Abstract

Wireless communication systems in the terahertz (THz) frequency range promise to dramatically increase available bandwidth in the electromagnetic spectrum. These wireless systems will require filtering techniques capable of operating in this relatively unused part of the spectrum. Here, we report a versatile technique for designing different classes of THz plasmonic filters based on a k-space methodology, in which the desired frequency response is mapped into two-dimensional (2D) k-space and then inverse Fourier transformed into the spatial domain. We use a recently developed inkjet printing technique to fabricate the spatial patterns allowing for grayscale conductivity variation. In general, any technique that allows for high-fidelity reproduction of the real-space grayscale variation in the fabricated plasmonic structure can be used. We demonstrate the flexibility of this approach by creating several classes of filters that allow for changes in the relative magnitudes in multiresonant filters; the polarization dependence, where the anisotropy can be carefully controlled; and the resonance bandwidth. We further demonstrate that, by cascading or adding filter functions together, even more complex filter designs can be achieved. We expect this approach to dramatically expand the design capabilities for filter technology for THz systems applications, such as THz wireless communications as well as applications in other spectral regions.

© 2015 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Akagi, “New trends in active filters for power conditioning,” IEEE Trans. Ind. Appl. 32, 1312–1322 (1996).
    [Crossref]
  2. C. M. Rader, B. Gold, “Digital filter design techniques in the frequency domain,” Proc. IEEE 55, 149–171 (1967).
    [Crossref]
  3. M. E. Frerking, Digital Signal Processing in Communication Systems (Kluwer, 1993).
  4. B. Glance, I. P. Kaminow, R. W. Wilson, “Applications of the integrated waveguide grating router,” J. Lightwave Technol. 12, 957–962 (1994).
    [Crossref]
  5. D. M. Pozar, Microwave Engineering, 3rd ed. (Wiley, 2005).
  6. C. K. Madsen, J. H. Zhao, Optical Filter Design and Analysis: A Signal Processing Approach, 1st ed. (Wiley-Interscience, 1999).
  7. S. Koenig, D. Lopez-Diaz, J. Antes, F. Boes, R. Henneberger, A. Leuther, A. Tessmann, R. Schmogrow, D. Hillerkuss, R. Palmer, T. Zwick, C. Koos, W. Freude, O. Ambacher, J. Leuthold, I. Kallfass, “Wireless sub-THz communication system with high data rate,” Nat. Photonics 7, 977–981 (2013).
    [Crossref]
  8. M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1, 97–105 (2007).
    [Crossref]
  9. D. W. Porterfield, J. L. Hesler, R. Densing, E. R. Mueller, T. W. Crowe, R. M. Weikle, “Resonant metal-mesh bandpass filters for the far infrared,” Appl. Opt. 33, 6046–6052 (1994).
    [Crossref]
  10. S. Gupta, G. Tuttle, M. Sigalas, K.-M. Ho, “Infrared filters using metallic photonic band gap structures on flexible substrates,” Appl. Phys. Lett. 71, 2412–2414 (1997).
    [Crossref]
  11. C. Winnewisser, F. T. Lewen, M. Schall, M. Walther, H. Helm, “Characterization and application of dichroic filters in the 0.1-3-THz region,” IEEE Trans. Microwave Theory Tech. 48, 744–749 (2000).
  12. M. E. MacDonald, A. Alexanian, R. A. York, Z. Popovic, E. N. Grossman, “Spectral transmittance of lossy printed resonant-grid terahertz bandpass filters,” IEEE Trans. Microwave Theory Tech. 48, 712–718 (2000).
  13. O. Paul, R. Beigang, M. Rahm, “Highly selective terahertz bandpass filters based on trapped mode excitation,” Opt. Express 17, 18590–18595 (2009).
    [Crossref]
  14. J. Cunningham, C. Wood, A. G. Davies, I. Hunter, E. H. Linfield, H. E. Beere, “Terahertz frequency range band-stop filters,” Appl. Phys. Lett. 86, 213503 (2005).
    [Crossref]
  15. D. Wu, N. Fang, C. Sun, X. Zhang, W. J. Padilla, D. N. Basov, D. R. Smith, S. Schultz, “Terahertz plasmonic high pass filter,” Appl. Phys. Lett. 83, 201–203 (2003).
    [Crossref]
  16. F. Keilmann, “Infrared high-pass filter with high contrast,” Int. J. Infrared Millim. Waves 2, 259–272 (1981).
    [Crossref]
  17. T. D. Drysdale, I. S. Gregory, C. Baker, E. H. Linfield, W. R. Tribe, D. R. S. Cumming, “Transmittance of a tunable filter at terahertz frequencies,” Appl. Phys. Lett. 85, 5173–5175 (2004).
    [Crossref]
  18. R. Mendis, A. Nag, F. Chen, D. M. Mittleman, “A tunable universal terahertz filter using artificial dielectrics based on parallel-plate waveguides,” Appl. Phys. Lett. 97, 131106 (2010).
    [Crossref]
  19. B. Gupta, S. Pandey, S. Guruswamy, A. Nahata, “Terahertz plasmonic structures based on spatially varying conductivities,” Adv. Opt. Mater. 2, 565–571 (2014).
  20. D. Grischkowsky, S. Keiding, M. van Exter, C. Fattinger, “Far-infrared time-domain spectroscopy with terahertz beams of dielectrics and semiconductors,” J. Opt. Soc. Am. B 7, 2006–2015 (1990).
    [Crossref]
  21. A. Krishnan, T. Thio, T. J. Kim, H. J. Lezec, T. W. Ebbesen, P. A. Wolff, J. Pendry, L. Martin-Moreno, F. J. Garcia-Vidal, “Evanescently coupled resonance in surface plasmon enhanced transmission,” Opt. Commun. 200, 1–7 (2001).
    [Crossref]
  22. H. Cao, A. Agrawal, A. Nahata, “Controlling the transmission resonance lineshape of a single subwavelength aperture,” Opt. Express 13, 763–769 (2005).
    [Crossref]
  23. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667–669 (1998).
    [Crossref]
  24. T. Matsui, A. Agrawal, A. Nahata, Z. V. Vardeny, “Transmission resonances through aperiodic arrays of subwavelength apertures,” Nature 446, 517–521 (2007).
    [Crossref]
  25. T. D. Nguyen, S. Liu, Z. V. Vardeny, A. Nahata, “Engineering the properties of terahertz filters using multilayer aperture arrays,” Opt. Express 19, 18678–18686 (2011).
    [Crossref]

