Abstract

Ultralow-noise yet tunable lasers are a revolutionary tool in precision spectroscopy, displacement measurements at the standard quantum limit, and the development of advanced optical atomic clocks. Further applications include lidar, coherent communications, frequency synthesis, and precision sensors of strain, motion, and temperature. While all applications benefit from lower frequency noise, many also require a laser that is robust and compact. Here, we introduce a dual-microcavity laser that leverages one chip-integrable silica microresonator to generate tunable 1550 nm laser light via stimulated Brillouin scattering (SBS) and a second microresonator for frequency stabilization of the SBS light. This configuration reduces the fractional frequency noise to 7.8×10141/Hz at 10 Hz offset, which is a new regime of noise performance for a microresonator-based laser. Our system also features terahertz tunability and the potential for chip-level integration. We demonstrate the utility of our dual-microcavity laser by performing spectral linewidth measurements with hertz-level resolution.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Microresonator Brillouin laser stabilization using a microfabricated rubidium cell

William Loh, Matthew T. Hummon, Holly F. Leopardi, Tara M. Fortier, Frank Quinlan, John Kitching, Scott B. Papp, and Scott A. Diddams
Opt. Express 24(13) 14513-14524 (2016)

Tunable millimeter-wave frequency synthesis up to 100 GHz by dual-wavelength Brillouin fiber laser

Michael C. Gross, Patrick T. Callahan, Thomas R. Clark, Dalma Novak, Rodney B. Waterhouse, and Michael L. Dennis
Opt. Express 18(13) 13321-13330 (2010)

Narrow-linewidth microwave generation using AlGaInAs/InP microdisk lasers subject to optical injection and optoelectronic feedback

Xiu-Wen Ma, Yong-Zhen Huang, Ling-Xiu Zou, Bo-Wen Liu, Heng Long, Hai-Zhong Weng, Yue-De Yang, and Jin-Long Xiao
Opt. Express 23(16) 20321-20331 (2015)

References

  • View by:
  • |
  • |
  • |

  1. B. C. Young, F. C. Cruz, W. M. Itano, J. C. Bergquist, “Visible lasers with subhertz linewidths,” Phys. Rev. Lett. 82, 3799–3802 (1999).
    [Crossref]
  2. Y. Y. Jiang, A. D. Ludlow, N. D. Lemke, R. W. Fox, J. A. Sherman, L.-S. Ma, C. W. Oates, “Making optical atomic clocks more stable with 10−16-level laser stabilization,” Nat. Photonics 5, 158–161 (2011).
    [Crossref]
  3. T. Kessler, C. Hagemann, C. Grebing, T. Legero, U. Sterr, F. Riehle, M. J. Martin, L. Chen, J. Ye, “A sub-40-mHz linewidth laser based on a silicon single-crystal optical cavity,” Nat. Photonics 6, 687–692 (2012).
    [Crossref]
  4. D. R. Leibrandt, M. J. Thorpe, J. C. Bergquist, T. Rosenband, “Field-test of a robust, portable, frequency-stable laser,” Opt. Express 19, 10278–10286 (2011).
    [Crossref]
  5. B. Argence, E. Prevost, T. Lévèque, R. Le Goff, S. Bize, P. Lemonde, G. Santarelli, “Prototype of an ultra-stable optical cavity for space applications,” Opt. Express 20, 25409–25420 (2012).
    [Crossref]
  6. F. Kéfélian, H. Jiang, P. Lemonde, G. Santarelli, “Ultralow-frequency-noise stabilization of a laser by locking to an optical fiber-delay-line,” Opt. Lett. 34, 914–916 (2009).
    [Crossref]
  7. M. J. Thorpe, L. Rippe, T. M. Fortier, M. S. Kirchner, T. Rosenband, “Frequency stabilization to 6 × 10−16 via spectral-hole burning,” Nat. Photonics 5, 688–693 (2011).
    [Crossref]
  8. D. K. Armani, T. J. Kippenberg, S. M. Spillane, K. J. Vahala, “Ultra-high-Q toroid microcavity on a chip,” Nature 421, 925–928 (2003).
    [Crossref]
  9. K. J. Vahala, “Optical microcavities,” Nature 424, 839–846 (2003).
    [Crossref]
  10. A. A. Savchenkov, V. S. Ilchenko, A. B. Matsko, L. Maleki, “Tunable filter based on whispering gallery modes,” Electron. Lett. 39, 389–391 (2003).
    [Crossref]
  11. S. M. Spillane, T. J. Kippenberg, K. J. Vahala, “Ultralow-threshold Raman laser using a spherical dielectric microcavity,” Nature 415, 621–623 (2002).
    [Crossref]
  12. I. S. Grudinin, A. B. Matsko, L. Maleki, “Brillouin lasing with a CaF2 whispering gallery mode resonator,” Phys. Rev. Lett. 102, 043902 (2009).
    [Crossref]
  13. H. Lee, T. Chen, J. Li, K. Yang, S. Jeon, O. Painter, K. J. Vahala, “Chemically etched ultrahigh-Q wedge-resonator on a silicon chip,” Nat. Photonics 6, 369–373 (2012).
    [Crossref]
  14. I. V. Kabakova, R. Pant, D.-Y. Choi, S. Debbarma, B. Luther-Davies, S. J. Madden, B. J. Eggleton, “Narrow linewidth Brillouin laser based on a chalcogenide photonic chip,” Opt. Lett. 38, 3208–3211 (2013).
    [Crossref]
  15. A. B. Matsko, A. A. Savchenkov, N. Yu, L. Maleki, “Whispering-gallery-mode resonators as frequency references. I. Fundamental limitations,” J. Opt. Soc. Am. B 24, 1324–1335 (2007).
    [Crossref]
  16. A. A. Savchenkov, A. B. Matsko, V. S. Ilchenko, N. Yu, L. Maleki, “Whispering-gallery-mode resonators as frequency references. II. Stabilization,” J. Opt. Soc. Am. B 24, 2988–2997 (2007).
    [Crossref]
  17. W. Liang, V. S. Ilchenko, A. A. Savchenkov, A. B. Matsko, D. Seidel, L. Maleki, “Whispering-gallery-mode resonator-based ultranarrow linewidth external-cavity semiconductor laser,” Opt. Lett. 35, 2822–2824 (2010).
    [Crossref]
  18. J. Alnis, A. Schliesser, C. Y. Wang, J. Hofer, T. J. Kippenberg, T. W. Hänsch, “Thermal-noise-limited crystalline whispering-gallery-mode resonator for laser stabilization,” Phys. Rev. A 84, 011804(R) (2011).
    [Crossref]
  19. H. Lee, M.-G. Suh, T. Chen, J. Li, S. A. Diddams, K. J. Vahala, “Spiral resonators for on-chip laser frequency stabilization,” Nat. Commun. 4, 2468 (2013).
  20. M. J. R. Heck, J. F. Bauters, M. L. Davenport, J. K. Doylend, S. Jain, G. Kurczveil, S. Srinivasan, Y. Tang, J. E. Bowers, “Hybrid silicon photonic integrated circuit technology,” IEEE J. Sel. Top. Quantum Electron. 19, 6100117 (2013).
    [Crossref]
  21. K. Numata, J. Camp, M. A. Krainak, L. Stolpner, “Performance of planar-waveguide external cavity laser for precision measurements,” Opt. Express 18, 22781–22788 (2010).
    [Crossref]
  22. E. Dale, W. Liang, D. Eliyahu, A. A. Savchenkov, V. S. Ilchenko, A. B. Matsko, D. Seidel, L. Maleki, “On phase noise of self-injection locked semiconductor lasers,” Proc. SPIE 8960, 89600X (2014).
  23. T. M. Fortier, M. S. Kirchner, F. Quinlan, J. Taylor, J. C. Bergquist, T. Rosenband, N. Lemke, A. Ludlow, Y. Jiang, C. W. Oates, S. A. Diddams, “Generation of ultrastable microwaves via optical frequency division,” Nat. Photonics 5, 425–429 (2011).
    [Crossref]
  24. P. Del’Haye, S. B. Papp, S. A. Diddams, “Hybrid electro-optically modulated microcombs,” Phys. Rev. Lett. 109, 263901 (2012).
    [Crossref]
  25. J. Li, X. Yi, H. Lee, S. A. Diddams, K. J. Vahala, “Electro-optical frequency division and stable microwave synthesis,” Science 345, 309–313 (2014).
    [Crossref]
  26. P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, T. J. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature 450, 1214–1217 (2007).
    [Crossref]
  27. A. A. Savchenkov, A. B. Matsko, V. S. Ilchenko, L. Solomatine, D. Seidel, L. Maleki, “Tunable optical frequency comb with a crystalline whispering gallery mode resonator,” Phys. Rev. Lett. 101, 093902 (2008).
    [Crossref]
  28. T. J. Kippenberg, R. Holzwarth, S. A. Diddams, “Microresonator-based optical frequency combs,” Science 332, 555–559 (2011).
    [Crossref]
  29. S. B. Papp, S. A. Diddams, “Spectral and temporal characterization of a fused-quartz-microresonator optical frequency comb,” Phys. Rev. A 84, 053833 (2011).
    [Crossref]
  30. M. A. Foster, J. S. Levy, O. Kuzucu, K. Saha, M. Lipson, A. L. Gaeta, “Silicon-based monolithic optical frequency comb source,” Opt. Express 19, 14233–14239 (2011).
    [Crossref]
  31. A. D. Kersey, M. A. Davis, H. J. Patrick, M. Leblanc, K. P. Koo, C. G. Askins, M. A. Putnam, E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15, 1442–1463 (1997).
    [Crossref]
  32. E. Ip, A. Lau, D. J. F. Barros, J. M. Kahn, “Coherent detection in optical fiber systems,” Opt. Express 16, 753–791 (2008).
    [Crossref]
  33. R. J. Rafac, B. C. Young, J. A. Beall, W. M. Itano, D. J. Wineland, J. C. Bergquist, “Sub-dekahertz ultraviolet spectroscopy of 199Hg+,” Phys. Rev. Lett. 85, 2462–2465 (2000).
    [Crossref]
  34. E. P. Ippen, R. H. Stolen, “Stimulated Brillouin scattering in optical fibers,” Appl. Phys. Lett. 21, 539–541 (1972).
    [Crossref]
  35. J. Li, H. Lee, T. Chen, K. J. Vahala, “Characterization of a high coherence Brillouin microcavity laser on silicon,” Opt. Express 20, 20170–20180 (2012).
    [Crossref]
  36. J. Li, H. Lee, K. J. Vahala, “Low-noise Brillouin laser on a chip at 1064  nm,” Opt. Lett. 39, 287–290 (2014).
    [Crossref]
  37. S. B. Papp, P. Del’Haye, S. A. Diddams, “Mechanical control of a microrod-resonator optical frequency comb,” Phys. Rev. X 3, 031003 (2013).
    [Crossref]
  38. P. Del’Haye, S. A. Diddams, S. B. Papp, “Laser-machined ultra-high-Q microrod resonators for nonlinear optics,” Appl. Phys. Lett. 102, 221119 (2013).
    [Crossref]
  39. R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31, 97–105 (1983).
    [Crossref]
  40. P. Del’Haye, O. Arcizet, A. Schliesser, R. Holzwarth, T. J. Kippenberg, “Full stabilization of a microresonator-based optical frequency comb,” Phys. Rev. Lett. 101, 053903 (2008).
    [Crossref]
  41. M. L. Gorodetsky, I. S. Grudinin, “Fundamental thermal fluctuations in microspheres,” J. Opt. Soc. Am. B 21, 697–705 (2004).
    [Crossref]
  42. D. R. Hjelme, A. R. Mickelson, R. G. Beausoleil, “Semiconductor laser stabilization by external optical feedback,” IEEE J. Quantum Electron. 27, 352–372 (1991).
    [Crossref]
  43. P. Dong, N.-N. Feng, D. Feng, W. Qian, H. Liang, D. C. Lee, B. J. Luff, T. Banwell, A. Agarwal, P. Toliver, R. Menendez, T. K. Woodward, M. Asghari, “GHz-bandwidth optical filters based on high-order silicon ring resonators,” Opt. Express 18, 23784–23789 (2010).
    [Crossref]

