear photonic superdense coding,” Nat. Phys. 4, 282–286 (2008).
    [Crossref]
  12. Z.-B. Chen, J.-W. Pan, Y.-D. Zhang, Č. Brukner, A. Zeilinger, “All-versus-nothing violation of local realism for two entangled photons,” Phys. Rev. Lett. 90, 160408 (2003).
    [Crossref]
  13. K. Chen, C.-M. Li, Q. Zhang, Y.-A. Chen, A. Goebel, S. Chen, A. Mair, J.-W. Pan, “Experimental realization of one-way quantum computing with two-photon four-qubit cluster states,” Phys. Rev. Lett. 99, 120503 (2007).
    [Crossref]
  14. G. Vallone, G. Donati, R. Ceccarelli, P. Mataloni, “Six-qubit two-photon hyperentangled cluster states: characterization and application to quantum computation,” Phys. Rev. A 81, 052301 (2010).
    [Crossref]
  15. W.-B. Gao, C.-Y. Lu, X.-C. Yao, P. Xu, O. Guhne, A. Goebel, Y.-A. Chen, C.-Z. Peng, Z.-B. Chen, J.-W. Pan, “Experimental demonstration of a hyper-entangled ten-qubit Schrodinger cat state,” Nat. Phys. 6, 331–335 (2010).
    [Crossref]
  16. X.-F. Xu, X.-H. Bao, J.-W. Pan, “Demonstration of active feedforward one-way quantum computing with photon-matter hyperentanglement,” Phys. Rev. A 86, 050304 (2012).
    [Crossref]
  17. C. Simon, J.-W. Pan, “Polarization entanglement purification using spatial entanglement,” Phys. Rev. Lett. 89, 257901 (2002).
    [Crossref]
  18. H.-J. Briegel, W. Dür, J. I. Cirac, P. Zoller, “Quantum repeaters: the role of imperfect local operations in quantum communication,” Phys. Rev. Lett. 81, 5932–5935 (1998).
    [Crossref]
  19. L.-M. Duan, M. D. Lukin, J. I. Cirac, P. Zoller, “Long-distance quantum communication with atomic ensembles and linear optics,” Nature 414, 413–418 (2001).
    [Crossref]
  20. J.-W. Pan, S. Gasparoni, R. Ursin, G. Weihs, A. Zeilinger, “Experimental entanglement purification of arbitrary unknown states,” Nature 423, 417–422 (2003).
    [Crossref]
  21. P. Walther, K. J. Resch, I. C. V. Brukner, A. M. Steinberg, J.-W. Pan, A. Zeilinger, “Quantum nonlocality obtained from local states by entanglement purification,” Phys. Rev. Lett. 94, 040504 (2005).
    [Crossref]
  22. C. Clausen, F. Bussières, A. Tiranov, H. Herrmann, C. Silberhorn, W. Sohler, M. Afzelius, N. Gisin, “A source of polarization-entangled photon pairs interfacing quantum memories with telecom photons,” New J. Phys. 16, 093058 (2014).
    [Crossref]
  23. J. D. Franson, “Bell inequality for position and time,” Phys. Rev. Lett. 62, 2205–2208 (1989).
    [Crossref]
  24. V. B. Verma, B. Korzh, F. Bussières, R. D. Horansky, A. E. Lita, F. Marsili, M. D. Shaw, H. Zbinden, R. P. Mirin, S. W. Nam, “High-efficiency WSi superconducting nanowire single-photon detectors operating at 2.5 K,” Appl. Phys. Lett. 105, 122601 (2014).
    [Crossref]
  25. M. Afzelius, C. Simon, H. de Riedmatten, N. Gisin, “Multimode quantum memory based on atomic frequency combs,” Phys. Rev. A 79, 052329 (2009).
    [Crossref]
  26. I. Usmani, M. Afzelius, H. de Riedmatten, N. Gisin, “Mapping multiple photonic qubits into and out of one solid-state atomic ensemble,” Nat. Commun. 1, 1 (2010).
    [Crossref]
  27. C. Clausen, I. Usmani, F. Bussieres, N. Sangouard, M. Afzelius, H. de Riedmatten, N. Gisin, “Quantum storage of photonic entanglement in a crystal,” Nature 469, 508–511 (2011).
    [Crossref]
  28. E. Saglamyurek, N. Sinclair, J. Jin, J. A. Slater, D. Oblak, F. Bussières, M. George, R. Ricken, W. Sohler, W. Tittel, “Broadband waveguide quantum memory for entangled photons,” Nature 469, 512–515 (2011).
    [Crossref]
  29. M. Bonarota, J. Ruggiero, J.-L. Le Gouët, T. Chanelière, “Efficiency optimization for atomic frequency comb storage,” Phys. Rev. A 81, 033803 (2010).
    [Crossref]
  30. C. Clausen, F. Bussières, M. Afzelius, N. Gisin, “Quantum storage of heralded polarization qubits in birefringent and anisotropically absorbing materials,” Phys. Rev. Lett. 108, 190503 (2012).
    [Crossref]
  31. M. Gündoğan, P. M. Ledingham, A. Almasi, M. Cristiani, H. de Riedmatten, “Quantum storage of a photonic polarization qubit in a solid,” Phys. Rev. Lett. 108, 190504 (2012).
    [Crossref]
  32. Z.-Q. Zhou, W.-B. Lin, M. Yang, C.-F. Li, G.-C. Guo, “Realization of reliable solid-state quantum memory for photonic polarization qubit,” Phys. Rev. Lett. 108, 190505 (2012).
    [Crossref]
  33. M. Afzelius, M. U. Staudt, H. de Riedmatten, N. Gisin, O. Guillot-Noel, P. Goldner, R. Marino, P. Porcher, E. Cavalli, M. Bettinelli, “Efficient optical pumping of Zeeman spin levels in Nd3+:YVO4,” J. Lumin. 130, 1566–1571 (2010).
    [Crossref]
  34. J. F. Clauser, M. A. Horne, A. Shimony, R. A. Holt, “Proposed experiment to test local hidden-variable theories,” Phys. Rev. Lett. 23, 880–884 (1969).
    [Crossref]
  35. R. F. Werner, “Quantum states with Einstein–Podolsky–Rosen correlations admitting a hidden-variable model,” Phys. Rev. A 40, 4277–4281 (1989).
    [Crossref]
  36. I. Usmani, C. Clausen, F. Bussières, N. Sangouard, M. Afzelius, N. Gisin, “Heralded quantum entanglement between two crystals,” Nat. Photonics 6, 234–237 (2012).
    [Crossref]
  37. N. Timoney, I. Usmani, P. Jobez, M. Afzelius, N. Gisin, “Single-photon-level optical storage in a solid-state spin-wave memory,” Phys. Rev. A 88, 022324 (2013).
    [Crossref]
  38. N. Sinclair, E. Saglamyurek, H. Mallahzadeh, J. H. Slater, M. George, R. Ricken, M. P. Hedges, D. Oblak, C. Simon, W. Sohler, W. Tittel, “Spectral multiplexing for scalable quantum photonics using an atomic frequency comb quantum memory and feed-forward control,” Phys. Rev. Lett. 113, 053603 (2014).
    [Crossref]

2014 (3)

C. Clausen, F. Bussières, A. Tiranov, H. Herrmann, C. Silberhorn, W. Sohler, M. Afzelius, N. Gisin, “A source of polarization-entangled photon pairs interfacing quantum memories with telecom photons,” New J. Phys. 16, 093058 (2014).
[Crossref]

V. B. Verma, B. Korzh, F. Bussières, R. D. Horansky, A. E. Lita, F. Marsili, M. D. Shaw, H. Zbinden, R. P. Mirin, S. W. Nam, “High-efficiency WSi superconducting nanowire single-photon detectors operating at 2.5 K,” Appl. Phys. Lett. 105, 122601 (2014).
[Crossref]

N. Sinclair, E. Saglamyurek, H. Mallahzadeh, J. H. Slater, M. George, R. Ricken, M. P. Hedges, D. Oblak, C. Simon, W. Sohler, W. Tittel, “Spectral multiplexing for scalable quantum photonics using an atomic frequency comb quantum memory and feed-forward control,” Phys. Rev. Lett. 113, 053603 (2014).
[Crossref]

2013 (1)

N. Timoney, I. Usmani, P. Jobez, M. Afzelius, N. Gisin, “Single-photon-level optical storage in a solid-state spin-wave memory,” Phys. Rev. A 88, 022324 (2013).
[Crossref]

2012 (6)

C. Clausen, F. Bussières, M. Afzelius, N. Gisin, “Quantum storage of heralded polarization qubits in birefringent and anisotropically absorbing materials,” Phys. Rev. Lett. 108, 190503 (2012).
[Crossref]

M. Gündoğan, P. M. Ledingham, A. Almasi, M. Cristiani, H. de Riedmatten, “Quantum storage of a photonic polarization qubit in a solid,” Phys. Rev. Lett. 108, 190504 (2012).
[Crossref]

Z.-Q. Zhou, W.-B. Lin, M. Yang, C.-F. Li, G.-C. Guo, “Realization of reliable solid-state quantum memory for photonic polarization qubit,” Phys. Rev. Lett. 108, 190505 (2012).
[Crossref]

I. Usmani, C. Clausen, F. Bussières, N. Sangouard, M. Afzelius, N. Gisin, “Heralded quantum entanglement between two crystals,” Nat. Photonics 6, 234–237 (2012).
[Crossref]

J.-W. Pan, Z.-B. Chen, C.-Y. Lu, H. Weinfurter, A. Zeilinger, M. Z. Żukowski, “Multiphoton entanglement and interferometry,” Rev. Mod. Phys. 84, 777–838 (2012).
[Crossref]

X.-F. Xu, X.-H. Bao, J.-W. Pan, “Demonstration of active feedforward one-way quantum computing with photon-matter hyperentanglement,” Phys. Rev. A 86, 050304 (2012).
[Crossref]

2011 (2)

C. Clausen, I. Usmani, F. Bussieres, N. Sangouard, M. Afzelius, H. de Riedmatten, N. Gisin, “Quantum storage of photonic entanglement in a crystal,” Nature 469, 508–511 (2011).
[Crossref]

E. Saglamyurek, N. Sinclair, J. Jin, J. A. Slater, D. Oblak, F. Bussières, M. George, R. Ricken, W. Sohler, W. Tittel, “Broadband waveguide quantum memory for entangled photons,” Nature 469, 512–515 (2011).
[Crossref]

2010 (5)

M. Bonarota, J. Ruggiero, J.-L. Le Gouët, T. Chanelière, “Efficiency optimization for atomic frequency comb storage,” Phys. Rev. A 81, 033803 (2010).
[Crossref]