2014 (1)

B. Gupta, S. Pandey, S. Guruswamy, A. Nahata, “Terahertz plasmonic structures based on spatially varying conductivities,” Adv. Opt. Mater. 2, 565–571 (2014).

2013 (1)

S. Koenig, D. Lopez-Diaz, J. Antes, F. Boes, R. Henneberger, A. Leuther, A. Tessmann, R. Schmogrow, D. Hillerkuss, R. Palmer, T. Zwick, C. Koos, W. Freude, O. Ambacher, J. Leuthold, I. Kallfass, “Wireless sub-THz communication system with high data rate,” Nat. Photonics 7, 977–981 (2013).
[Crossref]

2011 (1)

2010 (1)

R. Mendis, A. Nag, F. Chen, D. M. Mittleman, “A tunable universal terahertz filter using artificial dielectrics based on parallel-plate waveguides,” Appl. Phys. Lett. 97, 131106 (2010).
[Crossref]

2009 (1)

2007 (2)

M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1, 97–105 (2007).
[Crossref]

T. Matsui, A. Agrawal, A. Nahata, Z. V. Vardeny, “Transmission resonances through aperiodic arrays of subwavelength apertures,” Nature 446, 517–521 (2007).
[Crossref]

2005 (2)

H. Cao, A. Agrawal, A. Nahata, “Controlling the transmission resonance lineshape of a single subwavelength aperture,” Opt. Express 13, 763–769 (2005).
[Crossref]

J. Cunningham, C. Wood, A. G. Davies, I. Hunter, E. H. Linfield, H. E. Beere, “Terahertz frequency range band-stop filters,” Appl. Phys. Lett. 86, 213503 (2005).
[Crossref]

2004 (1)

T. D. Drysdale, I. S. Gregory, C. Baker, E. H. Linfield, W. R. Tribe, D. R. S. Cumming, “Transmittance of a tunable filter at terahertz frequencies,” Appl. Phys. Lett. 85, 5173–5175 (2004).
[Crossref]

2003 (1)

D. Wu, N. Fang, C. Sun, X. Zhang, W. J. Padilla, D. N. Basov, D. R. Smith, S. Schultz, “Terahertz plasmonic high pass filter,” Appl. Phys. Lett. 83, 201–203 (2003).
[Crossref]

2001 (1)

A. Krishnan, T. Thio, T. J. Kim, H. J. Lezec, T. W. Ebbesen, P. A. Wolff, J. Pendry, L. Martin-Moreno, F. J. Garcia-Vidal, “Evanescently coupled resonance in surface plasmon enhanced transmission,” Opt. Commun. 200, 1–7 (2001).
[Crossref]

2000 (2)

C. Winnewisser, F. T. Lewen, M. Schall, M. Walther, H. Helm, “Characterization and application of dichroic filters in the 0.1-3-THz region,” IEEE Trans. Microwave Theory Tech. 48, 744–749 (2000).

M. E. MacDonald, A. Alexanian, R. A. York, Z. Popovic, E. N. Grossman, “Spectral transmittance of lossy printed resonant-grid terahertz bandpass filters,” IEEE Trans. Microwave Theory Tech. 48, 712–718 (2000).

1998 (1)

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667–669 (1998).
[Crossref]

1997 (1)

S. Gupta, G. Tuttle, M. Sigalas, K.-M. Ho, “Infrared filters using metallic photonic band gap structures on flexible substrates,” Appl. Phys. Lett. 71, 2412–2414 (1997).
[Crossref]

1996 (1)

H. Akagi, “New trends in active filters for power conditioning,” IEEE Trans. Ind. Appl. 32, 1312–1322 (1996).
[Crossref]

1994 (2)

D. W. Porterfield, J. L. Hesler, R. Densing, E. R. Mueller, T. W. Crowe, R. M. Weikle, “Resonant metal-mesh bandpass filters for the far infrared,” Appl. Opt. 33, 6046–6052 (1994).
[Crossref]

B. Glance, I. P. Kaminow, R. W. Wilson, “Applications of the integrated waveguide grating router,” J. Lightwave Technol. 12, 957–962 (1994).
[Crossref]

1990 (1)

1981 (1)

F. Keilmann, “Infrared high-pass filter with high contrast,” Int. J. Infrared Millim. Waves 2, 259–272 (1981).
[Crossref]

1967 (1)

C. M. Rader, B. Gold, “Digital filter design techniques in the frequency domain,” Proc. IEEE 55, 149–171 (1967).
[Crossref]

Agrawal, A.

T. Matsui, A. Agrawal, A. Nahata, Z. V. Vardeny, “Transmission resonances through aperiodic arrays of subwavelength apertures,” Nature 446, 517–521 (2007).
[Crossref]

H. Cao, A. Agrawal, A. Nahata, “Controlling the transmission resonance lineshape of a single subwavelength aperture,” Opt. Express 13, 763–769 (2005).
[Crossref]

Akagi, H.

H. Akagi, “New trends in active filters for power conditioning,” IEEE Trans. Ind. Appl. 32, 1312–1322 (1996).
[Crossref]

Alexanian, A.