2014 (3)

E. Dale, W. Liang, D. Eliyahu, A. A. Savchenkov, V. S. Ilchenko, A. B. Matsko, D. Seidel, L. Maleki, “On phase noise of self-injection locked semiconductor lasers,” Proc. SPIE 8960, 89600X (2014).

J. Li, X. Yi, H. Lee, S. A. Diddams, K. J. Vahala, “Electro-optical frequency division and stable microwave synthesis,” Science 345, 309–313 (2014).
[Crossref]

J. Li, H. Lee, K. J. Vahala, “Low-noise Brillouin laser on a chip at 1064  nm,” Opt. Lett. 39, 287–290 (2014).
[Crossref]

2013 (5)

S. B. Papp, P. Del’Haye, S. A. Diddams, “Mechanical control of a microrod-resonator optical frequency comb,” Phys. Rev. X 3, 031003 (2013).
[Crossref]

P. Del’Haye, S. A. Diddams, S. B. Papp, “Laser-machined ultra-high-Q microrod resonators for nonlinear optics,” Appl. Phys. Lett. 102, 221119 (2013).
[Crossref]

H. Lee, M.-G. Suh, T. Chen, J. Li, S. A. Diddams, K. J. Vahala, “Spiral resonators for on-chip laser frequency stabilization,” Nat. Commun. 4, 2468 (2013).

M. J. R. Heck, J. F. Bauters, M. L. Davenport, J. K. Doylend, S. Jain, G. Kurczveil, S. Srinivasan, Y. Tang, J. E. Bowers, “Hybrid silicon photonic integrated circuit technology,” IEEE J. Sel. Top. Quantum Electron. 19, 6100117 (2013).
[Crossref]

I. V. Kabakova, R. Pant, D.-Y. Choi, S. Debbarma, B. Luther-Davies, S. J. Madden, B. J. Eggleton, “Narrow linewidth Brillouin laser based on a chalcogenide photonic chip,” Opt. Lett. 38, 3208–3211 (2013).
[Crossref]

2012 (5)

B. Argence, E. Prevost, T. Lévèque, R. Le Goff, S. Bize, P. Lemonde, G. Santarelli, “Prototype of an ultra-stable optical cavity for space applications,” Opt. Express 20, 25409–25420 (2012).
[Crossref]

H. Lee, T. Chen, J. Li, K. Yang, S. Jeon, O. Painter, K. J. Vahala, “Chemically etched ultrahigh-Q wedge-resonator on a silicon chip,” Nat. Photonics 6, 369–373 (2012).
[Crossref]

T. Kessler, C. Hagemann, C. Grebing, T. Legero, U. Sterr, F. Riehle, M. J. Martin, L. Chen, J. Ye, “A sub-40-mHz linewidth laser based on a silicon single-crystal optical cavity,” Nat. Photonics 6, 687–692 (2012).
[Crossref]

P. Del’Haye, S. B. Papp, S. A. Diddams, “Hybrid electro-optically modulated microcombs,” Phys. Rev. Lett. 109, 263901 (2012).
[Crossref]

J. Li, H. Lee, T. Chen, K. J. Vahala, “Characterization of a high coherence Brillouin microcavity laser on silicon,” Opt. Express 20, 20170–20180 (2012).
[Crossref]

2011 (8)

T. M. Fortier, M. S. Kirchner, F. Quinlan, J. Taylor, J. C. Bergquist, T. Rosenband, N. Lemke, A. Ludlow, Y. Jiang, C. W. Oates, S. A. Diddams, “Generation of ultrastable microwaves via optical frequency division,” Nat. Photonics 5, 425–429 (2011).
[Crossref]

T. J. Kippenberg, R. Holzwarth, S. A. Diddams, “Microresonator-based optical frequency combs,” Science 332, 555–559 (2011).
[Crossref]

S. B. Papp, S. A. Diddams, “Spectral and temporal characterization of a fused-quartz-microresonator optical frequency comb,” Phys. Rev. A 84, 053833 (2011).
[Crossref]

M. A. Foster, J. S. Levy, O. Kuzucu, K. Saha, M. Lipson, A. L. Gaeta, “Silicon-based monolithic optical frequency comb source,” Opt. Express 19, 14233–14239 (2011).
[Crossref]

D. R. Leibrandt, M. J. Thorpe, J. C. Bergquist, T. Rosenband, “Field-test of a robust, portable, frequency-stable laser,” Opt. Express 19, 10278–10286 (2011).
[Crossref]

Y. Y. Jiang, A. D. Ludlow, N. D. Lemke, R. W. Fox, J. A. Sherman, L.-S. Ma, C. W. Oates, “Making optical atomic clocks more stable with 10−16-level laser stabilization,” Nat. Photonics 5, 158–161 (2011).
[Crossref]

M. J. Thorpe, L. Rippe, T. M. Fortier, M. S. Kirchner, T. Rosenband, “Frequency stabilization to 6 × 10−16 via spectral-hole burning,” Nat. Photonics 5, 688–693 (2011).
[Crossref]

J. Alnis, A. Schliesser, C. Y. Wang, J. Hofer, T. J. Kippenberg, T. W. Hänsch, “Thermal-noise-limited crystalline whispering-gallery-mode resonator for laser stabilization,” Phys. Rev. A 84, 011804(R) (2011).
[Crossref]

2010 (3)

2009 (2)

I. S. Grudinin, A. B. Matsko, L. Maleki, “Brillouin lasing with a CaF2 whispering gallery mode resonator,” Phys. Rev. Lett. 102, 043902 (2009).
[Crossref]

F. Kéfélian, H. Jiang, P. Lemonde, G. Santarelli, “Ultralow-frequency-noise stabilization of a laser by locking to an optical fiber-delay-line,” Opt. Lett. 34, 914–916 (2009).
[Crossref]

2008 (3)

A. A. Savchenkov, A. B. Matsko, V. S. Ilchenko, L. Solomatine, D. Seidel, L. Maleki, “Tunable optical frequency comb with a crystalline whispering gallery mode resonator,” Phys. Rev. Lett. 101, 093902 (2008).
[Crossref]

E. Ip, A. Lau, D. J. F. Barros, J. M. Kahn, “Coherent detection in optical fiber systems,” Opt. Express 16, 753–791 (2008).
[Crossref]

P. Del’Haye, O. Arcizet, A. Schliesser, R. Holzwarth, T. J. Kippenberg, “Full stabilization of a microresonator-based optical frequency comb,” Phys. Rev. Lett. 101, 053903 (2008).
[Crossref]

2007 (3)

2004 (1)

2003 (3)

D. K. Armani, T. J. Kippenberg, S. M. Spillane, K. J. Vahala, “Ultra-high-Q toroid microcavity on a chip,” Nature 421, 925–928 (2003).
[Crossref]