M. Afzelius, M. U. Staudt, H. de Riedmatten, N. Gisin, O. Guillot-Noel, P. Goldner, R. Marino, P. Porcher, E. Cavalli, M. Bettinelli, “Efficient optical pumping of Zeeman spin levels in Nd3+:YVO4,” J. Lumin. 130, 1566–1571 (2010).
[Crossref]

I. Usmani, M. Afzelius, H. de Riedmatten, N. Gisin, “Mapping multiple photonic qubits into and out of one solid-state atomic ensemble,” Nat. Commun. 1, 1 (2010).
[Crossref]

G. Vallone, G. Donati, R. Ceccarelli, P. Mataloni, “Six-qubit two-photon hyperentangled cluster states: characterization and application to quantum computation,” Phys. Rev. A 81, 052301 (2010).
[Crossref]

W.-B. Gao, C.-Y. Lu, X.-C. Yao, P. Xu, O. Guhne, A. Goebel, Y.-A. Chen, C.-Z. Peng, Z.-B. Chen, J.-W. Pan, “Experimental demonstration of a hyper-entangled ten-qubit Schrodinger cat state,” Nat. Phys. 6, 331–335 (2010).
[Crossref]

2009 (2)

C. Schmid, N. Kiesel, U. K. Weber, R. Ursin, A. Zeilinger, H. Weinfurter, “Quantum teleportation and entanglement swapping with linear optics logic gates,” New J. Phys. 11, 033008 (2009).
[Crossref]

M. Afzelius, C. Simon, H. de Riedmatten, N. Gisin, “Multimode quantum memory based on atomic frequency combs,” Phys. Rev. A 79, 052329 (2009).
[Crossref]

2008 (1)

J. T. Barreiro, T.-C. Wei, P. G. Kwiat, “Beating the channel capacity limit for linear photonic superdense coding,” Nat. Phys. 4, 282–286 (2008).
[Crossref]

2007 (1)

K. Chen, C.-M. Li, Q. Zhang, Y.-A. Chen, A. Goebel, S. Chen, A. Mair, J.-W. Pan, “Experimental realization of one-way quantum computing with two-photon four-qubit cluster states,” Phys. Rev. Lett. 99, 120503 (2007).
[Crossref]

2006 (1)

C. Schuck, G. Huber, C. Kurtsiefer, H. Weinfurter, “Complete deterministic linear optics Bell state analysis,” Phys. Rev. Lett. 96, 190501 (2006).
[Crossref]

2005 (3)

J. T. Barreiro, N. K. Langford, N. A. Peters, P. G. Kwiat, “Generation of hyperentangled photon pairs,” Phys. Rev. Lett. 95, 260501 (2005).
[Crossref]

M. Barbieri, C. Cinelli, P. Mataloni, F. De Martini, “Polarization-momentum hyperentangled states: realization and characterization,” Phys. Rev. A 72, 052110 (2005).
[Crossref]

P. Walther, K. J. Resch, I. C. V. Brukner, A. M. Steinberg, J.-W. Pan, A. Zeilinger, “Quantum nonlocality obtained from local states by entanglement purification,” Phys. Rev. Lett. 94, 040504 (2005).
[Crossref]

2003 (3)

J.-W. Pan, S. Gasparoni, R. Ursin, G. Weihs, A. Zeilinger, “Experimental entanglement purification of arbitrary unknown states,” Nature 423, 417–422 (2003).
[Crossref]

S. P. Walborn, S. Pádua, C. H. Monken, “Hyperentanglement-assisted Bell-state analysis,” Phys. Rev. A 68, 042313 (2003).
[Crossref]

Z.-B. Chen, J.-W. Pan, Y.-D. Zhang, Č. Brukner, A. Zeilinger, “All-versus-nothing violation of local realism for two entangled photons,” Phys. Rev. Lett. 90, 160408 (2003).
[Crossref]

2002 (1)

C. Simon, J.-W. Pan, “Polarization entanglement purification using spatial entanglement,” Phys. Rev. Lett. 89, 257901 (2002).
[Crossref]

2001 (2)

Y.-H. Kim, S. P. Kulik, Y. Shih, “Quantum teleportation of a polarization state with a complete Bell state measurement,” Phys. Rev. Lett. 86, 1370–1373 (2001).
[Crossref]

L.-M. Duan, M. D. Lukin, J. I. Cirac, P. Zoller, “Long-distance quantum communication with atomic ensembles and linear optics,” Nature 414, 413–418 (2001).
[Crossref]

1998 (3)

H.-J. Briegel, W. Dür, J. I. Cirac, P. Zoller, “Quantum repeaters: the role of imperfect local operations in quantum communication,” Phys. Rev. Lett. 81, 5932–5935 (1998).
[Crossref]

D. Boschi, S. Branca, F. De Martini, L. Hardy, S. Popescu, “Experimental realization of teleporting an unknown pure quantum state via dual classical and Einstein–Podolsky–Rosen channels,” Phys. Rev. Lett. 80, 1121–1125 (1998).
[Crossref]

P. G. Kwiat, H. Weinfurter, “Embedded Bell-state analysis,” Phys. Rev. A 58, R2623–R2626 (1998).
[Crossref]

1997 (1)

P. G. Kwiat, “Hyper-entangled states,” J. Mod. Opt. 44, 2173–2184 (1997).
[Crossref]

1989 (2)

J. D. Franson, “Bell inequality for position and time,” Phys. Rev. Lett. 62, 2205–2208 (1989).
[Crossref]

R. F. Werner, “Quantum states with Einstein–Podolsky–Rosen correlations admitting a hidden-variable model,” Phys. Rev. A 40, 4277–4281 (1989).
[Crossref]

1969 (1)

J. F. Clauser, M. A. Horne, A. Shimony, R. A. Holt, “Proposed experiment to test local hidden-variable theories,” Phys. Rev. Lett. 23, 880–884 (1969).
[Crossref]

Afzelius, M.

C. Clausen, F. Bussières, A. Tiranov, H. Herrmann, C. Silberhorn, W. Sohler, M. Afzelius, N. Gisin, “A source of polarization-entangled photon pairs interfacing quantum memories with telecom photons,” New J. Phys. 16, 093058 (2014).
[Crossref]

N. Timoney, I. Usmani, P. Jobez, M. Afzelius, N. Gisin, “Single-photon-level optical storage in a solid-state spin-wave memory,” Phys. Rev. A 88, 022324 (2013).
[Crossref]

C. Clausen, F. Bussières, M. Afzelius, N. Gisin, “Quantum storage of heralded polarization qubits in birefringent and anisotropically absorbing materials,” Phys. Rev. Lett. 108, 190503 (2012).
[Crossref]

I. Usmani, C. Clausen, F. Bussières, N. Sangouard, M. Afzelius, N. Gisin, “Heralded quantum entanglement between two crystals,” Nat. Photonics 6, 234–237 (2012).
[Crossref]

C. Clausen, I. Usmani, F. Bussieres, N. Sangouard, M. Afzelius, H. de Riedmatten, N. Gisin, “Quantum storage of photonic entanglement in a crystal,” Nature 469, 508–511 (2011).
[Crossref]

M. Afzelius, M. U. Staudt, H. de Riedmatten, N. Gisin, O. Guillot-Noel, P. Goldner, R. Marino, P. Porcher, E. Cavalli, M. Bettinelli, “Efficient optical pumping of Zeeman spin levels in Nd3+:YVO4,” J. Lumin. 130, 1566–1571 (2010).
[Crossref]

I. Usmani, M. Afzelius, H. de Riedmatten, N. Gisin, “Mapping multiple photonic qubits into and out of one solid-state atomic ensemble,” Nat. Commun. 1, 1 (2010).
[Crossref]

M. Afzelius, C. Simon, H. de Riedmatten, N. Gisin, “Multimode quantum memory based on atomic frequency combs,” Phys. Rev. A 79, 052329 (2009).
[Crossref]

Almasi, A.

M. Gündoğan, P. M. Ledingham, A. Almasi, M. Cristiani, H. de Riedmatten, “Quantum storage of a photonic polarization qubit in a solid,” Phys. Rev. Lett. 108, 190504 (2012).
[Crossref]

Bao, X.-H.

X.-F. Xu, X.-H. Bao, J.-W. Pan, “Demonstration of active feedforward one-way quantum computing with photon-matter hyperentanglement,” Phys. Rev. A 86, 050304 (2012).
[Crossref]

Barbieri, M.

M. Barbieri, C. Cinelli, P. Mataloni, F. De Martini, “Polarization-momentum hyperentangled states: realization and characterization,” Phys. Rev. A 72, 052110 (2005).
[Crossref]

Barreiro, J. T.

J. T. Barreiro, T.-C. Wei, P. G. Kwiat, “Beating the channel capacity limit for linear photonic superdense coding,” Nat. Phys. 4, 282–286 (2008).
[Crossref]

J. T. Barreiro, N. K. Langford, N. A. Peters, P. G. Kwiat, “Generation of hyperentangled photon pairs,” Phys. Rev. Lett. 95, 260501 (2005).
[Crossref]

Bettinelli, M.

M. Afzelius, M. U. Staudt, H. de Riedmatten, N. Gisin, O. Guillot-Noel, P. Goldner, R. Marino, P. Porcher, E. Cavalli, M. Bettinelli, “Efficient optical pumping of Zeeman spin levels in Nd3+:YVO4,” J. Lumin. 130, 1566–1571 (2010).
[Crossref]

Bonarota, M.

M. Bonarota, J. Ruggiero, J.-L. Le Gouët, T. Chanelière, “Efficiency optimization for atomic frequency comb storage,” Phys. Rev. A 81, 033803 (2010).
[Crossref]

Boschi, D.

D. Boschi, S. Branca, F. De Martini, L. Hardy, S. Popescu, “Experimental realization of teleporting an unknown pure quantum state via dual classical and Einstein–Podolsky–Rosen channels,” Phys. Rev. Lett. 80, 1121–1125 (1998).
[Crossref]

Branca, S.

D. Boschi, S. Branca, F. De Martini, L. Hardy, S. Popescu, “Experimental realization of teleporting an unknown pure quantum state via dual classical and Einstein–Podolsky–Rosen channels,” Phys. Rev. Lett. 80, 1121–1125 (1998).
[Crossref]

Briegel, H.-J.

H.-J. Briegel, W. Dür, J. I. Cirac, P. Zoller, “Quantum repeaters: the role of imperfect local operations in quantum communication,” Phys. Rev. Lett. 81, 5932–5935 (1998).
[Crossref]

Brukner, C.

Z.-B. Chen, J.-W. Pan, Y.-D. Zhang, Č. Brukner, A. Zeilinger, “All-versus-nothing violation of local realism for two entangled photons,” Phys. Rev. Lett. 90, 160408 (2003).
[Crossref]

Brukner, I. C. V.

