Abstract

The ability to actively control the perceived color of objects is highly desirable for a variety of applications, such as camouflage, sensing, and displays. We report a completely new flexible, high-contrast metastructure (HCM) whose color can be varied by stretching the membrane. This is accomplished by annihilating the 0th order diffraction while enhancing the -1st order, a new phenomenon made possible with a large index contrast. The color perception of the HCM can thus be changed by varying its period. The structure is fabricated using silicon metastructures embedded in a flexible membrane. We experimentally demonstrate brilliant colors and change the color from green to orange (39 nm wavelength change) with a stretch of 25 nm period change. The same effect can be used for steering a laser beam, with more than 36 resolvable beam spots being demonstrated.

© 2015 Optical Society of America

Full Article  |  PDF Article
Related Articles
Flowers produce variations in color saturation by arranging petals at oblique and varying angles

Michael P. Eckert and Gregory A. Carter
J. Opt. Soc. Am. A 17(5) 825-830 (2000)

Short period holographic structures for backlight display applications

Roberto Caputo, Luciano De Sio, Martin J.J. Jak, Eefje J. Hornix, Dick K.G. de Boer, and Hugo J. Cornelissen
Opt. Express 15(17) 10540-10552 (2007)

Blazed high-efficiency x-ray diffraction via transmission through arrays of nanometer-scale mirrors

Ralf K. Heilmann, Minseung Ahn, Eric M. Gullikson, and Mark L. Schattenburg
Opt. Express 16(12) 8658-8669 (2008)

References

  • View by:
  • |
  • |
  • |

  1. H. A. Macleod, in Thin-film Optical Filters (Adam Hilger, 1986).
  2. M. Kolle, B. Zheng, N. Gibbons, J. Baumberg, U. Steiner, Opt. Express 18, 4356 (2010).
    [Crossref]
  3. S. Bertani, B. Jacobsson, F. Laurell, V. Pasiskevicius, M. Stjernstrom, Opt. Express 14, 11982 (2006).
    [Crossref]
  4. M. Aschwanden, A. Stemmer, Opt. Lett. 31, 2610 (2006).
    [Crossref]
  5. K. Suzumori, M. Mihara, S. Wakimoto, in IEEE International Conference on Robotics and Automation (IEEE, 2001), p. 2771.
  6. H. Fudouzi, T. Sawada, Langmuir 22, 1365 (2006).
    [Crossref]
  7. Z. H. Fang, C. Punckt, E. Y. Leung, H. C. Schniepp, I. A. Aksay, Appl. Opt. 49, 6689 (2010).
    [Crossref]
  8. C. E. Finlayson, J. J. Baumberg, Polym. Int. 62, 1403 (2013).
    [Crossref]
  9. C. F. R. Mateus, M. C. Huang, Y. Deng, A. R. Neureuther, C. J. Chang-Hasnain, IEEE Photon. Technol. Lett. 16, 518 (2004).
    [Crossref]
  10. M. C. Y. Huang, Y. Zhou, C. J. Chang-Hasnain, Nat. Photonics 1, 119 (2007).
    [Crossref]
  11. F. Lu, F. G. Sedgwick, V. Karagodsky, C. Chase, C. J. Chang-Hasnain, Opt. Express 18, 12606 (2010).
    [Crossref]
  12. W. Yang, J. Ferrara, K. Grutter, A. Yeh, C. Chase, Y. Yue, A. E. Willner, M. C. Wu, C. J. Chang-Hasnain, Nanophotonics 1, 23 (2012).
  13. C. J. Chang-Hasnain, W. Yang, Adv. Opt. Photon. 4, 379 (2012).
  14. Y. Zhou, M. C. Huang, C. Chase, V. Karagodsky, M. Moewe, B. Pesala, F. G. Sedgwick, C. J. Chang-Hasnain, Opt. Express 16, 17282 (2008).
    [Crossref]
  15. J. C. Lotters, W. Olthuis, P. H. Veltink, P. Bergveld, J. Micromech. Microeng. 7, 145 (1997).
    [Crossref]
  16. A. J. Hoffman, L. Alekseyev, S. S. Howard, K. J. Franz, D. Wasserman, V. A. Podolskiy, E. E. Narimanov, D. L. Sivco, C. Gmachl, Nat. Mater. 6, 946 (2007).
    [Crossref]
  17. S. K. Kunz, R. J. Luebbers, in The Finite Difference Time Domain Method for Electromagnetics (CRC Press, 1993).
  18. M. A. Meitl, Z. T. Zhu, V. Kumar, K. J. Lee, X. Feng, Y. Y. Huang, A. Ilesanmi, R. G. Nuzzo, J. A. Rogers, Nat. Mater. 5, 33 (2006).
    [Crossref]