M. E. MacDonald, A. Alexanian, R. A. York, Z. Popovic, E. N. Grossman, “Spectral transmittance of lossy printed resonant-grid terahertz bandpass filters,” IEEE Trans. Microwave Theory Tech. 48, 712–718 (2000).

Ambacher, O.

S. Koenig, D. Lopez-Diaz, J. Antes, F. Boes, R. Henneberger, A. Leuther, A. Tessmann, R. Schmogrow, D. Hillerkuss, R. Palmer, T. Zwick, C. Koos, W. Freude, O. Ambacher, J. Leuthold, I. Kallfass, “Wireless sub-THz communication system with high data rate,” Nat. Photonics 7, 977–981 (2013).
[Crossref]

Antes, J.

S. Koenig, D. Lopez-Diaz, J. Antes, F. Boes, R. Henneberger, A. Leuther, A. Tessmann, R. Schmogrow, D. Hillerkuss, R. Palmer, T. Zwick, C. Koos, W. Freude, O. Ambacher, J. Leuthold, I. Kallfass, “Wireless sub-THz communication system with high data rate,” Nat. Photonics 7, 977–981 (2013).
[Crossref]

Baker, C.

T. D. Drysdale, I. S. Gregory, C. Baker, E. H. Linfield, W. R. Tribe, D. R. S. Cumming, “Transmittance of a tunable filter at terahertz frequencies,” Appl. Phys. Lett. 85, 5173–5175 (2004).
[Crossref]

Basov, D. N.

D. Wu, N. Fang, C. Sun, X. Zhang, W. J. Padilla, D. N. Basov, D. R. Smith, S. Schultz, “Terahertz plasmonic high pass filter,” Appl. Phys. Lett. 83, 201–203 (2003).
[Crossref]

Beere, H. E.

J. Cunningham, C. Wood, A. G. Davies, I. Hunter, E. H. Linfield, H. E. Beere, “Terahertz frequency range band-stop filters,” Appl. Phys. Lett. 86, 213503 (2005).
[Crossref]

Beigang, R.

Boes, F.

S. Koenig, D. Lopez-Diaz, J. Antes, F. Boes, R. Henneberger, A. Leuther, A. Tessmann, R. Schmogrow, D. Hillerkuss, R. Palmer, T. Zwick, C. Koos, W. Freude, O. Ambacher, J. Leuthold, I. Kallfass, “Wireless sub-THz communication system with high data rate,” Nat. Photonics 7, 977–981 (2013).
[Crossref]

Cao, H.

Chen, F.

R. Mendis, A. Nag, F. Chen, D. M. Mittleman, “A tunable universal terahertz filter using artificial dielectrics based on parallel-plate waveguides,” Appl. Phys. Lett. 97, 131106 (2010).
[Crossref]

Crowe, T. W.

Cumming, D. R. S.

T. D. Drysdale, I. S. Gregory, C. Baker, E. H. Linfield, W. R. Tribe, D. R. S. Cumming, “Transmittance of a tunable filter at terahertz frequencies,” Appl. Phys. Lett. 85, 5173–5175 (2004).
[Crossref]

Cunningham, J.

J. Cunningham, C. Wood, A. G. Davies, I. Hunter, E. H. Linfield, H. E. Beere, “Terahertz frequency range band-stop filters,” Appl. Phys. Lett. 86, 213503 (2005).
[Crossref]

Davies, A. G.

J. Cunningham, C. Wood, A. G. Davies, I. Hunter, E. H. Linfield, H. E. Beere, “Terahertz frequency range band-stop filters,” Appl. Phys. Lett. 86, 213503 (2005).
[Crossref]

Densing, R.

Drysdale, T. D.

T. D. Drysdale, I. S. Gregory, C. Baker, E. H. Linfield, W. R. Tribe, D. R. S. Cumming, “Transmittance of a tunable filter at terahertz frequencies,” Appl. Phys. Lett. 85, 5173–5175 (2004).
[Crossref]

Ebbesen, T. W.

A. Krishnan, T. Thio, T. J. Kim, H. J. Lezec, T. W. Ebbesen, P. A. Wolff, J. Pendry, L. Martin-Moreno, F. J. Garcia-Vidal, “Evanescently coupled resonance in surface plasmon enhanced transmission,” Opt. Commun. 200, 1–7 (2001).
[Crossref]

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667–669 (1998).
[Crossref]

Fang, N.

D. Wu, N. Fang, C. Sun, X. Zhang, W. J. Padilla, D. N. Basov, D. R. Smith, S. Schultz, “Terahertz plasmonic high pass filter,” Appl. Phys. Lett. 83, 201–203 (2003).
[Crossref]

Fattinger, C.

Frerking, M. E.

M. E. Frerking, Digital Signal Processing in Communication Systems (Kluwer, 1993).

Freude, W.

S. Koenig, D. Lopez-Diaz, J. Antes, F. Boes, R. Henneberger, A. Leuther, A. Tessmann, R. Schmogrow, D. Hillerkuss, R. Palmer, T. Zwick, C. Koos, W. Freude, O. Ambacher, J. Leuthold, I. Kallfass, “Wireless sub-THz communication system with high data rate,” Nat. Photonics 7, 977–981 (2013).
[Crossref]

Garcia-Vidal, F. J.

A. Krishnan, T. Thio, T. J. Kim, H. J. Lezec, T. W. Ebbesen, P. A. Wolff, J. Pendry, L. Martin-Moreno, F. J. Garcia-Vidal, “Evanescently coupled resonance in surface plasmon enhanced transmission,” Opt. Commun. 200, 1–7 (2001).
[Crossref]

Ghaemi, H. F.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667–669 (1998).
[Crossref]

Glance, B.