P. Walther, K. J. Resch, I. C. V. Brukner, A. M. Steinberg, J.-W. Pan, A. Zeilinger, “Quantum nonlocality obtained from local states by entanglement purification,” Phys. Rev. Lett. 94, 040504 (2005).
[Crossref]

Bussieres, F.

C. Clausen, I. Usmani, F. Bussieres, N. Sangouard, M. Afzelius, H. de Riedmatten, N. Gisin, “Quantum storage of photonic entanglement in a crystal,” Nature 469, 508–511 (2011).
[Crossref]

Bussières, F.

V. B. Verma, B. Korzh, F. Bussières, R. D. Horansky, A. E. Lita, F. Marsili, M. D. Shaw, H. Zbinden, R. P. Mirin, S. W. Nam, “High-efficiency WSi superconducting nanowire single-photon detectors operating at 2.5 K,” Appl. Phys. Lett. 105, 122601 (2014).
[Crossref]

C. Clausen, F. Bussières, A. Tiranov, H. Herrmann, C. Silberhorn, W. Sohler, M. Afzelius, N. Gisin, “A source of polarization-entangled photon pairs interfacing quantum memories with telecom photons,” New J. Phys. 16, 093058 (2014).
[Crossref]

I. Usmani, C. Clausen, F. Bussières, N. Sangouard, M. Afzelius, N. Gisin, “Heralded quantum entanglement between two crystals,” Nat. Photonics 6, 234–237 (2012).
[Crossref]

C. Clausen, F. Bussières, M. Afzelius, N. Gisin, “Quantum storage of heralded polarization qubits in birefringent and anisotropically absorbing materials,” Phys. Rev. Lett. 108, 190503 (2012).
[Crossref]

E. Saglamyurek, N. Sinclair, J. Jin, J. A. Slater, D. Oblak, F. Bussières, M. George, R. Ricken, W. Sohler, W. Tittel, “Broadband waveguide quantum memory for entangled photons,” Nature 469, 512–515 (2011).
[Crossref]

Cavalli, E.

M. Afzelius, M. U. Staudt, H. de Riedmatten, N. Gisin, O. Guillot-Noel, P. Goldner, R. Marino, P. Porcher, E. Cavalli, M. Bettinelli, “Efficient optical pumping of Zeeman spin levels in Nd3+:YVO4,” J. Lumin. 130, 1566–1571 (2010).
[Crossref]

Ceccarelli, R.

G. Vallone, G. Donati, R. Ceccarelli, P. Mataloni, “Six-qubit two-photon hyperentangled cluster states: characterization and application to quantum computation,” Phys. Rev. A 81, 052301 (2010).
[Crossref]

Chanelière, T.

M. Bonarota, J. Ruggiero, J.-L. Le Gouët, T. Chanelière, “Efficiency optimization for atomic frequency comb storage,” Phys. Rev. A 81, 033803 (2010).
[Crossref]

Chen, K.

K. Chen, C.-M. Li, Q. Zhang, Y.-A. Chen, A. Goebel, S. Chen, A. Mair, J.-W. Pan, “Experimental realization of one-way quantum computing with two-photon four-qubit cluster states,” Phys. Rev. Lett. 99, 120503 (2007).
[Crossref]

Chen, S.

K. Chen, C.-M. Li, Q. Zhang, Y.-A. Chen, A. Goebel, S. Chen, A. Mair, J.-W. Pan, “Experimental realization of one-way quantum computing with two-photon four-qubit cluster states,” Phys. Rev. Lett. 99, 120503 (2007).
[Crossref]

Chen, Y.-A.

W.-B. Gao, C.-Y. Lu, X.-C. Yao, P. Xu, O. Guhne, A. Goebel, Y.-A. Chen, C.-Z. Peng, Z.-B. Chen, J.-W. Pan, “Experimental demonstration of a hyper-entangled ten-qubit Schrodinger cat state,” Nat. Phys. 6, 331–335 (2010).
[Crossref]

K. Chen, C.-M. Li, Q. Zhang, Y.-A. Chen, A. Goebel, S. Chen, A. Mair, J.-W. Pan, “Experimental realization of one-way quantum computing with two-photon four-qubit cluster states,” Phys. Rev. Lett. 99, 120503 (2007).
[Crossref]

Chen, Z.-B.

J.-W. Pan, Z.-B. Chen, C.-Y. Lu, H. Weinfurter, A. Zeilinger, M. Z. Żukowski, “Multiphoton entanglement and interferometry,” Rev. Mod. Phys. 84, 777–838 (2012).
[Crossref]

W.-B. Gao, C.-Y. Lu, X.-C. Yao, P. Xu, O. Guhne, A. Goebel, Y.-A. Chen, C.-Z. Peng, Z.-B. Chen, J.-W. Pan, “Experimental demonstration of a hyper-entangled ten-qubit Schrodinger cat state,” Nat. Phys. 6, 331–335 (2010).
[Crossref]

Z.-B. Chen, J.-W. Pan, Y.-D. Zhang, Č. Brukner, A. Zeilinger, “All-versus-nothing violation of local realism for two entangled photons,” Phys. Rev. Lett. 90, 160408 (2003).
[Crossref]

Cinelli, C.

M. Barbieri, C. Cinelli, P. Mataloni, F. De Martini, “Polarization-momentum hyperentangled states: realization and characterization,” Phys. Rev. A 72, 052110 (2005).
[Crossref]

Cirac, J. I.

L.-M. Duan, M. D. Lukin, J. I. Cirac, P. Zoller, “Long-distance quantum communication with atomic ensembles and linear optics,” Nature 414, 413–418 (2001).
[Crossref]

H.-J. Briegel, W. Dür, J. I. Cirac, P. Zoller, “Quantum repeaters: the role of imperfect local operations in quantum communication,” Phys. Rev. Lett. 81, 5932–5935 (1998).
[Crossref]

Clausen, C.

C. Clausen, F. Bussières, A. Tiranov, H. Herrmann, C. Silberhorn, W. Sohler, M. Afzelius, N. Gisin, “A source of polarization-entangled photon pairs interfacing quantum memories with telecom photons,” New J. Phys. 16, 093058 (2014).
[Crossref]

C. Clausen, F. Bussières, M. Afzelius, N. Gisin, “Quantum storage of heralded polarization qubits in birefringent and anisotropically absorbing materials,” Phys. Rev. Lett. 108, 190503 (2012).
[Crossref]

I. Usmani, C. Clausen, F. Bussières, N. Sangouard, M. Afzelius, N. Gisin, “Heralded quantum entanglement between two crystals,” Nat. Photonics 6, 234–237 (2012).
[Crossref]

C. Clausen, I. Usmani, F. Bussieres, N. Sangouard, M. Afzelius, H. de Riedmatten, N. Gisin, “Quantum storage of photonic entanglement in a crystal,” Nature 469, 508–511 (2011).
[Crossref]

Clauser, J. F.

J. F. Clauser, M. A. Horne, A. Shimony, R. A. Holt, “Proposed experiment to test local hidden-variable theories,” Phys. Rev. Lett. 23, 880–884 (1969).
[Crossref]

Cristiani, M.

M. Gündoğan, P. M. Ledingham, A. Almasi, M. Cristiani, H. de Riedmatten, “Quantum storage of a photonic polarization qubit in a solid,” Phys. Rev. Lett. 108, 190504 (2012).
[Crossref]

De Martini, F.

M. Barbieri, C. Cinelli, P. Mataloni, F. De Martini, “Polarization-momentum hyperentangled states: realization and characterization,” Phys. Rev. A 72, 052110 (2005).
[Crossref]

D. Boschi, S. Branca, F. De Martini, L. Hardy, S. Popescu, “Experimental realization of teleporting an unknown pure quantum state via dual classical and Einstein–Podolsky–Rosen channels,” Phys. Rev. Lett. 80, 1121–1125 (1998).
[Crossref]

de Riedmatten, H.

M. Gündoğan, P. M. Ledingham, A. Almasi, M. Cristiani, H. de Riedmatten, “Quantum storage of a photonic polarization qubit in a solid,” Phys. Rev. Lett. 108, 190504 (2012).
[Crossref]

C. Clausen, I. Usmani, F. Bussieres, N. Sangouard, M. Afzelius, H. de Riedmatten, N. Gisin, “Quantum storage of photonic entanglement in a crystal,” Nature 469, 508–511 (2011).
[Crossref]

M. Afzelius, M. U. Staudt, H. de Riedmatten, N. Gisin, O. Guillot-Noel, P. Goldner, R. Marino, P. Porcher, E. Cavalli, M. Bettinelli, “Efficient optical pumping of Zeeman spin levels in Nd3+:YVO4,” J. Lumin. 130, 1566–1571 (2010).
[Crossref]

I. Usmani, M. Afzelius, H. de Riedmatten, N. Gisin, “Mapping multiple photonic qubits into and out of one solid-state atomic ensemble,” Nat. Commun. 1, 1 (2010).
[Crossref]

M. Afzelius, C. Simon, H. de Riedmatten, N. Gisin, “Multimode quantum memory based on atomic frequency combs,” Phys. Rev. A 79, 052329 (2009).
[Crossref]

Donati, G.

G. Vallone, G. Donati, R. Ceccarelli, P. Mataloni, “Six-qubit two-photon hyperentangled cluster states: characterization and application to quantum computation,” Phys. Rev. A 81, 052301 (2010).
[Crossref]

Duan, L.-M.

L.-M. Duan, M. D. Lukin, J. I. Cirac, P. Zoller, “Long-distance quantum communication with atomic ensembles and linear optics,” Nature 414, 413–418 (2001).
[Crossref]

Dür, W.

H.-J. Briegel, W. Dür, J. I. Cirac, P. Zoller, “Quantum repeaters: the role of imperfect local operations in quantum communication,” Phys. Rev. Lett. 81, 5932–5935 (1998).
[Crossref]

Franson, J. D.

J. D. Franson, “Bell inequality for position and time,” Phys. Rev. Lett. 62, 2205–2208 (1989).
[Crossref]

Gao, W.-B.

W.-B. Gao, C.-Y. Lu, X.-C. Yao, P. Xu, O. Guhne, A. Goebel, Y.-A. Chen, C.-Z. Peng, Z.-B. Chen, J.-W. Pan, “Experimental demonstration of a hyper-entangled ten-qubit Schrodinger cat state,” Nat. Phys. 6, 331–335 (2010).
[Crossref]

Gasparoni, S.

J.-W. Pan, S. Gasparoni, R. Ursin, G. Weihs, A. Zeilinger, “Experimental entanglement purification of arbitrary unknown states,” Nature 423, 417–422 (2003).
[Crossref]

George, M.