2013 (1)

C. E. Finlayson, J. J. Baumberg, Polym. Int. 62, 1403 (2013).
[Crossref]

2012 (2)

W. Yang, J. Ferrara, K. Grutter, A. Yeh, C. Chase, Y. Yue, A. E. Willner, M. C. Wu, C. J. Chang-Hasnain, Nanophotonics 1, 23 (2012).

C. J. Chang-Hasnain, W. Yang, Adv. Opt. Photon. 4, 379 (2012).

2010 (3)

2008 (1)

2007 (2)

A. J. Hoffman, L. Alekseyev, S. S. Howard, K. J. Franz, D. Wasserman, V. A. Podolskiy, E. E. Narimanov, D. L. Sivco, C. Gmachl, Nat. Mater. 6, 946 (2007).
[Crossref]

M. C. Y. Huang, Y. Zhou, C. J. Chang-Hasnain, Nat. Photonics 1, 119 (2007).
[Crossref]

2006 (4)

S. Bertani, B. Jacobsson, F. Laurell, V. Pasiskevicius, M. Stjernstrom, Opt. Express 14, 11982 (2006).
[Crossref]

M. Aschwanden, A. Stemmer, Opt. Lett. 31, 2610 (2006).
[Crossref]

H. Fudouzi, T. Sawada, Langmuir 22, 1365 (2006).
[Crossref]

M. A. Meitl, Z. T. Zhu, V. Kumar, K. J. Lee, X. Feng, Y. Y. Huang, A. Ilesanmi, R. G. Nuzzo, J. A. Rogers, Nat. Mater. 5, 33 (2006).
[Crossref]

2004 (1)

C. F. R. Mateus, M. C. Huang, Y. Deng, A. R. Neureuther, C. J. Chang-Hasnain, IEEE Photon. Technol. Lett. 16, 518 (2004).
[Crossref]

1997 (1)

J. C. Lotters, W. Olthuis, P. H. Veltink, P. Bergveld, J. Micromech. Microeng. 7, 145 (1997).
[Crossref]

Aksay, I. A.

Alekseyev, L.

A. J. Hoffman, L. Alekseyev, S. S. Howard, K. J. Franz, D. Wasserman, V. A. Podolskiy, E. E. Narimanov, D. L. Sivco, C. Gmachl, Nat. Mater. 6, 946 (2007).
[Crossref]

Aschwanden, M.

Baumberg, J.

Baumberg, J. J.

C. E. Finlayson, J. J. Baumberg, Polym. Int. 62, 1403 (2013).
[Crossref]

Bergveld, P.

J. C. Lotters, W. Olthuis, P. H. Veltink, P. Bergveld, J. Micromech. Microeng. 7, 145 (1997).
[Crossref]

Bertani, S.

Chang-Hasnain, C. J.

W. Yang, J. Ferrara, K. Grutter, A. Yeh, C. Chase, Y. Yue, A. E. Willner, M. C. Wu, C. J. Chang-Hasnain, Nanophotonics 1, 23 (2012).