B. Glance, I. P. Kaminow, R. W. Wilson, “Applications of the integrated waveguide grating router,” J. Lightwave Technol. 12, 957–962 (1994).
[Crossref]

Gold, B.

C. M. Rader, B. Gold, “Digital filter design techniques in the frequency domain,” Proc. IEEE 55, 149–171 (1967).
[Crossref]

Gregory, I. S.

T. D. Drysdale, I. S. Gregory, C. Baker, E. H. Linfield, W. R. Tribe, D. R. S. Cumming, “Transmittance of a tunable filter at terahertz frequencies,” Appl. Phys. Lett. 85, 5173–5175 (2004).
[Crossref]

Grischkowsky, D.

Grossman, E. N.

M. E. MacDonald, A. Alexanian, R. A. York, Z. Popovic, E. N. Grossman, “Spectral transmittance of lossy printed resonant-grid terahertz bandpass filters,” IEEE Trans. Microwave Theory Tech. 48, 712–718 (2000).

Gupta, B.

B. Gupta, S. Pandey, S. Guruswamy, A. Nahata, “Terahertz plasmonic structures based on spatially varying conductivities,” Adv. Opt. Mater. 2, 565–571 (2014).

Gupta, S.

S. Gupta, G. Tuttle, M. Sigalas, K.-M. Ho, “Infrared filters using metallic photonic band gap structures on flexible substrates,” Appl. Phys. Lett. 71, 2412–2414 (1997).
[Crossref]

Guruswamy, S.

B. Gupta, S. Pandey, S. Guruswamy, A. Nahata, “Terahertz plasmonic structures based on spatially varying conductivities,” Adv. Opt. Mater. 2, 565–571 (2014).

Helm, H.

C. Winnewisser, F. T. Lewen, M. Schall, M. Walther, H. Helm, “Characterization and application of dichroic filters in the 0.1-3-THz region,” IEEE Trans. Microwave Theory Tech. 48, 744–749 (2000).

Henneberger, R.

S. Koenig, D. Lopez-Diaz, J. Antes, F. Boes, R. Henneberger, A. Leuther, A. Tessmann, R. Schmogrow, D. Hillerkuss, R. Palmer, T. Zwick, C. Koos, W. Freude, O. Ambacher, J. Leuthold, I. Kallfass, “Wireless sub-THz communication system with high data rate,” Nat. Photonics 7, 977–981 (2013).
[Crossref]

Hesler, J. L.

Hillerkuss, D.

S. Koenig, D. Lopez-Diaz, J. Antes, F. Boes, R. Henneberger, A. Leuther, A. Tessmann, R. Schmogrow, D. Hillerkuss, R. Palmer, T. Zwick, C. Koos, W. Freude, O. Ambacher, J. Leuthold, I. Kallfass, “Wireless sub-THz communication system with high data rate,” Nat. Photonics 7, 977–981 (2013).
[Crossref]

Ho, K.-M.

S. Gupta, G. Tuttle, M. Sigalas, K.-M. Ho, “Infrared filters using metallic photonic band gap structures on flexible substrates,” Appl. Phys. Lett. 71, 2412–2414 (1997).
[Crossref]

Hunter, I.

J. Cunningham, C. Wood, A. G. Davies, I. Hunter, E. H. Linfield, H. E. Beere, “Terahertz frequency range band-stop filters,” Appl. Phys. Lett. 86, 213503 (2005).
[Crossref]

Kallfass, I.

S. Koenig, D. Lopez-Diaz, J. Antes, F. Boes, R. Henneberger, A. Leuther, A. Tessmann, R. Schmogrow, D. Hillerkuss, R. Palmer, T. Zwick, C. Koos, W. Freude, O. Ambacher, J. Leuthold, I. Kallfass, “Wireless sub-THz communication system with high data rate,” Nat. Photonics 7, 977–981 (2013).
[Crossref]

Kaminow, I. P.

B. Glance, I. P. Kaminow, R. W. Wilson, “Applications of the integrated waveguide grating router,” J. Lightwave Technol. 12, 957–962 (1994).
[Crossref]

Keiding, S.

Keilmann, F.

F. Keilmann, “Infrared high-pass filter with high contrast,” Int. J. Infrared Millim. Waves 2, 259–272 (1981).
[Crossref]

Kim, T. J.

A. Krishnan, T. Thio, T. J. Kim, H. J. Lezec, T. W. Ebbesen, P. A. Wolff, J. Pendry, L. Martin-Moreno, F. J. Garcia-Vidal, “Evanescently coupled resonance in surface plasmon enhanced transmission,” Opt. Commun. 200, 1–7 (2001).
[Crossref]

Koenig, S.

S. Koenig, D. Lopez-Diaz, J. Antes, F. Boes, R. Henneberger, A. Leuther, A. Tessmann, R. Schmogrow, D. Hillerkuss, R. Palmer, T. Zwick, C. Koos, W. Freude, O. Ambacher, J. Leuthold, I. Kallfass, “Wireless sub-THz communication system with high data rate,” Nat. Photonics 7, 977–981 (2013).
[Crossref]

Koos, C.

S. Koenig, D. Lopez-Diaz, J. Antes, F. Boes, R. Henneberger, A. Leuther, A. Tessmann, R. Schmogrow, D. Hillerkuss, R. Palmer, T. Zwick, C. Koos, W. Freude, O. Ambacher, J. Leuthold, I. Kallfass, “Wireless sub-THz communication system with high data rate,” Nat. Photonics 7, 977–981 (2013).
[Crossref]

Krishnan, A.

A. Krishnan, T. Thio, T. J. Kim, H. J. Lezec, T. W. Ebbesen, P. A. Wolff, J. Pendry, L. Martin-Moreno, F. J. Garcia-Vidal, “Evanescently coupled resonance in surface plasmon enhanced transmission,” Opt. Commun. 200, 1–7 (2001).
[Crossref]

Leuther, A.