N. Sinclair, E. Saglamyurek, H. Mallahzadeh, J. H. Slater, M. George, R. Ricken, M. P. Hedges, D. Oblak, C. Simon, W. Sohler, W. Tittel, “Spectral multiplexing for scalable quantum photonics using an atomic frequency comb quantum memory and feed-forward control,” Phys. Rev. Lett. 113, 053603 (2014).
[Crossref]

E. Saglamyurek, N. Sinclair, J. Jin, J. A. Slater, D. Oblak, F. Bussières, M. George, R. Ricken, W. Sohler, W. Tittel, “Broadband waveguide quantum memory for entangled photons,” Nature 469, 512–515 (2011).
[Crossref]

Gisin, N.

C. Clausen, F. Bussières, A. Tiranov, H. Herrmann, C. Silberhorn, W. Sohler, M. Afzelius, N. Gisin, “A source of polarization-entangled photon pairs interfacing quantum memories with telecom photons,” New J. Phys. 16, 093058 (2014).
[Crossref]

N. Timoney, I. Usmani, P. Jobez, M. Afzelius, N. Gisin, “Single-photon-level optical storage in a solid-state spin-wave memory,” Phys. Rev. A 88, 022324 (2013).
[Crossref]

C. Clausen, F. Bussières, M. Afzelius, N. Gisin, “Quantum storage of heralded polarization qubits in birefringent and anisotropically absorbing materials,” Phys. Rev. Lett. 108, 190503 (2012).
[Crossref]

I. Usmani, C. Clausen, F. Bussières, N. Sangouard, M. Afzelius, N. Gisin, “Heralded quantum entanglement between two crystals,” Nat. Photonics 6, 234–237 (2012).
[Crossref]

C. Clausen, I. Usmani, F. Bussieres, N. Sangouard, M. Afzelius, H. de Riedmatten, N. Gisin, “Quantum storage of photonic entanglement in a crystal,” Nature 469, 508–511 (2011).
[Crossref]

M. Afzelius, M. U. Staudt, H. de Riedmatten, N. Gisin, O. Guillot-Noel, P. Goldner, R. Marino, P. Porcher, E. Cavalli, M. Bettinelli, “Efficient optical pumping of Zeeman spin levels in Nd3+:YVO4,” J. Lumin. 130, 1566–1571 (2010).
[Crossref]

I. Usmani, M. Afzelius, H. de Riedmatten, N. Gisin, “Mapping multiple photonic qubits into and out of one solid-state atomic ensemble,” Nat. Commun. 1, 1 (2010).
[Crossref]

M. Afzelius, C. Simon, H. de Riedmatten, N. Gisin, “Multimode quantum memory based on atomic frequency combs,” Phys. Rev. A 79, 052329 (2009).
[Crossref]

Goebel, A.

W.-B. Gao, C.-Y. Lu, X.-C. Yao, P. Xu, O. Guhne, A. Goebel, Y.-A. Chen, C.-Z. Peng, Z.-B. Chen, J.-W. Pan, “Experimental demonstration of a hyper-entangled ten-qubit Schrodinger cat state,” Nat. Phys. 6, 331–335 (2010).
[Crossref]

K. Chen, C.-M. Li, Q. Zhang, Y.-A. Chen, A. Goebel, S. Chen, A. Mair, J.-W. Pan, “Experimental realization of one-way quantum computing with two-photon four-qubit cluster states,” Phys. Rev. Lett. 99, 120503 (2007).
[Crossref]

Goldner, P.

M. Afzelius, M. U. Staudt, H. de Riedmatten, N. Gisin, O. Guillot-Noel, P. Goldner, R. Marino, P. Porcher, E. Cavalli, M. Bettinelli, “Efficient optical pumping of Zeeman spin levels in Nd3+:YVO4,” J. Lumin. 130, 1566–1571 (2010).
[Crossref]

Guhne, O.

W.-B. Gao, C.-Y. Lu, X.-C. Yao, P. Xu, O. Guhne, A. Goebel, Y.-A. Chen, C.-Z. Peng, Z.-B. Chen, J.-W. Pan, “Experimental demonstration of a hyper-entangled ten-qubit Schrodinger cat state,” Nat. Phys. 6, 331–335 (2010).
[Crossref]

Guillot-Noel, O.

M. Afzelius, M. U. Staudt, H. de Riedmatten, N. Gisin, O. Guillot-Noel, P. Goldner, R. Marino, P. Porcher, E. Cavalli, M. Bettinelli, “Efficient optical pumping of Zeeman spin levels in Nd3+:YVO4,” J. Lumin. 130, 1566–1571 (2010).
[Crossref]

Gündogan, M.

M. Gündoğan, P. M. Ledingham, A. Almasi, M. Cristiani, H. de Riedmatten, “Quantum storage of a photonic polarization qubit in a solid,” Phys. Rev. Lett. 108, 190504 (2012).
[Crossref]

Guo, G.-C.

Z.-Q. Zhou, W.-B. Lin, M. Yang, C.-F. Li, G.-C. Guo, “Realization of reliable solid-state quantum memory for photonic polarization qubit,” Phys. Rev. Lett. 108, 190505 (2012).
[Crossref]

Hardy, L.

D. Boschi, S. Branca, F. De Martini, L. Hardy, S. Popescu, “Experimental realization of teleporting an unknown pure quantum state via dual classical and Einstein–Podolsky–Rosen channels,” Phys. Rev. Lett. 80, 1121–1125 (1998).
[Crossref]

Hedges, M. P.

N. Sinclair, E. Saglamyurek, H. Mallahzadeh, J. H. Slater, M. George, R. Ricken, M. P. Hedges, D. Oblak, C. Simon, W. Sohler, W. Tittel, “Spectral multiplexing for scalable quantum photonics using an atomic frequency comb quantum memory and feed-forward control,” Phys. Rev. Lett. 113, 053603 (2014).
[Crossref]

Herrmann, H.

C. Clausen, F. Bussières, A. Tiranov, H. Herrmann, C. Silberhorn, W. Sohler, M. Afzelius, N. Gisin, “A source of polarization-entangled photon pairs interfacing quantum memories with telecom photons,” New J. Phys. 16, 093058 (2014).
[Crossref]

Holt, R. A.

J. F. Clauser, M. A. Horne, A. Shimony, R. A. Holt, “Proposed experiment to test local hidden-variable theories,” Phys. Rev. Lett. 23, 880–884 (1969).
[Crossref]

Horansky, R. D.

V. B. Verma, B. Korzh, F. Bussières, R. D. Horansky, A. E. Lita, F. Marsili, M. D. Shaw, H. Zbinden, R. P. Mirin, S. W. Nam, “High-efficiency WSi superconducting nanowire single-photon detectors operating at 2.5 K,” Appl. Phys. Lett. 105, 122601 (2014).
[Crossref]

Horne, M. A.

J. F. Clauser, M. A. Horne, A. Shimony, R. A. Holt, “Proposed experiment to test local hidden-variable theories,” Phys. Rev. Lett. 23, 880–884 (1969).
[Crossref]

Huber, G.

C. Schuck, G. Huber, C. Kurtsiefer, H. Weinfurter, “Complete deterministic linear optics Bell state analysis,” Phys. Rev. Lett. 96, 190501 (2006).
[Crossref]

Jin, J.

E. Saglamyurek, N. Sinclair, J. Jin, J. A. Slater, D. Oblak, F. Bussières, M. George, R. Ricken, W. Sohler, W. Tittel, “Broadband waveguide quantum memory for entangled photons,” Nature 469, 512–515 (2011).
[Crossref]

Jobez, P.

N. Timoney, I. Usmani, P. Jobez, M. Afzelius, N. Gisin, “Single-photon-level optical storage in a solid-state spin-wave memory,” Phys. Rev. A 88, 022324 (2013).
[Crossref]

Kiesel, N.

C. Schmid, N. Kiesel, U. K. Weber, R. Ursin, A. Zeilinger, H. Weinfurter, “Quantum teleportation and entanglement swapping with linear optics logic gates,” New J. Phys. 11, 033008 (2009).
[Crossref]

Kim, Y.-H.

Y.-H. Kim, S. P. Kulik, Y. Shih, “Quantum teleportation of a polarization state with a complete Bell state measurement,” Phys. Rev. Lett. 86, 1370–1373 (2001).
[Crossref]

Korzh, B.

V. B. Verma, B. Korzh, F. Bussières, R. D. Horansky, A. E. Lita, F. Marsili, M. D. Shaw, H. Zbinden, R. P. Mirin, S. W. Nam, “High-efficiency WSi superconducting nanowire single-photon detectors operating at 2.5 K,” Appl. Phys. Lett. 105, 122601 (2014).
[Crossref]

Kulik, S. P.

Y.-H. Kim, S. P. Kulik, Y. Shih, “Quantum teleportation of a polarization state with a complete Bell state measurement,” Phys. Rev. Lett. 86, 1370–1373 (2001).
[Crossref]

Kurtsiefer, C.

C. Schuck, G. Huber, C. Kurtsiefer, H. Weinfurter, “Complete deterministic linear optics Bell state analysis,” Phys. Rev. Lett. 96, 190501 (2006).
[Crossref]

Kwiat, P. G.

J. T. Barreiro, T.-C. Wei, P. G. Kwiat, “Beating the channel capacity limit for linear photonic superdense coding,” Nat. Phys. 4, 282–286 (2008).
[Crossref]

J. T. Barreiro, N. K. Langford, N. A. Peters, P. G. Kwiat, “Generation of hyperentangled photon pairs,” Phys. Rev. Lett. 95, 260501 (2005).
[Crossref]

P. G. Kwiat, H. Weinfurter, “Embedded Bell-state analysis,” Phys. Rev. A 58, R2623–R2626 (1998).
[Crossref]

P. G. Kwiat, “Hyper-entangled states,” J. Mod. Opt. 44, 2173–2184 (1997).
[Crossref]

Langford, N. K.

J. T. Barreiro, N. K. Langford, N. A. Peters, P. G. Kwiat, “Generation of hyperentangled photon pairs,” Phys. Rev. Lett. 95, 260501 (2005).
[Crossref]

Le Gouët, J.-L.

M. Bonarota, J. Ruggiero, J.-L. Le Gouët, T. Chanelière, “Efficiency optimization for atomic frequency comb storage,” Phys. Rev. A 81, 033803 (2010).
[Crossref]

Ledingham, P. M.

M. Gündoğan, P. M. Ledingham, A. Almasi, M. Cristiani, H. de Riedmatten, “Quantum storage of a photonic polarization qubit in a solid,” Phys. Rev. Lett. 108, 190504 (2012).
[Crossref]

Li, C.-F.