C. J. Chang-Hasnain, W. Yang, Adv. Opt. Photon. 4, 379 (2012).

F. Lu, F. G. Sedgwick, V. Karagodsky, C. Chase, C. J. Chang-Hasnain, Opt. Express 18, 12606 (2010).
[Crossref]

Y. Zhou, M. C. Huang, C. Chase, V. Karagodsky, M. Moewe, B. Pesala, F. G. Sedgwick, C. J. Chang-Hasnain, Opt. Express 16, 17282 (2008).
[Crossref]

M. C. Y. Huang, Y. Zhou, C. J. Chang-Hasnain, Nat. Photonics 1, 119 (2007).
[Crossref]

C. F. R. Mateus, M. C. Huang, Y. Deng, A. R. Neureuther, C. J. Chang-Hasnain, IEEE Photon. Technol. Lett. 16, 518 (2004).
[Crossref]

Chase, C.

Deng, Y.

C. F. R. Mateus, M. C. Huang, Y. Deng, A. R. Neureuther, C. J. Chang-Hasnain, IEEE Photon. Technol. Lett. 16, 518 (2004).
[Crossref]

Fang, Z. H.

Feng, X.

M. A. Meitl, Z. T. Zhu, V. Kumar, K. J. Lee, X. Feng, Y. Y. Huang, A. Ilesanmi, R. G. Nuzzo, J. A. Rogers, Nat. Mater. 5, 33 (2006).
[Crossref]

Ferrara, J.

W. Yang, J. Ferrara, K. Grutter, A. Yeh, C. Chase, Y. Yue, A. E. Willner, M. C. Wu, C. J. Chang-Hasnain, Nanophotonics 1, 23 (2012).

Finlayson, C. E.

C. E. Finlayson, J. J. Baumberg, Polym. Int. 62, 1403 (2013).
[Crossref]

Franz, K. J.

A. J. Hoffman, L. Alekseyev, S. S. Howard, K. J. Franz, D. Wasserman, V. A. Podolskiy, E. E. Narimanov, D. L. Sivco, C. Gmachl, Nat. Mater. 6, 946 (2007).
[Crossref]

Fudouzi, H.

H. Fudouzi, T. Sawada, Langmuir 22, 1365 (2006).
[Crossref]

Gibbons, N.

Gmachl, C.

A. J. Hoffman, L. Alekseyev, S. S. Howard, K. J. Franz, D. Wasserman, V. A. Podolskiy, E. E. Narimanov, D. L. Sivco, C. Gmachl, Nat. Mater. 6, 946 (2007).
[Crossref]

Grutter, K.

W. Yang, J. Ferrara, K. Grutter, A. Yeh, C. Chase, Y. Yue, A. E. Willner, M. C. Wu, C. J. Chang-Hasnain, Nanophotonics 1, 23 (2012).

Hoffman, A. J.

A. J. Hoffman, L. Alekseyev, S. S. Howard, K. J. Franz, D. Wasserman, V. A. Podolskiy, E. E. Narimanov, D. L. Sivco, C. Gmachl, Nat. Mater. 6, 946 (2007).
[Crossref]

Howard, S. S.

A. J. Hoffman, L. Alekseyev, S. S. Howard, K. J. Franz, D. Wasserman, V. A. Podolskiy, E. E. Narimanov, D. L. Sivco, C. Gmachl, Nat. Mater. 6, 946 (2007).
[Crossref]

Huang, M. C.

Y. Zhou, M. C. Huang, C. Chase, V. Karagodsky, M. Moewe, B. Pesala, F. G. Sedgwick, C. J. Chang-Hasnain, Opt. Express 16, 17282 (2008).
[Crossref]

C. F. R. Mateus, M. C. Huang, Y. Deng, A. R. Neureuther, C. J. Chang-Hasnain, IEEE Photon. Technol. Lett. 16, 518 (2004).
[Crossref]

Huang, M. C. Y.

M. C. Y. Huang, Y. Zhou, C. J. Chang-Hasnain, Nat. Photonics 1, 119 (2007).
[Crossref]

Huang, Y. Y.

M. A. Meitl, Z. T. Zhu, V. Kumar, K. J. Lee, X. Feng, Y. Y. Huang, A. Ilesanmi, R. G. Nuzzo, J. A. Rogers, Nat. Mater. 5, 33 (2006).
[Crossref]

Ilesanmi, A.