K. J. Vahala, “Optical microcavities,” Nature 424, 839–846 (2003).
[Crossref]

A. A. Savchenkov, V. S. Ilchenko, A. B. Matsko, L. Maleki, “Tunable filter based on whispering gallery modes,” Electron. Lett. 39, 389–391 (2003).
[Crossref]

2002 (1)

S. M. Spillane, T. J. Kippenberg, K. J. Vahala, “Ultralow-threshold Raman laser using a spherical dielectric microcavity,” Nature 415, 621–623 (2002).
[Crossref]

2000 (1)

R. J. Rafac, B. C. Young, J. A. Beall, W. M. Itano, D. J. Wineland, J. C. Bergquist, “Sub-dekahertz ultraviolet spectroscopy of 199Hg+,” Phys. Rev. Lett. 85, 2462–2465 (2000).
[Crossref]

1999 (1)

B. C. Young, F. C. Cruz, W. M. Itano, J. C. Bergquist, “Visible lasers with subhertz linewidths,” Phys. Rev. Lett. 82, 3799–3802 (1999).
[Crossref]

1997 (1)

A. D. Kersey, M. A. Davis, H. J. Patrick, M. Leblanc, K. P. Koo, C. G. Askins, M. A. Putnam, E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15, 1442–1463 (1997).
[Crossref]

1991 (1)

D. R. Hjelme, A. R. Mickelson, R. G. Beausoleil, “Semiconductor laser stabilization by external optical feedback,” IEEE J. Quantum Electron. 27, 352–372 (1991).
[Crossref]

1983 (1)

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31, 97–105 (1983).
[Crossref]

1972 (1)

E. P. Ippen, R. H. Stolen, “Stimulated Brillouin scattering in optical fibers,” Appl. Phys. Lett. 21, 539–541 (1972).
[Crossref]

Agarwal, A.

Alnis, J.

J. Alnis, A. Schliesser, C. Y. Wang, J. Hofer, T. J. Kippenberg, T. W. Hänsch, “Thermal-noise-limited crystalline whispering-gallery-mode resonator for laser stabilization,” Phys. Rev. A 84, 011804(R) (2011).
[Crossref]

Arcizet, O.

P. Del’Haye, O. Arcizet, A. Schliesser, R. Holzwarth, T. J. Kippenberg, “Full stabilization of a microresonator-based optical frequency comb,” Phys. Rev. Lett. 101, 053903 (2008).
[Crossref]

P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, T. J. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature 450, 1214–1217 (2007).
[Crossref]

Argence, B.

Armani, D. K.

D. K. Armani, T. J. Kippenberg, S. M. Spillane, K. J. Vahala, “Ultra-high-Q toroid microcavity on a chip,” Nature 421, 925–928 (2003).
[Crossref]

Asghari, M.

Askins, C. G.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. Leblanc, K. P. Koo, C. G. Askins, M. A. Putnam, E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15, 1442–1463 (1997).
[Crossref]

Banwell, T.

Barros, D. J. F.

Bauters, J. F.

M. J. R. Heck, J. F. Bauters, M. L. Davenport, J. K. Doylend, S. Jain, G. Kurczveil, S. Srinivasan, Y. Tang, J. E. Bowers, “Hybrid silicon photonic integrated circuit technology,” IEEE J. Sel. Top. Quantum Electron. 19, 6100117 (2013).
[Crossref]

Beall, J. A.

R. J. Rafac, B. C. Young, J. A. Beall, W. M. Itano, D. J. Wineland, J. C. Bergquist, “Sub-dekahertz ultraviolet spectroscopy of 199Hg+,” Phys. Rev. Lett. 85, 2462–2465 (2000).
[Crossref]

Beausoleil, R. G.

D. R. Hjelme, A. R. Mickelson, R. G. Beausoleil, “Semiconductor laser stabilization by external optical feedback,” IEEE J. Quantum Electron. 27, 352–372 (1991).
[Crossref]

Bergquist, J. C.

T. M. Fortier, M. S. Kirchner, F. Quinlan, J. Taylor, J. C. Bergquist, T. Rosenband, N. Lemke, A. Ludlow, Y. Jiang, C. W. Oates, S. A. Diddams, “Generation of ultrastable microwaves via optical frequency division,” Nat. Photonics 5, 425–429 (2011).
[Crossref]

D. R. Leibrandt, M. J. Thorpe, J. C. Bergquist, T. Rosenband, “Field-test of a robust, portable, frequency-stable laser,” Opt. Express 19, 10278–10286 (2011).
[Crossref]

R. J. Rafac, B. C. Young, J. A. Beall, W. M. Itano, D. J. Wineland, J. C. Bergquist, “Sub-dekahertz ultraviolet spectroscopy of 199Hg+,” Phys. Rev. Lett. 85, 2462–2465 (2000).
[Crossref]

B. C. Young, F. C. Cruz, W. M. Itano, J. C. Bergquist, “Visible lasers with subhertz linewidths,” Phys. Rev. Lett. 82, 3799–3802 (1999).
[Crossref]

Bize, S.

Bowers, J. E.

M. J. R. Heck, J. F. Bauters, M. L. Davenport, J. K. Doylend, S. Jain, G. Kurczveil, S. Srinivasan, Y. Tang, J. E. Bowers, “Hybrid silicon photonic integrated circuit technology,” IEEE J. Sel. Top. Quantum Electron. 19, 6100117 (2013).
[Crossref]

Camp, J.

Chen, L.

T. Kessler, C. Hagemann, C. Grebing, T. Legero, U. Sterr, F. Riehle, M. J. Martin, L. Chen, J. Ye, “A sub-40-mHz linewidth laser based on a silicon single-crystal optical cavity,” Nat. Photonics 6, 687–692 (2012).
[Crossref]

Chen, T.

H. Lee, M.-G. Suh, T. Chen, J. Li, S. A. Diddams, K. J. Vahala, “Spiral resonators for on-chip laser frequency stabilization,” Nat. Commun. 4, 2468 (2013).

H. Lee, T. Chen, J. Li, K. Yang, S. Jeon, O. Painter, K. J. Vahala, “Chemically etched ultrahigh-Q wedge-resonator on a silicon chip,” Nat. Photonics 6, 369–373 (2012).
[Crossref]

J. Li, H. Lee, T. Chen, K. J. Vahala, “Characterization of a high coherence Brillouin microcavity laser on silicon,” Opt. Express 20, 20170–20180 (2012).
[Crossref]

Choi, D.-Y.

Cruz, F. C.

B. C. Young, F. C. Cruz, W. M. Itano, J. C. Bergquist, “Visible lasers with subhertz linewidths,” Phys. Rev. Lett. 82, 3799–3802 (1999).
[Crossref]

Dale, E.

E. Dale, W. Liang, D. Eliyahu, A. A. Savchenkov, V. S. Ilchenko, A. B. Matsko, D. Seidel, L. Maleki, “On phase noise of self-injection locked semiconductor lasers,” Proc. SPIE 8960, 89600X (2014).

Davenport, M. L.

M. J. R. Heck, J. F. Bauters, M. L. Davenport, J. K. Doylend, S. Jain, G. Kurczveil, S. Srinivasan, Y. Tang, J. E. Bowers, “Hybrid silicon photonic integrated circuit technology,” IEEE J. Sel. Top. Quantum Electron. 19, 6100117 (2013).
[Crossref]

Davis, M. A.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. Leblanc, K. P. Koo, C. G. Askins, M. A. Putnam, E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15, 1442–1463 (1997).
[Crossref]

Debbarma, S.

Del’Haye, P.

S. B. Papp, P. Del’Haye, S. A. Diddams, “Mechanical control of a microrod-resonator optical frequency comb,” Phys. Rev. X 3, 031003 (2013).
[Crossref]

P. Del’Haye, S. A. Diddams, S. B. Papp, “Laser-machined ultra-high-Q microrod resonators for nonlinear optics,” Appl. Phys. Lett. 102, 221119 (2013).
[Crossref]

P. Del’Haye, S. B. Papp, S. A. Diddams, “Hybrid electro-optically modulated microcombs,” Phys. Rev. Lett. 109, 263901 (2012).
[Crossref]

P. Del’Haye, O. Arcizet, A. Schliesser, R. Holzwarth, T. J. Kippenberg, “Full stabilization of a microresonator-based optical frequency comb,” Phys. Rev. Lett. 101, 053903 (2008).
[Crossref]

P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, T. J. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature 450, 1214–1217 (2007).
[Crossref]

Diddams, S. A.

J. Li, X. Yi, H. Lee, S. A. Diddams, K. J. Vahala, “Electro-optical frequency division and stable microwave synthesis,” Science 345, 309–313 (2014).
[Crossref]

H. Lee, M.-G. Suh, T. Chen, J. Li, S. A. Diddams, K. J. Vahala, “Spiral resonators for on-chip laser frequency stabilization,” Nat. Commun. 4, 2468 (2013).

