Abstract

Metal nanoparticles and diffractive nanostructures are widely studied for enhancing light trapping efficiency in thin-film solar cells. Both have achieved high performance enhancements, but there are very few direct comparisons between the two. Also, it is difficult to accurately determine the parasitic absorption of metal nanoparticles. Here, we assess the light trapping efficiencies of both approaches in an identical absorber configuration. We use a 240 nm thick amorphous silicon slab as the absorber layer and either a quasi-random supercell diffractive nanostructure or a layer of self-assembled metal nanoparticles for light trapping. Both the plasmonic and diffractive structures strongly enhance the absorption in the red/near-infrared regime. At longer wavelengths, however, parasitic absorption becomes evident in the metal nanoparticles, which reduces the overall performance of the plasmonic approach. We have formulated a simple analytical model to assess the parasitic absorption and effective reflectivity of a plasmonic reflector and to demonstrate good agreement with the experimental data.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Light trapping efficiency comparison of Si solar cell textures using spectral photoluminescence

Chog Barugkin, Thomas Allen, Teck K. Chong, Thomas P. White, Klaus J. Weber, and Kylie R. Catchpole
Opt. Express 23(7) A391-A400 (2015)

Highly absorbing solar cells—a survey of plasmonic nanostructures

Ricky B. Dunbar, Thomas Pfadler, and Lukas Schmidt-Mende
Opt. Express 20(S2) A177-A189 (2012)

Light trapping with plasmonic particles: beyond the dipole model

Fiona J. Beck, Sudha Mokkapati, and Kylie R. Catchpole
Opt. Express 19(25) 25230-25241 (2011)

References

  • View by:
  • |
  • |
  • |

  1. T. Tiedje, E. Yablonovitch, G. Cody, B. Brooks, “Limiting efficiency of silicon solar cells,” IEEE Trans. Electron Devices 31, 711–716 (1984).
    [Crossref]
  2. H. A. Atwater, A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9, 205–213 (2010).
    [Crossref]
  3. M. A. Green, S. Pillai, “Harnessing plasmonics for solar cells,” Nat. Photonics 6, 130–132 (2012).
    [Crossref]
  4. F. Priolo, T. Gregorkiewicz, M. Galli, T. F. Krauss, “Silicon nanostructures for photonics and photovoltaics,” Nat. Nanotechnol. 9, 19–32 (2014).
    [Crossref]
  5. Z. Yu, A. Raman, S. Fan, “Fundamental limit of nanophotonic light trapping in solar cells,” Proc. Natl. Acad. Sci. USA 107, 17491–17496 (2010).
  6. S. Morawiec, M. J. Mendes, S. A. Filonovich, T. Mateus, S. Mirabella, H. Aguas, I. Ferreira, F. Simone, E. Fortunato, R. Martins, F. Priolo, I. Crupi, “Broadband photocurrent enhancement in a-Si:H solar cells with plasmonic back reflectors,” Opt. Express 22, A1059–A1070 (2014).
    [Crossref]
  7. M. J. Mendes, S. Morawiec, F. Simone, F. Priolo, I. Crupi, “Colloidal plasmonic back reflectors for light trapping in solar cells,” Nanoscale 6, 4796–4805 (2014).
    [Crossref]
  8. R. Santbergen, R. Liang, M. Zeman, “a-Si:H solar cells with embedded silver nanoparticles,” in 35th IEEE Photovoltaic Specialists Conference (PVSC), June20–25, 2010, pp. 748–753.
  9. E. R. Martins, J. Li, Y. Liu, T. F. Krauss, “Engineering gratings for light trapping in photovoltaics: the supercell concept,” Phys. Rev. B 86, 041404 (2012).
  10. E. R. Martins, J. Li, Y. Liu, V. Depauw, Z. Chen, J. Zhou, T. F. Krauss, “Deterministic quasi-random nanostructures for photon control,” Nat. Commun. 4, 2665 (2013).
    [Crossref]
  11. C. S. Schuster, A. Bozzola, L. C. Andreani, T. F. Krauss, “How to assess light trapping structures versus a Lambertian scatterer for solar cells?” Opt. Express 22, A542–A551 (2014).
    [Crossref]
  12. S. Morawiec, M. J. Mendes, S. Mirabella, F. Simone, F. Priolo, I. Crupi, “Self-assembled silver nanoparticles for plasmon-enhanced solar cell back reflectors: correlation between structural and optical properties,” Nanotechnology 24, 265601 (2013).
    [Crossref]
  13. S. Y. Chou, P. R. Krauss, P. J. Renstrom, “Imprint lithography with 25-nanometer resolution,” Science 272, 85–87 (1996).
    [Crossref]
  14. H. W. Deckman, C. R. Wronski, H. Witzke, E. Yablonovitch, “Optically enhanced amorphous silicon solar cells,” Appl. Phys. Lett. 42, 968–970 (1983).
    [Crossref]
  15. P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, A. Boltasseva, “Searching for better plasmonic materials,” Laser Photon. Rev. 4, 795–808 (2010).
  16. A. M. Pennanen, J. J. Toppari, “Direct optical measurement of light coupling into planar waveguide by plasmonic nanoparticles,” Opt. Express 21, A23–A35 (2013).
    [Crossref]
  17. Z. Ouyang, S. Pillai, F. Beck, O. Kunz, S. Varlamov, K. R. Catchpole, P. Campbell, M. A. Green, “Effective light trapping in polycrystalline silicon thin-film solar cells by means of rear localized surface plasmons,” Appl. Phys. Lett. 96, 261109 (2010).
    [Crossref]
  18. C. V. Thompson, “Solid-state dewetting of thin films,” Annu. Rev. Mater. Res. 42, 399–434 (2012).
    [Crossref]
  19. M. J. Mendes, E. Hernandez, E. Lopez, P. Garcia-Linares, I. Ramiro, I. Artacho, E. Antolin, I. Tobias, A. Marti, A. Luque, “Self-organized colloidal quantum dots and metal nanoparticles for plasmon-enhanced intermediate-band solar cells,” Nanotechnology 24, 345402 (2013).
    [Crossref]
  20. V. Jovanov, U. Planchoke, P. Magnus, H. Stiebig, D. Knipp, “Influence of back contact morphology on light trapping and plasmonic effects in microcrystalline silicon single junction and micromorph tandem solar cells,” Sol. Energy Mater. Sol. Cells 110, 49–57 (2013).
  21. A. Ingenito, O. Isabella, M. Zeman, “Opto-electronic evaluation of thin double-textured crystalline silicon wafers,” in 39th IEEE Photovoltaic Specialist Conference (2013).
  22. R. Santbergen, T. L. Temple, R. Liang, A. H. M. Smets, R. A. C. M. M. van Swaaij, M. Zeman, “Application of plasmonic silver island films in thin-film silicon solar cells,” J. Opt. 14, 024010 (2012).
    [Crossref]
  23. R. Brendel, Thin-Film Crystalline Silicon Solar Cells: Physics and Technology (Wiley-VCH, 2003).
  24. F. J. Beck, S. Mokkapati, K. R. Catchpole, “Light trapping with plasmonic particles: beyond the dipole model,” Opt. Express 19, 25230–25241 (2011).
    [Crossref]
  25. S. Mokkapati, K. R. Catchpole, “Nanophotonic light trapping in solar cells,” J. Appl. Phys. 112, 101101 (2012).
    [Crossref]
  26. J. Gee, “The effect of parasitic absorption losses on light trapping in thin silicon solar cells,” in 20th IEEE Photovoltaic Specialists Conference (PVSC), Las Vegas, Sept.1988, Vol. 1, pp. 549–554.
  27. G. Sun, J. B. Khurgin, Plasmonics and Plasmonic Metamaterials, G. Shvets, I. Tsukerman, eds. (World Scientific, 2012).
  28. B. G. de Grooth, “Why is the propagation velocity of a photon in a transparent medium reduced?” Am. J. Phys. 65, 1156–1164 (1997).
    [Crossref]
  29. M. Boccard, C. Battaglia, F.-J. Haug, M. Despeisse, C. Ballif, “Light trapping in solar cells: analytical modeling,” Appl. Phys. Lett. 101, 151105 (2012).
    [Crossref]
  30. E. Yablonovitch, G. D. Cody, “Intensity enhancement in textured optical sheets for solar cells,” IEEE Trans. Electron Devices 29, 300–305 (1982).
    [Crossref]
  31. H. Tan, L. Sivec, B. Yan, R. Santbergen, M. Zeman, A. H. M. Smets, “Improved light trapping in microcrystalline silicon solar cells by plasmonic back reflector with broad angular scattering and low parasitic absorption,” Appl. Phys. Lett. 102, 153902 (2013).
    [Crossref]
  32. NREL, “AM1.5G solar spectrum irradiance data,” http://rredc.nrel.gov/solar/spectra/am1.5 .
  33. C. Pahud, O. Isabella, A. Naqavi, F.-J. Haug, M. Zeman, H. P. Herzig, C. Ballif, “Plasmonic silicon solar cells: impact of material quality and geometry,” Opt. Express 21, A786–A797 (2013).
    [Crossref]
  34. H. Tan, R. Santbergen, A. H. M. Smets, M. Zeman, “Plasmonic light trapping in thin-film silicon solar cells with improved self-assembled silver nanoparticles,” Nano Lett. 12, 4070–4076 (2012).
  35. U. W. Paetzold, E. Moulin, D. Michaelis, W. Boettler, C. Waechter, V. Hagemann, M. Meier, R. Carius, U. Rau, “Plasmonic reflection grating back contacts for microcrystalline silicon solar cells,” Appl. Phys. Lett. 99, 181105 (2011).
    [Crossref]
  36. S. K. Ghosh, T. Pal, “Interparticle coupling effect on the surface plasmon resonance of gold nanoparticles: from theory to applications,” Chem. Rev. 107, 4797–4862 (2007).
    [Crossref]
  37. B. Liu, E. J. Heller, “Multiple scattering and plasmon resonance in the intermediate regime,” arXiv:1403.4310v1 [cond-mat.mes-hall] (2014).