M. A. Meitl, Z. T. Zhu, V. Kumar, K. J. Lee, X. Feng, Y. Y. Huang, A. Ilesanmi, R. G. Nuzzo, J. A. Rogers, Nat. Mater. 5, 33 (2006).
[Crossref]

Jacobsson, B.

Karagodsky, V.

Kolle, M.

Kumar, V.

M. A. Meitl, Z. T. Zhu, V. Kumar, K. J. Lee, X. Feng, Y. Y. Huang, A. Ilesanmi, R. G. Nuzzo, J. A. Rogers, Nat. Mater. 5, 33 (2006).
[Crossref]

Kunz, S. K.

S. K. Kunz, R. J. Luebbers, in The Finite Difference Time Domain Method for Electromagnetics (CRC Press, 1993).

Laurell, F.

Lee, K. J.

M. A. Meitl, Z. T. Zhu, V. Kumar, K. J. Lee, X. Feng, Y. Y. Huang, A. Ilesanmi, R. G. Nuzzo, J. A. Rogers, Nat. Mater. 5, 33 (2006).
[Crossref]

Leung, E. Y.

Lotters, J. C.

J. C. Lotters, W. Olthuis, P. H. Veltink, P. Bergveld, J. Micromech. Microeng. 7, 145 (1997).
[Crossref]

Lu, F.

Luebbers, R. J.

S. K. Kunz, R. J. Luebbers, in The Finite Difference Time Domain Method for Electromagnetics (CRC Press, 1993).

Macleod, H. A.

H. A. Macleod, in Thin-film Optical Filters (Adam Hilger, 1986).

Mateus, C. F. R.

C. F. R. Mateus, M. C. Huang, Y. Deng, A. R. Neureuther, C. J. Chang-Hasnain, IEEE Photon. Technol. Lett. 16, 518 (2004).
[Crossref]

Meitl, M. A.

M. A. Meitl, Z. T. Zhu, V. Kumar, K. J. Lee, X. Feng, Y. Y. Huang, A. Ilesanmi, R. G. Nuzzo, J. A. Rogers, Nat. Mater. 5, 33 (2006).
[Crossref]

Mihara, M.

K. Suzumori, M. Mihara, S. Wakimoto, in IEEE International Conference on Robotics and Automation (IEEE, 2001), p. 2771.

Moewe, M.

Narimanov, E. E.

A. J. Hoffman, L. Alekseyev, S. S. Howard, K. J. Franz, D. Wasserman, V. A. Podolskiy, E. E. Narimanov, D. L. Sivco, C. Gmachl, Nat. Mater. 6, 946 (2007).
[Crossref]

Neureuther, A. R.

C. F. R. Mateus, M. C. Huang, Y. Deng, A. R. Neureuther, C. J. Chang-Hasnain, IEEE Photon. Technol. Lett. 16, 518 (2004).
[Crossref]

Nuzzo, R. G.

M. A. Meitl, Z. T. Zhu, V. Kumar, K. J. Lee, X. Feng, Y. Y. Huang, A. Ilesanmi, R. G. Nuzzo, J. A. Rogers, Nat. Mater. 5, 33 (2006).
[Crossref]

Olthuis, W.

J. C. Lotters, W. Olthuis, P. H. Veltink, P. Bergveld, J. Micromech. Microeng. 7, 145 (1997).
[Crossref]

Pasiskevicius, V.

Pesala, B.

Podolskiy, V. A.

A. J. Hoffman, L. Alekseyev, S. S. Howard, K. J. Franz, D. Wasserman, V. A. Podolskiy, E. E. Narimanov, D. L. Sivco, C. Gmachl, Nat. Mater. 6, 946 (2007).
[Crossref]

Punckt, C.

Rogers, J. A.

M. A. Meitl, Z. T. Zhu, V. Kumar, K. J. Lee, X. Feng, Y. Y. Huang, A. Ilesanmi, R. G. Nuzzo, J. A. Rogers, Nat. Mater. 5, 33 (2006).
[Crossref]

Sawada, T.