P. Del’Haye, S. A. Diddams, S. B. Papp, “Laser-machined ultra-high-Q microrod resonators for nonlinear optics,” Appl. Phys. Lett. 102, 221119 (2013).
[Crossref]

S. B. Papp, P. Del’Haye, S. A. Diddams, “Mechanical control of a microrod-resonator optical frequency comb,” Phys. Rev. X 3, 031003 (2013).
[Crossref]

P. Del’Haye, S. B. Papp, S. A. Diddams, “Hybrid electro-optically modulated microcombs,” Phys. Rev. Lett. 109, 263901 (2012).
[Crossref]

T. M. Fortier, M. S. Kirchner, F. Quinlan, J. Taylor, J. C. Bergquist, T. Rosenband, N. Lemke, A. Ludlow, Y. Jiang, C. W. Oates, S. A. Diddams, “Generation of ultrastable microwaves via optical frequency division,” Nat. Photonics 5, 425–429 (2011).
[Crossref]

S. B. Papp, S. A. Diddams, “Spectral and temporal characterization of a fused-quartz-microresonator optical frequency comb,” Phys. Rev. A 84, 053833 (2011).
[Crossref]

T. J. Kippenberg, R. Holzwarth, S. A. Diddams, “Microresonator-based optical frequency combs,” Science 332, 555–559 (2011).
[Crossref]

Dong, P.

Doylend, J. K.

M. J. R. Heck, J. F. Bauters, M. L. Davenport, J. K. Doylend, S. Jain, G. Kurczveil, S. Srinivasan, Y. Tang, J. E. Bowers, “Hybrid silicon photonic integrated circuit technology,” IEEE J. Sel. Top. Quantum Electron. 19, 6100117 (2013).
[Crossref]

Drever, R. W. P.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31, 97–105 (1983).
[Crossref]

Eggleton, B. J.

Eliyahu, D.

E. Dale, W. Liang, D. Eliyahu, A. A. Savchenkov, V. S. Ilchenko, A. B. Matsko, D. Seidel, L. Maleki, “On phase noise of self-injection locked semiconductor lasers,” Proc. SPIE 8960, 89600X (2014).

Feng, D.

Feng, N.-N.

Ford, G. M.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31, 97–105 (1983).
[Crossref]

Fortier, T. M.

T. M. Fortier, M. S. Kirchner, F. Quinlan, J. Taylor, J. C. Bergquist, T. Rosenband, N. Lemke, A. Ludlow, Y. Jiang, C. W. Oates, S. A. Diddams, “Generation of ultrastable microwaves via optical frequency division,” Nat. Photonics 5, 425–429 (2011).
[Crossref]

M. J. Thorpe, L. Rippe, T. M. Fortier, M. S. Kirchner, T. Rosenband, “Frequency stabilization to 6 × 10−16 via spectral-hole burning,” Nat. Photonics 5, 688–693 (2011).
[Crossref]

Foster, M. A.

Fox, R. W.

Y. Y. Jiang, A. D. Ludlow, N. D. Lemke, R. W. Fox, J. A. Sherman, L.-S. Ma, C. W. Oates, “Making optical atomic clocks more stable with 10−16-level laser stabilization,” Nat. Photonics 5, 158–161 (2011).
[Crossref]

Friebele, E. J.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. Leblanc, K. P. Koo, C. G. Askins, M. A. Putnam, E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15, 1442–1463 (1997).
[Crossref]

Gaeta, A. L.

Gorodetsky, M. L.

Grebing, C.

T. Kessler, C. Hagemann, C. Grebing, T. Legero, U. Sterr, F. Riehle, M. J. Martin, L. Chen, J. Ye, “A sub-40-mHz linewidth laser based on a silicon single-crystal optical cavity,” Nat. Photonics 6, 687–692 (2012).
[Crossref]

Grudinin, I. S.

I. S. Grudinin, A. B. Matsko, L. Maleki, “Brillouin lasing with a CaF2 whispering gallery mode resonator,” Phys. Rev. Lett. 102, 043902 (2009).
[Crossref]

M. L. Gorodetsky, I. S. Grudinin, “Fundamental thermal fluctuations in microspheres,” J. Opt. Soc. Am. B 21, 697–705 (2004).
[Crossref]

Hagemann, C.

T. Kessler, C. Hagemann, C. Grebing, T. Legero, U. Sterr, F. Riehle, M. J. Martin, L. Chen, J. Ye, “A sub-40-mHz linewidth laser based on a silicon single-crystal optical cavity,” Nat. Photonics 6, 687–692 (2012).
[Crossref]

Hall, J. L.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31, 97–105 (1983).
[Crossref]

Hänsch, T. W.

J. Alnis, A. Schliesser, C. Y. Wang, J. Hofer, T. J. Kippenberg, T. W. Hänsch, “Thermal-noise-limited crystalline whispering-gallery-mode resonator for laser stabilization,” Phys. Rev. A 84, 011804(R) (2011).
[Crossref]

Heck, M. J. R.

M. J. R. Heck, J. F. Bauters, M. L. Davenport, J. K. Doylend, S. Jain, G. Kurczveil, S. Srinivasan, Y. Tang, J. E. Bowers, “Hybrid silicon photonic integrated circuit technology,” IEEE J. Sel. Top. Quantum Electron. 19, 6100117 (2013).
[Crossref]

Hjelme, D. R.

D. R. Hjelme, A. R. Mickelson, R. G. Beausoleil, “Semiconductor laser stabilization by external optical feedback,” IEEE J. Quantum Electron. 27, 352–372 (1991).
[Crossref]

Hofer, J.

J. Alnis, A. Schliesser, C. Y. Wang, J. Hofer, T. J. Kippenberg, T. W. Hänsch, “Thermal-noise-limited crystalline whispering-gallery-mode resonator for laser stabilization,” Phys. Rev. A 84, 011804(R) (2011).
[Crossref]

Holzwarth, R.

T. J. Kippenberg, R. Holzwarth, S. A. Diddams, “Microresonator-based optical frequency combs,” Science 332, 555–559 (2011).
[Crossref]

P. Del’Haye, O. Arcizet, A. Schliesser, R. Holzwarth, T. J. Kippenberg, “Full stabilization of a microresonator-based optical frequency comb,” Phys. Rev. Lett. 101, 053903 (2008).
[Crossref]

P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, T. J. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature 450, 1214–1217 (2007).
[Crossref]

Hough, J.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31, 97–105 (1983).
[Crossref]

Ilchenko, V. S.

E. Dale, W. Liang, D. Eliyahu, A. A. Savchenkov, V. S. Ilchenko, A. B. Matsko, D. Seidel, L. Maleki, “On phase noise of self-injection locked semiconductor lasers,” Proc. SPIE 8960, 89600X (2014).

W. Liang, V. S. Ilchenko, A. A. Savchenkov, A. B. Matsko, D. Seidel, L. Maleki, “Whispering-gallery-mode resonator-based ultranarrow linewidth external-cavity semiconductor laser,” Opt. Lett. 35, 2822–2824 (2010).
[Crossref]

A. A. Savchenkov, A. B. Matsko, V. S. Ilchenko, L. Solomatine, D. Seidel, L. Maleki, “Tunable optical frequency comb with a crystalline whispering gallery mode resonator,” Phys. Rev. Lett. 101, 093902 (2008).
[Crossref]

A. A. Savchenkov, A. B. Matsko, V. S. Ilchenko, N. Yu, L. Maleki, “Whispering-gallery-mode resonators as frequency references. II. Stabilization,” J. Opt. Soc. Am. B 24, 2988–2997 (2007).
[Crossref]

A. A. Savchenkov, V. S. Ilchenko, A. B. Matsko, L. Maleki, “Tunable filter based on whispering gallery modes,” Electron. Lett. 39, 389–391 (2003).
[Crossref]

Ip, E.

Ippen, E. P.

E. P. Ippen, R. H. Stolen, “Stimulated Brillouin scattering in optical fibers,” Appl. Phys. Lett. 21, 539–541 (1972).
[Crossref]

Itano, W. M.

R. J. Rafac, B. C. Young, J. A. Beall, W. M. Itano, D. J. Wineland, J. C. Bergquist, “Sub-dekahertz ultraviolet spectroscopy of 199Hg+,” Phys. Rev. Lett. 85, 2462–2465 (2000).
[Crossref]

B. C. Young, F. C. Cruz, W. M. Itano, J. C. Bergquist, “Visible lasers with subhertz linewidths,” Phys. Rev. Lett. 82, 3799–3802 (1999).
[Crossref]

Jain, S.

M. J. R. Heck, J. F. Bauters, M. L. Davenport, J. K. Doylend, S. Jain, G. Kurczveil, S. Srinivasan, Y. Tang, J. E. Bowers, “Hybrid silicon photonic integrated circuit technology,” IEEE J. Sel. Top. Quantum Electron. 19, 6100117 (2013).
[Crossref]

Jeon, S.

H. Lee, T. Chen, J. Li, K. Yang, S. Jeon, O. Painter, K. J. Vahala, “Chemically etched ultrahigh-Q wedge-resonator on a silicon chip,” Nat. Photonics 6, 369–373 (2012).
[Crossref]

Jiang, H.

Jiang, Y.

T. M. Fortier, M. S. Kirchner, F. Quinlan, J. Taylor, J. C. Bergquist, T. Rosenband, N. Lemke, A. Ludlow, Y. Jiang, C. W. Oates, S. A. Diddams, “Generation of ultrastable microwaves via optical frequency division,” Nat. Photonics 5, 425–429 (2011).
[Crossref]

Jiang, Y. Y.

Y. Y. Jiang, A. D. Ludlow, N. D. Lemke, R. W. Fox, J. A. Sherman, L.-S. Ma, C. W. Oates, “Making optical atomic clocks more stable with 10−16-level laser stabilization,” Nat. Photonics 5, 158–161 (2011).
[Crossref]

Kabakova, I. V.

Kahn, J. M.

Kéfélian, F.