S. Koenig, D. Lopez-Diaz, J. Antes, F. Boes, R. Henneberger, A. Leuther, A. Tessmann, R. Schmogrow, D. Hillerkuss, R. Palmer, T. Zwick, C. Koos, W. Freude, O. Ambacher, J. Leuthold, I. Kallfass, “Wireless sub-THz communication system with high data rate,” Nat. Photonics 7, 977–981 (2013).
[Crossref]

Leuthold, J.

S. Koenig, D. Lopez-Diaz, J. Antes, F. Boes, R. Henneberger, A. Leuther, A. Tessmann, R. Schmogrow, D. Hillerkuss, R. Palmer, T. Zwick, C. Koos, W. Freude, O. Ambacher, J. Leuthold, I. Kallfass, “Wireless sub-THz communication system with high data rate,” Nat. Photonics 7, 977–981 (2013).
[Crossref]

Lewen, F. T.

C. Winnewisser, F. T. Lewen, M. Schall, M. Walther, H. Helm, “Characterization and application of dichroic filters in the 0.1-3-THz region,” IEEE Trans. Microwave Theory Tech. 48, 744–749 (2000).

Lezec, H. J.

A. Krishnan, T. Thio, T. J. Kim, H. J. Lezec, T. W. Ebbesen, P. A. Wolff, J. Pendry, L. Martin-Moreno, F. J. Garcia-Vidal, “Evanescently coupled resonance in surface plasmon enhanced transmission,” Opt. Commun. 200, 1–7 (2001).
[Crossref]

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667–669 (1998).
[Crossref]

Linfield, E. H.

J. Cunningham, C. Wood, A. G. Davies, I. Hunter, E. H. Linfield, H. E. Beere, “Terahertz frequency range band-stop filters,” Appl. Phys. Lett. 86, 213503 (2005).
[Crossref]

T. D. Drysdale, I. S. Gregory, C. Baker, E. H. Linfield, W. R. Tribe, D. R. S. Cumming, “Transmittance of a tunable filter at terahertz frequencies,” Appl. Phys. Lett. 85, 5173–5175 (2004).
[Crossref]

Liu, S.

Lopez-Diaz, D.

S. Koenig, D. Lopez-Diaz, J. Antes, F. Boes, R. Henneberger, A. Leuther, A. Tessmann, R. Schmogrow, D. Hillerkuss, R. Palmer, T. Zwick, C. Koos, W. Freude, O. Ambacher, J. Leuthold, I. Kallfass, “Wireless sub-THz communication system with high data rate,” Nat. Photonics 7, 977–981 (2013).
[Crossref]

MacDonald, M. E.

M. E. MacDonald, A. Alexanian, R. A. York, Z. Popovic, E. N. Grossman, “Spectral transmittance of lossy printed resonant-grid terahertz bandpass filters,” IEEE Trans. Microwave Theory Tech. 48, 712–718 (2000).

Madsen, C. K.

C. K. Madsen, J. H. Zhao, Optical Filter Design and Analysis: A Signal Processing Approach, 1st ed. (Wiley-Interscience, 1999).

Martin-Moreno, L.

A. Krishnan, T. Thio, T. J. Kim, H. J. Lezec, T. W. Ebbesen, P. A. Wolff, J. Pendry, L. Martin-Moreno, F. J. Garcia-Vidal, “Evanescently coupled resonance in surface plasmon enhanced transmission,” Opt. Commun. 200, 1–7 (2001).
[Crossref]

Matsui, T.

T. Matsui, A. Agrawal, A. Nahata, Z. V. Vardeny, “Transmission resonances through aperiodic arrays of subwavelength apertures,” Nature 446, 517–521 (2007).
[Crossref]

Mendis, R.

R. Mendis, A. Nag, F. Chen, D. M. Mittleman, “A tunable universal terahertz filter using artificial dielectrics based on parallel-plate waveguides,” Appl. Phys. Lett. 97, 131106 (2010).
[Crossref]

Mittleman, D. M.

R. Mendis, A. Nag, F. Chen, D. M. Mittleman, “A tunable universal terahertz filter using artificial dielectrics based on parallel-plate waveguides,” Appl. Phys. Lett. 97, 131106 (2010).
[Crossref]

Mueller, E. R.

Nag, A.

R. Mendis, A. Nag, F. Chen, D. M. Mittleman, “A tunable universal terahertz filter using artificial dielectrics based on parallel-plate waveguides,” Appl. Phys. Lett. 97, 131106 (2010).
[Crossref]

Nahata, A.

B. Gupta, S. Pandey, S. Guruswamy, A. Nahata, “Terahertz plasmonic structures based on spatially varying conductivities,” Adv. Opt. Mater. 2, 565–571 (2014).

T. D. Nguyen, S. Liu, Z. V. Vardeny, A. Nahata, “Engineering the properties of terahertz filters using multilayer aperture arrays,” Opt. Express 19, 18678–18686 (2011).
[Crossref]

T. Matsui, A. Agrawal, A. Nahata, Z. V. Vardeny, “Transmission resonances through aperiodic arrays of subwavelength apertures,” Nature 446, 517–521 (2007).
[Crossref]

H. Cao, A. Agrawal, A. Nahata, “Controlling the transmission resonance lineshape of a single subwavelength aperture,” Opt. Express 13, 763–769 (2005).
[Crossref]

Nguyen, T. D.

Padilla, W. J.

D. Wu, N. Fang, C. Sun, X. Zhang, W. J. Padilla, D. N. Basov, D. R. Smith, S. Schultz, “Terahertz plasmonic high pass filter,” Appl. Phys. Lett. 83, 201–203 (2003).
[Crossref]

Palmer, R.