H. Fudouzi, T. Sawada, Langmuir 22, 1365 (2006).
[Crossref]

Schniepp, H. C.

Sedgwick, F. G.

Sivco, D. L.

A. J. Hoffman, L. Alekseyev, S. S. Howard, K. J. Franz, D. Wasserman, V. A. Podolskiy, E. E. Narimanov, D. L. Sivco, C. Gmachl, Nat. Mater. 6, 946 (2007).
[Crossref]

Steiner, U.

Stemmer, A.

Stjernstrom, M.

Suzumori, K.

K. Suzumori, M. Mihara, S. Wakimoto, in IEEE International Conference on Robotics and Automation (IEEE, 2001), p. 2771.

Veltink, P. H.

J. C. Lotters, W. Olthuis, P. H. Veltink, P. Bergveld, J. Micromech. Microeng. 7, 145 (1997).
[Crossref]

Wakimoto, S.

K. Suzumori, M. Mihara, S. Wakimoto, in IEEE International Conference on Robotics and Automation (IEEE, 2001), p. 2771.

Wasserman, D.

A. J. Hoffman, L. Alekseyev, S. S. Howard, K. J. Franz, D. Wasserman, V. A. Podolskiy, E. E. Narimanov, D. L. Sivco, C. Gmachl, Nat. Mater. 6, 946 (2007).
[Crossref]

Willner, A. E.

W. Yang, J. Ferrara, K. Grutter, A. Yeh, C. Chase, Y. Yue, A. E. Willner, M. C. Wu, C. J. Chang-Hasnain, Nanophotonics 1, 23 (2012).

Wu, M. C.

W. Yang, J. Ferrara, K. Grutter, A. Yeh, C. Chase, Y. Yue, A. E. Willner, M. C. Wu, C. J. Chang-Hasnain, Nanophotonics 1, 23 (2012).

Yang, W.

W. Yang, J. Ferrara, K. Grutter, A. Yeh, C. Chase, Y. Yue, A. E. Willner, M. C. Wu, C. J. Chang-Hasnain, Nanophotonics 1, 23 (2012).

C. J. Chang-Hasnain, W. Yang, Adv. Opt. Photon. 4, 379 (2012).

Yeh, A.

W. Yang, J. Ferrara, K. Grutter, A. Yeh, C. Chase, Y. Yue, A. E. Willner, M. C. Wu, C. J. Chang-Hasnain, Nanophotonics 1, 23 (2012).

Yue, Y.

W. Yang, J. Ferrara, K. Grutter, A. Yeh, C. Chase, Y. Yue, A. E. Willner, M. C. Wu, C. J. Chang-Hasnain, Nanophotonics 1, 23 (2012).

Zheng, B.

Zhou, Y.

Zhu, Z. T.

M. A. Meitl, Z. T. Zhu, V. Kumar, K. J. Lee, X. Feng, Y. Y. Huang, A. Ilesanmi, R. G. Nuzzo, J. A. Rogers, Nat. Mater. 5, 33 (2006).
[Crossref]

Adv. Opt. Photon. (1)

Appl. Opt. (1)

IEEE Photon. Technol. Lett. (1)

C. F. R. Mateus, M. C. Huang, Y. Deng, A. R. Neureuther, C. J. Chang-Hasnain, IEEE Photon. Technol. Lett. 16, 518 (2004).
[Crossref]

J. Micromech. Microeng. (1)

J. C. Lotters, W. Olthuis, P. H. Veltink, P. Bergveld, J. Micromech. Microeng. 7, 145 (1997).
[Crossref]

Langmuir (1)

H. Fudouzi, T. Sawada, Langmuir 22, 1365 (2006).
[Crossref]

Nanophotonics (1)

W. Yang, J. Ferrara, K. Grutter, A. Yeh, C. Chase, Y. Yue, A. E. Willner, M. C. Wu, C. J. Chang-Hasnain, Nanophotonics 1, 23 (2012).