Kersey, A. D.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. Leblanc, K. P. Koo, C. G. Askins, M. A. Putnam, E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15, 1442–1463 (1997).
[Crossref]

Kessler, T.

T. Kessler, C. Hagemann, C. Grebing, T. Legero, U. Sterr, F. Riehle, M. J. Martin, L. Chen, J. Ye, “A sub-40-mHz linewidth laser based on a silicon single-crystal optical cavity,” Nat. Photonics 6, 687–692 (2012).
[Crossref]

Kippenberg, T. J.

J. Alnis, A. Schliesser, C. Y. Wang, J. Hofer, T. J. Kippenberg, T. W. Hänsch, “Thermal-noise-limited crystalline whispering-gallery-mode resonator for laser stabilization,” Phys. Rev. A 84, 011804(R) (2011).
[Crossref]

T. J. Kippenberg, R. Holzwarth, S. A. Diddams, “Microresonator-based optical frequency combs,” Science 332, 555–559 (2011).
[Crossref]

P. Del’Haye, O. Arcizet, A. Schliesser, R. Holzwarth, T. J. Kippenberg, “Full stabilization of a microresonator-based optical frequency comb,” Phys. Rev. Lett. 101, 053903 (2008).
[Crossref]

P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, T. J. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature 450, 1214–1217 (2007).
[Crossref]

D. K. Armani, T. J. Kippenberg, S. M. Spillane, K. J. Vahala, “Ultra-high-Q toroid microcavity on a chip,” Nature 421, 925–928 (2003).
[Crossref]

S. M. Spillane, T. J. Kippenberg, K. J. Vahala, “Ultralow-threshold Raman laser using a spherical dielectric microcavity,” Nature 415, 621–623 (2002).
[Crossref]

Kirchner, M. S.

M. J. Thorpe, L. Rippe, T. M. Fortier, M. S. Kirchner, T. Rosenband, “Frequency stabilization to 6 × 10−16 via spectral-hole burning,” Nat. Photonics 5, 688–693 (2011).
[Crossref]

T. M. Fortier, M. S. Kirchner, F. Quinlan, J. Taylor, J. C. Bergquist, T. Rosenband, N. Lemke, A. Ludlow, Y. Jiang, C. W. Oates, S. A. Diddams, “Generation of ultrastable microwaves via optical frequency division,” Nat. Photonics 5, 425–429 (2011).
[Crossref]

Koo, K. P.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. Leblanc, K. P. Koo, C. G. Askins, M. A. Putnam, E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15, 1442–1463 (1997).
[Crossref]

Kowalski, F. V.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31, 97–105 (1983).
[Crossref]

Krainak, M. A.

Kurczveil, G.

M. J. R. Heck, J. F. Bauters, M. L. Davenport, J. K. Doylend, S. Jain, G. Kurczveil, S. Srinivasan, Y. Tang, J. E. Bowers, “Hybrid silicon photonic integrated circuit technology,” IEEE J. Sel. Top. Quantum Electron. 19, 6100117 (2013).
[Crossref]

Kuzucu, O.

Lau, A.

Le Goff, R.

Leblanc, M.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. Leblanc, K. P. Koo, C. G. Askins, M. A. Putnam, E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15, 1442–1463 (1997).
[Crossref]

Lee, D. C.

Lee, H.

J. Li, H. Lee, K. J. Vahala, “Low-noise Brillouin laser on a chip at 1064  nm,” Opt. Lett. 39, 287–290 (2014).
[Crossref]

J. Li, X. Yi, H. Lee, S. A. Diddams, K. J. Vahala, “Electro-optical frequency division and stable microwave synthesis,” Science 345, 309–313 (2014).
[Crossref]

H. Lee, M.-G. Suh, T. Chen, J. Li, S. A. Diddams, K. J. Vahala, “Spiral resonators for on-chip laser frequency stabilization,” Nat. Commun. 4, 2468 (2013).

H. Lee, T. Chen, J. Li, K. Yang, S. Jeon, O. Painter, K. J. Vahala, “Chemically etched ultrahigh-Q wedge-resonator on a silicon chip,” Nat. Photonics 6, 369–373 (2012).
[Crossref]

J. Li, H. Lee, T. Chen, K. J. Vahala, “Characterization of a high coherence Brillouin microcavity laser on silicon,” Opt. Express 20, 20170–20180 (2012).
[Crossref]

Legero, T.

T. Kessler, C. Hagemann, C. Grebing, T. Legero, U. Sterr, F. Riehle, M. J. Martin, L. Chen, J. Ye, “A sub-40-mHz linewidth laser based on a silicon single-crystal optical cavity,” Nat. Photonics 6, 687–692 (2012).
[Crossref]

Leibrandt, D. R.

Lemke, N.

T. M. Fortier, M. S. Kirchner, F. Quinlan, J. Taylor, J. C. Bergquist, T. Rosenband, N. Lemke, A. Ludlow, Y. Jiang, C. W. Oates, S. A. Diddams, “Generation of ultrastable microwaves via optical frequency division,” Nat. Photonics 5, 425–429 (2011).
[Crossref]

Lemke, N. D.

Y. Y. Jiang, A. D. Ludlow, N. D. Lemke, R. W. Fox, J. A. Sherman, L.-S. Ma, C. W. Oates, “Making optical atomic clocks more stable with 10−16-level laser stabilization,” Nat. Photonics 5, 158–161 (2011).
[Crossref]

Lemonde, P.

Lévèque, T.

Levy, J. S.

Li, J.

J. Li, H. Lee, K. J. Vahala, “Low-noise Brillouin laser on a chip at 1064  nm,” Opt. Lett. 39, 287–290 (2014).
[Crossref]

J. Li, X. Yi, H. Lee, S. A. Diddams, K. J. Vahala, “Electro-optical frequency division and stable microwave synthesis,” Science 345, 309–313 (2014).
[Crossref]

H. Lee, M.-G. Suh, T. Chen, J. Li, S. A. Diddams, K. J. Vahala, “Spiral resonators for on-chip laser frequency stabilization,” Nat. Commun. 4, 2468 (2013).

H. Lee, T. Chen, J. Li, K. Yang, S. Jeon, O. Painter, K. J. Vahala, “Chemically etched ultrahigh-Q wedge-resonator on a silicon chip,” Nat. Photonics 6, 369–373 (2012).
[Crossref]

J. Li, H. Lee, T. Chen, K. J. Vahala, “Characterization of a high coherence Brillouin microcavity laser on silicon,” Opt. Express 20, 20170–20180 (2012).
[Crossref]

Liang, H.

Liang, W.

E. Dale, W. Liang, D. Eliyahu, A. A. Savchenkov, V. S. Ilchenko, A. B. Matsko, D. Seidel, L. Maleki, “On phase noise of self-injection locked semiconductor lasers,” Proc. SPIE 8960, 89600X (2014).

W. Liang, V. S. Ilchenko, A. A. Savchenkov, A. B. Matsko, D. Seidel, L. Maleki, “Whispering-gallery-mode resonator-based ultranarrow linewidth external-cavity semiconductor laser,” Opt. Lett. 35, 2822–2824 (2010).
[Crossref]

Lipson, M.

Ludlow, A.

T. M. Fortier, M. S. Kirchner, F. Quinlan, J. Taylor, J. C. Bergquist, T. Rosenband, N. Lemke, A. Ludlow, Y. Jiang, C. W. Oates, S. A. Diddams, “Generation of ultrastable microwaves via optical frequency division,” Nat. Photonics 5, 425–429 (2011).
[Crossref]

Ludlow, A. D.

Y. Y. Jiang, A. D. Ludlow, N. D. Lemke, R. W. Fox, J. A. Sherman, L.-S. Ma, C. W. Oates, “Making optical atomic clocks more stable with 10−16-level laser stabilization,” Nat. Photonics 5, 158–161 (2011).
[Crossref]

Luff, B. J.

Luther-Davies, B.

Ma, L.-S.

Y. Y. Jiang, A. D. Ludlow, N. D. Lemke, R. W. Fox, J. A. Sherman, L.-S. Ma, C. W. Oates, “Making optical atomic clocks more stable with 10−16-level laser stabilization,” Nat. Photonics 5, 158–161 (2011).
[Crossref]

Madden, S. J.

Maleki, L.

E. Dale, W. Liang, D. Eliyahu, A. A. Savchenkov, V. S. Ilchenko, A. B. Matsko, D. Seidel, L. Maleki, “On phase noise of self-injection locked semiconductor lasers,” Proc. SPIE 8960, 89600X (2014).

W. Liang, V. S. Ilchenko, A. A. Savchenkov, A. B. Matsko, D. Seidel, L. Maleki, “Whispering-gallery-mode resonator-based ultranarrow linewidth external-cavity semiconductor laser,” Opt. Lett. 35, 2822–2824 (2010).
[Crossref]

I. S. Grudinin, A. B. Matsko, L. Maleki, “Brillouin lasing with a CaF2 whispering gallery mode resonator,” Phys. Rev. Lett. 102, 043902 (2009).
[Crossref]

A. A. Savchenkov, A. B. Matsko, V. S. Ilchenko, L. Solomatine, D. Seidel, L. Maleki, “Tunable optical frequency comb with a crystalline whispering gallery mode resonator,” Phys. Rev. Lett. 101, 093902 (2008).
[Crossref]

A. A. Savchenkov, A. B. Matsko, V. S. Ilchenko, N. Yu, L. Maleki, “Whispering-gallery-mode resonators as frequency references. II. Stabilization,” J. Opt. Soc. Am. B 24, 2988–2997 (2007).
[Crossref]

A. B. Matsko, A. A. Savchenkov, N. Yu, L. Maleki, “Whispering-gallery-mode resonators as frequency references. I. Fundamental limitations,” J. Opt. Soc. Am. B 24, 1324–1335 (2007).
[Crossref]

A. A. Savchenkov, V. S. Ilchenko, A. B. Matsko, L. Maleki, “Tunable filter based on whispering gallery modes,” Electron. Lett. 39, 389–391 (2003).
[Crossref]

Martin, M. J.