2014 (4)

2013 (7)

A. M. Pennanen, J. J. Toppari, “Direct optical measurement of light coupling into planar waveguide by plasmonic nanoparticles,” Opt. Express 21, A23–A35 (2013).
[Crossref]

H. Tan, L. Sivec, B. Yan, R. Santbergen, M. Zeman, A. H. M. Smets, “Improved light trapping in microcrystalline silicon solar cells by plasmonic back reflector with broad angular scattering and low parasitic absorption,” Appl. Phys. Lett. 102, 153902 (2013).
[Crossref]

C. Pahud, O. Isabella, A. Naqavi, F.-J. Haug, M. Zeman, H. P. Herzig, C. Ballif, “Plasmonic silicon solar cells: impact of material quality and geometry,” Opt. Express 21, A786–A797 (2013).
[Crossref]

S. Morawiec, M. J. Mendes, S. Mirabella, F. Simone, F. Priolo, I. Crupi, “Self-assembled silver nanoparticles for plasmon-enhanced solar cell back reflectors: correlation between structural and optical properties,” Nanotechnology 24, 265601 (2013).
[Crossref]

E. R. Martins, J. Li, Y. Liu, V. Depauw, Z. Chen, J. Zhou, T. F. Krauss, “Deterministic quasi-random nanostructures for photon control,” Nat. Commun. 4, 2665 (2013).
[Crossref]

M. J. Mendes, E. Hernandez, E. Lopez, P. Garcia-Linares, I. Ramiro, I. Artacho, E. Antolin, I. Tobias, A. Marti, A. Luque, “Self-organized colloidal quantum dots and metal nanoparticles for plasmon-enhanced intermediate-band solar cells,” Nanotechnology 24, 345402 (2013).
[Crossref]

V. Jovanov, U. Planchoke, P. Magnus, H. Stiebig, D. Knipp, “Influence of back contact morphology on light trapping and plasmonic effects in microcrystalline silicon single junction and micromorph tandem solar cells,” Sol. Energy Mater. Sol. Cells 110, 49–57 (2013).

2012 (7)

R. Santbergen, T. L. Temple, R. Liang, A. H. M. Smets, R. A. C. M. M. van Swaaij, M. Zeman, “Application of plasmonic silver island films in thin-film silicon solar cells,” J. Opt. 14, 024010 (2012).
[Crossref]

M. A. Green, S. Pillai, “Harnessing plasmonics for solar cells,” Nat. Photonics 6, 130–132 (2012).
[Crossref]

C. V. Thompson, “Solid-state dewetting of thin films,” Annu. Rev. Mater. Res. 42, 399–434 (2012).
[Crossref]

S. Mokkapati, K. R. Catchpole, “Nanophotonic light trapping in solar cells,” J. Appl. Phys. 112, 101101 (2012).
[Crossref]

E. R. Martins, J. Li, Y. Liu, T. F. Krauss, “Engineering gratings for light trapping in photovoltaics: the supercell concept,” Phys. Rev. B 86, 041404 (2012).

M. Boccard, C. Battaglia, F.-J. Haug, M. Despeisse, C. Ballif, “Light trapping in solar cells: analytical modeling,” Appl. Phys. Lett. 101, 151105 (2012).
[Crossref]

H. Tan, R. Santbergen, A. H. M. Smets, M. Zeman, “Plasmonic light trapping in thin-film silicon solar cells with improved self-assembled silver nanoparticles,” Nano Lett. 12, 4070–4076 (2012).

2011 (2)

U. W. Paetzold, E. Moulin, D. Michaelis, W. Boettler, C. Waechter, V. Hagemann, M. Meier, R. Carius, U. Rau, “Plasmonic reflection grating back contacts for microcrystalline silicon solar cells,” Appl. Phys. Lett. 99, 181105 (2011).
[Crossref]

F. J. Beck, S. Mokkapati, K. R. Catchpole, “Light trapping with plasmonic particles: beyond the dipole model,” Opt. Express 19, 25230–25241 (2011).
[Crossref]

2010 (4)

Z. Ouyang, S. Pillai, F. Beck, O. Kunz, S. Varlamov, K. R. Catchpole, P. Campbell, M. A. Green, “Effective light trapping in polycrystalline silicon thin-film solar cells by means of rear localized surface plasmons,” Appl. Phys. Lett. 96, 261109 (2010).
[Crossref]

Z. Yu, A. Raman, S. Fan, “Fundamental limit of nanophotonic light trapping in solar cells,” Proc. Natl. Acad. Sci. USA 107, 17491–17496 (2010).

H. A. Atwater, A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9, 205–213 (2010).
[Crossref]

P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, A. Boltasseva, “Searching for better plasmonic materials,” Laser Photon. Rev. 4, 795–808 (2010).

2007 (1)

S. K. Ghosh, T. Pal, “Interparticle coupling effect on the surface plasmon resonance of gold nanoparticles: from theory to applications,” Chem. Rev. 107, 4797–4862 (2007).
[Crossref]

1997 (1)

B. G. de Grooth, “Why is the propagation velocity of a photon in a transparent medium reduced?” Am. J. Phys. 65, 1156–1164 (1997).
[Crossref]

1996 (1)

S. Y. Chou, P. R. Krauss, P. J. Renstrom, “Imprint lithography with 25-nanometer resolution,” Science 272, 85–87 (1996).
[Crossref]

1984 (1)

T. Tiedje, E. Yablonovitch, G. Cody, B. Brooks, “Limiting efficiency of silicon solar cells,” IEEE Trans. Electron Devices 31, 711–716 (1984).
[Crossref]

1983 (1)

H. W. Deckman, C. R. Wronski, H. Witzke, E. Yablonovitch, “Optically enhanced amorphous silicon solar cells,” Appl. Phys. Lett. 42, 968–970 (1983).
[Crossref]

1982 (1)

E. Yablonovitch, G. D. Cody, “Intensity enhancement in textured optical sheets for solar cells,” IEEE Trans. Electron Devices 29, 300–305 (1982).
[Crossref]

Aguas, H.

Andreani, L. C.

Antolin, E.