S. Koenig, D. Lopez-Diaz, J. Antes, F. Boes, R. Henneberger, A. Leuther, A. Tessmann, R. Schmogrow, D. Hillerkuss, R. Palmer, T. Zwick, C. Koos, W. Freude, O. Ambacher, J. Leuthold, I. Kallfass, “Wireless sub-THz communication system with high data rate,” Nat. Photonics 7, 977–981 (2013).
[Crossref]

Pandey, S.

B. Gupta, S. Pandey, S. Guruswamy, A. Nahata, “Terahertz plasmonic structures based on spatially varying conductivities,” Adv. Opt. Mater. 2, 565–571 (2014).

Paul, O.

Pendry, J.

A. Krishnan, T. Thio, T. J. Kim, H. J. Lezec, T. W. Ebbesen, P. A. Wolff, J. Pendry, L. Martin-Moreno, F. J. Garcia-Vidal, “Evanescently coupled resonance in surface plasmon enhanced transmission,” Opt. Commun. 200, 1–7 (2001).
[Crossref]

Popovic, Z.

M. E. MacDonald, A. Alexanian, R. A. York, Z. Popovic, E. N. Grossman, “Spectral transmittance of lossy printed resonant-grid terahertz bandpass filters,” IEEE Trans. Microwave Theory Tech. 48, 712–718 (2000).

Porterfield, D. W.

Pozar, D. M.

D. M. Pozar, Microwave Engineering, 3rd ed. (Wiley, 2005).

Rader, C. M.

C. M. Rader, B. Gold, “Digital filter design techniques in the frequency domain,” Proc. IEEE 55, 149–171 (1967).
[Crossref]

Rahm, M.

Schall, M.

C. Winnewisser, F. T. Lewen, M. Schall, M. Walther, H. Helm, “Characterization and application of dichroic filters in the 0.1-3-THz region,” IEEE Trans. Microwave Theory Tech. 48, 744–749 (2000).

Schmogrow, R.

S. Koenig, D. Lopez-Diaz, J. Antes, F. Boes, R. Henneberger, A. Leuther, A. Tessmann, R. Schmogrow, D. Hillerkuss, R. Palmer, T. Zwick, C. Koos, W. Freude, O. Ambacher, J. Leuthold, I. Kallfass, “Wireless sub-THz communication system with high data rate,” Nat. Photonics 7, 977–981 (2013).
[Crossref]

Schultz, S.

D. Wu, N. Fang, C. Sun, X. Zhang, W. J. Padilla, D. N. Basov, D. R. Smith, S. Schultz, “Terahertz plasmonic high pass filter,” Appl. Phys. Lett. 83, 201–203 (2003).
[Crossref]

Sigalas, M.

S. Gupta, G. Tuttle, M. Sigalas, K.-M. Ho, “Infrared filters using metallic photonic band gap structures on flexible substrates,” Appl. Phys. Lett. 71, 2412–2414 (1997).
[Crossref]

Smith, D. R.

D. Wu, N. Fang, C. Sun, X. Zhang, W. J. Padilla, D. N. Basov, D. R. Smith, S. Schultz, “Terahertz plasmonic high pass filter,” Appl. Phys. Lett. 83, 201–203 (2003).
[Crossref]

Sun, C.

D. Wu, N. Fang, C. Sun, X. Zhang, W. J. Padilla, D. N. Basov, D. R. Smith, S. Schultz, “Terahertz plasmonic high pass filter,” Appl. Phys. Lett. 83, 201–203 (2003).
[Crossref]

Tessmann, A.

S. Koenig, D. Lopez-Diaz, J. Antes, F. Boes, R. Henneberger, A. Leuther, A. Tessmann, R. Schmogrow, D. Hillerkuss, R. Palmer, T. Zwick, C. Koos, W. Freude, O. Ambacher, J. Leuthold, I. Kallfass, “Wireless sub-THz communication system with high data rate,” Nat. Photonics 7, 977–981 (2013).
[Crossref]

Thio, T.

A. Krishnan, T. Thio, T. J. Kim, H. J. Lezec, T. W. Ebbesen, P. A. Wolff, J. Pendry, L. Martin-Moreno, F. J. Garcia-Vidal, “Evanescently coupled resonance in surface plasmon enhanced transmission,” Opt. Commun. 200, 1–7 (2001).
[Crossref]

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667–669 (1998).
[Crossref]

Tonouchi, M.

M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1, 97–105 (2007).
[Crossref]

Tribe, W. R.

T. D. Drysdale, I. S. Gregory, C. Baker, E. H. Linfield, W. R. Tribe, D. R. S. Cumming, “Transmittance of a tunable filter at terahertz frequencies,” Appl. Phys. Lett. 85, 5173–5175 (2004).
[Crossref]

Tuttle, G.

S. Gupta, G. Tuttle, M. Sigalas, K.-M. Ho, “Infrared filters using metallic photonic band gap structures on flexible substrates,” Appl. Phys. Lett. 71, 2412–2414 (1997).
[Crossref]

van Exter, M.

Vardeny, Z. V.

T. D. Nguyen, S. Liu, Z. V. Vardeny, A. Nahata, “Engineering the properties of terahertz filters using multilayer aperture arrays,” Opt. Express 19, 18678–18686 (2011).
[Crossref]

T. Matsui, A. Agrawal, A. Nahata, Z. V. Vardeny, “Transmission resonances through aperiodic arrays of subwavelength apertures,” Nature 446, 517–521 (2007).
[Crossref]

Walther, M.

C. Winnewisser, F. T. Lewen, M. Schall, M. Walther, H. Helm, “Characterization and application of dichroic filters in the 0.1-3-THz region,” IEEE Trans. Microwave Theory Tech. 48, 744–749 (2000).