T. Kessler, C. Hagemann, C. Grebing, T. Legero, U. Sterr, F. Riehle, M. J. Martin, L. Chen, J. Ye, “A sub-40-mHz linewidth laser based on a silicon single-crystal optical cavity,” Nat. Photonics 6, 687–692 (2012).
[Crossref]

Matsko, A. B.

E. Dale, W. Liang, D. Eliyahu, A. A. Savchenkov, V. S. Ilchenko, A. B. Matsko, D. Seidel, L. Maleki, “On phase noise of self-injection locked semiconductor lasers,” Proc. SPIE 8960, 89600X (2014).

W. Liang, V. S. Ilchenko, A. A. Savchenkov, A. B. Matsko, D. Seidel, L. Maleki, “Whispering-gallery-mode resonator-based ultranarrow linewidth external-cavity semiconductor laser,” Opt. Lett. 35, 2822–2824 (2010).
[Crossref]

I. S. Grudinin, A. B. Matsko, L. Maleki, “Brillouin lasing with a CaF2 whispering gallery mode resonator,” Phys. Rev. Lett. 102, 043902 (2009).
[Crossref]

A. A. Savchenkov, A. B. Matsko, V. S. Ilchenko, L. Solomatine, D. Seidel, L. Maleki, “Tunable optical frequency comb with a crystalline whispering gallery mode resonator,” Phys. Rev. Lett. 101, 093902 (2008).
[Crossref]

A. A. Savchenkov, A. B. Matsko, V. S. Ilchenko, N. Yu, L. Maleki, “Whispering-gallery-mode resonators as frequency references. II. Stabilization,” J. Opt. Soc. Am. B 24, 2988–2997 (2007).
[Crossref]

A. B. Matsko, A. A. Savchenkov, N. Yu, L. Maleki, “Whispering-gallery-mode resonators as frequency references. I. Fundamental limitations,” J. Opt. Soc. Am. B 24, 1324–1335 (2007).
[Crossref]

A. A. Savchenkov, V. S. Ilchenko, A. B. Matsko, L. Maleki, “Tunable filter based on whispering gallery modes,” Electron. Lett. 39, 389–391 (2003).
[Crossref]

Menendez, R.

Mickelson, A. R.

D. R. Hjelme, A. R. Mickelson, R. G. Beausoleil, “Semiconductor laser stabilization by external optical feedback,” IEEE J. Quantum Electron. 27, 352–372 (1991).
[Crossref]

Munley, A. J.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31, 97–105 (1983).
[Crossref]

Numata, K.

Oates, C. W.

T. M. Fortier, M. S. Kirchner, F. Quinlan, J. Taylor, J. C. Bergquist, T. Rosenband, N. Lemke, A. Ludlow, Y. Jiang, C. W. Oates, S. A. Diddams, “Generation of ultrastable microwaves via optical frequency division,” Nat. Photonics 5, 425–429 (2011).
[Crossref]

Y. Y. Jiang, A. D. Ludlow, N. D. Lemke, R. W. Fox, J. A. Sherman, L.-S. Ma, C. W. Oates, “Making optical atomic clocks more stable with 10−16-level laser stabilization,” Nat. Photonics 5, 158–161 (2011).
[Crossref]

Painter, O.

H. Lee, T. Chen, J. Li, K. Yang, S. Jeon, O. Painter, K. J. Vahala, “Chemically etched ultrahigh-Q wedge-resonator on a silicon chip,” Nat. Photonics 6, 369–373 (2012).
[Crossref]

Pant, R.

Papp, S. B.

S. B. Papp, P. Del’Haye, S. A. Diddams, “Mechanical control of a microrod-resonator optical frequency comb,” Phys. Rev. X 3, 031003 (2013).
[Crossref]

P. Del’Haye, S. A. Diddams, S. B. Papp, “Laser-machined ultra-high-Q microrod resonators for nonlinear optics,” Appl. Phys. Lett. 102, 221119 (2013).
[Crossref]

P. Del’Haye, S. B. Papp, S. A. Diddams, “Hybrid electro-optically modulated microcombs,” Phys. Rev. Lett. 109, 263901 (2012).
[Crossref]

S. B. Papp, S. A. Diddams, “Spectral and temporal characterization of a fused-quartz-microresonator optical frequency comb,” Phys. Rev. A 84, 053833 (2011).
[Crossref]

Patrick, H. J.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. Leblanc, K. P. Koo, C. G. Askins, M. A. Putnam, E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15, 1442–1463 (1997).
[Crossref]

Prevost, E.

Putnam, M. A.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. Leblanc, K. P. Koo, C. G. Askins, M. A. Putnam, E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15, 1442–1463 (1997).
[Crossref]

Qian, W.

Quinlan, F.

T. M. Fortier, M. S. Kirchner, F. Quinlan, J. Taylor, J. C. Bergquist, T. Rosenband, N. Lemke, A. Ludlow, Y. Jiang, C. W. Oates, S. A. Diddams, “Generation of ultrastable microwaves via optical frequency division,” Nat. Photonics 5, 425–429 (2011).
[Crossref]

Rafac, R. J.

R. J. Rafac, B. C. Young, J. A. Beall, W. M. Itano, D. J. Wineland, J. C. Bergquist, “Sub-dekahertz ultraviolet spectroscopy of 199Hg+,” Phys. Rev. Lett. 85, 2462–2465 (2000).
[Crossref]

Riehle, F.

T. Kessler, C. Hagemann, C. Grebing, T. Legero, U. Sterr, F. Riehle, M. J. Martin, L. Chen, J. Ye, “A sub-40-mHz linewidth laser based on a silicon single-crystal optical cavity,” Nat. Photonics 6, 687–692 (2012).
[Crossref]

Rippe, L.

M. J. Thorpe, L. Rippe, T. M. Fortier, M. S. Kirchner, T. Rosenband, “Frequency stabilization to 6 × 10−16 via spectral-hole burning,” Nat. Photonics 5, 688–693 (2011).
[Crossref]

Rosenband, T.

M. J. Thorpe, L. Rippe, T. M. Fortier, M. S. Kirchner, T. Rosenband, “Frequency stabilization to 6 × 10−16 via spectral-hole burning,” Nat. Photonics 5, 688–693 (2011).
[Crossref]

D. R. Leibrandt, M. J. Thorpe, J. C. Bergquist, T. Rosenband, “Field-test of a robust, portable, frequency-stable laser,” Opt. Express 19, 10278–10286 (2011).
[Crossref]

T. M. Fortier, M. S. Kirchner, F. Quinlan, J. Taylor, J. C. Bergquist, T. Rosenband, N. Lemke, A. Ludlow, Y. Jiang, C. W. Oates, S. A. Diddams, “Generation of ultrastable microwaves via optical frequency division,” Nat. Photonics 5, 425–429 (2011).
[Crossref]

Saha, K.

Santarelli, G.

Savchenkov, A. A.

E. Dale, W. Liang, D. Eliyahu, A. A. Savchenkov, V. S. Ilchenko, A. B. Matsko, D. Seidel, L. Maleki, “On phase noise of self-injection locked semiconductor lasers,” Proc. SPIE 8960, 89600X (2014).

W. Liang, V. S. Ilchenko, A. A. Savchenkov, A. B. Matsko, D. Seidel, L. Maleki, “Whispering-gallery-mode resonator-based ultranarrow linewidth external-cavity semiconductor laser,” Opt. Lett. 35, 2822–2824 (2010).
[Crossref]

A. A. Savchenkov, A. B. Matsko, V. S. Ilchenko, L. Solomatine, D. Seidel, L. Maleki, “Tunable optical frequency comb with a crystalline whispering gallery mode resonator,” Phys. Rev. Lett. 101, 093902 (2008).
[Crossref]

A. A. Savchenkov, A. B. Matsko, V. S. Ilchenko, N. Yu, L. Maleki, “Whispering-gallery-mode resonators as frequency references. II. Stabilization,” J. Opt. Soc. Am. B 24, 2988–2997 (2007).
[Crossref]

A. B. Matsko, A. A. Savchenkov, N. Yu, L. Maleki, “Whispering-gallery-mode resonators as frequency references. I. Fundamental limitations,” J. Opt. Soc. Am. B 24, 1324–1335 (2007).
[Crossref]

A. A. Savchenkov, V. S. Ilchenko, A. B. Matsko, L. Maleki, “Tunable filter based on whispering gallery modes,” Electron. Lett. 39, 389–391 (2003).
[Crossref]

Schliesser, A.

J. Alnis, A. Schliesser, C. Y. Wang, J. Hofer, T. J. Kippenberg, T. W. Hänsch, “Thermal-noise-limited crystalline whispering-gallery-mode resonator for laser stabilization,” Phys. Rev. A 84, 011804(R) (2011).
[Crossref]

P. Del’Haye, O. Arcizet, A. Schliesser, R. Holzwarth, T. J. Kippenberg, “Full stabilization of a microresonator-based optical frequency comb,” Phys. Rev. Lett. 101, 053903 (2008).
[Crossref]

P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, T. J. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature 450, 1214–1217 (2007).
[Crossref]

Seidel, D.