M. J. Mendes, E. Hernandez, E. Lopez, P. Garcia-Linares, I. Ramiro, I. Artacho, E. Antolin, I. Tobias, A. Marti, A. Luque, “Self-organized colloidal quantum dots and metal nanoparticles for plasmon-enhanced intermediate-band solar cells,” Nanotechnology 24, 345402 (2013).
[Crossref]

Artacho, I.

M. J. Mendes, E. Hernandez, E. Lopez, P. Garcia-Linares, I. Ramiro, I. Artacho, E. Antolin, I. Tobias, A. Marti, A. Luque, “Self-organized colloidal quantum dots and metal nanoparticles for plasmon-enhanced intermediate-band solar cells,” Nanotechnology 24, 345402 (2013).
[Crossref]

Atwater, H. A.

H. A. Atwater, A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9, 205–213 (2010).
[Crossref]

Ballif, C.

C. Pahud, O. Isabella, A. Naqavi, F.-J. Haug, M. Zeman, H. P. Herzig, C. Ballif, “Plasmonic silicon solar cells: impact of material quality and geometry,” Opt. Express 21, A786–A797 (2013).
[Crossref]

M. Boccard, C. Battaglia, F.-J. Haug, M. Despeisse, C. Ballif, “Light trapping in solar cells: analytical modeling,” Appl. Phys. Lett. 101, 151105 (2012).
[Crossref]

Battaglia, C.

M. Boccard, C. Battaglia, F.-J. Haug, M. Despeisse, C. Ballif, “Light trapping in solar cells: analytical modeling,” Appl. Phys. Lett. 101, 151105 (2012).
[Crossref]

Beck, F.

Z. Ouyang, S. Pillai, F. Beck, O. Kunz, S. Varlamov, K. R. Catchpole, P. Campbell, M. A. Green, “Effective light trapping in polycrystalline silicon thin-film solar cells by means of rear localized surface plasmons,” Appl. Phys. Lett. 96, 261109 (2010).
[Crossref]

Beck, F. J.

F. J. Beck, S. Mokkapati, K. R. Catchpole, “Light trapping with plasmonic particles: beyond the dipole model,” Opt. Express 19, 25230–25241 (2011).
[Crossref]

Boccard, M.

M. Boccard, C. Battaglia, F.-J. Haug, M. Despeisse, C. Ballif, “Light trapping in solar cells: analytical modeling,” Appl. Phys. Lett. 101, 151105 (2012).
[Crossref]

Boettler, W.

U. W. Paetzold, E. Moulin, D. Michaelis, W. Boettler, C. Waechter, V. Hagemann, M. Meier, R. Carius, U. Rau, “Plasmonic reflection grating back contacts for microcrystalline silicon solar cells,” Appl. Phys. Lett. 99, 181105 (2011).
[Crossref]

Boltasseva, A.

P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, A. Boltasseva, “Searching for better plasmonic materials,” Laser Photon. Rev. 4, 795–808 (2010).

Bozzola, A.

Brendel, R.

R. Brendel, Thin-Film Crystalline Silicon Solar Cells: Physics and Technology (Wiley-VCH, 2003).

Brooks, B.

T. Tiedje, E. Yablonovitch, G. Cody, B. Brooks, “Limiting efficiency of silicon solar cells,” IEEE Trans. Electron Devices 31, 711–716 (1984).
[Crossref]

Campbell, P.

Z. Ouyang, S. Pillai, F. Beck, O. Kunz, S. Varlamov, K. R. Catchpole, P. Campbell, M. A. Green, “Effective light trapping in polycrystalline silicon thin-film solar cells by means of rear localized surface plasmons,” Appl. Phys. Lett. 96, 261109 (2010).
[Crossref]

Carius, R.

U. W. Paetzold, E. Moulin, D. Michaelis, W. Boettler, C. Waechter, V. Hagemann, M. Meier, R. Carius, U. Rau, “Plasmonic reflection grating back contacts for microcrystalline silicon solar cells,” Appl. Phys. Lett. 99, 181105 (2011).
[Crossref]

Catchpole, K. R.

S. Mokkapati, K. R. Catchpole, “Nanophotonic light trapping in solar cells,” J. Appl. Phys. 112, 101101 (2012).
[Crossref]

F. J. Beck, S. Mokkapati, K. R. Catchpole, “Light trapping with plasmonic particles: beyond the dipole model,” Opt. Express 19, 25230–25241 (2011).
[Crossref]

Z. Ouyang, S. Pillai, F. Beck, O. Kunz, S. Varlamov, K. R. Catchpole, P. Campbell, M. A. Green, “Effective light trapping in polycrystalline silicon thin-film solar cells by means of rear localized surface plasmons,” Appl. Phys. Lett. 96, 261109 (2010).
[Crossref]

Chen, Z.

E. R. Martins, J. Li, Y. Liu, V. Depauw, Z. Chen, J. Zhou, T. F. Krauss, “Deterministic quasi-random nanostructures for photon control,” Nat. Commun. 4, 2665 (2013).
[Crossref]

Chou, S. Y.

S. Y. Chou, P. R. Krauss, P. J. Renstrom, “Imprint lithography with 25-nanometer resolution,” Science 272, 85–87 (1996).
[Crossref]

Cody, G.

T. Tiedje, E. Yablonovitch, G. Cody, B. Brooks, “Limiting efficiency of silicon solar cells,” IEEE Trans. Electron Devices 31, 711–716 (1984).
[Crossref]

Cody, G. D.

E. Yablonovitch, G. D. Cody, “Intensity enhancement in textured optical sheets for solar cells,” IEEE Trans. Electron Devices 29, 300–305 (1982).
[Crossref]

Crupi, I.

M. J. Mendes, S. Morawiec, F. Simone, F. Priolo, I. Crupi, “Colloidal plasmonic back reflectors for light trapping in solar cells,” Nanoscale 6, 4796–4805 (2014).
[Crossref]

S. Morawiec, M. J. Mendes, S. A. Filonovich, T. Mateus, S. Mirabella, H. Aguas, I. Ferreira, F. Simone, E. Fortunato, R. Martins, F. Priolo, I. Crupi, “Broadband photocurrent enhancement in a-Si:H solar cells with plasmonic back reflectors,” Opt. Express 22, A1059–A1070 (2014).
[Crossref]

S. Morawiec, M. J. Mendes, S. Mirabella, F. Simone, F. Priolo, I. Crupi, “Self-assembled silver nanoparticles for plasmon-enhanced solar cell back reflectors: correlation between structural and optical properties,” Nanotechnology 24, 265601 (2013).
[Crossref]

de Grooth, B. G.

B. G. de Grooth, “Why is the propagation velocity of a photon in a transparent medium reduced?” Am. J. Phys. 65, 1156–1164 (1997).
[Crossref]

Deckman, H. W.

H. W. Deckman, C. R. Wronski, H. Witzke, E. Yablonovitch, “Optically enhanced amorphous silicon solar cells,” Appl. Phys. Lett. 42, 968–970 (1983).
[Crossref]

Depauw, V.

E. R. Martins, J. Li, Y. Liu, V. Depauw, Z. Chen, J. Zhou, T. F. Krauss, “Deterministic quasi-random nanostructures for photon control,” Nat. Commun. 4, 2665 (2013).
[Crossref]

Despeisse, M.

M. Boccard, C. Battaglia, F.-J. Haug, M. Despeisse, C. Ballif, “Light trapping in solar cells: analytical modeling,” Appl. Phys. Lett. 101, 151105 (2012).
[Crossref]

Emani, N. K.

P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, A. Boltasseva, “Searching for better plasmonic materials,” Laser Photon. Rev. 4, 795–808 (2010).

Fan, S.

Z. Yu, A. Raman, S. Fan, “Fundamental limit of nanophotonic light trapping in solar cells,” Proc. Natl. Acad. Sci. USA 107, 17491–17496 (2010).

Ferreira, I.

Filonovich, S. A.

Fortunato, E.

Galli, M.

F. Priolo, T. Gregorkiewicz, M. Galli, T. F. Krauss, “Silicon nanostructures for photonics and photovoltaics,” Nat. Nanotechnol. 9, 19–32 (2014).
[Crossref]

Garcia-Linares, P.