Nat. Mater. (2)

A. J. Hoffman, L. Alekseyev, S. S. Howard, K. J. Franz, D. Wasserman, V. A. Podolskiy, E. E. Narimanov, D. L. Sivco, C. Gmachl, Nat. Mater. 6, 946 (2007).
[Crossref]

M. A. Meitl, Z. T. Zhu, V. Kumar, K. J. Lee, X. Feng, Y. Y. Huang, A. Ilesanmi, R. G. Nuzzo, J. A. Rogers, Nat. Mater. 5, 33 (2006).
[Crossref]

Nat. Photonics (1)

M. C. Y. Huang, Y. Zhou, C. J. Chang-Hasnain, Nat. Photonics 1, 119 (2007).
[Crossref]

Opt. Express (4)

Opt. Lett. (1)

Polym. Int. (1)

C. E. Finlayson, J. J. Baumberg, Polym. Int. 62, 1403 (2013).
[Crossref]

Other (3)

H. A. Macleod, in Thin-film Optical Filters (Adam Hilger, 1986).

K. Suzumori, M. Mihara, S. Wakimoto, in IEEE International Conference on Robotics and Automation (IEEE, 2001), p. 2771.

S. K. Kunz, R. J. Luebbers, in The Finite Difference Time Domain Method for Electromagnetics (CRC Press, 1993).

Supplementary Material (2)

» Supplement 1: PDF (841 KB)     
» Media 2: MP4 (426 KB)     

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1.

(a) Schematic of the color display from the HCM embedded flexible membrane. The display pattern is composed of individual pixels with a designed color. One pixel consists of an HCM with nanoscale features, which is very flexible and robust to deformation. (b) Schematic of a one-dimensional HCM. The optical properties are determined by three key parameters: period Λ , thickness t g , and duty cycle η = s Λ , where s is the width of the high-index bar. In the two-order diffraction regime, the incident light is diffracted into four possible orders: R 1 , R 0 , T 1 , and T 0 . (c)  R 1 with varied t g and incidence angle θ i for HCM design with 500 nm period and 0.5 duty cycle at 532 nm wavelength. (d) FDTD simulation of the anomalous reflection phenomenon for the HCM design in (c) with 180 nm thickness and 32° incidence angle.

Fig. 2.
Fig. 2.

(a) Schematic of the major steps for fabrication. Step 1: Etching the silicon metastructure with the thermal oxide as the hard mask; the inset shows the cross-section of the etching profile. Step 2: Release the HCMs from the substrate with vapor hydrofluoric acid etching. Step 3: Use stamp transfer method to transfer the silicon HCMs to the PDMS membrane. Step 4: Encapsulate the flexible HCM sample with PDMS. (b) Scanning electron microscope (SEM) images for the HCM on silicon on insulator after etching. The inset shows the cross-section. (c) Microscopic (left) and SEM (right) images for the transferred HCMs on PDMS before encapsulation. The left image is a large 1 cm × 1 cm sample. Each individual pixel is 100 μm × 100 μm size. The right image is the top-view SEM of the HCM.

Fig. 3.
Fig. 3.

(a) Reflectivity dependence on the incidence angle for the green HCM design measured with a 532 nm green laser. (b) Beam steering effect characterization within a 3 dB optical power range. The flexible membrane is illuminated by a green laser. The irradiation angle of R _ ( 1 ) is steered with the stretching of the membrane. (c) Photograph of the display sample under the white light illumination. (d) Photograph of the four colors (green, yellow, orange, and red) as the color palette under the white light illumination. (e) Normalized spectra of the measurement (solid lines) and simulation (dashed lines) results for Design C. Red and blue curves represent the -1st order and 0th order, respectively. (f) Spectra of the -1st order for green, yellow, and red designs. (g) Color control effect characterization for the green HCM design in the 3 dB peak power range. The spectrum is measured at the fixed incidence and perception angle. By stretching the flexible membrane, the peak shifts to longer wavelengths. (h) Photographs of the sample before ( ε = 0 ) and after ( ε = 4.9 % ) stretching. Media 1 (i) Photos of the flower pattern under different deformation.

Tables (1)

Tables Icon

Table 1. Design Parameters for the Four-Color Palette

Metrics