E. Dale, W. Liang, D. Eliyahu, A. A. Savchenkov, V. S. Ilchenko, A. B. Matsko, D. Seidel, L. Maleki, “On phase noise of self-injection locked semiconductor lasers,” Proc. SPIE 8960, 89600X (2014).

W. Liang, V. S. Ilchenko, A. A. Savchenkov, A. B. Matsko, D. Seidel, L. Maleki, “Whispering-gallery-mode resonator-based ultranarrow linewidth external-cavity semiconductor laser,” Opt. Lett. 35, 2822–2824 (2010).
[Crossref]

A. A. Savchenkov, A. B. Matsko, V. S. Ilchenko, L. Solomatine, D. Seidel, L. Maleki, “Tunable optical frequency comb with a crystalline whispering gallery mode resonator,” Phys. Rev. Lett. 101, 093902 (2008).
[Crossref]

Sherman, J. A.

Y. Y. Jiang, A. D. Ludlow, N. D. Lemke, R. W. Fox, J. A. Sherman, L.-S. Ma, C. W. Oates, “Making optical atomic clocks more stable with 10−16-level laser stabilization,” Nat. Photonics 5, 158–161 (2011).
[Crossref]

Solomatine, L.

A. A. Savchenkov, A. B. Matsko, V. S. Ilchenko, L. Solomatine, D. Seidel, L. Maleki, “Tunable optical frequency comb with a crystalline whispering gallery mode resonator,” Phys. Rev. Lett. 101, 093902 (2008).
[Crossref]

Spillane, S. M.

D. K. Armani, T. J. Kippenberg, S. M. Spillane, K. J. Vahala, “Ultra-high-Q toroid microcavity on a chip,” Nature 421, 925–928 (2003).
[Crossref]

S. M. Spillane, T. J. Kippenberg, K. J. Vahala, “Ultralow-threshold Raman laser using a spherical dielectric microcavity,” Nature 415, 621–623 (2002).
[Crossref]

Srinivasan, S.

M. J. R. Heck, J. F. Bauters, M. L. Davenport, J. K. Doylend, S. Jain, G. Kurczveil, S. Srinivasan, Y. Tang, J. E. Bowers, “Hybrid silicon photonic integrated circuit technology,” IEEE J. Sel. Top. Quantum Electron. 19, 6100117 (2013).
[Crossref]

Sterr, U.

T. Kessler, C. Hagemann, C. Grebing, T. Legero, U. Sterr, F. Riehle, M. J. Martin, L. Chen, J. Ye, “A sub-40-mHz linewidth laser based on a silicon single-crystal optical cavity,” Nat. Photonics 6, 687–692 (2012).
[Crossref]

Stolen, R. H.

E. P. Ippen, R. H. Stolen, “Stimulated Brillouin scattering in optical fibers,” Appl. Phys. Lett. 21, 539–541 (1972).
[Crossref]

Stolpner, L.

Suh, M.-G.

H. Lee, M.-G. Suh, T. Chen, J. Li, S. A. Diddams, K. J. Vahala, “Spiral resonators for on-chip laser frequency stabilization,” Nat. Commun. 4, 2468 (2013).

Tang, Y.

M. J. R. Heck, J. F. Bauters, M. L. Davenport, J. K. Doylend, S. Jain, G. Kurczveil, S. Srinivasan, Y. Tang, J. E. Bowers, “Hybrid silicon photonic integrated circuit technology,” IEEE J. Sel. Top. Quantum Electron. 19, 6100117 (2013).
[Crossref]

Taylor, J.

T. M. Fortier, M. S. Kirchner, F. Quinlan, J. Taylor, J. C. Bergquist, T. Rosenband, N. Lemke, A. Ludlow, Y. Jiang, C. W. Oates, S. A. Diddams, “Generation of ultrastable microwaves via optical frequency division,” Nat. Photonics 5, 425–429 (2011).
[Crossref]

Thorpe, M. J.

M. J. Thorpe, L. Rippe, T. M. Fortier, M. S. Kirchner, T. Rosenband, “Frequency stabilization to 6 × 10−16 via spectral-hole burning,” Nat. Photonics 5, 688–693 (2011).
[Crossref]

D. R. Leibrandt, M. J. Thorpe, J. C. Bergquist, T. Rosenband, “Field-test of a robust, portable, frequency-stable laser,” Opt. Express 19, 10278–10286 (2011).
[Crossref]

Toliver, P.

Vahala, K. J.

J. Li, H. Lee, K. J. Vahala, “Low-noise Brillouin laser on a chip at 1064  nm,” Opt. Lett. 39, 287–290 (2014).
[Crossref]

J. Li, X. Yi, H. Lee, S. A. Diddams, K. J. Vahala, “Electro-optical frequency division and stable microwave synthesis,” Science 345, 309–313 (2014).
[Crossref]

H. Lee, M.-G. Suh, T. Chen, J. Li, S. A. Diddams, K. J. Vahala, “Spiral resonators for on-chip laser frequency stabilization,” Nat. Commun. 4, 2468 (2013).

H. Lee, T. Chen, J. Li, K. Yang, S. Jeon, O. Painter, K. J. Vahala, “Chemically etched ultrahigh-Q wedge-resonator on a silicon chip,” Nat. Photonics 6, 369–373 (2012).
[Crossref]

J. Li, H. Lee, T. Chen, K. J. Vahala, “Characterization of a high coherence Brillouin microcavity laser on silicon,” Opt. Express 20, 20170–20180 (2012).
[Crossref]

D. K. Armani, T. J. Kippenberg, S. M. Spillane, K. J. Vahala, “Ultra-high-Q toroid microcavity on a chip,” Nature 421, 925–928 (2003).
[Crossref]

K. J. Vahala, “Optical microcavities,” Nature 424, 839–846 (2003).
[Crossref]

S. M. Spillane, T. J. Kippenberg, K. J. Vahala, “Ultralow-threshold Raman laser using a spherical dielectric microcavity,” Nature 415, 621–623 (2002).
[Crossref]

Wang, C. Y.

J. Alnis, A. Schliesser, C. Y. Wang, J. Hofer, T. J. Kippenberg, T. W. Hänsch, “Thermal-noise-limited crystalline whispering-gallery-mode resonator for laser stabilization,” Phys. Rev. A 84, 011804(R) (2011).
[Crossref]

Ward, H.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31, 97–105 (1983).
[Crossref]

Wilken, T.

P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, T. J. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature 450, 1214–1217 (2007).
[Crossref]

Wineland, D. J.

R. J. Rafac, B. C. Young, J. A. Beall, W. M. Itano, D. J. Wineland, J. C. Bergquist, “Sub-dekahertz ultraviolet spectroscopy of 199Hg+,” Phys. Rev. Lett. 85, 2462–2465 (2000).
[Crossref]

Woodward, T. K.

Yang, K.

H. Lee, T. Chen, J. Li, K. Yang, S. Jeon, O. Painter, K. J. Vahala, “Chemically etched ultrahigh-Q wedge-resonator on a silicon chip,” Nat. Photonics 6, 369–373 (2012).
[Crossref]

Ye, J.

T. Kessler, C. Hagemann, C. Grebing, T. Legero, U. Sterr, F. Riehle, M. J. Martin, L. Chen, J. Ye, “A sub-40-mHz linewidth laser based on a silicon single-crystal optical cavity,” Nat. Photonics 6, 687–692 (2012).
[Crossref]

Yi, X.

J. Li, X. Yi, H. Lee, S. A. Diddams, K. J. Vahala, “Electro-optical frequency division and stable microwave synthesis,” Science 345, 309–313 (2014).
[Crossref]

Young, B. C.

R. J. Rafac, B. C. Young, J. A. Beall, W. M. Itano, D. J. Wineland, J. C. Bergquist, “Sub-dekahertz ultraviolet spectroscopy of 199Hg+,” Phys. Rev. Lett. 85, 2462–2465 (2000).
[Crossref]

B. C. Young, F. C. Cruz, W. M. Itano, J. C. Bergquist, “Visible lasers with subhertz linewidths,” Phys. Rev. Lett. 82, 3799–3802 (1999).
[Crossref]

Yu, N.

Appl. Phys. B (1)

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31, 97–105 (1983).
[Crossref]

Appl. Phys. Lett. (2)

E. P. Ippen, R. H. Stolen, “Stimulated Brillouin scattering in optical fibers,” Appl. Phys. Lett. 21, 539–541 (1972).
[Crossref]

P. Del’Haye, S. A. Diddams, S. B. Papp, “Laser-machined ultra-high-Q microrod resonators for nonlinear optics,” Appl. Phys. Lett. 102, 221119 (2013).
[Crossref]

Electron. Lett. (1)

A. A. Savchenkov, V. S. Ilchenko, A. B. Matsko, L. Maleki, “Tunable filter based on whispering gallery modes,” Electron. Lett. 39, 389–391 (2003).
[Crossref]

IEEE J. Quantum Electron. (1)

D. R. Hjelme, A. R. Mickelson, R. G. Beausoleil, “Semiconductor laser stabilization by external optical feedback,” IEEE J. Quantum Electron. 27, 352–372 (1991).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

M. J. R. Heck, J. F. Bauters, M. L. Davenport, J. K. Doylend, S. Jain, G. Kurczveil, S. Srinivasan, Y. Tang, J. E. Bowers, “Hybrid silicon photonic integrated circuit technology,” IEEE J. Sel. Top. Quantum Electron. 19, 6100117 (2013).
[Crossref]

J. Lightwave Technol. (1)

A. D. Kersey, M. A. Davis, H. J. Patrick, M. Leblanc, K. P. Koo, C. G. Askins, M. A. Putnam, E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15, 1442–1463 (1997).
[Crossref]

J. Opt. Soc. Am. B (3)

Nat. Commun. (1)

H. Lee, M.-G. Suh, T. Chen, J. Li, S. A. Diddams, K. J. Vahala, “Spiral resonators for on-chip laser frequency stabilization,” Nat. Commun. 4, 2468 (2013).