M. J. Mendes, E. Hernandez, E. Lopez, P. Garcia-Linares, I. Ramiro, I. Artacho, E. Antolin, I. Tobias, A. Marti, A. Luque, “Self-organized colloidal quantum dots and metal nanoparticles for plasmon-enhanced intermediate-band solar cells,” Nanotechnology 24, 345402 (2013).
[Crossref]

Gee, J.

J. Gee, “The effect of parasitic absorption losses on light trapping in thin silicon solar cells,” in 20th IEEE Photovoltaic Specialists Conference (PVSC), Las Vegas, Sept.1988, Vol. 1, pp. 549–554.

Ghosh, S. K.

S. K. Ghosh, T. Pal, “Interparticle coupling effect on the surface plasmon resonance of gold nanoparticles: from theory to applications,” Chem. Rev. 107, 4797–4862 (2007).
[Crossref]

Green, M. A.

M. A. Green, S. Pillai, “Harnessing plasmonics for solar cells,” Nat. Photonics 6, 130–132 (2012).
[Crossref]

Z. Ouyang, S. Pillai, F. Beck, O. Kunz, S. Varlamov, K. R. Catchpole, P. Campbell, M. A. Green, “Effective light trapping in polycrystalline silicon thin-film solar cells by means of rear localized surface plasmons,” Appl. Phys. Lett. 96, 261109 (2010).
[Crossref]

Gregorkiewicz, T.

F. Priolo, T. Gregorkiewicz, M. Galli, T. F. Krauss, “Silicon nanostructures for photonics and photovoltaics,” Nat. Nanotechnol. 9, 19–32 (2014).
[Crossref]

Hagemann, V.

U. W. Paetzold, E. Moulin, D. Michaelis, W. Boettler, C. Waechter, V. Hagemann, M. Meier, R. Carius, U. Rau, “Plasmonic reflection grating back contacts for microcrystalline silicon solar cells,” Appl. Phys. Lett. 99, 181105 (2011).
[Crossref]

Haug, F.-J.

C. Pahud, O. Isabella, A. Naqavi, F.-J. Haug, M. Zeman, H. P. Herzig, C. Ballif, “Plasmonic silicon solar cells: impact of material quality and geometry,” Opt. Express 21, A786–A797 (2013).
[Crossref]

M. Boccard, C. Battaglia, F.-J. Haug, M. Despeisse, C. Ballif, “Light trapping in solar cells: analytical modeling,” Appl. Phys. Lett. 101, 151105 (2012).
[Crossref]

Heller, E. J.

B. Liu, E. J. Heller, “Multiple scattering and plasmon resonance in the intermediate regime,” arXiv:1403.4310v1 [cond-mat.mes-hall] (2014).

Hernandez, E.

M. J. Mendes, E. Hernandez, E. Lopez, P. Garcia-Linares, I. Ramiro, I. Artacho, E. Antolin, I. Tobias, A. Marti, A. Luque, “Self-organized colloidal quantum dots and metal nanoparticles for plasmon-enhanced intermediate-band solar cells,” Nanotechnology 24, 345402 (2013).
[Crossref]

Herzig, H. P.

C. Pahud, O. Isabella, A. Naqavi, F.-J. Haug, M. Zeman, H. P. Herzig, C. Ballif, “Plasmonic silicon solar cells: impact of material quality and geometry,” Opt. Express 21, A786–A797 (2013).
[Crossref]

Ingenito, A.

A. Ingenito, O. Isabella, M. Zeman, “Opto-electronic evaluation of thin double-textured crystalline silicon wafers,” in 39th IEEE Photovoltaic Specialist Conference (2013).

Isabella, O.

C. Pahud, O. Isabella, A. Naqavi, F.-J. Haug, M. Zeman, H. P. Herzig, C. Ballif, “Plasmonic silicon solar cells: impact of material quality and geometry,” Opt. Express 21, A786–A797 (2013).
[Crossref]

A. Ingenito, O. Isabella, M. Zeman, “Opto-electronic evaluation of thin double-textured crystalline silicon wafers,” in 39th IEEE Photovoltaic Specialist Conference (2013).

Ishii, S.

P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, A. Boltasseva, “Searching for better plasmonic materials,” Laser Photon. Rev. 4, 795–808 (2010).

Jovanov, V.

V. Jovanov, U. Planchoke, P. Magnus, H. Stiebig, D. Knipp, “Influence of back contact morphology on light trapping and plasmonic effects in microcrystalline silicon single junction and micromorph tandem solar cells,” Sol. Energy Mater. Sol. Cells 110, 49–57 (2013).

Khurgin, J. B.

G. Sun, J. B. Khurgin, Plasmonics and Plasmonic Metamaterials, G. Shvets, I. Tsukerman, eds. (World Scientific, 2012).

Knipp, D.

V. Jovanov, U. Planchoke, P. Magnus, H. Stiebig, D. Knipp, “Influence of back contact morphology on light trapping and plasmonic effects in microcrystalline silicon single junction and micromorph tandem solar cells,” Sol. Energy Mater. Sol. Cells 110, 49–57 (2013).

Krauss, P. R.

S. Y. Chou, P. R. Krauss, P. J. Renstrom, “Imprint lithography with 25-nanometer resolution,” Science 272, 85–87 (1996).
[Crossref]

Krauss, T. F.

F. Priolo, T. Gregorkiewicz, M. Galli, T. F. Krauss, “Silicon nanostructures for photonics and photovoltaics,” Nat. Nanotechnol. 9, 19–32 (2014).
[Crossref]

C. S. Schuster, A. Bozzola, L. C. Andreani, T. F. Krauss, “How to assess light trapping structures versus a Lambertian scatterer for solar cells?” Opt. Express 22, A542–A551 (2014).
[Crossref]

E. R. Martins, J. Li, Y. Liu, V. Depauw, Z. Chen, J. Zhou, T. F. Krauss, “Deterministic quasi-random nanostructures for photon control,” Nat. Commun. 4, 2665 (2013).
[Crossref]

E. R. Martins, J. Li, Y. Liu, T. F. Krauss, “Engineering gratings for light trapping in photovoltaics: the supercell concept,” Phys. Rev. B 86, 041404 (2012).

Kunz, O.

Z. Ouyang, S. Pillai, F. Beck, O. Kunz, S. Varlamov, K. R. Catchpole, P. Campbell, M. A. Green, “Effective light trapping in polycrystalline silicon thin-film solar cells by means of rear localized surface plasmons,” Appl. Phys. Lett. 96, 261109 (2010).
[Crossref]

Li, J.

E. R. Martins, J. Li, Y. Liu, V. Depauw, Z. Chen, J. Zhou, T. F. Krauss, “Deterministic quasi-random nanostructures for photon control,” Nat. Commun. 4, 2665 (2013).
[Crossref]

E. R. Martins, J. Li, Y. Liu, T. F. Krauss, “Engineering gratings for light trapping in photovoltaics: the supercell concept,” Phys. Rev. B 86, 041404 (2012).

Liang, R.

R. Santbergen, T. L. Temple, R. Liang, A. H. M. Smets, R. A. C. M. M. van Swaaij, M. Zeman, “Application of plasmonic silver island films in thin-film silicon solar cells,” J. Opt. 14, 024010 (2012).
[Crossref]

R. Santbergen, R. Liang, M. Zeman, “a-Si:H solar cells with embedded silver nanoparticles,” in 35th IEEE Photovoltaic Specialists Conference (PVSC), June20–25, 2010, pp. 748–753.

Liu, B.

B. Liu, E. J. Heller, “Multiple scattering and plasmon resonance in the intermediate regime,” arXiv:1403.4310v1 [cond-mat.mes-hall] (2014).

Liu, Y.

E. R. Martins, J. Li, Y. Liu, V. Depauw, Z. Chen, J. Zhou, T. F. Krauss, “Deterministic quasi-random nanostructures for photon control,” Nat. Commun. 4, 2665 (2013).
[Crossref]

E. R. Martins, J. Li, Y. Liu, T. F. Krauss, “Engineering gratings for light trapping in photovoltaics: the supercell concept,” Phys. Rev. B 86, 041404 (2012).

Lopez, E.