Z.-Q. Zhou, W.-B. Lin, M. Yang, C.-F. Li, G.-C. Guo, “Realization of reliable solid-state quantum memory for photonic polarization qubit,” Phys. Rev. Lett. 108, 190505 (2012).
[Crossref]

Li, C.-M.

K. Chen, C.-M. Li, Q. Zhang, Y.-A. Chen, A. Goebel, S. Chen, A. Mair, J.-W. Pan, “Experimental realization of one-way quantum computing with two-photon four-qubit cluster states,” Phys. Rev. Lett. 99, 120503 (2007).
[Crossref]

Lin, W.-B.

Z.-Q. Zhou, W.-B. Lin, M. Yang, C.-F. Li, G.-C. Guo, “Realization of reliable solid-state quantum memory for photonic polarization qubit,” Phys. Rev. Lett. 108, 190505 (2012).
[Crossref]

Lita, A. E.

V. B. Verma, B. Korzh, F. Bussières, R. D. Horansky, A. E. Lita, F. Marsili, M. D. Shaw, H. Zbinden, R. P. Mirin, S. W. Nam, “High-efficiency WSi superconducting nanowire single-photon detectors operating at 2.5 K,” Appl. Phys. Lett. 105, 122601 (2014).
[Crossref]

Lu, C.-Y.

J.-W. Pan, Z.-B. Chen, C.-Y. Lu, H. Weinfurter, A. Zeilinger, M. Z. Żukowski, “Multiphoton entanglement and interferometry,” Rev. Mod. Phys. 84, 777–838 (2012).
[Crossref]

W.-B. Gao, C.-Y. Lu, X.-C. Yao, P. Xu, O. Guhne, A. Goebel, Y.-A. Chen, C.-Z. Peng, Z.-B. Chen, J.-W. Pan, “Experimental demonstration of a hyper-entangled ten-qubit Schrodinger cat state,” Nat. Phys. 6, 331–335 (2010).
[Crossref]

Lukin, M. D.

L.-M. Duan, M. D. Lukin, J. I. Cirac, P. Zoller, “Long-distance quantum communication with atomic ensembles and linear optics,” Nature 414, 413–418 (2001).
[Crossref]

Mair, A.

K. Chen, C.-M. Li, Q. Zhang, Y.-A. Chen, A. Goebel, S. Chen, A. Mair, J.-W. Pan, “Experimental realization of one-way quantum computing with two-photon four-qubit cluster states,” Phys. Rev. Lett. 99, 120503 (2007).
[Crossref]

Mallahzadeh, H.

N. Sinclair, E. Saglamyurek, H. Mallahzadeh, J. H. Slater, M. George, R. Ricken, M. P. Hedges, D. Oblak, C. Simon, W. Sohler, W. Tittel, “Spectral multiplexing for scalable quantum photonics using an atomic frequency comb quantum memory and feed-forward control,” Phys. Rev. Lett. 113, 053603 (2014).
[Crossref]

Marino, R.

M. Afzelius, M. U. Staudt, H. de Riedmatten, N. Gisin, O. Guillot-Noel, P. Goldner, R. Marino, P. Porcher, E. Cavalli, M. Bettinelli, “Efficient optical pumping of Zeeman spin levels in Nd3+:YVO4,” J. Lumin. 130, 1566–1571 (2010).
[Crossref]

Marsili, F.

V. B. Verma, B. Korzh, F. Bussières, R. D. Horansky, A. E. Lita, F. Marsili, M. D. Shaw, H. Zbinden, R. P. Mirin, S. W. Nam, “High-efficiency WSi superconducting nanowire single-photon detectors operating at 2.5 K,” Appl. Phys. Lett. 105, 122601 (2014).
[Crossref]

Mataloni, P.

G. Vallone, G. Donati, R. Ceccarelli, P. Mataloni, “Six-qubit two-photon hyperentangled cluster states: characterization and application to quantum computation,” Phys. Rev. A 81, 052301 (2010).
[Crossref]

M. Barbieri, C. Cinelli, P. Mataloni, F. De Martini, “Polarization-momentum hyperentangled states: realization and characterization,” Phys. Rev. A 72, 052110 (2005).
[Crossref]

Mirin, R. P.

V. B. Verma, B. Korzh, F. Bussières, R. D. Horansky, A. E. Lita, F. Marsili, M. D. Shaw, H. Zbinden, R. P. Mirin, S. W. Nam, “High-efficiency WSi superconducting nanowire single-photon detectors operating at 2.5 K,” Appl. Phys. Lett. 105, 122601 (2014).
[Crossref]

Monken, C. H.

S. P. Walborn, S. Pádua, C. H. Monken, “Hyperentanglement-assisted Bell-state analysis,” Phys. Rev. A 68, 042313 (2003).
[Crossref]

Nam, S. W.

V. B. Verma, B. Korzh, F. Bussières, R. D. Horansky, A. E. Lita, F. Marsili, M. D. Shaw, H. Zbinden, R. P. Mirin, S. W. Nam, “High-efficiency WSi superconducting nanowire single-photon detectors operating at 2.5 K,” Appl. Phys. Lett. 105, 122601 (2014).
[Crossref]

Oblak, D.

N. Sinclair, E. Saglamyurek, H. Mallahzadeh, J. H. Slater, M. George, R. Ricken, M. P. Hedges, D. Oblak, C. Simon, W. Sohler, W. Tittel, “Spectral multiplexing for scalable quantum photonics using an atomic frequency comb quantum memory and feed-forward control,” Phys. Rev. Lett. 113, 053603 (2014).
[Crossref]

E. Saglamyurek, N. Sinclair, J. Jin, J. A. Slater, D. Oblak, F. Bussières, M. George, R. Ricken, W. Sohler, W. Tittel, “Broadband waveguide quantum memory for entangled photons,” Nature 469, 512–515 (2011).
[Crossref]

Pádua, S.

S. P. Walborn, S. Pádua, C. H. Monken, “Hyperentanglement-assisted Bell-state analysis,” Phys. Rev. A 68, 042313 (2003).
[Crossref]

Pan, J.-W.

J.-W. Pan, Z.-B. Chen, C.-Y. Lu, H. Weinfurter, A. Zeilinger, M. Z. Żukowski, “Multiphoton entanglement and interferometry,” Rev. Mod. Phys. 84, 777–838 (2012).
[Crossref]

X.-F. Xu, X.-H. Bao, J.-W. Pan, “Demonstration of active feedforward one-way quantum computing with photon-matter hyperentanglement,” Phys. Rev. A 86, 050304 (2012).
[Crossref]

W.-B. Gao, C.-Y. Lu, X.-C. Yao, P. Xu, O. Guhne, A. Goebel, Y.-A. Chen, C.-Z. Peng, Z.-B. Chen, J.-W. Pan, “Experimental demonstration of a hyper-entangled ten-qubit Schrodinger cat state,” Nat. Phys. 6, 331–335 (2010).
[Crossref]

K. Chen, C.-M. Li, Q. Zhang, Y.-A. Chen, A. Goebel, S. Chen, A. Mair, J.-W. Pan, “Experimental realization of one-way quantum computing with two-photon four-qubit cluster states,” Phys. Rev. Lett. 99, 120503 (2007).
[Crossref]

P. Walther, K. J. Resch, I. C. V. Brukner, A. M. Steinberg, J.-W. Pan, A. Zeilinger, “Quantum nonlocality obtained from local states by entanglement purification,” Phys. Rev. Lett. 94, 040504 (2005).
[Crossref]

Z.-B. Chen, J.-W. Pan, Y.-D. Zhang, Č. Brukner, A. Zeilinger, “All-versus-nothing violation of local realism for two entangled photons,” Phys. Rev. Lett. 90, 160408 (2003).
[Crossref]

J.-W. Pan, S. Gasparoni, R. Ursin, G. Weihs, A. Zeilinger, “Experimental entanglement purification of arbitrary unknown states,” Nature 423, 417–422 (2003).
[Crossref]

C. Simon, J.-W. Pan, “Polarization entanglement purification using spatial entanglement,” Phys. Rev. Lett. 89, 257901 (2002).
[Crossref]

Peng, C.-Z.

W.-B. Gao, C.-Y. Lu, X.-C. Yao, P. Xu, O. Guhne, A. Goebel, Y.-A. Chen, C.-Z. Peng, Z.-B. Chen, J.-W. Pan, “Experimental demonstration of a hyper-entangled ten-qubit Schrodinger cat state,” Nat. Phys. 6, 331–335 (2010).
[Crossref]

Peters, N. A.

J. T. Barreiro, N. K. Langford, N. A. Peters, P. G. Kwiat, “Generation of hyperentangled photon pairs,” Phys. Rev. Lett. 95, 260501 (2005).
[Crossref]

Popescu, S.

D. Boschi, S. Branca, F. De Martini, L. Hardy, S. Popescu, “Experimental realization of teleporting an unknown pure quantum state via dual classical and Einstein–Podolsky–Rosen channels,” Phys. Rev. Lett. 80, 1121–1125 (1998).
[Crossref]

Porcher, P.

M. Afzelius, M. U. Staudt, H. de Riedmatten, N. Gisin, O. Guillot-Noel, P. Goldner, R. Marino, P. Porcher, E. Cavalli, M. Bettinelli, “Efficient optical pumping of Zeeman spin levels in Nd3+:YVO4,” J. Lumin. 130, 1566–1571 (2010).
[Crossref]

Resch, K. J.

P. Walther, K. J. Resch, I. C. V. Brukner, A. M. Steinberg, J.-W. Pan, A. Zeilinger, “Quantum nonlocality obtained from local states by entanglement purification,” Phys. Rev. Lett. 94, 040504 (2005).
[Crossref]

Ricken, R.

N. Sinclair, E. Saglamyurek, H. Mallahzadeh, J. H. Slater, M. George, R. Ricken, M. P. Hedges, D. Oblak, C. Simon, W. Sohler, W. Tittel, “Spectral multiplexing for scalable quantum photonics using an atomic frequency comb quantum memory and feed-forward control,” Phys. Rev. Lett. 113, 053603 (2014).
[Crossref]

E. Saglamyurek, N. Sinclair, J. Jin, J. A. Slater, D. Oblak, F. Bussières, M. George, R. Ricken, W. Sohler, W. Tittel, “Broadband waveguide quantum memory for entangled photons,” Nature 469, 512–515 (2011).
[Crossref]

Ruggiero, J.

M. Bonarota, J. Ruggiero, J.-L. Le Gouët, T. Chanelière, “Efficiency optimization for atomic frequency comb storage,” Phys. Rev. A 81, 033803 (2010).
[Crossref]

Saglamyurek, E.