Weikle, R. M.

Wilson, R. W.

B. Glance, I. P. Kaminow, R. W. Wilson, “Applications of the integrated waveguide grating router,” J. Lightwave Technol. 12, 957–962 (1994).
[Crossref]

Winnewisser, C.

C. Winnewisser, F. T. Lewen, M. Schall, M. Walther, H. Helm, “Characterization and application of dichroic filters in the 0.1-3-THz region,” IEEE Trans. Microwave Theory Tech. 48, 744–749 (2000).

Wolff, P. A.

A. Krishnan, T. Thio, T. J. Kim, H. J. Lezec, T. W. Ebbesen, P. A. Wolff, J. Pendry, L. Martin-Moreno, F. J. Garcia-Vidal, “Evanescently coupled resonance in surface plasmon enhanced transmission,” Opt. Commun. 200, 1–7 (2001).
[Crossref]

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667–669 (1998).
[Crossref]

Wood, C.

J. Cunningham, C. Wood, A. G. Davies, I. Hunter, E. H. Linfield, H. E. Beere, “Terahertz frequency range band-stop filters,” Appl. Phys. Lett. 86, 213503 (2005).
[Crossref]

Wu, D.

D. Wu, N. Fang, C. Sun, X. Zhang, W. J. Padilla, D. N. Basov, D. R. Smith, S. Schultz, “Terahertz plasmonic high pass filter,” Appl. Phys. Lett. 83, 201–203 (2003).
[Crossref]

York, R. A.

M. E. MacDonald, A. Alexanian, R. A. York, Z. Popovic, E. N. Grossman, “Spectral transmittance of lossy printed resonant-grid terahertz bandpass filters,” IEEE Trans. Microwave Theory Tech. 48, 712–718 (2000).

Zhang, X.

D. Wu, N. Fang, C. Sun, X. Zhang, W. J. Padilla, D. N. Basov, D. R. Smith, S. Schultz, “Terahertz plasmonic high pass filter,” Appl. Phys. Lett. 83, 201–203 (2003).
[Crossref]

Zhao, J. H.

C. K. Madsen, J. H. Zhao, Optical Filter Design and Analysis: A Signal Processing Approach, 1st ed. (Wiley-Interscience, 1999).

Zwick, T.

S. Koenig, D. Lopez-Diaz, J. Antes, F. Boes, R. Henneberger, A. Leuther, A. Tessmann, R. Schmogrow, D. Hillerkuss, R. Palmer, T. Zwick, C. Koos, W. Freude, O. Ambacher, J. Leuthold, I. Kallfass, “Wireless sub-THz communication system with high data rate,” Nat. Photonics 7, 977–981 (2013).
[Crossref]

Adv. Opt. Mater. (1)

B. Gupta, S. Pandey, S. Guruswamy, A. Nahata, “Terahertz plasmonic structures based on spatially varying conductivities,” Adv. Opt. Mater. 2, 565–571 (2014).

Appl. Opt. (1)

Appl. Phys. Lett. (5)

S. Gupta, G. Tuttle, M. Sigalas, K.-M. Ho, “Infrared filters using metallic photonic band gap structures on flexible substrates,” Appl. Phys. Lett. 71, 2412–2414 (1997).
[Crossref]

J. Cunningham, C. Wood, A. G. Davies, I. Hunter, E. H. Linfield, H. E. Beere, “Terahertz frequency range band-stop filters,” Appl. Phys. Lett. 86, 213503 (2005).
[Crossref]

D. Wu, N. Fang, C. Sun, X. Zhang, W. J. Padilla, D. N. Basov, D. R. Smith, S. Schultz, “Terahertz plasmonic high pass filter,” Appl. Phys. Lett. 83, 201–203 (2003).
[Crossref]

T. D. Drysdale, I. S. Gregory, C. Baker, E. H. Linfield, W. R. Tribe, D. R. S. Cumming, “Transmittance of a tunable filter at terahertz frequencies,” Appl. Phys. Lett. 85, 5173–5175 (2004).
[Crossref]

R. Mendis, A. Nag, F. Chen, D. M. Mittleman, “A tunable universal terahertz filter using artificial dielectrics based on parallel-plate waveguides,” Appl. Phys. Lett. 97, 131106 (2010).
[Crossref]

IEEE Trans. Ind. Appl. (1)

H. Akagi, “New trends in active filters for power conditioning,” IEEE Trans. Ind. Appl. 32, 1312–1322 (1996).
[Crossref]

IEEE Trans. Microwave Theory Tech. (2)

C. Winnewisser, F. T. Lewen, M. Schall, M. Walther, H. Helm, “Characterization and application of dichroic filters in the 0.1-3-THz region,” IEEE Trans. Microwave Theory Tech. 48, 744–749 (2000).

M. E. MacDonald, A. Alexanian, R. A. York, Z. Popovic, E. N. Grossman, “Spectral transmittance of lossy printed resonant-grid terahertz bandpass filters,” IEEE Trans. Microwave Theory Tech. 48, 712–718 (2000).