M. J. Mendes, E. Hernandez, E. Lopez, P. Garcia-Linares, I. Ramiro, I. Artacho, E. Antolin, I. Tobias, A. Marti, A. Luque, “Self-organized colloidal quantum dots and metal nanoparticles for plasmon-enhanced intermediate-band solar cells,” Nanotechnology 24, 345402 (2013).
[Crossref]

Luque, A.

M. J. Mendes, E. Hernandez, E. Lopez, P. Garcia-Linares, I. Ramiro, I. Artacho, E. Antolin, I. Tobias, A. Marti, A. Luque, “Self-organized colloidal quantum dots and metal nanoparticles for plasmon-enhanced intermediate-band solar cells,” Nanotechnology 24, 345402 (2013).
[Crossref]

Magnus, P.

V. Jovanov, U. Planchoke, P. Magnus, H. Stiebig, D. Knipp, “Influence of back contact morphology on light trapping and plasmonic effects in microcrystalline silicon single junction and micromorph tandem solar cells,” Sol. Energy Mater. Sol. Cells 110, 49–57 (2013).

Marti, A.

M. J. Mendes, E. Hernandez, E. Lopez, P. Garcia-Linares, I. Ramiro, I. Artacho, E. Antolin, I. Tobias, A. Marti, A. Luque, “Self-organized colloidal quantum dots and metal nanoparticles for plasmon-enhanced intermediate-band solar cells,” Nanotechnology 24, 345402 (2013).
[Crossref]

Martins, E. R.

E. R. Martins, J. Li, Y. Liu, V. Depauw, Z. Chen, J. Zhou, T. F. Krauss, “Deterministic quasi-random nanostructures for photon control,” Nat. Commun. 4, 2665 (2013).
[Crossref]

E. R. Martins, J. Li, Y. Liu, T. F. Krauss, “Engineering gratings for light trapping in photovoltaics: the supercell concept,” Phys. Rev. B 86, 041404 (2012).

Martins, R.

Mateus, T.

Meier, M.

U. W. Paetzold, E. Moulin, D. Michaelis, W. Boettler, C. Waechter, V. Hagemann, M. Meier, R. Carius, U. Rau, “Plasmonic reflection grating back contacts for microcrystalline silicon solar cells,” Appl. Phys. Lett. 99, 181105 (2011).
[Crossref]

Mendes, M. J.

S. Morawiec, M. J. Mendes, S. A. Filonovich, T. Mateus, S. Mirabella, H. Aguas, I. Ferreira, F. Simone, E. Fortunato, R. Martins, F. Priolo, I. Crupi, “Broadband photocurrent enhancement in a-Si:H solar cells with plasmonic back reflectors,” Opt. Express 22, A1059–A1070 (2014).
[Crossref]

M. J. Mendes, S. Morawiec, F. Simone, F. Priolo, I. Crupi, “Colloidal plasmonic back reflectors for light trapping in solar cells,” Nanoscale 6, 4796–4805 (2014).
[Crossref]

M. J. Mendes, E. Hernandez, E. Lopez, P. Garcia-Linares, I. Ramiro, I. Artacho, E. Antolin, I. Tobias, A. Marti, A. Luque, “Self-organized colloidal quantum dots and metal nanoparticles for plasmon-enhanced intermediate-band solar cells,” Nanotechnology 24, 345402 (2013).
[Crossref]

S. Morawiec, M. J. Mendes, S. Mirabella, F. Simone, F. Priolo, I. Crupi, “Self-assembled silver nanoparticles for plasmon-enhanced solar cell back reflectors: correlation between structural and optical properties,” Nanotechnology 24, 265601 (2013).
[Crossref]

Michaelis, D.

U. W. Paetzold, E. Moulin, D. Michaelis, W. Boettler, C. Waechter, V. Hagemann, M. Meier, R. Carius, U. Rau, “Plasmonic reflection grating back contacts for microcrystalline silicon solar cells,” Appl. Phys. Lett. 99, 181105 (2011).
[Crossref]

Mirabella, S.

S. Morawiec, M. J. Mendes, S. A. Filonovich, T. Mateus, S. Mirabella, H. Aguas, I. Ferreira, F. Simone, E. Fortunato, R. Martins, F. Priolo, I. Crupi, “Broadband photocurrent enhancement in a-Si:H solar cells with plasmonic back reflectors,” Opt. Express 22, A1059–A1070 (2014).
[Crossref]

S. Morawiec, M. J. Mendes, S. Mirabella, F. Simone, F. Priolo, I. Crupi, “Self-assembled silver nanoparticles for plasmon-enhanced solar cell back reflectors: correlation between structural and optical properties,” Nanotechnology 24, 265601 (2013).
[Crossref]

Mokkapati, S.

S. Mokkapati, K. R. Catchpole, “Nanophotonic light trapping in solar cells,” J. Appl. Phys. 112, 101101 (2012).
[Crossref]

F. J. Beck, S. Mokkapati, K. R. Catchpole, “Light trapping with plasmonic particles: beyond the dipole model,” Opt. Express 19, 25230–25241 (2011).
[Crossref]

Morawiec, S.

S. Morawiec, M. J. Mendes, S. A. Filonovich, T. Mateus, S. Mirabella, H. Aguas, I. Ferreira, F. Simone, E. Fortunato, R. Martins, F. Priolo, I. Crupi, “Broadband photocurrent enhancement in a-Si:H solar cells with plasmonic back reflectors,” Opt. Express 22, A1059–A1070 (2014).
[Crossref]

M. J. Mendes, S. Morawiec, F. Simone, F. Priolo, I. Crupi, “Colloidal plasmonic back reflectors for light trapping in solar cells,” Nanoscale 6, 4796–4805 (2014).
[Crossref]

S. Morawiec, M. J. Mendes, S. Mirabella, F. Simone, F. Priolo, I. Crupi, “Self-assembled silver nanoparticles for plasmon-enhanced solar cell back reflectors: correlation between structural and optical properties,” Nanotechnology 24, 265601 (2013).
[Crossref]

Moulin, E.

U. W. Paetzold, E. Moulin, D. Michaelis, W. Boettler, C. Waechter, V. Hagemann, M. Meier, R. Carius, U. Rau, “Plasmonic reflection grating back contacts for microcrystalline silicon solar cells,” Appl. Phys. Lett. 99, 181105 (2011).
[Crossref]

Naik, G. V.

P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, A. Boltasseva, “Searching for better plasmonic materials,” Laser Photon. Rev. 4, 795–808 (2010).

Naqavi, A.

C. Pahud, O. Isabella, A. Naqavi, F.-J. Haug, M. Zeman, H. P. Herzig, C. Ballif, “Plasmonic silicon solar cells: impact of material quality and geometry,” Opt. Express 21, A786–A797 (2013).
[Crossref]

Ouyang, Z.

Z. Ouyang, S. Pillai, F. Beck, O. Kunz, S. Varlamov, K. R. Catchpole, P. Campbell, M. A. Green, “Effective light trapping in polycrystalline silicon thin-film solar cells by means of rear localized surface plasmons,” Appl. Phys. Lett. 96, 261109 (2010).
[Crossref]

Paetzold, U. W.

U. W. Paetzold, E. Moulin, D. Michaelis, W. Boettler, C. Waechter, V. Hagemann, M. Meier, R. Carius, U. Rau, “Plasmonic reflection grating back contacts for microcrystalline silicon solar cells,” Appl. Phys. Lett. 99, 181105 (2011).
[Crossref]

Pahud, C.

C. Pahud, O. Isabella, A. Naqavi, F.-J. Haug, M. Zeman, H. P. Herzig, C. Ballif, “Plasmonic silicon solar cells: impact of material quality and geometry,” Opt. Express 21, A786–A797 (2013).
[Crossref]

Pal, T.

S. K. Ghosh, T. Pal, “Interparticle coupling effect on the surface plasmon resonance of gold nanoparticles: from theory to applications,” Chem. Rev. 107, 4797–4862 (2007).
[Crossref]

Pennanen, A. M.

Pillai, S.