N. Sinclair, E. Saglamyurek, H. Mallahzadeh, J. H. Slater, M. George, R. Ricken, M. P. Hedges, D. Oblak, C. Simon, W. Sohler, W. Tittel, “Spectral multiplexing for scalable quantum photonics using an atomic frequency comb quantum memory and feed-forward control,” Phys. Rev. Lett. 113, 053603 (2014).
[Crossref]

E. Saglamyurek, N. Sinclair, J. Jin, J. A. Slater, D. Oblak, F. Bussières, M. George, R. Ricken, W. Sohler, W. Tittel, “Broadband waveguide quantum memory for entangled photons,” Nature 469, 512–515 (2011).
[Crossref]

Sangouard, N.

I. Usmani, C. Clausen, F. Bussières, N. Sangouard, M. Afzelius, N. Gisin, “Heralded quantum entanglement between two crystals,” Nat. Photonics 6, 234–237 (2012).
[Crossref]

C. Clausen, I. Usmani, F. Bussieres, N. Sangouard, M. Afzelius, H. de Riedmatten, N. Gisin, “Quantum storage of photonic entanglement in a crystal,” Nature 469, 508–511 (2011).
[Crossref]

Schmid, C.

C. Schmid, N. Kiesel, U. K. Weber, R. Ursin, A. Zeilinger, H. Weinfurter, “Quantum teleportation and entanglement swapping with linear optics logic gates,” New J. Phys. 11, 033008 (2009).
[Crossref]

Schuck, C.

C. Schuck, G. Huber, C. Kurtsiefer, H. Weinfurter, “Complete deterministic linear optics Bell state analysis,” Phys. Rev. Lett. 96, 190501 (2006).
[Crossref]

Shaw, M. D.

V. B. Verma, B. Korzh, F. Bussières, R. D. Horansky, A. E. Lita, F. Marsili, M. D. Shaw, H. Zbinden, R. P. Mirin, S. W. Nam, “High-efficiency WSi superconducting nanowire single-photon detectors operating at 2.5 K,” Appl. Phys. Lett. 105, 122601 (2014).
[Crossref]

Shih, Y.

Y.-H. Kim, S. P. Kulik, Y. Shih, “Quantum teleportation of a polarization state with a complete Bell state measurement,” Phys. Rev. Lett. 86, 1370–1373 (2001).
[Crossref]

Shimony, A.

J. F. Clauser, M. A. Horne, A. Shimony, R. A. Holt, “Proposed experiment to test local hidden-variable theories,” Phys. Rev. Lett. 23, 880–884 (1969).
[Crossref]

Silberhorn, C.

C. Clausen, F. Bussières, A. Tiranov, H. Herrmann, C. Silberhorn, W. Sohler, M. Afzelius, N. Gisin, “A source of polarization-entangled photon pairs interfacing quantum memories with telecom photons,” New J. Phys. 16, 093058 (2014).
[Crossref]

Simon, C.

N. Sinclair, E. Saglamyurek, H. Mallahzadeh, J. H. Slater, M. George, R. Ricken, M. P. Hedges, D. Oblak, C. Simon, W. Sohler, W. Tittel, “Spectral multiplexing for scalable quantum photonics using an atomic frequency comb quantum memory and feed-forward control,” Phys. Rev. Lett. 113, 053603 (2014).
[Crossref]

M. Afzelius, C. Simon, H. de Riedmatten, N. Gisin, “Multimode quantum memory based on atomic frequency combs,” Phys. Rev. A 79, 052329 (2009).
[Crossref]

C. Simon, J.-W. Pan, “Polarization entanglement purification using spatial entanglement,” Phys. Rev. Lett. 89, 257901 (2002).
[Crossref]

Sinclair, N.

N. Sinclair, E. Saglamyurek, H. Mallahzadeh, J. H. Slater, M. George, R. Ricken, M. P. Hedges, D. Oblak, C. Simon, W. Sohler, W. Tittel, “Spectral multiplexing for scalable quantum photonics using an atomic frequency comb quantum memory and feed-forward control,” Phys. Rev. Lett. 113, 053603 (2014).
[Crossref]

E. Saglamyurek, N. Sinclair, J. Jin, J. A. Slater, D. Oblak, F. Bussières, M. George, R. Ricken, W. Sohler, W. Tittel, “Broadband waveguide quantum memory for entangled photons,” Nature 469, 512–515 (2011).
[Crossref]

Slater, J. A.

E. Saglamyurek, N. Sinclair, J. Jin, J. A. Slater, D. Oblak, F. Bussières, M. George, R. Ricken, W. Sohler, W. Tittel, “Broadband waveguide quantum memory for entangled photons,” Nature 469, 512–515 (2011).
[Crossref]

Slater, J. H.

N. Sinclair, E. Saglamyurek, H. Mallahzadeh, J. H. Slater, M. George, R. Ricken, M. P. Hedges, D. Oblak, C. Simon, W. Sohler, W. Tittel, “Spectral multiplexing for scalable quantum photonics using an atomic frequency comb quantum memory and feed-forward control,” Phys. Rev. Lett. 113, 053603 (2014).
[Crossref]

Sohler, W.

N. Sinclair, E. Saglamyurek, H. Mallahzadeh, J. H. Slater, M. George, R. Ricken, M. P. Hedges, D. Oblak, C. Simon, W. Sohler, W. Tittel, “Spectral multiplexing for scalable quantum photonics using an atomic frequency comb quantum memory and feed-forward control,” Phys. Rev. Lett. 113, 053603 (2014).
[Crossref]

C. Clausen, F. Bussières, A. Tiranov, H. Herrmann, C. Silberhorn, W. Sohler, M. Afzelius, N. Gisin, “A source of polarization-entangled photon pairs interfacing quantum memories with telecom photons,” New J. Phys. 16, 093058 (2014).
[Crossref]

E. Saglamyurek, N. Sinclair, J. Jin, J. A. Slater, D. Oblak, F. Bussières, M. George, R. Ricken, W. Sohler, W. Tittel, “Broadband waveguide quantum memory for entangled photons,” Nature 469, 512–515 (2011).
[Crossref]

Staudt, M. U.

M. Afzelius, M. U. Staudt, H. de Riedmatten, N. Gisin, O. Guillot-Noel, P. Goldner, R. Marino, P. Porcher, E. Cavalli, M. Bettinelli, “Efficient optical pumping of Zeeman spin levels in Nd3+:YVO4,” J. Lumin. 130, 1566–1571 (2010).
[Crossref]

Steinberg, A. M.

P. Walther, K. J. Resch, I. C. V. Brukner, A. M. Steinberg, J.-W. Pan, A. Zeilinger, “Quantum nonlocality obtained from local states by entanglement purification,” Phys. Rev. Lett. 94, 040504 (2005).
[Crossref]

Timoney, N.

N. Timoney, I. Usmani, P. Jobez, M. Afzelius, N. Gisin, “Single-photon-level optical storage in a solid-state spin-wave memory,” Phys. Rev. A 88, 022324 (2013).
[Crossref]

Tiranov, A.

C. Clausen, F. Bussières, A. Tiranov, H. Herrmann, C. Silberhorn, W. Sohler, M. Afzelius, N. Gisin, “A source of polarization-entangled photon pairs interfacing quantum memories with telecom photons,” New J. Phys. 16, 093058 (2014).
[Crossref]

Tittel, W.

N. Sinclair, E. Saglamyurek, H. Mallahzadeh, J. H. Slater, M. George, R. Ricken, M. P. Hedges, D. Oblak, C. Simon, W. Sohler, W. Tittel, “Spectral multiplexing for scalable quantum photonics using an atomic frequency comb quantum memory and feed-forward control,” Phys. Rev. Lett. 113, 053603 (2014).
[Crossref]

E. Saglamyurek, N. Sinclair, J. Jin, J. A. Slater, D. Oblak, F. Bussières, M. George, R. Ricken, W. Sohler, W. Tittel, “Broadband waveguide quantum memory for entangled photons,” Nature 469, 512–515 (2011).
[Crossref]

Ursin, R.

C. Schmid, N. Kiesel, U. K. Weber, R. Ursin, A. Zeilinger, H. Weinfurter, “Quantum teleportation and entanglement swapping with linear optics logic gates,” New J. Phys. 11, 033008 (2009).
[Crossref]

J.-W. Pan, S. Gasparoni, R. Ursin, G. Weihs, A. Zeilinger, “Experimental entanglement purification of arbitrary unknown states,” Nature 423, 417–422 (2003).
[Crossref]

Usmani, I.

N. Timoney, I. Usmani, P. Jobez, M. Afzelius, N. Gisin, “Single-photon-level optical storage in a solid-state spin-wave memory,” Phys. Rev. A 88, 022324 (2013).
[Crossref]

I. Usmani, C. Clausen, F. Bussières, N. Sangouard, M. Afzelius, N. Gisin, “Heralded quantum entanglement between two crystals,” Nat. Photonics 6, 234–237 (2012).
[Crossref]

C. Clausen, I. Usmani, F. Bussieres, N. Sangouard, M. Afzelius, H. de Riedmatten, N. Gisin, “Quantum storage of photonic entanglement in a crystal,” Nature 469, 508–511 (2011).
[Crossref]

I. Usmani, M. Afzelius, H. de Riedmatten, N. Gisin, “Mapping multiple photonic qubits into and out of one solid-state atomic ensemble,” Nat. Commun. 1, 1 (2010).
[Crossref]

Vallone, G.

G. Vallone, G. Donati, R. Ceccarelli, P. Mataloni, “Six-qubit two-photon hyperentangled cluster states: characterization and application to quantum computation,” Phys. Rev. A 81, 052301 (2010).
[Crossref]

Verma, V. B.

V. B. Verma, B. Korzh, F. Bussières, R. D. Horansky, A. E. Lita, F. Marsili, M. D. Shaw, H. Zbinden, R. P. Mirin, S. W. Nam, “High-efficiency WSi superconducting nanowire single-photon detectors operating at 2.5 K,” Appl. Phys. Lett. 105, 122601 (2014).
[Crossref]

Walborn, S. P.

S. P. Walborn, S. Pádua, C. H. Monken, “Hyperentanglement-assisted Bell-state analysis,” Phys. Rev. A 68, 042313 (2003).
[Crossref]

Walther, P.

P. Walther, K. J. Resch, I. C. V. Brukner, A. M. Steinberg, J.-W. Pan, A. Zeilinger, “Quantum nonlocality obtained from local states by entanglement purification,” Phys. Rev. Lett. 94, 040504 (2005).
[Crossref]

Weber, U. K.

C. Schmid, N. Kiesel, U. K. Weber, R. Ursin, A. Zeilinger, H. Weinfurter, “Quantum teleportation and entanglement swapping with linear optics logic gates,” New J. Phys. 11, 033008 (2009).
[Crossref]

Wei, T.-C.