Nat. Photonics (5)

H. Lee, T. Chen, J. Li, K. Yang, S. Jeon, O. Painter, K. J. Vahala, “Chemically etched ultrahigh-Q wedge-resonator on a silicon chip,” Nat. Photonics 6, 369–373 (2012).
[Crossref]

M. J. Thorpe, L. Rippe, T. M. Fortier, M. S. Kirchner, T. Rosenband, “Frequency stabilization to 6 × 10−16 via spectral-hole burning,” Nat. Photonics 5, 688–693 (2011).
[Crossref]

Y. Y. Jiang, A. D. Ludlow, N. D. Lemke, R. W. Fox, J. A. Sherman, L.-S. Ma, C. W. Oates, “Making optical atomic clocks more stable with 10−16-level laser stabilization,” Nat. Photonics 5, 158–161 (2011).
[Crossref]

T. Kessler, C. Hagemann, C. Grebing, T. Legero, U. Sterr, F. Riehle, M. J. Martin, L. Chen, J. Ye, “A sub-40-mHz linewidth laser based on a silicon single-crystal optical cavity,” Nat. Photonics 6, 687–692 (2012).
[Crossref]

T. M. Fortier, M. S. Kirchner, F. Quinlan, J. Taylor, J. C. Bergquist, T. Rosenband, N. Lemke, A. Ludlow, Y. Jiang, C. W. Oates, S. A. Diddams, “Generation of ultrastable microwaves via optical frequency division,” Nat. Photonics 5, 425–429 (2011).
[Crossref]

Nature (4)

P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, T. J. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature 450, 1214–1217 (2007).
[Crossref]

D. K. Armani, T. J. Kippenberg, S. M. Spillane, K. J. Vahala, “Ultra-high-Q toroid microcavity on a chip,” Nature 421, 925–928 (2003).
[Crossref]

K. J. Vahala, “Optical microcavities,” Nature 424, 839–846 (2003).
[Crossref]

S. M. Spillane, T. J. Kippenberg, K. J. Vahala, “Ultralow-threshold Raman laser using a spherical dielectric microcavity,” Nature 415, 621–623 (2002).
[Crossref]

Opt. Express (7)

Opt. Lett. (4)

Phys. Rev. A (2)

J. Alnis, A. Schliesser, C. Y. Wang, J. Hofer, T. J. Kippenberg, T. W. Hänsch, “Thermal-noise-limited crystalline whispering-gallery-mode resonator for laser stabilization,” Phys. Rev. A 84, 011804(R) (2011).
[Crossref]

S. B. Papp, S. A. Diddams, “Spectral and temporal characterization of a fused-quartz-microresonator optical frequency comb,” Phys. Rev. A 84, 053833 (2011).
[Crossref]

Phys. Rev. Lett. (6)

A. A. Savchenkov, A. B. Matsko, V. S. Ilchenko, L. Solomatine, D. Seidel, L. Maleki, “Tunable optical frequency comb with a crystalline whispering gallery mode resonator,” Phys. Rev. Lett. 101, 093902 (2008).
[Crossref]

P. Del’Haye, S. B. Papp, S. A. Diddams, “Hybrid electro-optically modulated microcombs,” Phys. Rev. Lett. 109, 263901 (2012).
[Crossref]

R. J. Rafac, B. C. Young, J. A. Beall, W. M. Itano, D. J. Wineland, J. C. Bergquist, “Sub-dekahertz ultraviolet spectroscopy of 199Hg+,” Phys. Rev. Lett. 85, 2462–2465 (2000).
[Crossref]

P. Del’Haye, O. Arcizet, A. Schliesser, R. Holzwarth, T. J. Kippenberg, “Full stabilization of a microresonator-based optical frequency comb,” Phys. Rev. Lett. 101, 053903 (2008).
[Crossref]

B. C. Young, F. C. Cruz, W. M. Itano, J. C. Bergquist, “Visible lasers with subhertz linewidths,” Phys. Rev. Lett. 82, 3799–3802 (1999).
[Crossref]

I. S. Grudinin, A. B. Matsko, L. Maleki, “Brillouin lasing with a CaF2 whispering gallery mode resonator,” Phys. Rev. Lett. 102, 043902 (2009).
[Crossref]

Phys. Rev. X (1)

S. B. Papp, P. Del’Haye, S. A. Diddams, “Mechanical control of a microrod-resonator optical frequency comb,” Phys. Rev. X 3, 031003 (2013).
[Crossref]

Proc. SPIE (1)

E. Dale, W. Liang, D. Eliyahu, A. A. Savchenkov, V. S. Ilchenko, A. B. Matsko, D. Seidel, L. Maleki, “On phase noise of self-injection locked semiconductor lasers,” Proc. SPIE 8960, 89600X (2014).

Science (2)

J. Li, X. Yi, H. Lee, S. A. Diddams, K. J. Vahala, “Electro-optical frequency division and stable microwave synthesis,” Science 345, 309–313 (2014).
[Crossref]

T. J. Kippenberg, R. Holzwarth, S. A. Diddams, “Microresonator-based optical frequency combs,” Science 332, 555–559 (2011).
[Crossref]

Supplementary Material (1)

» Supplement 1: PDF (1902 KB)     

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Diagram and operation of the dual-microcavity narrow-linewidth laser. (a) An integrated planar diode laser is modulated by a phase modulator (PM) and optically amplified by a SOA before being sent into a microdisk for pumping the generation of a counterpropagating SBS wave. The transmitted signal past the microdisk is detected by a photodetector (PD), which when mixed with a local oscillator (LO), produces an error signal that is used to PDH lock the pump to the peak of a cavity resonance. Through control of the SOA optical output power, the cavity resonances are thermally tuned, which results in tuning of the SBS frequency. (b) Optical spectrum of a 1550.2 nm SBS signal exhibiting a peak power of 1.9 mW and a sidemode suppression greater than 75 dB. The backscattered pump is 31 dB below the SBS signal and at a level 7.8 dB above residual system reflections. (c) The SBS signal is phase modulated and PDH locked to a stable microrod reference cavity via feedback on the SOA power. (d) Scan of the SBS laser over a microrod resonance. The linewidth is 250 kHz calibrated from two phase modulation sidebands at ± 3 MHz . (e) Photograph of the microdisk on a silicon chip that is mounted on a thermoelectric cooler (TEC) and coupled to a tapered fiber. (f) Photograph of the microrod reference cavity.

Fig. 2.
Fig. 2.

Demonstration of SBS tuning. (a) Graph of the measured change in frequency of the SBS laser versus its power for tuning via SOA control. The fitted response follows a tuning rate of 100 MHz per milliwatt of SBS power. (b) Frequency response achieved by the SOA tuning method. The 3 dB bandwidth is 850 Hz approximately corresponding to the thermal response rate of the microdisk. (c) Graph of the measured change in frequency of the SBS laser for controlled shifts in the microdisk temperature over a total tuning range of 22.4 GHz. The fitted response follows a tuning rate of 1.9 GHz per °C of temperature change. (d) SBS optical spectra for five operating points when the pump laser is tuned across a range of 50 nm.

Fig. 3.
Fig. 3.

Experimental measurements of the SBS laser. (a) Frequency noise spectra of the pump (blue), SBS (red), and dual-microcavity SBS (black) lasers. The SBS laser improves on the pump noise at high offset frequencies but suffers from noise fluctuations at low frequencies. When locked to the microrod, the noise at low offset frequencies becomes significantly reduced. The shaded region indicates the uncertainty window corresponding to theoretical calculations of the dual-microcavity laser’s intrinsic noise. This noise results from a combination of the reference cavity’s thermorefractive noise at lower offsets and the SBS laser’s fundamental white-frequency noise at higher offsets. (b) RF spectrum illustrating the linewidth reduction from the pump laser to the SBS laser and finally to the locked SBS laser. (c) RIN spectra of the SBS and locked SBS lasers showing a slight increase in RIN after locking to the microrod. By servoing the intensity noise, the locked SBS RIN (green) can be reduced.

Fig. 4.
Fig. 4.

Laser measurement of a narrow-linewidth bulk Fabry–Perot cavity. (a) Three lasers are individually sent through an amplitude modulator (AM) to generate sidebands that can be scanned by a voltage controlled oscillator (VCO). The laser sidebands are swept across a Fabry–Perot (FP) cavity resonance exhibiting a linewidth of 4 kHz . The resulting cavity transmission is photodetected and subsequently recorded by an oscilloscope. (b) Scan of the dual-microcavity SBS laser over the cavity resonance along with its corresponding Lorentzian fit. The scans corresponding to the pump laser and a commercial narrow-linewidth Er fiber laser are also shown for comparison. The cavity resonance is only accurately resolved in the SBS laser trace.

Metrics