M. A. Green, S. Pillai, “Harnessing plasmonics for solar cells,” Nat. Photonics 6, 130–132 (2012).
[Crossref]

Z. Ouyang, S. Pillai, F. Beck, O. Kunz, S. Varlamov, K. R. Catchpole, P. Campbell, M. A. Green, “Effective light trapping in polycrystalline silicon thin-film solar cells by means of rear localized surface plasmons,” Appl. Phys. Lett. 96, 261109 (2010).
[Crossref]

Planchoke, U.

V. Jovanov, U. Planchoke, P. Magnus, H. Stiebig, D. Knipp, “Influence of back contact morphology on light trapping and plasmonic effects in microcrystalline silicon single junction and micromorph tandem solar cells,” Sol. Energy Mater. Sol. Cells 110, 49–57 (2013).

Polman, A.

H. A. Atwater, A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9, 205–213 (2010).
[Crossref]

Priolo, F.

S. Morawiec, M. J. Mendes, S. A. Filonovich, T. Mateus, S. Mirabella, H. Aguas, I. Ferreira, F. Simone, E. Fortunato, R. Martins, F. Priolo, I. Crupi, “Broadband photocurrent enhancement in a-Si:H solar cells with plasmonic back reflectors,” Opt. Express 22, A1059–A1070 (2014).
[Crossref]

F. Priolo, T. Gregorkiewicz, M. Galli, T. F. Krauss, “Silicon nanostructures for photonics and photovoltaics,” Nat. Nanotechnol. 9, 19–32 (2014).
[Crossref]

M. J. Mendes, S. Morawiec, F. Simone, F. Priolo, I. Crupi, “Colloidal plasmonic back reflectors for light trapping in solar cells,” Nanoscale 6, 4796–4805 (2014).
[Crossref]

S. Morawiec, M. J. Mendes, S. Mirabella, F. Simone, F. Priolo, I. Crupi, “Self-assembled silver nanoparticles for plasmon-enhanced solar cell back reflectors: correlation between structural and optical properties,” Nanotechnology 24, 265601 (2013).
[Crossref]

Raman, A.

Z. Yu, A. Raman, S. Fan, “Fundamental limit of nanophotonic light trapping in solar cells,” Proc. Natl. Acad. Sci. USA 107, 17491–17496 (2010).

Ramiro, I.

M. J. Mendes, E. Hernandez, E. Lopez, P. Garcia-Linares, I. Ramiro, I. Artacho, E. Antolin, I. Tobias, A. Marti, A. Luque, “Self-organized colloidal quantum dots and metal nanoparticles for plasmon-enhanced intermediate-band solar cells,” Nanotechnology 24, 345402 (2013).
[Crossref]

Rau, U.

U. W. Paetzold, E. Moulin, D. Michaelis, W. Boettler, C. Waechter, V. Hagemann, M. Meier, R. Carius, U. Rau, “Plasmonic reflection grating back contacts for microcrystalline silicon solar cells,” Appl. Phys. Lett. 99, 181105 (2011).
[Crossref]

Renstrom, P. J.

S. Y. Chou, P. R. Krauss, P. J. Renstrom, “Imprint lithography with 25-nanometer resolution,” Science 272, 85–87 (1996).
[Crossref]

Santbergen, R.

H. Tan, L. Sivec, B. Yan, R. Santbergen, M. Zeman, A. H. M. Smets, “Improved light trapping in microcrystalline silicon solar cells by plasmonic back reflector with broad angular scattering and low parasitic absorption,” Appl. Phys. Lett. 102, 153902 (2013).
[Crossref]

H. Tan, R. Santbergen, A. H. M. Smets, M. Zeman, “Plasmonic light trapping in thin-film silicon solar cells with improved self-assembled silver nanoparticles,” Nano Lett. 12, 4070–4076 (2012).

R. Santbergen, T. L. Temple, R. Liang, A. H. M. Smets, R. A. C. M. M. van Swaaij, M. Zeman, “Application of plasmonic silver island films in thin-film silicon solar cells,” J. Opt. 14, 024010 (2012).
[Crossref]

R. Santbergen, R. Liang, M. Zeman, “a-Si:H solar cells with embedded silver nanoparticles,” in 35th IEEE Photovoltaic Specialists Conference (PVSC), June20–25, 2010, pp. 748–753.

Schuster, C. S.

Shalaev, V. M.

P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, A. Boltasseva, “Searching for better plasmonic materials,” Laser Photon. Rev. 4, 795–808 (2010).

Simone, F.

M. J. Mendes, S. Morawiec, F. Simone, F. Priolo, I. Crupi, “Colloidal plasmonic back reflectors for light trapping in solar cells,” Nanoscale 6, 4796–4805 (2014).
[Crossref]

S. Morawiec, M. J. Mendes, S. A. Filonovich, T. Mateus, S. Mirabella, H. Aguas, I. Ferreira, F. Simone, E. Fortunato, R. Martins, F. Priolo, I. Crupi, “Broadband photocurrent enhancement in a-Si:H solar cells with plasmonic back reflectors,” Opt. Express 22, A1059–A1070 (2014).
[Crossref]

S. Morawiec, M. J. Mendes, S. Mirabella, F. Simone, F. Priolo, I. Crupi, “Self-assembled silver nanoparticles for plasmon-enhanced solar cell back reflectors: correlation between structural and optical properties,” Nanotechnology 24, 265601 (2013).
[Crossref]

Sivec, L.

H. Tan, L. Sivec, B. Yan, R. Santbergen, M. Zeman, A. H. M. Smets, “Improved light trapping in microcrystalline silicon solar cells by plasmonic back reflector with broad angular scattering and low parasitic absorption,” Appl. Phys. Lett. 102, 153902 (2013).
[Crossref]

Smets, A. H. M.

H. Tan, L. Sivec, B. Yan, R. Santbergen, M. Zeman, A. H. M. Smets, “Improved light trapping in microcrystalline silicon solar cells by plasmonic back reflector with broad angular scattering and low parasitic absorption,” Appl. Phys. Lett. 102, 153902 (2013).
[Crossref]

H. Tan, R. Santbergen, A. H. M. Smets, M. Zeman, “Plasmonic light trapping in thin-film silicon solar cells with improved self-assembled silver nanoparticles,” Nano Lett. 12, 4070–4076 (2012).

R. Santbergen, T. L. Temple, R. Liang, A. H. M. Smets, R. A. C. M. M. van Swaaij, M. Zeman, “Application of plasmonic silver island films in thin-film silicon solar cells,” J. Opt. 14, 024010 (2012).
[Crossref]

Stiebig, H.

V. Jovanov, U. Planchoke, P. Magnus, H. Stiebig, D. Knipp, “Influence of back contact morphology on light trapping and plasmonic effects in microcrystalline silicon single junction and micromorph tandem solar cells,” Sol. Energy Mater. Sol. Cells 110, 49–57 (2013).

Sun, G.

G. Sun, J. B. Khurgin, Plasmonics and Plasmonic Metamaterials, G. Shvets, I. Tsukerman, eds. (World Scientific, 2012).

Tan, H.

H. Tan, L. Sivec, B. Yan, R. Santbergen, M. Zeman, A. H. M. Smets, “Improved light trapping in microcrystalline silicon solar cells by plasmonic back reflector with broad angular scattering and low parasitic absorption,” Appl. Phys. Lett. 102, 153902 (2013).
[Crossref]

H. Tan, R. Santbergen, A. H. M. Smets, M. Zeman, “Plasmonic light trapping in thin-film silicon solar cells with improved self-assembled silver nanoparticles,” Nano Lett. 12, 4070–4076 (2012).

Temple, T. L.

R. Santbergen, T. L. Temple, R. Liang, A. H. M. Smets, R. A. C. M. M. van Swaaij, M. Zeman, “Application of plasmonic silver island films in thin-film silicon solar cells,” J. Opt. 14, 024010 (2012).
[Crossref]

Thompson, C. V.

C. V. Thompson, “Solid-state dewetting of thin films,” Annu. Rev. Mater. Res. 42, 399–434 (2012).
[Crossref]

Tiedje, T.

T. Tiedje, E. Yablonovitch, G. Cody, B. Brooks, “Limiting efficiency of silicon solar cells,” IEEE Trans. Electron Devices 31, 711–716 (1984).
[Crossref]

Tobias, I.