Int. J. Infrared Millim. Waves (1)

F. Keilmann, “Infrared high-pass filter with high contrast,” Int. J. Infrared Millim. Waves 2, 259–272 (1981).
[Crossref]

J. Lightwave Technol. (1)

B. Glance, I. P. Kaminow, R. W. Wilson, “Applications of the integrated waveguide grating router,” J. Lightwave Technol. 12, 957–962 (1994).
[Crossref]

J. Opt. Soc. Am. B (1)

Nat. Photonics (2)

S. Koenig, D. Lopez-Diaz, J. Antes, F. Boes, R. Henneberger, A. Leuther, A. Tessmann, R. Schmogrow, D. Hillerkuss, R. Palmer, T. Zwick, C. Koos, W. Freude, O. Ambacher, J. Leuthold, I. Kallfass, “Wireless sub-THz communication system with high data rate,” Nat. Photonics 7, 977–981 (2013).
[Crossref]

M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1, 97–105 (2007).
[Crossref]

Nature (2)

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667–669 (1998).
[Crossref]

T. Matsui, A. Agrawal, A. Nahata, Z. V. Vardeny, “Transmission resonances through aperiodic arrays of subwavelength apertures,” Nature 446, 517–521 (2007).
[Crossref]

Opt. Commun. (1)

A. Krishnan, T. Thio, T. J. Kim, H. J. Lezec, T. W. Ebbesen, P. A. Wolff, J. Pendry, L. Martin-Moreno, F. J. Garcia-Vidal, “Evanescently coupled resonance in surface plasmon enhanced transmission,” Opt. Commun. 200, 1–7 (2001).
[Crossref]

Opt. Express (3)

Proc. IEEE (1)

C. M. Rader, B. Gold, “Digital filter design techniques in the frequency domain,” Proc. IEEE 55, 149–171 (1967).
[Crossref]

Other (3)

M. E. Frerking, Digital Signal Processing in Communication Systems (Kluwer, 1993).

D. M. Pozar, Microwave Engineering, 3rd ed. (Wiley, 2005).

C. K. Madsen, J. H. Zhao, Optical Filter Design and Analysis: A Signal Processing Approach, 1st ed. (Wiley-Interscience, 1999).

Supplementary Material (1)

» Supplement 1: PDF (1457 KB)     

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Example of a printed THz filter. (a) Graphical depiction of a physical filter designed in k-space designed to allow for high transmission along one axis and low transmission along the orthogonal axis. This is accomplished by printing a periodic aperture array on a substrate composed of stripes of carbon and silver. The asymmetry in the conductivity along the two axes of the device controls the loss experienced by surface plasmons propagating on the surface of the filter. The detailed operation of the filter is discussed in this work and summarized in Fig. 5. (b) Photograph of the actual k-space filter depicted in (a). (c) Same filter as shown in (a) and (b), but under higher magnification.

Fig. 2.
Fig. 2.

K-space approach for creating THz comb filters with controlled relative amplitudes. (a) K-space representation of a low-frequency-weighted comb-pass filter. (b) K-space representation of an equally weighted comb-pass filter. (c) K-space representation of a high-frequency-weighted comb-pass filter. (d) Measured THz spectra for the three filters, where each successive spectrum is offset by a value of 0.3. Along with the two designed resonant peaks at 0.2 and 0.4 THz, the spectra also contain features at 0.25, 0.3, and 0.35 THz. These additional peaks are due to the asymmetric material stack. The effect of the polyethylene terephthalate (PET) sheet can be seen to redshift the [2,0], [2,1], and [2,2] modes of the 0.2 THz holes and the [1,1] mode of the 0.4 THz holes to create the more complicated spectra. (e) Comparison between the ratio of the designed resonant magnitudes and the ratio of the measured resonant magnitudes.

Fig. 3.
Fig. 3.

K-space approach for creating polarization-sensitive THz filters. (a) K-space representation of a four-point elliptical filter with resonant peaks placed at a higher spatial frequency in kx than in ky. (b) Corresponding 2D spatial image obtained from the inverse Fourier transform. The stretching effect on the holes due to the asymmetry can be clearly seen. (c) Measured transmission as a function of the polarization angle at two distinct resonant peaks located at 0.15 and 0.34 THz. (d) K-space representation of a full ellipse with resonant peaks varying from a higher spatial frequency in kx to a lower spatial frequency in ky. (e) Corresponding 2D spatial image obtained from the inverse Fourier transform. (f) Measured transmission as a function of the polarization angle at 0.16 and 0.33 THz.

Fig. 4.
Fig. 4.

K-space approach for creating THz filters with controlled polarization sensitivity for a single resonance. (a) K-space representation of the anisotropic filter with a larger magnitude resonant peak along ky than kx. (b) Corresponding 2D spatial image obtained from the inverse Fourier transform. (c) Transmission as a function of the polarization angle. (d) Anisotropy factor as a function of the ratio of the magnitude of the resonances along ky and kx. The anisotropy factor corresponds to the ratio of the maximum to minimum transmission. The line represents a least-squares linear fit to the data.

Fig. 5.
Fig. 5.

K-space approach for creating THz filters with controlled bandwidth. (a) K-space representation of a 0.3 THz eight-fold symmetric narrow bandpass filter. (b) 2D spatial image obtained from an inverse Fourier transform of the k-space representation in (a). (c) Spatial representation of a conductivity-weighted soft Gaussian aperture applied to the image in (b), which allows for control over the bandwidth of the filter. (d) Measured THz spectrum for the printed device. (e) Measured bandwidth of six filter samples as a function of the designed k-space bandwidth. The line represents a linear least-squares fit to the data.

Fig. 6.
Fig. 6.

K-space approach for creating THz filters with controlled geometric anisotropy. (a) K-space representation of the rectangular anisotropic filter with resonant frequencies of 0.2 and 0.4 THz along ky and kx, respectively (with a weighting factor of 1) superimposed with a circularly symmetric annulus weighted by a factor W, with resonant frequency at 0.4 THz. (b) Corresponding 2D spatial image obtained from the inverse Fourier transform of (a), with the 0.4 THz ring weighted at 0. (c) Corresponding 2D spatial image obtained from the inverse Fourier transform of (a), with the 0.4 THz ring weighted at 1. (d) Corresponding 2D spatial image obtained from the inverse Fourier transform of (a), with the 0.4 THz ring weighted at 2. (e) Measured ratio of the transmission |F(2)/F(1)| as a function of the polarization angle.

Metrics