J. T. Barreiro, T.-C. Wei, P. G. Kwiat, “Beating the channel capacity limit for linear photonic superdense coding,” Nat. Phys. 4, 282–286 (2008).
[Crossref]

Weihs, G.

J.-W. Pan, S. Gasparoni, R. Ursin, G. Weihs, A. Zeilinger, “Experimental entanglement purification of arbitrary unknown states,” Nature 423, 417–422 (2003).
[Crossref]

Weinfurter, H.

J.-W. Pan, Z.-B. Chen, C.-Y. Lu, H. Weinfurter, A. Zeilinger, M. Z. Żukowski, “Multiphoton entanglement and interferometry,” Rev. Mod. Phys. 84, 777–838 (2012).
[Crossref]

C. Schmid, N. Kiesel, U. K. Weber, R. Ursin, A. Zeilinger, H. Weinfurter, “Quantum teleportation and entanglement swapping with linear optics logic gates,” New J. Phys. 11, 033008 (2009).
[Crossref]

C. Schuck, G. Huber, C. Kurtsiefer, H. Weinfurter, “Complete deterministic linear optics Bell state analysis,” Phys. Rev. Lett. 96, 190501 (2006).
[Crossref]

P. G. Kwiat, H. Weinfurter, “Embedded Bell-state analysis,” Phys. Rev. A 58, R2623–R2626 (1998).
[Crossref]

Werner, R. F.

R. F. Werner, “Quantum states with Einstein–Podolsky–Rosen correlations admitting a hidden-variable model,” Phys. Rev. A 40, 4277–4281 (1989).
[Crossref]

Xu, P.

W.-B. Gao, C.-Y. Lu, X.-C. Yao, P. Xu, O. Guhne, A. Goebel, Y.-A. Chen, C.-Z. Peng, Z.-B. Chen, J.-W. Pan, “Experimental demonstration of a hyper-entangled ten-qubit Schrodinger cat state,” Nat. Phys. 6, 331–335 (2010).
[Crossref]

Xu, X.-F.

X.-F. Xu, X.-H. Bao, J.-W. Pan, “Demonstration of active feedforward one-way quantum computing with photon-matter hyperentanglement,” Phys. Rev. A 86, 050304 (2012).
[Crossref]

Yang, M.

Z.-Q. Zhou, W.-B. Lin, M. Yang, C.-F. Li, G.-C. Guo, “Realization of reliable solid-state quantum memory for photonic polarization qubit,” Phys. Rev. Lett. 108, 190505 (2012).
[Crossref]

Yao, X.-C.

W.-B. Gao, C.-Y. Lu, X.-C. Yao, P. Xu, O. Guhne, A. Goebel, Y.-A. Chen, C.-Z. Peng, Z.-B. Chen, J.-W. Pan, “Experimental demonstration of a hyper-entangled ten-qubit Schrodinger cat state,” Nat. Phys. 6, 331–335 (2010).
[Crossref]

Zbinden, H.

V. B. Verma, B. Korzh, F. Bussières, R. D. Horansky, A. E. Lita, F. Marsili, M. D. Shaw, H. Zbinden, R. P. Mirin, S. W. Nam, “High-efficiency WSi superconducting nanowire single-photon detectors operating at 2.5 K,” Appl. Phys. Lett. 105, 122601 (2014).
[Crossref]

Zeilinger, A.

J.-W. Pan, Z.-B. Chen, C.-Y. Lu, H. Weinfurter, A. Zeilinger, M. Z. Żukowski, “Multiphoton entanglement and interferometry,” Rev. Mod. Phys. 84, 777–838 (2012).
[Crossref]

C. Schmid, N. Kiesel, U. K. Weber, R. Ursin, A. Zeilinger, H. Weinfurter, “Quantum teleportation and entanglement swapping with linear optics logic gates,” New J. Phys. 11, 033008 (2009).
[Crossref]

P. Walther, K. J. Resch, I. C. V. Brukner, A. M. Steinberg, J.-W. Pan, A. Zeilinger, “Quantum nonlocality obtained from local states by entanglement purification,” Phys. Rev. Lett. 94, 040504 (2005).
[Crossref]

Z.-B. Chen, J.-W. Pan, Y.-D. Zhang, Č. Brukner, A. Zeilinger, “All-versus-nothing violation of local realism for two entangled photons,” Phys. Rev. Lett. 90, 160408 (2003).
[Crossref]

J.-W. Pan, S. Gasparoni, R. Ursin, G. Weihs, A. Zeilinger, “Experimental entanglement purification of arbitrary unknown states,” Nature 423, 417–422 (2003).
[Crossref]

Zhang, Q.

K. Chen, C.-M. Li, Q. Zhang, Y.-A. Chen, A. Goebel, S. Chen, A. Mair, J.-W. Pan, “Experimental realization of one-way quantum computing with two-photon four-qubit cluster states,” Phys. Rev. Lett. 99, 120503 (2007).
[Crossref]

Zhang, Y.-D.

Z.-B. Chen, J.-W. Pan, Y.-D. Zhang, Č. Brukner, A. Zeilinger, “All-versus-nothing violation of local realism for two entangled photons,” Phys. Rev. Lett. 90, 160408 (2003).
[Crossref]

Zhou, Z.-Q.

Z.-Q. Zhou, W.-B. Lin, M. Yang, C.-F. Li, G.-C. Guo, “Realization of reliable solid-state quantum memory for photonic polarization qubit,” Phys. Rev. Lett. 108, 190505 (2012).
[Crossref]

Zoller, P.

L.-M. Duan, M. D. Lukin, J. I. Cirac, P. Zoller, “Long-distance quantum communication with atomic ensembles and linear optics,” Nature 414, 413–418 (2001).
[Crossref]

H.-J. Briegel, W. Dür, J. I. Cirac, P. Zoller, “Quantum repeaters: the role of imperfect local operations in quantum communication,” Phys. Rev. Lett. 81, 5932–5935 (1998).
[Crossref]

Zukowski, M. Z.

J.-W. Pan, Z.-B. Chen, C.-Y. Lu, H. Weinfurter, A. Zeilinger, M. Z. Żukowski, “Multiphoton entanglement and interferometry,” Rev. Mod. Phys. 84, 777–838 (2012).
[Crossref]

Appl. Phys. Lett. (1)

V. B. Verma, B. Korzh, F. Bussières, R. D. Horansky, A. E. Lita, F. Marsili, M. D. Shaw, H. Zbinden, R. P. Mirin, S. W. Nam, “High-efficiency WSi superconducting nanowire single-photon detectors operating at 2.5 K,” Appl. Phys. Lett. 105, 122601 (2014).
[Crossref]

J. Lumin. (1)

M. Afzelius, M. U. Staudt, H. de Riedmatten, N. Gisin, O. Guillot-Noel, P. Goldner, R. Marino, P. Porcher, E. Cavalli, M. Bettinelli, “Efficient optical pumping of Zeeman spin levels in Nd3+:YVO4,” J. Lumin. 130, 1566–1571 (2010).
[Crossref]

J. Mod. Opt. (1)

P. G. Kwiat, “Hyper-entangled states,” J. Mod. Opt. 44, 2173–2184 (1997).
[Crossref]

Nat. Commun. (1)

I. Usmani, M. Afzelius, H. de Riedmatten, N. Gisin, “Mapping multiple photonic qubits into and out of one solid-state atomic ensemble,” Nat. Commun. 1, 1 (2010).
[Crossref]

Nat. Photonics (1)

I. Usmani, C. Clausen, F. Bussières, N. Sangouard, M. Afzelius, N. Gisin, “Heralded quantum entanglement between two crystals,” Nat. Photonics 6, 234–237 (2012).
[Crossref]

Nat. Phys. (2)

J. T. Barreiro, T.-C. Wei, P. G. Kwiat, “Beating the channel capacity limit for linear photonic superdense coding,” Nat. Phys. 4, 282–286 (2008).
[Crossref]

W.-B. Gao, C.-Y. Lu, X.-C. Yao, P. Xu, O. Guhne, A. Goebel, Y.-A. Chen, C.-Z. Peng, Z.-B. Chen, J.-W. Pan, “Experimental demonstration of a hyper-entangled ten-qubit Schrodinger cat state,” Nat. Phys. 6, 331–335 (2010).
[Crossref]

Nature (4)

C. Clausen, I. Usmani, F. Bussieres, N. Sangouard, M. Afzelius, H. de Riedmatten, N. Gisin, “Quantum storage of photonic entanglement in a crystal,” Nature 469, 508–511 (2011).
[Crossref]

E. Saglamyurek, N. Sinclair, J. Jin, J. A. Slater, D. Oblak, F. Bussières, M. George, R. Ricken, W. Sohler, W. Tittel, “Broadband waveguide quantum memory for entangled photons,” Nature 469, 512–515 (2011).
[Crossref]

L.-M. Duan, M. D. Lukin, J. I. Cirac, P. Zoller, “Long-distance quantum communication with atomic ensembles and linear optics,” Nature 414, 413–418 (2001).
[Crossref]

J.-W. Pan, S. Gasparoni, R. Ursin, G. Weihs, A. Zeilinger, “Experimental entanglement purification of arbitrary unknown states,” Nature 423, 417–422 (2003).
[Crossref]

New J. Phys. (2)

C. Clausen, F. Bussières, A. Tiranov, H. Herrmann, C. Silberhorn, W. Sohler, M. Afzelius, N. Gisin, “A source of polarization-entangled photon pairs interfacing quantum memories with telecom photons,” New J. Phys. 16, 093058 (2014).
[Crossref]

C. Schmid, N. Kiesel, U. K. Weber, R. Ursin, A. Zeilinger, H. Weinfurter, “Quantum teleportation and entanglement swapping with linear optics logic gates,” New J. Phys. 11, 033008 (2009).
[Crossref]

Phys. Rev. A (9)

G. Vallone, G. Donati, R. Ceccarelli, P. Mataloni, “Six-qubit two-photon hyperentangled cluster states: characterization and application to quantum computation,” Phys. Rev. A 81, 052301 (2010).
[Crossref]

X.-F. Xu, X.-H. Bao, J.-W. Pan, “Demonstration of active feedforward one-way quantum computing with photon-matter hyperentanglement,” Phys. Rev. A 86, 050304 (2012).
[Crossref]

M. Barbieri, C. Cinelli, P. Mataloni, F. De Martini, “Polarization-momentum hyperentangled states: realization and characterization,” Phys. Rev. A 72, 052110 (2005).
[Crossref]

P. G. Kwiat, H. Weinfurter, “Embedded Bell-state analysis,” Phys. Rev. A 58, R2623–R2626 (1998).
[Crossref]

S. P. Walborn, S. Pádua, C. H. Monken, “Hyperentanglement-assisted Bell-state analysis,” Phys. Rev. A 68, 042313 (2003).
[Crossref]