M. J. Mendes, E. Hernandez, E. Lopez, P. Garcia-Linares, I. Ramiro, I. Artacho, E. Antolin, I. Tobias, A. Marti, A. Luque, “Self-organized colloidal quantum dots and metal nanoparticles for plasmon-enhanced intermediate-band solar cells,” Nanotechnology 24, 345402 (2013).
[Crossref]

Toppari, J. J.

van Swaaij, R. A. C. M. M.

R. Santbergen, T. L. Temple, R. Liang, A. H. M. Smets, R. A. C. M. M. van Swaaij, M. Zeman, “Application of plasmonic silver island films in thin-film silicon solar cells,” J. Opt. 14, 024010 (2012).
[Crossref]

Varlamov, S.

Z. Ouyang, S. Pillai, F. Beck, O. Kunz, S. Varlamov, K. R. Catchpole, P. Campbell, M. A. Green, “Effective light trapping in polycrystalline silicon thin-film solar cells by means of rear localized surface plasmons,” Appl. Phys. Lett. 96, 261109 (2010).
[Crossref]

Waechter, C.

U. W. Paetzold, E. Moulin, D. Michaelis, W. Boettler, C. Waechter, V. Hagemann, M. Meier, R. Carius, U. Rau, “Plasmonic reflection grating back contacts for microcrystalline silicon solar cells,” Appl. Phys. Lett. 99, 181105 (2011).
[Crossref]

West, P. R.

P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, A. Boltasseva, “Searching for better plasmonic materials,” Laser Photon. Rev. 4, 795–808 (2010).

Witzke, H.

H. W. Deckman, C. R. Wronski, H. Witzke, E. Yablonovitch, “Optically enhanced amorphous silicon solar cells,” Appl. Phys. Lett. 42, 968–970 (1983).
[Crossref]

Wronski, C. R.

H. W. Deckman, C. R. Wronski, H. Witzke, E. Yablonovitch, “Optically enhanced amorphous silicon solar cells,” Appl. Phys. Lett. 42, 968–970 (1983).
[Crossref]

Yablonovitch, E.

T. Tiedje, E. Yablonovitch, G. Cody, B. Brooks, “Limiting efficiency of silicon solar cells,” IEEE Trans. Electron Devices 31, 711–716 (1984).
[Crossref]

H. W. Deckman, C. R. Wronski, H. Witzke, E. Yablonovitch, “Optically enhanced amorphous silicon solar cells,” Appl. Phys. Lett. 42, 968–970 (1983).
[Crossref]

E. Yablonovitch, G. D. Cody, “Intensity enhancement in textured optical sheets for solar cells,” IEEE Trans. Electron Devices 29, 300–305 (1982).
[Crossref]

Yan, B.

H. Tan, L. Sivec, B. Yan, R. Santbergen, M. Zeman, A. H. M. Smets, “Improved light trapping in microcrystalline silicon solar cells by plasmonic back reflector with broad angular scattering and low parasitic absorption,” Appl. Phys. Lett. 102, 153902 (2013).
[Crossref]

Yu, Z.

Z. Yu, A. Raman, S. Fan, “Fundamental limit of nanophotonic light trapping in solar cells,” Proc. Natl. Acad. Sci. USA 107, 17491–17496 (2010).

Zeman, M.

H. Tan, L. Sivec, B. Yan, R. Santbergen, M. Zeman, A. H. M. Smets, “Improved light trapping in microcrystalline silicon solar cells by plasmonic back reflector with broad angular scattering and low parasitic absorption,” Appl. Phys. Lett. 102, 153902 (2013).
[Crossref]

C. Pahud, O. Isabella, A. Naqavi, F.-J. Haug, M. Zeman, H. P. Herzig, C. Ballif, “Plasmonic silicon solar cells: impact of material quality and geometry,” Opt. Express 21, A786–A797 (2013).
[Crossref]

H. Tan, R. Santbergen, A. H. M. Smets, M. Zeman, “Plasmonic light trapping in thin-film silicon solar cells with improved self-assembled silver nanoparticles,” Nano Lett. 12, 4070–4076 (2012).

R. Santbergen, T. L. Temple, R. Liang, A. H. M. Smets, R. A. C. M. M. van Swaaij, M. Zeman, “Application of plasmonic silver island films in thin-film silicon solar cells,” J. Opt. 14, 024010 (2012).
[Crossref]

R. Santbergen, R. Liang, M. Zeman, “a-Si:H solar cells with embedded silver nanoparticles,” in 35th IEEE Photovoltaic Specialists Conference (PVSC), June20–25, 2010, pp. 748–753.

A. Ingenito, O. Isabella, M. Zeman, “Opto-electronic evaluation of thin double-textured crystalline silicon wafers,” in 39th IEEE Photovoltaic Specialist Conference (2013).

Zhou, J.

E. R. Martins, J. Li, Y. Liu, V. Depauw, Z. Chen, J. Zhou, T. F. Krauss, “Deterministic quasi-random nanostructures for photon control,” Nat. Commun. 4, 2665 (2013).
[Crossref]

Am. J. Phys. (1)

B. G. de Grooth, “Why is the propagation velocity of a photon in a transparent medium reduced?” Am. J. Phys. 65, 1156–1164 (1997).
[Crossref]

Annu. Rev. Mater. Res. (1)

C. V. Thompson, “Solid-state dewetting of thin films,” Annu. Rev. Mater. Res. 42, 399–434 (2012).
[Crossref]

Appl. Phys. Lett. (1)

M. Boccard, C. Battaglia, F.-J. Haug, M. Despeisse, C. Ballif, “Light trapping in solar cells: analytical modeling,” Appl. Phys. Lett. 101, 151105 (2012).
[Crossref]

Appl. Phys. Lett. (4)

H. Tan, L. Sivec, B. Yan, R. Santbergen, M. Zeman, A. H. M. Smets, “Improved light trapping in microcrystalline silicon solar cells by plasmonic back reflector with broad angular scattering and low parasitic absorption,” Appl. Phys. Lett. 102, 153902 (2013).
[Crossref]

Z. Ouyang, S. Pillai, F. Beck, O. Kunz, S. Varlamov, K. R. Catchpole, P. Campbell, M. A. Green, “Effective light trapping in polycrystalline silicon thin-film solar cells by means of rear localized surface plasmons,” Appl. Phys. Lett. 96, 261109 (2010).
[Crossref]

U. W. Paetzold, E. Moulin, D. Michaelis, W. Boettler, C. Waechter, V. Hagemann, M. Meier, R. Carius, U. Rau, “Plasmonic reflection grating back contacts for microcrystalline silicon solar cells,” Appl. Phys. Lett. 99, 181105 (2011).
[Crossref]

H. W. Deckman, C. R. Wronski, H. Witzke, E. Yablonovitch, “Optically enhanced amorphous silicon solar cells,” Appl. Phys. Lett. 42, 968–970 (1983).
[Crossref]

Chem. Rev. (1)

S. K. Ghosh, T. Pal, “Interparticle coupling effect on the surface plasmon resonance of gold nanoparticles: from theory to applications,” Chem. Rev. 107, 4797–4862 (2007).
[Crossref]

IEEE Trans. Electron Devices (1)

E. Yablonovitch, G. D. Cody, “Intensity enhancement in textured optical sheets for solar cells,” IEEE Trans. Electron Devices 29, 300–305 (1982).
[Crossref]

IEEE Trans. Electron Devices (1)

T. Tiedje, E. Yablonovitch, G. Cody, B. Brooks, “Limiting efficiency of silicon solar cells,” IEEE Trans. Electron Devices 31, 711–716 (1984).
[Crossref]

J. Opt. (1)

R. Santbergen, T. L. Temple, R. Liang, A. H. M. Smets, R. A. C. M. M. van Swaaij, M. Zeman, “Application of plasmonic silver island films in thin-film silicon solar cells,” J. Opt. 14, 024010 (2012).
[Crossref]

J. Appl. Phys. (1)

S. Mokkapati, K. R. Catchpole, “Nanophotonic light trapping in solar cells,” J. Appl. Phys. 112, 101101 (2012).
[Crossref]

Laser Photon. Rev. (1)

P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, A. Boltasseva, “Searching for better plasmonic materials,” Laser Photon. Rev. 4, 795–808 (2010).

Nano Lett. (1)

H. Tan, R. Santbergen, A. H. M. Smets, M. Zeman, “Plasmonic light trapping in thin-film silicon solar cells with improved self-assembled silver nanoparticles,” Nano Lett. 12, 4070–4076 (2012).

Nanoscale (1)

M. J. Mendes, S. Morawiec, F. Simone, F. Priolo, I. Crupi, “Colloidal plasmonic back reflectors for light trapping in solar cells,” Nanoscale 6, 4796–4805 (2014).
[Crossref]

Nanotechnology (2)

S. Morawiec, M. J. Mendes, S. Mirabella, F. Simone, F. Priolo, I. Crupi, “Self-assembled silver nanoparticles for plasmon-enhanced solar cell back reflectors: correlation between structural and optical properties,” Nanotechnology 24, 265601 (2013).
[Crossref]

M. J. Mendes, E. Hernandez, E. Lopez, P. Garcia-Linares, I. Ramiro, I. Artacho, E. Antolin, I. Tobias, A. Marti, A. Luque, “Self-organized colloidal quantum dots and metal nanoparticles for plasmon-enhanced intermediate-band solar cells,” Nanotechnology 24, 345402 (2013).
[Crossref]

Nat. Commun. (1)

E. R. Martins, J. Li, Y. Liu, V. Depauw, Z. Chen, J. Zhou, T. F. Krauss, “Deterministic quasi-random nanostructures for photon control,” Nat. Commun. 4, 2665 (2013).
[Crossref]

Nat. Mater. (1)

H. A. Atwater, A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9, 205–213 (2010).
[Crossref]

Nat. Nanotechnol. (1)

F. Priolo, T. Gregorkiewicz, M. Galli, T. F. Krauss, “Silicon nanostructures for photonics and photovoltaics,” Nat. Nanotechnol. 9, 19–32 (2014).
[Crossref]

Nat. Photonics (1)

M. A. Green, S. Pillai, “Harnessing plasmonics for solar cells,” Nat. Photonics 6, 130–132 (2012).
[Crossref]

Opt. Express (2)

F. J. Beck, S. Mokkapati, K. R. Catchpole, “Light trapping with plasmonic particles: beyond the dipole model,” Opt. Express 19, 25230–25241 (2011).
[Crossref]

C. Pahud, O. Isabella, A. Naqavi, F.-J. Haug, M. Zeman, H. P. Herzig, C. Ballif, “Plasmonic silicon solar cells: impact of material quality and geometry,” Opt. Express 21, A786–A797 (2013).
[Crossref]

Opt. Express (3)

Phys. Rev. B (1)

E. R. Martins, J. Li, Y. Liu, T. F. Krauss, “Engineering gratings for light trapping in photovoltaics: the supercell concept,” Phys. Rev. B 86, 041404 (2012).

Proc. Natl. Acad. Sci. USA (1)

Z. Yu, A. Raman, S. Fan, “Fundamental limit of nanophotonic light trapping in solar cells,” Proc. Natl. Acad. Sci. USA 107, 17491–17496 (2010).

Science (1)

S. Y. Chou, P. R. Krauss, P. J. Renstrom, “Imprint lithography with 25-nanometer resolution,” Science 272, 85–87 (1996).
[Crossref]

Sol. Energy Mater. Sol. Cells (1)

V. Jovanov, U. Planchoke, P. Magnus, H. Stiebig, D. Knipp, “Influence of back contact morphology on light trapping and plasmonic effects in microcrystalline silicon single junction and micromorph tandem solar cells,” Sol. Energy Mater. Sol. Cells 110, 49–57 (2013).

Other (7)

A. Ingenito, O. Isabella, M. Zeman, “Opto-electronic evaluation of thin double-textured crystalline silicon wafers,” in 39th IEEE Photovoltaic Specialist Conference (2013).

R. Brendel, Thin-Film Crystalline Silicon Solar Cells: Physics and Technology (Wiley-VCH, 2003).

NREL, “AM1.5G solar spectrum irradiance data,” http://rredc.nrel.gov/solar/spectra/am1.5 .

J. Gee, “The effect of parasitic absorption losses on light trapping in thin silicon solar cells,” in 20th IEEE Photovoltaic Specialists Conference (PVSC), Las Vegas, Sept.1988, Vol. 1, pp. 549–554.

G. Sun, J. B. Khurgin, Plasmonics and Plasmonic Metamaterials, G. Shvets, I. Tsukerman, eds. (World Scientific, 2012).

R. Santbergen, R. Liang, M. Zeman, “a-Si:H solar cells with embedded silver nanoparticles,” in 35th IEEE Photovoltaic Specialists Conference (PVSC), June20–25, 2010, pp. 748–753.

B. Liu, E. J. Heller, “Multiple scattering and plasmon resonance in the intermediate regime,” arXiv:1403.4310v1 [cond-mat.mes-hall] (2014).

Supplementary Material (1)

» Media 1: PDF (1050 KB)     

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1. (a) A diffractive 2D quasi-periodic nanostructure, optimized to channel more energy into the higher diffraction orders. (b) A plasmonic nanostructure designed to scatter light efficiently into the silicon layer. Both approaches have been realized on the back of a 240 nm a-Si absorber slab. The white arrows in the bottom sketches indicate the illumination direction.
Fig. 2.
Fig. 2. Measured total absorption of the unstructured a-Si slab (black solid line), with an added diffractive structure (green short-dashed line) and with an added plasmonic structure (blue long-dashed line).
Fig. 3.
Fig. 3. When randomization of light at the scattering layer allows neglecting coherent effects, the propagation of an averaged light ray in a lossy waveguide is described by the external reflection R ext , the internal effective reflectances R f and R r , the parasitic metal absorption A p , and the attenuated transmission T r with respect to the single-pass traversal T f . We assumed the incident medium to be glass as all measurements were normalized to a reference glass cover slide.
Fig. 4.
Fig. 4. Analysis of the modeled parasitic absorption caused by the metal nanoparticles. (a) Using the least-square method, the inverse of the residual between the simulated and measured total absorption A tot is shown as a contour plot as a function of the effective backreflection R r and the parasitic absorption A p . (b) The measurement is then compared with the best fit with R r = 34 % and A p = 20 % . Higher or lower values of R r would overestimate either the measured absorption or the parasitics in the visible range, respectively, where most of the light does not reach the backscattering layer or only interacts once with the metal nanoparticles.
Fig. 5.
Fig. 5. Separating the parasitic contribution from the total absorption in Fig. 2, the graphs refer to the absorption in silicon only. Whereas the plasmonic structure (blue long-dashed line) can enhance the absorption of an unstructured a-Si slab (black solid line) by 7%, the diffractive structure (green short-dashed line) is able to do so by 25%. For comparison, the red solid line corresponds to the theoretical absorption of an ideal Lambertian backscatterer.

Tables (1)

Tables Icon

Table 1. Comparison of the Integrated Silicon Absorption, the Calculated Short-Circuit Current J sc , and the LTE [11] for the 400–1000 nm Wavelength Range

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

T r ( α ) = 1 π 0 2 π d φ 0 π / 2 e α d sec θ cos θ sin θ d θ = 0 π / 2 e α d sec θ sin 2 θ d θ ,
R f ( λ ) = 1 π R f ( λ , θ , φ ) n · d Ω = 0 π / 2 R f ( λ , θ ) sin 2 θ d θ .
A tot = Z [ 1 T f ( 1 A P R r ( 1 T r + R f ( 1 T r T f ) T r ) ) ] .
A tot 1 T f = Z [ 1 + T f 1 T f A p + η · R r T f + ( η 1 ) · R r R f T r ] .
A max 1 T f n 2 [ 1 + 0 + 2 · 1 + 1 · ( 1 1 n 2 ) ] = 4 n 2 1 .
J SC = e h c · 400 1000 A exp ( λ ) · [ 1 A p , tot ( λ ) A tot ( λ ) ] · λ d I d λ · d λ ,

Metrics