M. Bonarota, J. Ruggiero, J.-L. Le Gouët, T. Chanelière, “Efficiency optimization for atomic frequency comb storage,” Phys. Rev. A 81, 033803 (2010).
[Crossref]

N. Timoney, I. Usmani, P. Jobez, M. Afzelius, N. Gisin, “Single-photon-level optical storage in a solid-state spin-wave memory,” Phys. Rev. A 88, 022324 (2013).
[Crossref]

R. F. Werner, “Quantum states with Einstein–Podolsky–Rosen correlations admitting a hidden-variable model,” Phys. Rev. A 40, 4277–4281 (1989).
[Crossref]

M. Afzelius, C. Simon, H. de Riedmatten, N. Gisin, “Multimode quantum memory based on atomic frequency combs,” Phys. Rev. A 79, 052329 (2009).
[Crossref]

Phys. Rev. Lett. (15)

J. F. Clauser, M. A. Horne, A. Shimony, R. A. Holt, “Proposed experiment to test local hidden-variable theories,” Phys. Rev. Lett. 23, 880–884 (1969).
[Crossref]

N. Sinclair, E. Saglamyurek, H. Mallahzadeh, J. H. Slater, M. George, R. Ricken, M. P. Hedges, D. Oblak, C. Simon, W. Sohler, W. Tittel, “Spectral multiplexing for scalable quantum photonics using an atomic frequency comb quantum memory and feed-forward control,” Phys. Rev. Lett. 113, 053603 (2014).
[Crossref]

C. Clausen, F. Bussières, M. Afzelius, N. Gisin, “Quantum storage of heralded polarization qubits in birefringent and anisotropically absorbing materials,” Phys. Rev. Lett. 108, 190503 (2012).
[Crossref]

M. Gündoğan, P. M. Ledingham, A. Almasi, M. Cristiani, H. de Riedmatten, “Quantum storage of a photonic polarization qubit in a solid,” Phys. Rev. Lett. 108, 190504 (2012).
[Crossref]

Z.-Q. Zhou, W.-B. Lin, M. Yang, C.-F. Li, G.-C. Guo, “Realization of reliable solid-state quantum memory for photonic polarization qubit,” Phys. Rev. Lett. 108, 190505 (2012).
[Crossref]

J. D. Franson, “Bell inequality for position and time,” Phys. Rev. Lett. 62, 2205–2208 (1989).
[Crossref]

P. Walther, K. J. Resch, I. C. V. Brukner, A. M. Steinberg, J.-W. Pan, A. Zeilinger, “Quantum nonlocality obtained from local states by entanglement purification,” Phys. Rev. Lett. 94, 040504 (2005).
[Crossref]

C. Schuck, G. Huber, C. Kurtsiefer, H. Weinfurter, “Complete deterministic linear optics Bell state analysis,” Phys. Rev. Lett. 96, 190501 (2006).
[Crossref]

D. Boschi, S. Branca, F. De Martini, L. Hardy, S. Popescu, “Experimental realization of teleporting an unknown pure quantum state via dual classical and Einstein–Podolsky–Rosen channels,” Phys. Rev. Lett. 80, 1121–1125 (1998).
[Crossref]

Y.-H. Kim, S. P. Kulik, Y. Shih, “Quantum teleportation of a polarization state with a complete Bell state measurement,” Phys. Rev. Lett. 86, 1370–1373 (2001).
[Crossref]

J. T. Barreiro, N. K. Langford, N. A. Peters, P. G. Kwiat, “Generation of hyperentangled photon pairs,” Phys. Rev. Lett. 95, 260501 (2005).
[Crossref]

C. Simon, J.-W. Pan, “Polarization entanglement purification using spatial entanglement,” Phys. Rev. Lett. 89, 257901 (2002).
[Crossref]

H.-J. Briegel, W. Dür, J. I. Cirac, P. Zoller, “Quantum repeaters: the role of imperfect local operations in quantum communication,” Phys. Rev. Lett. 81, 5932–5935 (1998).
[Crossref]

Z.-B. Chen, J.-W. Pan, Y.-D. Zhang, Č. Brukner, A. Zeilinger, “All-versus-nothing violation of local realism for two entangled photons,” Phys. Rev. Lett. 90, 160408 (2003).
[Crossref]

K. Chen, C.-M. Li, Q. Zhang, Y.-A. Chen, A. Goebel, S. Chen, A. Mair, J.-W. Pan, “Experimental realization of one-way quantum computing with two-photon four-qubit cluster states,” Phys. Rev. Lett. 99, 120503 (2007).
[Crossref]

Rev. Mod. Phys. (1)

J.-W. Pan, Z.-B. Chen, C.-Y. Lu, H. Weinfurter, A. Zeilinger, M. Z. Żukowski, “Multiphoton entanglement and interferometry,” Rev. Mod. Phys. 84, 777–838 (2012).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Experimental setup. (a) Conceptual setup of hyperentanglement storage inside a solid-state quantum memory (QM). A pair of photons entangled in polarization ( | Ψ π ) and energy-time ( | Ψ τ ) are generated from SPDC. The signal photon is stored inside a quantum memory and released after a predetermined time of 50 ns. The hyperentanglement is revealed using time-bin analyzers ( τ ) having short (S) and long (L) arms and adjustable relative phases ( ϕ i and ϕ s ), followed by polarization analyzers ( π ). (b) Experimental setup (see text for details). Polarization-entangled photon pairs are created by coherently pumping two nonlinear waveguides (PPLN and PPKTP) and recombining the optical paths. The pump is a CW laser at 532 nm, which inherently produces pairs that are also energy-time entangled. A dichroic mirror (DM) separates signal and idler photons. The appropriate linewidth for storage of the signal photon in the QM is obtained with narrow filtering (NF), which consists of a cavity and a volume Bragg grating for the signal (883 nm) and the idler (1338 nm). An optical switch is used to direct either the light necessary for the preparation of the QM, or the signal photons, to the QM. The time-bin analyzers of the signal and idler photons are made with free-space and fiber components, respectively, using 50/50 beam splitters (BSs), and are both actively locked. Piezo elements are used to control the phases ϕ s and ϕ i of the analyzers. They are followed by free-space polarization analyzers composed of quarter-wave and half-wave plates (QWPs and HWPs) followed by polarizing beam splitters (PBSs). D 1,2 ( s ) are avalanche photodiodes, and D 1,2 ( i ) are WSi superconducting nanowire single-photon detectors.

Fig. 2.
Fig. 2.

Scheme for storage of polarization qubits. (a) Energy level structure of Nd 3 + ions inside a Y 2 SiO 5 crystal with and without applied external magnetic field B = 300 mT . External magnetic field lies in D 1 D 2 plane with 30° angle with respect to D 1 axis. (b) The compact configuration of the quantum memory is obtained by placing a HWP between two identical Nd 3 + : Y 2 SiO 5 crystals. The fast axis of the HWP is oriented at 45° with respect to the axes D 1 and D 2 , which are the two of the principal axes of the dielectric tensor. The 14-mm-long arrangement is cooled to 2.7 K and placed in a static magnetic field to split the ground into two Zeeman levels. (c) The optical depth of the two-crystal configuration is shown as a function of the linear polarization angle of the input. The green squares and blue circles correspond to transitions [(1) and (2)] from each of the Zeeman-split ground states shown in (a). Lines are fits of the model described in [33].

Fig. 3.
Fig. 3.

Spectrum of the AFC prepared by optical pumping inside the absorption profile. The central 120-MHz-wide region is prepared by the carrier frequency of the laser diode that is modulated in intensity and frequency by an AOM. The subsequent 120-MHz-wide regions on both sides are prepared by generating first- and second-order sidebands separated by 120 and 240 MHz from the carrier frequency, respectively, using an electro-optic phase modulator placed after the AOM. The finesse of the comb is 2 , and the width of the comb is 600 MHz . For comparison, the dashed red line shows the power spectra of a 170 MHz Lorentzian, which is close to the spectral width of the heralded signal photon. The values of d and d 0 used in equation of efficiency are shown for the central part.

Fig. 4.
Fig. 4.

Example of measurements used to violate CHSH inequality for time-bin qubits. The coincidence histograms between detectors D 1 ( s ) and D 1 ( i ) show three peaks corresponding to different path combinations for (a) transmitted signal photon, i.e., not absorbed by the QM, and (b) stored signal photon. Each figure represents a histogram from one measurement outcome, R 11 ( π , τ ) , of a correlator in the Bell–CHSH inequality [Eq. (4)]. The insets correspond to histograms with an additional π phase shift between the two interferometers. Varying the angles of the polarization analyzers leads to variations of the intensity of all three peaks simultaneously.

Fig. 5.
Fig. 5.

Calibration of the analyzers using transmitted signal photons. (a) Rates in the central coincidence peak of Fig. 4(a) are plotted as a function of the sum of the phases of each interferometer, for both output ports of the polarization analyzer. The small phase shift between the curves appears due to a residual phase difference between | H and | V components at the output of the interferometer on the signal side. (b) Rates in the central coincidence peak of Fig. 4(a) as a function of polarization analyzer’s HWP angle of the signal photon (with the QWP at 45°), for two pairs of detectors, namely D 1 ( s ) and D 1 ( i ) (solid line) or D 2 ( s ) and D 2 ( i ) (dashed line). Each curve represents a fit to data points using a sinusoidal function, and the error bars are estimated assuming Poisson statistics for the counts. The average visibilities for polarization and energy-time entanglement are V τ = 92 ( 3 ) % and V π = 96 ( 2 ) % , respectively.

Fig. 6.
Fig. 6.

Correlators for stored photons. The four panels are different sets of correlation measurements that violate the Bell–CHSH inequality of Eq. (4) reported in Table 1. The top row shows the values for polarization measurements with either (a) measurement on the energy-time entanglement such that Δ ϕ s + Δ ϕ i = 0 or (b)  Δ ϕ s + Δ ϕ i = π / 4 . In the bottom row we show the values for energy-time measurements while projecting the polarization of both the signal and the idler in (c) the { | + , | } basis, or (d) the { | H , | V } basis (right).

Tables (1)

Tables Icon

Table 1. Summary of all Bell–CHSH Violations a

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

| Ψ π = 1 2 ( | H H + e i θ | V V ) .
| Ψ τ = 1 2 ( | S S + | L L ) .
| Ψ τ | Ψ π .
S = | E ( X , Y ) + E ( X , Y ) + E ( X , Y ) E ( X , Y ) | 2 ,
R k l ( π , τ ) = R k l ( π ) · R ( τ ) ,

Metrics